2015中考数学试卷分类汇编:圆(3)
- 格式:doc
- 大小:590.00 KB
- 文档页数:26
2015中考数学真题分类汇编圆综合题一.解答题(共30小题)1.(2015•大连)如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F.(1)求证:EF与⊙O相切;(2)若AB=6,AD=4,求EF的长.2.(2015•潍坊)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.3.(2015•枣庄)如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心、OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=CD•2OE;(3)若cos∠BAD=,BE=6,求OE的长.4.(2015•西宁)如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足=,过点O作OM⊥AC于点E,交⊙O于点M,连接BM,AM.(1)求证:AD是⊙O的切线;(2)若sin∠ABM=,AM=6,求⊙O的半径.5.(2015•广元)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF、BF,求∠ABF的度数;(3)如果CD=15,BE=10,sinA=,求⊙O的半径.6.(2015•北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.7.(2015•莆田)如图,在四边形ABCD中,AB=AD,对角线AC,BD交于点E,点O 在线段AE上,⊙O过B,D两点,若OC=5,OB=3,且cos∠BOE=.求证:CB是⊙O的切线.8.(2015•锦州)如图,△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O 上一点,连接CE并延长交AB于点F,连接ED.(1)若∠B+∠FED=90°,求证:BC是⊙O的切线;(2)若FC=6,DE=3,FD=2,求⊙O的直径.9.(2015•甘孜州)如图,△ABC为等边三角形,以边BC为直径的半圆与边AB,AC 分别交于D,F两点,过点D作DE⊥AC,垂足为点E.(1)判断DF与⊙O的位置关系,并证明你的结论;(2)过点F作FH⊥BC,垂足为点H,若AB=4,求FH的长(结果保留根号).10.(2015•包头)如图,AB是⊙O的直径,点D是上一点,且∠BDE=∠CBE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:DE2=DF•DB;(3)在(2)的条件下,延长ED,BA交于点P,若PA=AO,DE=2,求PD的长和⊙O 的半径.11.(2015•本溪)如图,点D是等边△ABC中BC边的延长线上一点,且AC=CD,以AB为直径作⊙O,分别交边AC、BC于点E、点F(1)求证:AD是⊙O的切线;(2)连接OC,交⊙O于点G,若AB=4,求线段CE、CG与围成的阴影部分的面积S.12.(2015•常德)已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.13.(2015•武汉)如图,AB是⊙O的直径,∠ABT=45°,AT=AB.(1)求证:AT是⊙O的切线;(2)连接OT交⊙O于点C,连接AC,求tan∠TAC.14.(2015•衡阳)如图,AB是⊙O的直径,点C、D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.(1)求证:CE是⊙O的切线;(2)判断四边形AOCD是否为菱形?并说明理由.15.(2015•攀枝花)如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.(1)求证:DE是⊙O的切线;(2)若OF:OB=1:3,⊙O的半径R=3,求的值.16.(2015•河池)如图,AB为⊙O的直径,CO⊥AB于O,D在⊙O上,连接BD,CD,延长CD与AB的延长线交于E,F在BE上,且FD=FE.(1)求证:FD是⊙O的切线;(2)若AF=8,tan∠BDF=,求EF的长.17.(2015•毕节市)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.18.(2015•盐城)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O 交BC于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.19.(2015•怀化)如图,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE(1)求证:△ABC∽△CBD;(2)求证:直线DE是⊙O的切线.20.(2015•巴中)如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.(1)求证:直线CD为⊙O的切线;(2)若AB=5,BC=4,求线段CD的长.21.(2015•宁夏)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.22.(2015•昆明)如图,AH是⊙O的直径,AE平分∠FAH,交⊙O于点E,过点E 的直线FG⊥AF,垂足为F,B为直径OH上一点,点E、F分别在矩形ABCD的边BC 和CD上.(1)求证:直线FG是⊙O的切线;(2)若CD=10,EB=5,求⊙O的直径.23.(2015•厦门)已知四边形ABCD内接于⊙O,∠ADC=90°,∠DCB<90°,对角线AC平分∠DCB,延长DA,CB相交于点E.(1)如图1,EB=AD,求证:△ABE是等腰直角三角形;(2)如图2,连接OE,过点E作直线EF,使得∠OEF=30°,当∠ACE≥30°时,判断直线EF与⊙O的位置关系,并说明理由.24.(2015•福州)如图,Rt△ABC中,∠C=90°,AC=,tanB=,半径为2的⊙C,分别交AC,BC于点D,E,得到.(1)求证:AB为⊙C的切线;(2)求图中阴影部分的面积.25.(2015•黄石)如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.26.(2015•营口)如图,点P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=cm,AC=8cm,求图中阴影部分的面积;(3)在(2)的条件下,若点E是的中点,连接CE,求CE的长.27.(2015•宜宾)如图,CE是⊙O的直径,BD切⊙O于点D,DE∥BO,CE的延长线交BD于点A.(1)求证:直线BC是⊙O的切线;(2)若AE=2,tan∠DEO=,求AO的长.28.(2015•随州)如图,射线PA切⊙O于点A,连接PO.(1)在PO的上方作射线PC,使∠OPC=∠OPA(用尺规在原图中作,保留痕迹,不写作法),并证明:PC是⊙O的切线;(2)在(1)的条件下,若PC切⊙O于点B,AB=AP=4,求的长.29.(2015•潜江)如图,AC是⊙O的直径,OB是⊙O的半径,PA切⊙O于点A,PB 与AC的延长线交于点M,∠COB=∠APB.(1)求证:PB是⊙O的切线;(2)当OB=3,PA=6时,求MB,MC的长.30.(2015•广安)如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接PA、AO,并延长AO交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若=,且OC=4,求PA的长和tanD的值.。
专题圆一.解答题1.(2012年,肇庆)(本小题满分10分)如图7,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,连结BE、AD交于点P. 求证:(1)D是BC的中点;((2.((1A、BⅡ(2°,BC=23.(2012年,苏州)如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x(2<x<4).(1)当x=时,求弦PA、PB的长度;(2)当x为何值时,PD•CD的值最大?最大值是多少?4.(2012年,佛山)如图,直尺、三角尺都和圆O相切,AB=8cm .求圆O的直径.C5.(2012武汉)在锐角三角形ABC中,BC=4,sinA=,(1)如图1,求三角形ABC外接圆的直径;(2)如图2,点I为三角形ABC的内心,BA=BC,求AI的长.6.(2012张家界)如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线DC,P点为优弧上一动点(不与A.C重合).(1)求∠APC与∠ACD的度数;(2)当点P移动到CB弧的中点时,求证:四边形OBPC是菱形.(3)P点移动到什么位置时,△APC与△ABC全等,请说明理由.7.(2012南昌)已知,纸片⊙O的半径为2,如图1,沿弦AB折叠操作.(1)①折叠后的所在圆的圆心为O′时,求O′A的长度;②如图2,当折叠后的经过圆心为O时,求的长度;③如图3,当弦AB=2时,求圆心O到弦AB的距离;(2)在图1中,再将纸片⊙O沿弦CD折叠操作.①如图4,当AB∥CD,折叠后的与所在圆外切于点P时,设点O到弦AB.CD的距离之和为d,求d的值;②如图5,当AB与CD不平行,折叠后的与所在圆外切于点P时,设点M为AB的中点,点N为CD的中点,试探究四边形OMPN的形状,并证明你的结论.8.(2012•济宁)如图,AB是⊙O的直径,AC是弦,OD⊥AC于点D,过点A作⊙O的切线AP,AP与OD的延长线交于点P,连接PC、BC.(1)猜想:线段OD与BC有何数量和位置关系,并证明你的结论.(2)求证:PC是⊙O的切线..9.(2012•德阳)如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.(1)求证:AE•FD=AF•EC;(2)求证:FC=FB;(3)若FB=FE=2,求⊙O的半径r的长.10.(2012宜宾)如图,⊙O1、⊙O2相交于P、Q两点,其中⊙O1的半径r1=2,⊙O2的半径r2=.过点Q作CD⊥PQ,分别交⊙O1和⊙O2于点C.D,连接CP、DP,过点Q任作一直线AB交⊙O1和⊙O2于点A.B,连接AP、BP、AC.DB,且AC与DB的延长线交于点E.(1)求证:;(2)若PQ=2,试求∠E度数.11.(2012•资阳)如图,在△ABC中,AB=AC,∠A=30°,以AB为直径的⊙O交BC于点D,交AC于点E,连接DE,过点B作BP平行于DE,交⊙O于点P,连接EP、CP、OP.(1)BD=DC吗?说明理由;(2)求∠BOP的度数;(3)求证:CP是⊙O的切线;如果你解答这个问题有困难,可以参考如下信息:为了解答这个问题,小明和小强做了认真的探究,然后分别用不同的思路完成了这个题目.在进行小组交流的时候,小明说:“设OP交AC于点G,证△AOG∽△CPG”;小强说:“过点C作CH⊥AB于点H,证四边形CHOP是矩形”.12.并13.14.(、O2.答案1.(本小题满分10分)证明:(1)∵AB是直径∴∠ADB=90°即AD⊥BC(1分)又∵AB=AC∴D是BC的中点(3分)(2)在△BEC与△ADC中,∵∠C=∠C∠CAD=∠CBE(5分)∴△BEC ∽△ADC (6分) (3)∵△BEC ∽△ADC ∴CEBCCD AC = 又∵D 是BC 的中点 ∴2BD=2CD=BC ∴CEBD BD AC 2= 则 CE AC BD ⋅=22 ① (7分) 在△BPD 与 △ABD 中, 有 ∠BDP=∠BDA=,即∵PC=∴PA=,PA=,=4.解析:连接OA 、OB ,∠CAB=1800-600=1200∵AB 、AC 与圆O 相切, ∴OA 平分∠CAB 即∠OAB=21∠CAB=600 BO ┴AB∵AB=8cm ∠OBA= 900∴OA=16cm8cm∴根据勾股定理OB=3考查知识:切线长定理、勾股定理。
2015中考数学真题分类汇编:圆(1)一.选择题(共30小题)1. ( 2015?大庆)在O O 中,圆心O 到弦AB 的距离为AB 长度的一半,则弦 AB 所对圆心角的大小为()A. 30 ° B . 45 ° C . 60 ° D . 90 ° 2.( 2015?玉林)如图,在O O 中,直径CD 丄弦AB ,则下列结论中正确的是()4. ( 2015?泰安)如图,O O 是△ABC 的外接圆,/ B=60° O O 的半径为4,贝V AC 的A. 4 ■:B . 6 ■:C . 2 ■:D. 85.(2015?台湾)如图,AB 为圆O 的直径,BC 为圆O 的一弦,自O 点作BC 的垂线, 且交BC 于D 点.若AB=16, BC=12,贝V △OBD 的面积为何?( )A . A C=AB B .厶 C= BO DC .厶 C=Z BD .厶 A=Z BO D(A . CE=DEB .AE=OE C .: ‘=丨| D . △OCEODEA. 6B. 12C. 15D. 306. (2015?遂宁)如图,在半径为5cm的O O中,弦AB=6cm, OC丄AB于点C,贝V OC=7. (2015?潍坊)将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水部分的面积是()A. ( "n— 4 二)cm2B. ( "'n—8 二)cm2C. ( ' n-4 二)cm2D. (: n-3 3 3 32 ';) cm2& (2015?兰州)如图,已知经过原点的O P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则/ ACB=()100 °.无法确定9. (2015?酒泉)△ABC为O O的内接三角形,若/AOC=160。
2015中考数学真题分类汇编:圆(2)一.选择题(共30小题)1.(2015?宁夏)如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD 的度数是()A.88°B.92°C.106°D.136°2.(2015?贵港)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0 B.1 C.2 D.33.(2015?河北)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACF C.△ABD D.△ADE4.(2015?台湾)如图,坐标平面上有A(0,a)、B(﹣9,0)、C(10,0)三点,其中a>0.若∠BAC=95°,则△ABC的外心在第几象限?()A.一B.二C.三D.四5.(2015?湖北)点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°6.(2015?张家界)如图,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,半径为3的圆与OA的位置关系是()A.相离B.相交C.相切D.以上三种情况均有可能7.(2015?齐齐哈尔)如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤58.(2015?梅州)如图,AB是⊙O的弦,AC是⊙O切线,A为切点,BC经过圆心.若∠B=20°,则∠C的大小等于()A.20°B.25°C.40°D.50°9.(2015?嘉兴)如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为()A.B.2.4 C.D.10.(2015?黔西南州)如图,点P在⊙O外,PA、PB分别与⊙O相切于A、B两点,∠P=50°,则∠AOB等于()A.150°B.130°C.155°D.135°11.(2015?吉林)如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC的度数为()A.40°B.50°C.80°D.100°12.(2015?漳州)已知⊙P的半径为2,圆心在函数y=﹣的图象上运动,当⊙P与坐标轴相切于点D时,则符合条件的点D的个数为()A.0 B.1 C.2 D.413.(2015?厦门)如图,在△ABC中,AB=AC,D是边BC的中点,一个圆过点A,交边AB于点E,且与BC相切于点D,则该圆的圆心是()A.线段AE的中垂线与线段AC的中垂线的交点B.线段AB的中垂线与线段AC的中垂线的交点C.线段AE的中垂线与线段BC的中垂线的交点D.线段AB的中垂线与线段BC的中垂线的交点14.(2015?潍坊)如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=20°,则∠C的度数是()A.70°B.50°C.45°D.20°15.(2015?重庆)如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为()A.40°B.50°C.60°D.20°16.(2015?内江)如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.40°B.35°C.30°D.45°17.(2015?枣庄)如图,一个边长为4cm的等边三角形ABC的高与⊙O的直径相等.⊙O与BC相切于点C,与AC相交于点E,则CE的长为()A.4cm B.3cm C.2cm D.1.5cm18.(2015?广州)已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是()A.B.3 C.5 D.1019.(2015?南京)如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.220.(2015?南充)如图,PA和PB是⊙O的切线,点A和B的切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是()A.40°B.60°C.70°D.80°21.(2015?湖州)如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是()A.4 B.2C.8 D.422.(2015?重庆)如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O 于点D,连接OD.若∠BAC=55°,则∠COD的大小为()A.70°B.60°C.55°D.35°23.(2015?泸州)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P 的度数为()A.65°B.130°C.50°D.100°24.(2015?达州)如图,AB为半圆O的在直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DE?CD,正确的有()A.2个B.3个C.4个D.5个25.(2015?宜昌)如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是()A.圆形铁片的半径是4cm B.四边形AOBC为正方形C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm226.(2015?青岛)如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=()A.30°B.35°C.45°D.60°27.(2015?台湾)如图,AB切圆O1于B点,AC切圆O2于C点,BC分别交圆O1、圆O2于D、E两点.若∠BO1D=40°,∠CO2E=60°,则∠A的度数为何?()A.100 B.120 C.130 D.14028.(2015?衢州)如图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E.若CD=5,CE=4,则⊙O的半径是()A.3 B.4 C.D.29.(2015?河池)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4与x轴、y轴分别交于A、B,∠OAB=30°,点P在x 轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是()A.6 B.8 C.10 D.1230.(2015?岳阳)如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D.过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;②△CBA∽△CDE;③=;④AE为⊙O的切线,一定正确的结论全部包含其中的选项是()A.①②B.①②③C.①④D.①②④2015中考数学真题分类汇编:圆(2)参考答案与试题解析一.选择题(共30小题)1.(2015?宁夏)如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD 的度数是()A.88°B.92°C.106°D.136°考点:圆内接四边形的性质;圆周角定理.分析:首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数多少;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数是多少即可.解答:解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.故选:D.点评:(1)此题主要考查了圆内接四边形的性质和应用,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2.(2015?贵港)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0 B.1 C.2 D.3考点:点与圆的位置关系;三角形中位线定理;轨迹.专题:计算题.分析:取OP的中点N,连结MN,OQ,如图可判断MN为△POQ的中位线,则MN=OQ=1,则点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1.解答:解:取OP的中点N,连结MN,OQ,如图,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN=OQ=×2=1,∴点M在以N为圆心,1为半径的圆上,在△OMN中,1<OM<3,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1.故选B.点评:本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.3.(2015?河北)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACF C.△ABD D.△ADE考点:三角形的外接圆与外心.分析:利用外心的定义,外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,进而判断得出即可.解答:解:如图所示:只有△ACF的三个顶点不都在圆上,故外心不是点O的是△ACF.故选:B.点评:此题主要考查了三角形外心的定义,正确把握外心的定义是解题关键.4.(2015?台湾)如图,坐标平面上有A(0,a)、B(﹣9,0)、C(10,0)三点,其中a>0.若∠BAC=95°,则△ABC的外心在第几象限?()A.一B.二C.三D.四考点:三角形的外接圆与外心;坐标与图形性质.分析:根据钝角三角形的外心在三角形的外部和外心在边的垂直平分线上进行解答即可.解答:解:∵∠BAC=95°,∴△ABC的外心在△ABC的外部,即在x轴的下方,∵外心在线段BC的垂直平分线上,即在直线x=上,∴△ABC的外心在第四象限,故选:D.点评:本题考查的是三角形的外心的确定,掌握外心的概念和外心与锐角、直角、钝角三角形的位置关系是解题的关键,锐角三角形的外心在三角形的内部,直角三角形的外心是斜边的中点,钝角三角形的外心在三角形的外部.5.(2015?湖北)点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°考点:三角形的外接圆与外心;圆周角定理.专题:分类讨论.分析:利用圆周角定理以及圆内接四边形的性质得出∠BAC的度数.解答:解:如图所示:∵O是△ABC的外心,∠BOC=80°,∴∠A=40°,∠A′=140°,故∠BAC的度数为:40°或140°.故选:C.点评:此题主要考查了圆周角定理以及圆内接四边形的性质,利用分类讨论得出是解题关键.6.(2015?张家界)如图,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,半径为3的圆与OA的位置关系是()A.相离B.相交C.相切D.以上三种情况均有可能考点:直线与圆的位置关系.分析:利用直线l和⊙O相切?d=r,进而判断得出即可.解答:解:过点C作CD⊥AO于点D,∵∠O=30°,OC=6,∴DC=3,∴以点C为圆心,半径为3的圆与OA的位置关系是:相切.故选:C.点评:此题主要考查了直线与圆的位置,正确掌握直线与圆相切时d与r的关系是解题关键.7.(2015?齐齐哈尔)如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤5考点:直线与圆的位置关系;勾股定理;垂径定理.分析:此题可以首先计算出当AB与小圆相切的时候的弦长.连接过切点的半径和大圆的一条半径,根据勾股定理和垂径定理,得AB=8.若大圆的弦AB与小圆有公共点,即相切或相交,此时AB≥8;又因为大圆最长的弦是直径10,则8≤AB≤10.解答:解:当AB与小圆相切,∵大圆半径为5,小圆的半径为3,∴AB=2=8.∵大圆的弦AB与小圆有公共点,即相切或相交,∴8≤AB≤10.故选:A.点评:本题综合考查了切线的性质、勾股定理和垂径定理.此题可以首先计算出和小圆相切时的弦长,再进一步分析有公共点时的弦长.8.(2015?梅州)如图,AB是⊙O的弦,AC是⊙O切线,A为切点,BC经过圆心.若∠B=20°,则∠C的大小等于()A.20°B.25°C.40°D.50°考点:切线的性质.分析:连接OA,根据切线的性质,即可求得∠C的度数.解答:解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=20°,∴∠AOC=40°,∴∠C=50°.故选:D.点评:本题考查了圆的切线性质,以及等腰三角形的性质,掌握已知切线时常用的辅助线是连接圆心与切点是解题的关键.9.(2015?嘉兴)如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为()A.B.2.4 C.D.考点:切线的性质;勾股定理的逆定理.分析:首先根据题意作图,由AB是⊙C 的切线,即可得CD⊥AB,又由在直角△ABC中,∠C=90°,AC=3,BC=4,根据勾股定理求得AB的长,然后由S△ABC=AC?BC=AB?CD,即可求得以C为圆心与AB相切的圆的半径的长.解答:解:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如图:设切点为D,连接CD,∵AB是⊙C的切线,∴CD⊥AB,∵S△ABC=AC?BC=AB?CD,∴AC?BC=AB?CD,即CD===,∴⊙C的半径为,故选B.点评:此题考查了圆的切线的性质,勾股定理,以及直角三角形斜边上的高的求解方法.此题难度不大,解题的关键是注意辅助线的作法与数形结合思想的应用.10.(2015?黔西南州)如图,点P在⊙O外,PA、PB分别与⊙O相切于A、B两点,∠P=50°,则∠AOB等于()A.150°B.130°C.155°D.135°考点:切线的性质.分析:由PA与PB为圆的两条切线,利用切线性质得到PA与OA垂直,PB与OB垂直,在四边形APBO中,利用四边形的内角和定理即可求出∠AOB 的度数.解答:解:∵PA、PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∴∠PAO=∠PBO=90°,∵∠P=50°,∴∠AOB=130°.故选B.点评:此题考查了切线的性质,以及四边形的内角和定理,熟练掌握切线的性质是解本题的关键.11.(2015?吉林)如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC的度数为()A.40°B.50°C.80°D.100°考点:切线的性质.分析:根据切线的性质得出∠OCD=90°,进而得出∠OCB=40°,再利用圆心角等于圆周角的2倍解答即可.解答:解:∵在⊙O中,AB为直径,BC为弦,CD为切线,∴∠OCD=90°,∵∠BCD=50°,∴∠OCB=40°,∴∠AOC=80°,故选C.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.12.(2015?漳州)已知⊙P的半径为2,圆心在函数y=﹣的图象上运动,当⊙P 与坐标轴相切于点D时,则符合条件的点D的个数为()A.0 B.1 C.2 D.4考点:切线的性质;反比例函数图象上点的坐标特征.分析:⊙P的半径为2,⊙P 与x轴相切时,P点的纵坐标是±2,把y=±2代入函数解析式,得到x=±4,因而点D的坐标是(±4,0),⊙P与y轴相切时,P点的横坐标是±2,把x=±2代入函数解析式,得到y=±4,因而点D的坐标是(0.±4).解答:解:根据题意可知,当⊙P与y轴相切于点D时,得x=±2,把x=±2代入y=﹣得y=±4,∴D(0,4),(0,﹣4);当⊙P与x轴相切于点D时,得y=±2,把y=±2代入y=﹣得x=±4,∴D(4,0),(﹣4,0),∴符合条件的点D的个数为4,故选D.点评:本题主要考查了圆的切线的性质,反比例函数图象上的点的特征,掌握反比例函数图象上的点的特征是解题的关键.13.(2015?厦门)如图,在△ABC中,AB=AC,D是边BC的中点,一个圆过点A,交边AB于点E,且与BC相切于点D,则该圆的圆心是()A.线段AE的中垂线与线段AC的中垂线的交点B.线段AB的中垂线与线段AC的中垂线的交点C.线段AE的中垂线与线段BC的中垂线的交点D.线段AB的中垂线与线段BC的中垂线的交点考点:切线的性质;线段垂直平分线的性质;等腰三角形的性质.分析:连接AD,作AE的中垂线交AD于O,连接OE,由AB=AC,D是边BC的中点,得到AD是BC的中垂线,由于BC是圆的切线,得到AD必过圆心,由于AE是圆的弦,得到AE的中垂线必过圆心,于是得到结论.解答:解:连接AD,作AE的中垂线交AD于O,连接OE,∵AB=AC,D是边BC的中点,∴AD⊥BC.∴AD是BC的中垂线,∵BC是圆的切线,∴AD必过圆心,∵AE是圆的弦,∴AE的中垂线必过圆心,∴该圆的圆心是线段AE的中垂线与线段BC的中垂线的交点,故选C.点评:本题考查了切线的性质,等腰三角形的性质,线段中垂线的性质,掌握切线的性质是解题的关键.14.(2015?潍坊)如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=20°,则∠C的度数是()A.70°B.50°C.45°D.20°考点:切线的性质.分析:由BC是⊙O的切线,OB是⊙O的半径,得到∠OBC=90°,根据等腰三角形的性质得到∠A=∠ABO=20°,由外角的性质得到∠BOC=40°,即可求得∠C=50°.解答:解:∵BC是⊙O的切线,OB是⊙O的半径,∴∠OBC=90°,∵OA=OB,∴∠A=∠ABO=20°,∴∠BOC=40°,∴∠C=50°.故选B.点评:本题考查了本题考查了切线的性质,等腰三角形的性质,掌握定理是解题的关键.15.(2015?重庆)如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为()A.40°B.50°C.60°D.20°考点:切线的性质.分析:由AB是⊙O直径,AE是⊙O的切线,推出AD⊥AB,∠DAC=∠B=∠AOC=40°,推出∠AOD=50°.解答:解:∵AB是⊙O直径,AE是⊙O的切线,∴∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°﹣∠B=50°,故选B.点评:本题主要考查圆周角定理、切线的性质,解题的关键在于连接AC,构建直角三角形,求∠B的度数.16.(2015?内江)如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.40°B.35°C.30°D.45°考点:切线的性质.分析:连接DB,即∠ADB=90°,又∠BCD=120°,故∠DAB=60°,所以∠DBA=30°;又因为PD为切线,利用切线与圆的关系即可得出结果.解答:解:连接BD,∵∠DAB=180°﹣∠C=60°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°﹣∠DAB=30°,∵PD是切线,∴∠ADP=∠ABD=30°,故选:C.点评:本题考查了圆内接四边形的性质,直径对圆周角等于直角,弦切角定理,弦切角等于它所夹的弧对的圆周角求解.17.(2015?枣庄)如图,一个边长为4cm的等边三角形ABC的高与⊙O的直径相等.⊙O与BC相切于点C,与AC相交于点E,则CE的长为()A.4cm B.3cm C.2cm D.1.5cm考点:切线的性质;等边三角形的性质.分析:连接OC,并过点O作OF⊥CE于F,求出等边三角形的高即可得出圆的直径,继而得出OC的长度,在Rt△OFC中,可得出FC的长,利用垂径定理即可得出CE的长.解答:解:连接OC,并过点O作OF⊥CE于F,∵△ABC为等边三角形,边长为4cm,∴△ABC的高为2cm,∴OC=cm,又∵∠ACB=60°,∴∠OCF=30°,在Rt△OFC中,可得FC=cm,即CE=2FC=3cm.故选B.点评:本题主要考查了切线的性质,等边三角形的性质和解直角三角形的有关知识,题目不是太难,属于基础性题目.18.(2015?广州)已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是()A.B.3 C.5 D.10考点:切线的性质.分析:根据直线与圆的位置关系可直接得到点O到直线l的距离是5.解答:解:∵直线l与半径为r的⊙O相切,∴点O到直线l的距离等于圆的半径,即点O到直线l的距离为5.故选C.点评:本题考查了切线的性质以及直线与圆的位置关系:设⊙O的半径为r,圆心O 到直线l的距离为d,直线l和⊙O相交?d<r;直线l和⊙O相切?d=r;当直线l和⊙O相离?d>r.19.(2015?南京)如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.2考点:切线的性质;矩形的性质.分析:连接OE,OF,ON,OG,在矩形ABCD中,得到∠A=∠B=90°,CD=AB=4,由于AD,AB,BC分别与⊙O相切于E,F,G三点得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE,FBGO是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果.解答:解:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5﹣2﹣MN=3﹣MN,在R t△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3﹣NM)2+42,∴NM=,∴DM=3=,故选A.点评:本题考查了切线的性质,勾股定理,正方形的性质,正确的作出辅助线是解题的关键.20.(2015?南充)如图,PA和PB是⊙O的切线,点A和B的切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是()A.40°B.60°C.70°D.80°考点:切线的性质.分析:由PA、PB是⊙O的切线,可得∠OAP=∠OBP=90°,根据四边形内角和,求出∠AOB,再根据圆周角定理即可求∠ACB的度数.解答:解:连接OB,∵AC是直径,∴∠ABC=90°,∵PA、PB是⊙O的切线,A、B为切点,∴∠OAP=∠OBP=90°,∴∠AOB=180°﹣∠P=140°,由圆周角定理知,∠ACB=∠AOB=70°,故选C.点评:本题考查了切线的性质,圆周角定理,解决本题的关键是连接OB,利用直径对的圆周角是直角来解答.21.(2015?湖州)如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是()A.4 B.2C.8 D.4考点:切线的性质.分析:连接OC,利用切线的性质知OC⊥AB,由垂径定理得AB=2AC,因为tan∠OAB=,易得=,代入得结果.解答:解:连接OC,∵大圆的弦AB切小圆于点C,∴OC⊥AB,∴AB=2AC,∵OD=2,∴OC=2,∵tan∠OAB=,∴AC=4,∴AB=8,故选C.点评:本题主要考查了切线的性质和垂径定理,连接过切点的半径是解答此题的关键.22.(2015?重庆)如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O 于点D,连接OD.若∠BAC=55°,则∠COD的大小为()A.70°B.60°C.55°D.35°考点:切线的性质;圆周角定理.分析:由AC是⊙O的切线,可求得∠C=90°,然后由∠BAC=55°,求得∠B的度数,再利用圆周角定理,即可求得答案.解答:解:∵AC是⊙O的切线,∴BC⊥AC,∴∠C=90°,∵∠BAC=55°,∴∠B=90°﹣∠BAC=35°,∴∠COD=2∠B=70°.故选A.点评:此题考查了切线的性质以及圆周角定理.注意掌握切线的性质:圆的切线垂直于经过切点的半径.23.(2015?泸州)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P 的度数为()A.65°B.130°C.50°D.100°考点:切线的性质.分析:由PA与PB都为圆O的切线,利用切线的性质得到OA 垂直于AP,OB垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C的度数求出∠AOB的度数,在四边形PABO中,根据四边形的内角和定理即可求出∠P的度数.解答:解:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.点评:本题主要考查了切线的性质,四边形的内角与外角,以及圆周角定理,熟练运用性质及定理是解本题的关键.24.(2015?达州)如图,AB为半圆O的在直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DE?CD,正确的有()A.2个B.3个C.4个D.5个考点:切线的性质;切线长定理;相似三角形的判定与性质.分析:连接OE,由AD,DC,BC都为圆的切线,根据切线的性质得到三个角为直角,且利用切线长定理得到DE=DA,CE=CB,由CD=DE+EC,等量代换可得出CD=AD+BC,选项②正确;由AD=ED,OD为公共边,利用HL可得出直角三角形ADO与直角三角形EDO全等,可得出∠AOD=∠EOD,同理得到∠EOC=∠BOC,而这四个角之和为平角,可得出∠DOC为直角,选项⑤正确;由∠DOC与∠DEO都为直角,再由一对公共角相等,利用两对对应角相等的两三角形相似,可得出三角形DEO与三角形DOC相似,由相似得比例可得出OD2=DE?CD,选项①正确;由△AOD∽△BOC,可得===,选项③正确;由△ODE∽△OEC,可得,选项④错误.解答:解:连接OE,如图所示:∵AD与圆O相切,DC与圆O相切,BC与圆O相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB,AD∥BC,∴CD=DE+EC=AD+BC,选项②正确;在Rt△ADO和Rt△EDO中,,∴Rt△ADO≌Rt△EDO(HL),∴∠AOD=∠EOD,同理Rt△CEO≌Rt△CBO,∴∠EOC=∠BOC,又∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,选项⑤正确;∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,∴△EDO∽△ODC,∴=,即OD2=DC?DE,选项①正确;∵∠AOD+∠COB=∠AOD+∠ADO=90°,∠A=∠B=90°,∴△AOD∽△BOC,∴===,选项③正确;同理△ODE∽△OEC,∴,选项④错误;故选C.点评:此题考查了切线的性质,切线长定理,相似三角形的判定与性质,全等三角形的判定与性质,利用了转化的数学思想,熟练掌握定理及性质是解本题的关键.25.(2015?宜昌)如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是()A.圆形铁片的半径是4cm B.四边形AOBC为正方形C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm2考点:切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算.专题:应用题.分析:由BC,AC分别是⊙O的切线,B,A为切点,得到OA⊥CA,OB⊥BC,又∠C=90°,OA=OB,推出四边形AOBC是正方形,得到OA=AC=4,故A,B正确;根据扇形的弧长、面积的计算公式求出结果即可进行判断.解答:解:由题意得:BC,AC分别是⊙O的切线,B,A为切点,∴OA⊥CA,OB⊥BC,又∵∠C=90°,OA=OB,∴四边形AOBC是正方形,∴OA=AC=4,故A,B正确;∴的长度为:=2π,故C错误;S扇形OAB==4π,故D正确.故选C.点评:本题考查了切线的性质,正方形的判定和性质,扇形的弧长、面积的计算,熟记计算公式是解题的关键.26.(2015?青岛)如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=()A.30°B.35°C.45°D.60°考点:切线的性质;正多边形和圆.分析:连接OB,AD,BD,由多边形是正六边形可求出∠AOB的度数,再根据圆周角定理即可求出∠ADB的度数,利用弦切角定理∠PAB.解答:解:连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°,故选A.点评:本题主要考查了正多边形和圆,切线的性质,作出适当的辅助线,利用弦切角定理是解答此题的关键.27.(2015?台湾)如图,AB切圆O1于B点,AC切圆O2于C点,BC分别交圆O1、圆O2于D、E两点.若∠BO1D=40°,∠CO2E=60°,则∠A的度数为何?()A.100 B.120 C.130 D.140考点:切线的性质.分析:由AB切圆O1于B点,AC切圆O2于C点,得到∠ABO1=∠ACO2=90°,由等腰三角形的性质得到∴∠O1BD=70°,∠O2CE=60°,根据三角形的内角和求得.解答:解:∵AB切圆O1于B点,AC切圆O2于C点,∴∠ABO1=∠ACO2=90°,∵O1D=O1B,O2E=O2C,∴∠O1BD=∠O1DB==70°,∠O2CE=∠O2EC=(180°﹣60°)=60°,∴∠ABC=20°,∠ACB=30°,∴∠A=130°,故选C.点评:本题考查了切线的性质,等腰三角形的性质,三角形的内角和定理,熟记定理是解题的关键.28.(2015?衢州)如图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E.若CD=5,CE=4,则⊙O的半径是()A.3 B.4 C.D.考点:切线的性质.分析:首先连接OD、BD,根据DE⊥BC,CD=5,CE=4,求出DE 的长度是多少;然后根据AB是⊙O的直径,可得∠ADB=90°,判断出BD、AC的关系;最后在Rt△BCD中,求出BC的值是多少,再根据AB=BC,求出AB的值是多少,即可求出⊙O的半径是多少.解答:解:如图1,连接OD、BD,,∵DE⊥BC,CD=5,CE=4,∴DE=,∵AB是⊙O的直径,∴∠ADB=90°,∵S△BCD=BD?CD÷2=BC?DE÷2,∴5BD=3BC,∴,∵BD2+CD2=BC2,∴,解得BC=,∵AB=BC,∴AB=,∴⊙O的半径是;.故选:D.点评:此题主要考查了切线的性质,要熟练掌握,解答此题的关键是要明确:①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.29.(2015?河池)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4与x轴、y轴分别交于A、B,∠OAB=30°,点P在x 轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是()A.6 B.8 C.10 D.12考点:切线的性质;一次函数图象上点的坐标特征.分析:根据直线的解析式求得OB=4,进而求得OA=12,根据切线的性质求得PM⊥AB,根据∠OAB=30°,求得PM=PA,然后根据“整圆”的定义,即可求得使得⊙P成为整圆的点P的坐标,从而求得点P个数.解答:解:∵直线l:y=kx+4与x轴、y轴分别交于A、B,∴B(0,4),∴OB=4,在RT△AOB中,∠OAB=30°,∴OA=OB=×=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=PA,设P(x,0),∴PA=12﹣x,∴⊙P的半径PM=PA=6﹣x,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,∴使得⊙P成为整圆的点P个数是6.故选A.点评:本题考查了切线的性质,含30°角的直角三角形的性质等,熟练掌握性质定理是解题的关键.30.(2015?岳阳)如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D.过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;②△CBA∽△CDE;③=;④AE为⊙O的切线,一定正确的结论全部包含其中的选项是()A.①②B.①②③C.①④D.①②④考点:切线的判定;相似三角形的判定与性质.分析:根据圆周角定理得∠ADB=90°,则BD⊥AC,于是根据等腰三角形的性质可判断AD=DC,则可对①进行判断;利用等腰三角形的性质和平行线的性质可证明∠1=∠2=∠3=∠4,则根据相似三角形的判定方法得到△CBA∽△CDE,于是可对②进行判断;由于不能确定∠1等于45°,则不能确定与相等,则可对③进行判断;利用DA=DC=DE可判断∠AEC=90°,即CE⊥AE,根据平行线的性质得到AB⊥AE,然后根据切线的判定定理得AE为⊙O的切线,于是可对④进行判断.解答:解:∵AB为直径,∴∠ADB=90°,∴BD⊥AC,而AB=CB,∴AD=DC,所以①正确;∵AB=CB,∴∠1=∠2,而CD=ED,∴∠3=∠4,∵CF∥AB,∴∠1=∠3,∴∠1=∠2=∠3=∠4,∴△CBA∽△CDE,所以②正确;∵△ABC不能确定为直角三角形,∴∠1不能确定等于45°,∴与不能确定相等,所以③错误;∵DA=DC=DE,∴点E在以AC为直径的圆上,∴∠AEC=90°,∴CE⊥AE,而CF∥AB,∴AB⊥AE,∴AE为⊙O的切线,所以④正确.故选D.点评:本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了等腰三角形的性质、平行线的性质和相似三角形的判定.。
(2015中考)圆一、选择题1、(2015•莱芜)如图,在直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,以BC 为直径的⊙O 与AD 相切,点E 为AD 的中点,下列结论正确的个数是( ) (1)AB+CD=AD ;(2)S △BCE =S △ABE +S △DCE ;(3)AB •CD=;(4)∠ABE=∠DCE .A .1B .2C .3D .4 2、(2015•青岛)如图,正六边形ABCDEF 内接于⊙O ,若直线PA 与⊙O 相切于点A ,则∠PAB=( )A .30° B .35° C .45° D .60° 3、(2015•临沂)如图A ,B ,C 是⊙O 上的三个点,若∠AOC=100°,则∠ABC 等于( )A .50°B .80°C .100°D .130° 4、(2015•潍坊)如图,AB 是⊙O 的弦,AO 的延长线交过点B 的⊙O 的切线于点C ,如果∠ABO=20°,则∠C 的度数是( )A .70° B .50° C .45° D .20° 5、(2015•潍坊)将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm ,水的最大深度是2cm ,则杯底有水部分的面积是( ) A .(π﹣4)cm 2B .(π﹣8)cm 2C .(π﹣4)cm 2D .(π﹣2)cm 26、(2015山东日照市)如右图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O 交斜边BC于D ,则阴影部分面积为(结果保留π)( ) (A ) 244π- (B) 324π- (C) 328π- (D) 167、(2015•枣庄)如图,一个边长为4cm 的等边三角形ABC 的高与⊙O 的直径相等.⊙O 与BC 相切于点C ,与AC 相交于点E ,则CE 的长为( )A .4cm B .3cm C .2cm D .1.5cm 8、(2015山东省聊城市)如图,点O 是圆形纸片的圆心,将这个圆心纸片按下列顺序折叠,使AB和AC 都经过圆心O ,则阴影部分的面积是⊙O 面积的( ) A.12 B.13 C.23 D.359、(泰安)如图,菱形ABCD 的边长为2,∠A=60°,以点B 为圆心的圆与AD ,DC 相切,与AB ,CB 的延长线分别相交于点E 、F ,则图中阴影部分的面积为 ( )A2πBπ C2πD.2π10、(2015•东营)如图,在Rt △ABC 中,∠ABC=90°.AB=BC .点D 是线段AB 上的一点,连结CD .过点B 作BG ⊥CD ,分别交CD 、CA 于点E 、F ,与过点A 且垂直于AB 的直线相交于点G ,连结DF ,给出以下四个结论:①=;②若点D 是AB 的中点,则AF=AB ;③当B 、C 、F 、D 四点在同一个圆上时,DF=DB ;④若=,则S △ABC =9S △BDF ,其中正确的结论序号是( )A .①②B .③④C .①②③D .①②③④ 11、(2015山东省威海市)若用一张直径为20cm 的半圆做成一个圆锥的侧面,接缝忽略不计,则所得圆锥的高为( )A. cm 35 B. cm 55 C.cm 2155 D. cm 10 12、(2015山东省威海市)如图,已知AB =AC =AD ,∠CBD =2∠BDC , ∠BAC =44°,则∠CAD 的度数为( )DCB13、(2015山东省威海市)如图,正六边形111111F E D C B A 的边长为2,正六边形222222F E D C B A 的外接圆与正六边形111111F E D C B A 的各边相切,正六边形333333F E D C B A 的外接圆与正六边形222222F E D C B A 的的各边相切,·······按这样的规律进行下去,正十边形 101010101010F E D C B A 的边长为( )A.92243 B. 92381 C. 9281 D.8238114、(2014•莱芜)如图,AB 为半圆的直径,且AB=4,半圆绕点B 顺时针旋转45°,点A 旋转到A ′.二、填空题1、(2015•莱芜)如图,在扇形OAB 中,∠AOB=60°,扇形半径为r ,点C 在上,CD ⊥OA,垂足为D ,当△OCD 的面积最大时,的长为 .2、(2015•青岛)如图,圆内接四边形ABCD 两组对边的延长线分别相交于点E ,F ,且∠A=55°, ∠E=30°,则∠F= .3、4、(2015•烟台)如图,直线l :y=﹣x+1与坐标轴交于A ,B 两点,点M (m ,0)是x 轴上一动点,以点M 为圆心,2个单位长度为半径作⊙M ,当⊙M 与直线l 相切时,则m 的值为 .5、(泰安)如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,过CD 延长线上一点E 作⊙O 的切线,切点为F.若∠ACF=65°,则∠E=6、(2015•淄博)如图,在⊙O 中,=,∠DCB=28°,则∠ABC=度.7、(2015山东省济南市)如图,P A 是⊙O 的切线,A 是切点,P A =4,OP =5,则⊙O 的周长为____________. (结果保留π) 8、(2015•东营)如图,水平放置的圆柱形排水管道的截面直径是1m ,其中水面的宽AB 为0.8m ,则排水管内水的深度为 m .三、解答题9、(2015•滨州)如图,⊙O 的直径AB 的长为10,弦AC 的长为5,∠ACB 的平分线交⊙O 于点D .(1)求的长.(2)求弦BD 的长.10、(2015•德州)如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点,∠APC=∠CPB=60°. (1)判断△ABC 的形状: ;(2)试探究线段PA ,PB ,PC 之间的数量关系,并证明你的结论; (3)当点P 位于的什么位置时,四边形APBC 的面积最大?求出最大面积.11、(2015•德州)(1)问题如图1,在四边形ABCD 中,点P 为AB 上一点,∠DPC=∠A=∠B=90°,求证:AD •BC=AP•BP .(2)探究如图2,在四边形ABCD 中,点P 为AB 上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由. (3)应用请利用(1)(2)获得的经验解决问题:如图3,在△ABD 中,AB=6,AD=BD=5,点P 以每秒1个单位长度的速度,由点A 出了,沿边AB 向点B 运动,且满足∠DPC=∠A ,设点P 的运动时间为t (秒),当以D 为圆心,以DC 为半径的圆与AB 相切时,求t 的值.12、(2015•莱芜)如图,已知AB是⊙O的直径,C是⊙O上任一点(不与A,B重合),AB⊥CD 于E,BF为⊙O的切线,OF∥AC,连结AF,FC,AF与CD交于点G,与⊙O交于点H,连结CH.(1)求证:FC是⊙O的切线;(2)求证:GC=GE;(3)若cos∠AOC=,⊙O的半径为r,求CH的长.12、(2015•烟台)如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E ,且=.(1)试判断△ABC的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.14、(2015•菏泽)如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、E,BC的延长线于⊙O的切线AF交于点F.(1)求证:∠ABC=2∠CAF;(2)若AC=2,CE:EB=1:4,求CE的长.15、(2015•潍坊)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.16、(2015•临沂)如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).17、如图3,⊙P与x轴相切于原点O,P点的坐标为(0,6),A是⊙P上一点,连接OA,使ta n ∠POA=34,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB。
2015年中考数学专题复习试卷:圆一、选择题2.(2013重庆)如图,P 是⊙O 外一点,PA 是⊙O 的 切线,PO=26 cm ,PA=24 cm ,则⊙O 的周长为( ) A.18πcm B.16πcm C.20πcm D.24πcm3.(2013浙江舟山)如图,⊙O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交⊙O 于点E ,连接EC . 若AB=8,CD=2,则EC 的长为( )A.C.4.(2013福建厦门)如图所示,在⊙O 中,AB AC =,∠A=30°,则∠B=( )A.150°B.75°C.60°D.15°5.(2013贵州遵义)如图,将边长为1 cm 的等边三角形ABC 沿直线l 向右翻动(不滑动),点B 从开始到结束,所经过路径的长度为( )33A.cm B.(2) cm 224C.cmD.3 cm 3π +ππ6.(2013浙江义乌)已知圆锥的底面半径为6 cm ,高为8 cm ,则这个圆锥的母线长为( ) A.12 cm B.10 cm C.8 cm D.6 cm7.(2013四川内江)如图,半圆O 的直径AB=10 cm , 弦AC=6 cm ,AD 平分∠BAC ,则AD 的长为( )D.4 cm三、解答题22.如图1,Rt△ABC中,∠ACB=90°,AB=5,BC=3,点D在边AB的延长线上,BD=3,过点D作DE⊥AB,与边AC的延长线相交于点E,以DE为直径作⊙O交AE于点F.(1)求⊙O的半径及圆心O到弦EF的距离;(2)连接CD,交⊙O于点G(如图2).求证:点G是CD的中点.23.(本小题满分10分)(2013广东梅州)如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2.(1)求线段EC的长;(2)求图中阴影部分的面积.24.(本小题满分10分)(2012浙江温州)如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.25.(本小题满分12分)(2013广东)如图所示,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.26.(本小题满分15分)(2012浙江杭州)如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,已知∠EAT=30°,AE==(1)求∠COB的度数;(2)求⊙O的半径R;(3)点F在⊙O上(FME是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC 的周长之比.参考答案1.D2.C3.D4.B5.C6.B7.A8.C9.B 10.A 11.C 12.B 13.D 14.D 15.D16.4 17.48 18.0.2 19.52 20.10-π 21.8 22.解:(1)∵∠ACB=90°,AB=5,BC=3, 由勾股定理得:AC=4, ∵AB=5,BD=3,∴AD=8, ∵∠ACB=90°,DE ⊥AD , ∴∠ACB=∠ADE ,∵∠A=∠A ,∴△ACB ∽△ADE ,BC AC AB,DE AD AE345,DE 8AE ∴==∴==∴DE=6,AE=10, 即⊙O 的半径为3; 过O 作OQ ⊥EF 于Q , 则∠EQO=∠ADE=90°, ∵∠QEO=∠AED , ∴△EQO ∽△EDA ,EO OQ,AE AD3OQ ,108∴=∴=∴OQ=2.4,即圆心O 到弦EF 的距离是2.4; (2)连接EG , ∵AE=10,AC=4, ∴CE=6, ∴CE=DE=6, ∵DE 为直径, ∴∠EGD=90°, ∴EG ⊥CD ,∴点G 为CD 的中点.23.解:(1)∵在矩形ABCD 中,AB=2DA ,DA=2, ∴AB=AE=4,DE ∴= ∴EC=CD-DE=4- (2)∵AD 1sin DEAAE 2∠==, ∴∠DEA=30°, ∴∠EAB=30°,∴图中阴影部分的面积为:FAB DAEEAB22S SS 90413048 236023603--π⨯π⨯π=-⨯⨯-=-扇形扇形 24.(1)证明:连接OD.∵∠DOB=2∠DCB,∠A=2∠DCB, ∴∠A=∠DOB.又∵∠A+∠B=90°, ∴∠DOB+∠B=90°, ∴∠BDO=90°,∴OD ⊥AB,∴AB 是⊙O 的切线. (2)解:过点O 作OM ⊥CD 于点M, ∵OD=OE=BE=12BO, ∠BDO=90°,∴∠DBO=30°,∠DOB=60°.∵∠DCO=12∠DOB,∴∠DCO=30°, 又∵OM ⊥CD,OM=1, ∴OC=2OM=2, ∴OB=4,OD=2,∴BD=OB ·cos ∠DBO42=⨯=∴BD 的长为25.(1)证明:在⊙O 中,∵弦BD=BA ,且圆周角∠BCA 和∠BAD 分别对BA 和BD , ∴∠BCA=∠BAD.(2)解:∵BE ⊥DC ,∴∠E=90°. 又∵∠BAC=∠EDB,∠ABC=90°, ∴△ABC ∽△DEB,AB AC.DE BD∴= 在Rt △ABC 中,∠ABC=90°,AB=12,BC=5, ∴由勾股定理得:AC=13,1213144DE .DE 1213∴=∴=, (3)证明:如图,连接OB ,∵OA=OB ,∴∠OAB=∠OBA. ∵BA=BD ,∴∠OBD=∠OBA. 又∠BDC=∠OAB=∠OBA , ∴∠OBD=∠BDC. ∴OB ∥DE ,∴∠OBE=∠DBE+∠OBD=90°.即BE ⊥OB 于B ,所以BE 是⊙O 的切线. 26.解:(1)∵AE 切⊙O 于点E, ∴AE ⊥CE, 又OB ⊥AT,∴∠AEC=∠CBO=90°, 又∠BCO=∠ACE, ∴△AEC ∽△OBC, 又∠A=30°,∴∠COB=∠A=30°.(2)∵AE=∠A=30°,∴在Rt △AEC 中,ECtan A tan 30,AE=︒=即EC=AE ·tan 30°=3. ∵OB ⊥MN,∴B 为MN 的中点,又MN= ∴MB=1MN 2=连接OM,在△MOB 中,OB COB ,BOC 30,OB cos BOC cos 30OC 2BO OC,2OC 3OC EC OM R,3R,∴==∠=︒∠=︒==∴=∴==+==+=在中又整理得:R 2+18R-115=0, 即(R+23)(R-5)=0,解得:R=-23(舍去)或R=5, ∴⊙O 的半径R 为5.(3)在EF 同一侧,△COB 经过平移、旋转和相似变换后,这样的三角形有6个,如图,每小图2个,顶点在圆上的三角形,如图所示:延长EO 交圆O 于点D,连接DF,如图所示, ∵EF=5,直径ED=10,可得出∠FDE=30°, ∴FD=则C △EFD=51015++=+()((COBEFDCOB2C 3CC15351.=+∴=++=由可得∶∶。
图52015年全国中考数学试题汇编------圆一、选择题1.(2015•广东广州,第3题3分)已知⊙O 的半径为5,直线l 是⊙O 的切线,则点O 到直线l 的距离是( ) A 2.5B 3C 5D 102.(2015•广东梅州,第6题,3分)如图1,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆心.若∠B =20°,则∠C 的大小等于( )A .20°B .25°C . 40°D .50°3. (2015•浙江嘉兴,第7题4分)如图2,△ABC 中,AB =5,BC =3,AC =4,以点C 为圆心的圆与AB 相切,则⊙C 的半径为( ) (A )2.3(B )2.4 (C )2.5(D )2.64. (2015•四川省内江市,第10题,3分)如图,在⊙O 的内接四边形ABCD 中,AB 是直径,∠BCD =120°,过D 点的切线PD 与直线AB 交于点P ,则∠ADP 的度数为( ) A .40° B . 35°C . 30°D . 45°5.(2015•广东广州,第9题3分)已知圆的半径是2,则该圆的内接正六边形的面积是( )A . 3B . 9C . 18D . 366.(2015•山东莱芜,第8题3分)已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为( )A .2.5B .5C .10D .157. (2015•浙江宁波,第9题4分)如图4,用一个半径为30cm ,面积为π300cm 2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r 为( )A . 5cmB . 10cmC . 20cmD . π5cm8. (2015•浙江衢州,第10题3分)如图5,已知等腰,以为直径的圆交于点,过点的⊙O 的切线交于点,若,则⊙O 的半径是( )A .B .C .D .9.(2015•江苏南京,第6题3分)如图6,在矩形ABCD 中,AB =4,AD =5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线BC 于点M ,切点为N ,则DM 的长为( ) A .B .C .D .二、填空题1. (2015•浙江宁波,第17题4分)如图7,在矩形ABCD 中,AB =8,AD =12,过点A ,D 两点的⊙O 与BC 边相切于点E ,则⊙O 的半径为2. (2015•淄博第17题,4分)如图8,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为y =x 2﹣2x ﹣3,AB 为半圆的直径,则这个“果圆”被y 轴截得的弦CD 的长为 .ACBO图1 图2B图3 图4图6 图8图7三、解答题1. (2015•浙江省台州市,第22题)如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC。
2015中考数学试卷圆(3)分类汇编2015中考数学真题分类汇编:圆(3)一.选择题(共10小题)1.(2015•河池)如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的面积是() A. 240πcm2 B. 480πcm2C. 1200πcm2 D. 2400πcm2 2.(2015•黄石)在长方形ABCD中AB=16,如图所示裁出一扇形ABE,将扇形围成一个圆锥(AB和AE重合),则此圆锥的底面半径为() A. 4 B. 16 C. 4 D. 8 3.(2015•潜江)已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是() A. 24cm B. 48cm C. 96cm D. 192cm 4.(2015•营口)将弧长为2πcm,圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高及侧面积分别是() A. cm,3πcm2 B. 2 cm,3πcm2 C. 2 cm,6πcm2 D. cm,6πcm2 5.(2015•宁波)如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为() A. 5cm B. 10cm C. 20cm D. 5πcm 6.(2015•湖州)若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是()A. 6cm B. 9cm C. 12cm D. 18cm 7.(2015•凉山州)将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为() A. 1cm B. 2cm C. 3cm D. 4cm 8.(2015•德州)如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为() A.288° B.144° C.216° D.120° 9.(2015•莱芜)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,以BC为直径的⊙O与AD相切,点E为AD的中点,下列结论正确的个数是()(1)AB+CD=AD;(2)S△BCE=S△ABE+S△DCE;(3)AB•CD= ;(4)∠ABE=∠DCE. A. 1 B. 2 C. 3 D. 4 10.(2015•乐山)如图,已知直线y= x�3与x 轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最大值是() A. 8 B. 12 C. D.二.填空题(共20小题) 11.(2015•义乌市)如图,已知点A(0,1),B(0,�1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于度. 12.(2015•黔西南州)如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为. 13.(2015•甘孜州)如图,AB是⊙O的直径,弦CD垂直平分半径OA,则∠ABC的大小为度. 14.(2015•牡丹江)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE= . 15.(2015•宁夏)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC.若AB=2 ,∠BCD=30°,则⊙O的半径为. 16.(2015•长沙)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为. 17.(2015•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为 cm. 18.(2015•黔东南州)如图,AD是⊙O的直径,弦BC⊥AD于E,AB=BC=12,则OC= . 19.(2015•黄石)如图,圆O的直径AB=8,AC=3CB,过C作AB的垂线交圆O于M,N两点,连结MB,则∠MBA的余弦值为. 20.(2015•成都)如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PB于点C,当△PAB是等腰三角形时,线段BC的长为. 21.(2015•莱芜)如图,在扇形OAB中,∠AOB=60°,扇形半径为r,点C在上,CD⊥OA,垂足为D,当△OCD的面积最大时,的长为. 22.(2015•六盘水)赵洲桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R=米. 23.(2015•黔南州)如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是. 24.(2015•衢州)一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于m. 25.(2015•东营)如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为m. 26.(2015•丽水)如图,圆心角∠AOB=20°,将旋转n°得到,则的度数是度. 27.(2015•黔西南州)如图,AB是⊙O的直径,BC是⊙O的弦,若∠AOC=80°,则∠B=. 28.(2015•宿迁)如图,四边形ABCD是⊙O的内接四边形,若∠C=130°,则∠BOD=°. 29.(2015•南昌)如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为. 30.(2015•六盘水)如图所示,A、B、C三点均在⊙O上,若∠AOB=80°,则∠ACB=°.2015中考数学真题分类汇编:圆(3)参考答案与试题解析一.选择题(共10小题) 1.(2015•河池)如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的面积是() A. 240πcm2 B. 480πcm2 C. 1200πcm2 D. 2400πcm2 考点:圆锥的计算.专题:计算题.分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算即可.解答:解:这张扇形纸板的面积=×2π×10×24=240π(cm2).故选A.点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 2.(2015•黄石)在长方形ABCD中AB=16,如图所示裁出一扇形ABE,将扇形围成一个圆锥(AB 和AE重合),则此圆锥的底面半径为() A. 4 B. 16 C. 4 D. 8 考点:圆锥的计算.分析:圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.解答:解:设圆锥的底面圆半径为r,依题意,得 2πr= ,解得r=4.故小圆锥的底面半径为4;故选A.点评:本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化:1、圆锥的母线长为扇形的半径,2、圆锥的底面圆周长为扇形的弧长. 3.(2015•潜江)已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是()A. 24cm B. 48cm C. 96cm D. 192cm 考点:圆锥的计算.分析:利用底面周长=展开图的弧长可得.解答:解:设这个扇形铁皮的半径为rcm,由题意得 =π×80,解得r=48.故这个扇形铁皮的半径为48cm,故选B.点评:本题考查了圆锥的计算,解答本题的关键是确定圆锥的底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值. 4.(2015•营口)将弧长为2πcm,圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高及侧面积分别是() A. cm,3πcm2 B. 2 cm,3πcm2 C. 2 cm,6πcm2 D. cm,6πcm2 考点:圆锥的计算.分析:已知弧长为2πcm,圆心角为120°的扇形为4 cm,就可以求出扇形的半径,即圆锥的母线长,根据扇形的面积公式可求这个圆锥的侧面积,根据勾股定理可求出圆锥的高.解答:解:(2π×180)÷120π=3(cm),2π÷π÷2=1(cm), =2 (cm), =3π(cm2).故这个圆锥的高是2 cm,侧面积是3πcm2.故选:B.点评:考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长. 5.(2015•宁波)如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为() A. 5cm B. 10cm C. 20cm D. 5πcm 考点:圆锥的计算.分析:由圆锥的几何特征,我们可得用半径为30cm,面积为300πcm2的扇形铁皮制作一个无盖的圆锥形容器,则圆锥的底面周长等于扇形的弧长,据此求得圆锥的底面圆的半径.解答:解:设铁皮扇形的半径和弧长分别为R、l,圆锥形容器底面半径为r,则由题意得R=30,由 Rl=300π得l=20π;由2πr=l得r=10cm;故选B.点评:本题考查的知识点是圆锥的体积,其中根据已知制作一个无盖的圆锥形容器的扇形铁皮的相关几何量,计算出圆锥的底面半径和高,是解答本题的关键. 6.(2015•湖州)若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是() A. 6cm B. 9cm C. 12cm D. 18cm 考点:圆锥的计算.分析:利用弧长公式可得圆锥的侧面展开图的弧长,除以2π即为圆锥的底面半径.解答:解:圆锥的弧长为: =24π,∴圆锥的底面半径为24π÷2π=12,故选C.点评:考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长; 7.(2015•凉山州)将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为() A. 1cm B. 2cm C. 3cm D. 4cm 考点:圆锥的计算.专题:计算题.分析:设扇形的半径为R,根据扇形面积公式得 =4π,解得R=4;设圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•r•4=4π,然后解方程即可.解答:解:设扇形的半径为R,根据题意得 =4π,解得R=4,设圆锥的底面圆的半径为r,则•2π•r•4=4π,解得r=1,即所围成的圆锥的底面半径为1cm.故选A.点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 8.(2015•德州)如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为() A.288° B.144° C.216° D.120° 考点:圆锥的计算.分析:根据底面圆的半径与母线长的比设出二者,然后利用底面圆的周长等于弧长列式计算即可.解答:解:∵底面圆的半径与母线长的比是4:5,∴设底面圆的半径为4x,则母线长是5x,设圆心角为n°,则2π×4x= ,解得:n=288,故选A.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长. 9.(2015•莱芜)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,以BC为直径的⊙O与AD相切,点E为AD的中点,下列结论正确的个数是()(1)AB+CD=AD;(2)S△BCE=S△ABE+S△DCE;(3)AB•CD= ;(4)∠ABE=∠DCE. A. 1 B. 2 C. 3 D. 4 考点:圆的综合题.分析:设DC和半圆⊙O相切的切点为F,连接OF,根据切线长定理以及相似三角形的判定和性质逐项分析即可.解答:解:设DC和半圆⊙O相切的切点为F,∵在直角梯形ABCD中AB∥CD,AB⊥BC,∴∠ABC=∠DCB=90°,∵AB为直径,∴AB,CD 是圆的切线,∵AD与以AB为直径的⊙O相切,∴AB=AF,CD=DF,∴AD=AE+DE=AB+CD,故①正确;如图1,连接OE,∵AE=DE,BO=CO,∴OE∥AB∥CD,OE= (AB+CD),∴OE⊥BC,∴S△BCE= BC•OE= (AB+CD)= (AB+CD)•BC= =S△ABE+S△DCE,故②正确;如图2,连接AO,OD,∵AB∥CD,∴∠BAD+∠ADC=180°,∵AB,CD,AD是⊙O的切线,∴∠OAD+∠EDO= (∠BAD+∠ADC)=90°,∴∠AOD=90°,∴∠AOB+∠DOC=∠AOB+∠BAO=90°,∴∠BAO=∠DOC,∴△ABO∽△CDO,∴ ,∴AB•CD=OB•OC= BC BC= BC2,故③正确,如图1,∵OB=OC,OE⊥BC,∴BE=CE,∴∠BEO=∠CEO,∵AB∥OE∥CD,∴∠ABE=∠BEO,∠DCE=∠OEC,∴∠ABE=∠DCE,故④正确,综上可知正确的个数有4个,故选D.点评:本题考查了切线的判定和性质、相似三角形的判定与性质、直角三角形的判定与性质.解决本题的关键是熟练掌握相似三角形的判定定理、性质定理,做到灵活运用. 10.(2015•乐山)如图,已知直线y= x�3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最大值是() A. 8 B. 12 C. D.考点:圆的综合题.分析:求出A、B的坐标,根据勾股定理求出AB,求出点C到AB的距离,即可求出圆C上点到AB的最大距离,根据面积公式求出即可.解答:解:∵直线y= x�3与x轴、y轴分别交于A、B两点,∴A点的坐标为(4,0),B点的坐标为(0,�3),3x�4y�12=0,即OA=4,OB=3,由勾股定理得:AB=5,∴点C(0,1)到直线3x�4y�3=0的距离是 = ,∴圆C上点到直线y= x�3的最大距离是1+ = ,∴△PAB面积的最大值是×5× = ,故选:C.点评:本题考查了三角形的面积,点到直线的距离公式的应用,解此题的关键是求出圆上的点到直线AB的最大距离,属于中档题目.二.填空题(共20小题) 11.(2015•义乌市)如图,已知点A(0,1),B(0,�1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于60 度.考点:垂径定理;坐标与图形性质;等边三角形的判定与性质;勾股定理.分析:求出OA、AC,通过余弦函数即可得出答案.解答:解:∵A(0,1),B(0,�1),∴AB=2,OA=1,∴AC=2,在Rt△AOC中,cos∠BAC= = ,∴∠BAC=60°,故答案为60.点评:本题考查了垂径定理的应用,关键是求出AC、OA的长. 12.(2015•黔西南州)如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O 的半径为.考点:垂径定理;勾股定理.分析:连接OC,由垂径定理得出CE= CD=2,设OC=OA=x,则OE=x�1,由勾股定理得出CE2+OE2=OC2,得出方程,解方程即可.解答:解:连接OC,如图所示:∵AB是⊙O的直径,CD⊥AB,∴CE= CD=2,∠OEC=90°,设OC=OA=x,则OE=x�1,根据勾股定理得:CE2+OE2=OC2,即22+(x�1)2=x2,解得:x= ;故答案为:.点评:本题考查了垂径定理、勾股定理、解方程;熟练掌握垂径定理,并能进行推理计算是解决问题的关键. 13.(2015•甘孜州)如图,AB是⊙O的直径,弦CD垂直平分半径OA,则∠ABC的大小为30 度.考点:垂径定理;含30度角的直角三角形;圆周角定理.分析:根据线段的特殊关系求角的大小,再运用圆周角定理求解.解答:解:连接OC,∵弦CD垂直平分半径OA,∴OE= OC,∴∠OCD=30°,∠AOC=60°,∴∠ABC=30°.故答案为:30.点评:本题主要是利用直角三角形中特殊角的三角函数先求出∠OCE=30°,∠EOC=60°.然后再圆周角定理,从而求出∠ABC=30°. 14.(2015•牡丹江)如图,AB是⊙O 的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE= 4�.考点:垂径定理;勾股定理.分析:连接OC,根据垂径定理得出CE=ED= CD=3,然后在Rt△OEC中由勾股定理求出OE的长度,最后由BE=OB�OE,即可求出BE的长度.解答:解:如图,连接OC.∵弦CD⊥AB于点E,CD=6,∴CE=ED= CD=3.∵在Rt△OEC中,∠OEC=90°,CE=3,OC=4,∴OE= = ,∴BE=OB�OE=4�.故答案为4�.点评:本题主要考查了垂径定理,勾股定理等知识,关键在于熟练的运用垂径定理得出CE、ED的长度. 15.(2015•宁夏)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC.若AB=2 ,∠BCD=30°,则⊙O 的半径为.考点:垂径定理;勾股定理;圆周角定理.分析:连接OB,根据垂径定理求出BE,求出∠BOE=60°,解直角三角形求出OB即可.解答:解:连接OB,∵O C=OB,∠BCD=30°,∴∠BCD=∠CBO=30°,∴∠BOE=∠BCD+∠CBO=60°,∵直径CD⊥弦AB,AB=2 ,∴BE= AB= ,∠OEB=90°,∴OB= = ,即⊙O的半径为,故答案为:.点评:本题考查了垂径定理,等腰三角形的性质,解直角三角形,三角形外角性质的应用,能根据垂径定理求出BE和解直角三角形求出OB长是解此题的关键,难度适中. 16.(2015•长沙)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为 4 .考点:垂径定理;勾股定理.分析:根据垂径定理求得BD,然后根据勾股定理求得即可.解答:解:∵OD⊥BC,∴BD=CD= BC=3,∵OB= AB=5,∴OD= =4.故答案为4.点评:题考查了垂径定理、勾股定理,本题非常重要,学生要熟练掌握. 17.(2015•徐州)如图,AB是⊙O 的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为 4 cm.考点:垂径定理;等腰直角三角形;圆周角定理.专题:计算题.分析:连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.解答:解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE= CD=4cm,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴OC= CE=4 cm,故答案为:4 点评:此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键. 18.(2015•黔东南州)如图,AD是⊙O的直径,弦BC⊥AD于E,AB=BC=12,则OC= 4 .考点:垂径定理;勾股定理.分析:如图,作辅助线;首先运用勾股定理求出AE的长度,然后运用射影定理求出AD的长度,即可解决问题.解答:解:如图,连接BD;∵直径AD⊥BC,∴BE=CE= BC=6;由勾股定理得: AE= =6 ;∵AD为⊙O的直径,∴∠ABD=90°;由射影定理得:,∴AD= =8 ,∴OC= AD=4 ,故答案为4 .点评:该题主要考查了垂径定理、射影定理等几何知识点及其应用问题;解题的方法是作辅助线,构造直角三角形;解题的关键是牢固掌握垂径定理、射影定理等几何知识点,这是灵活运用、解题的基础和关键. 19.(2015•黄石)如图,圆O的直径AB=8,AC=3CB,过C作AB的垂线交圆O于M,N两点,连结MB,则∠MBA的余弦值为.考点:垂径定理;解直角三角形.分析:如图,作辅助线;求出BC的长度;运用射影定理求出BM的长度,借助锐角三角函数的定义求出∠MBA的余弦值,即可解决问题.解答:解:如图,连接AM;∵AB=8,AC=3CB,∴BC= AB=2:∵AB为⊙O的直径,∴∠AMB=90°;由射影定理得:BM2=AB•CB,∴BM=4,cos∠MBA= = ,故答案为.点评:该题主要考查了圆周角定理及其推论、射影定理、锐角三角函数的定义等知识点及其应用问题;解题的方法是作辅助线,构造直角三角形;解题的关键是灵活运用圆周角定理及其推论、射影定理等知识点来分析、判断、解答. 20.(2015•成都)如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PB于点C,当△PAB是等腰三角形时,线段BC的长为8,或.考点:垂径定理;等腰三角形的性质;勾股定理.专题:分类讨论.分析:①当BA=BP时,利用直角三角形斜边的中线等于斜边的一半;②当AB=AP时,如图1,延长AO交PB于点D,过点O作OE⊥AB于点E,易得△AOE∽△ABD,利用相似三角形的性质求得BD,PB,然后利用相似三角形的判定定理△ABD∽△CPA,代入数据得出结果;③当PA=PB时,如图2,连接PO并延长,交AB于点F,过点C作CG⊥AB,交AB的延长线于点G,连接OB,则PF⊥AB,易得AF=FB=4,利用勾股定理得OF=3,FP=8,易得△PFB∽△CGB,利用相似三角形的性质,设BG=t,则CG=2t,利用相似三角形的判定定理得△APF∽△CAG,利用相似三角形的性质得比例关系解得t,在Rt△BCG中,得BC.解答:解:①当BA=BP 时,易得AB=BP=BC=8,即线段BC的长为8.②当AB=AP时,如图1,延长AO交PB于点D,过点O作OE⊥AB于点E,则AD⊥PB,AE= AB=4,∴BD=DP,在Rt△AEO中,AE=4,AO=5,∴OE=3,易得△AOE∽△ABD,∴ ,∴ ,∴ ,即PB= ,∵AB=AP=8,∴∠ABD=∠P,∵∠PAC=∠ADB=90°,∴△ABD∽△CPA,∴ ,∴CP= ,∴BC=CP�BP= = ;③当PA=PB时如图2,连接PO并延长,交AB于点F,过点C作CG⊥AB,交AB的延长线于点G,连接OB,则PF⊥AB,∴AF=FB=4,在Rt△OFB中,OB=5,FB=4,∴OF=3,∴FP=8,易得△PFB∽△CGB,∴ ,设BG=t,则CG=2t,易得∠PAF=∠ACG,∵∠AFP=∠AGC=90°,∴△APF∽△CAG,∴ ,∴ ,解得t= ,在Rt△BCG中,BC= t= ,综上所述,当△PAB是等腰三角形时,线段BC的长为8,,,故答案为:8,,.点评:本题主要考查了垂径定理,相似三角形的性质及判定,等腰三角形的性质及判定,数形结合,分类讨论是解答此题的关键. 21.(2015•莱芜)如图,在扇形OAB中,∠AOB=60°,扇形半径为r,点C在上,CD⊥OA,垂足为D,当△OCD的面积最大时,的长为.考点:垂径定理;弧长的计算;解直角三角形.分析:由OC=r,点C在上,CD⊥OA,利用勾股定理可得DC的长,求出OD= 时△OCD的面积最大,∠COA=45°时,利用弧长公示得到答案.解答:解:∵OC=r,点C在上,CD⊥OA,∴DC= = ,∴S△OCD= OD• ,∴S△OCD2= OD2•(r2�OD2)=�OD4+ r2OD2=�(OD2�)2+ ∴当OD2= ,即OD= r时△OCD的面积最大,∴∠OCD=45°,∴∠COA=45°,∴ 的长为: = πr,故答案为:.点评:本题主要考查了扇形的面积,勾股定理,求出OD= 时△OCD的面积最大,∠COA=45°是解答此题的关键. 22.(2015•六盘水)赵洲桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R= 25 米.考点:垂径定理的应用;勾股定理.分析:根据垂径定理和勾股定理求解即可.解答:解:根据垂径定理,得AD= AB=20米.设圆的半径是r,根据勾股定理,得R2=202+(R�10)2,解得R=25(米).故答案为25.点评:此题综合运用了勾股定理以及垂径定理.注意构造由半径、半弦、弦心距组成的直角三角形进行有关的计算. 23.(2015•黔南州)如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是50cm .考点:垂径定理的应用;勾股定理;切线的性质.分析:根据垂径定理求得AD=30cm,然后根据勾股定理即可求得半径.解答:解:如图,连接OA,∵CD=10cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴AD= AB=30cm,∴设半径为r,则OD=r�10,根据题意得:r2=(r�10)2+302,解得:r=50.∴这个车轮的外圆半径长为50cm.故答案为:50cm.点评:本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键. 24.(2015•衢州)一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于 1.6 m.考点:垂径定理的应用;勾股定理.分析:先根据勾股定理求出OE的长,再根据垂径定理求出CF的长,即可得出结论.解答:解:如图:∵AB=1.2m,OE⊥AB,OA=1m,∴AE=0.8m,∵水管水面上升了0.2m,∴AF=0.8�0.2=0.6m,∴CF= m,∴CD=1.6m.故答案为:1.6.点评:本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键. 25.(2015•东营)如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为0.8 m.考点:垂径定理的应用;勾股定理.分析:过O点作OC⊥AB,C为垂足,交⊙O于D,连OA,根据垂径定理得到AC=BC=0.5m,再在Rt△AOC中,利用勾股定理可求出OC,即可得到CD的值,即水的深度.解答:解:如图,过O点作OC⊥AB,C为垂足,交⊙O于D、E,连OA, OA=0.5m,AB=0.8m,∵OC⊥AB,∴AC=BC=0.4m,在Rt△AOC中,OA2=AC2+OC2,∴OC=0.3m,则CE=0.3+0.5=0.8m,故答案为:0.8.点评:本题考查了垂径定理的应用,掌握垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧是解题的关键,注意勾股定理的运用. 26.(2015•丽水)如图,圆心角∠AOB=20°,将旋转n°得到,则的度数是20 度.考点:圆心角、弧、弦的关系;旋转的性质.专题:计算题.分析:先根据旋转的性质得 = ,则根据圆心角、弧、弦的关系得到∠DOC=∠AOB=20°,然后根据圆心角的度数等于它所对弧的度数即可得到的度数.解答:解:∵将旋转n°得到,∴ = ,∴∠DOC=∠AOB=20°,∴ 的度数为20度.故答案为20.点评:本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了旋转的性质. 27.(2015•黔西南州)如图,AB是⊙O的直径,BC是⊙O的弦,若∠AOC=80°,则∠B=40°.考点:圆周角定理.专题:计算题.分析:直接根据圆周角定理求解.解答:解:∵∠AOC=80°,∴∠B= ∠AOC=40°.故答案为40°.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 28.(2015•宿迁)如图,四边形ABCD是⊙O的内接四边形,若∠C=130°,则∠BOD=100 °.考点:圆周角定理;圆内接四边形的性质.专题:计算题.分析:先根据圆内接四边形的性质得到∠A=180°�∠C=50°,然后根据圆周角定理求∠BOD.解答:解:∵∠A+∠C=180°,∴∠A=180°�130°=50°,∴∠BOD=2∠A=100°.故答案为100.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了圆内接四边形的性质. 29.(2015•南昌)如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为110°.考点:圆周角定理.分析:根据圆周角定理求得∠BOC=100°,进而根据三角形的外角的性质求得∠BDC=70°,然后根据邻补角求得∠ADC的度数.解答:解:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+⊂BDC,∴∠BDC=∠BOC�∠B=100°�30°=70°,∴∠ADC=180°�∠BDC=110°,故答案为110°.点评:本题考查了圆心角和圆周角的关系及三角形外角的性质,圆心角和圆周角的关系是解题的关键. 30.(2015•六盘水)如图所示,A、B、C三点均在⊙O上,若∠AOB=80°,则∠ACB=40 °.考点:圆周角定理.专题:计算题.分析:直接根据圆周角定理求解.解答:解:∠ACB= ∠AOB= ×80°=40°.故答案为40.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.。
一.选择题12.(漳州)已知⊙P的半径为2,圆心在函数y=﹣的图象上运动,当⊙P与坐标轴相切于点D时,则符合条件的点D的个数为()A. 0 B. 1 C. 2 D. 4解:根据题意可知,当⊙P与y轴相切于点D时,得x=±2,把x=±2代入y=﹣得y=±4,∴D(0,4),(0,﹣4);当⊙P与x轴相切于点D时,得y=±2,把y=±2代入y=﹣得x=±4,∴D(4,0),(﹣4,0),∴符合条件的点D的个数为4,故选D.24.(达州)如图,AB为半圆O的在直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DE•CD,正确的有()A. 2个B. 3个C. 4个D. 5个解:连接OE,如图所示:∵AD与圆O相切,DC与圆O相切,BC与圆O相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB,AD∥BC,∴CD=DE+EC=AD+BC,选项②正确;在Rt△ADO和Rt△EDO中,,∴Rt△ADO≌Rt△EDO(HL),∴∠AOD=∠EOD,同理Rt△CEO≌Rt△CBO,∴∠EOC=∠BOC,又∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,选项⑤正确;∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,∴△EDO∽△ODC,∴=,即OD2=DC•DE,选项①正确;∵∠AOD+∠COB=∠AOD+∠ADO=90°,∠A=∠B=90°,∴△AOD∽△BOC,∴===,选项③正确;同理△ODE∽△OEC,∴,选项④错误;故选C.28.(衢州)如图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E.若CD=5,CE=4,则⊙O的半径是()A. 3 B. 4 C.D.解:如图1,连接OD、BD,∵DE⊥BC,CD=5,CE=4,∴DE=,∵AB是⊙O的直径,∴∠ADB=90°,∵S△BCD=BD•CD÷2=BC•DE÷2,∴5BD=3BC,∴,∵BD2+CD2=BC2,∴,解得BC=,∵AB=BC,∴AB=,∴⊙O的半径是;.故选:D.29.(河池)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是()A. 6 B. 8 C. 10 D. 12解:∵直线l:y=kx+4与x轴、y轴分别交于A、B,∴B(0,4),∴OB=4,在RT△AOB中,∠OAB=30°,∴OA=OB=×=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=PA,设P(x,0),∴PA=12﹣x,∴⊙P的半径PM=PA=6﹣x,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,∴使得⊙P成为整圆的点P个数是6.故选A.30.(岳阳)如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D.过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;②△CBA∽△CDE;③=;④AE为⊙O的切线,一定正确的结论全部包含其中的选项是()A.①②B.①②③C.①④D.①②④解:∵AB为直径,∴∠ADB=90°,∴BD⊥AC,而AB=CB,∴AD=DC,所以①正确;∵AB=CB,∴∠1=∠2,而CD=ED,∴∠3=∠4,∵CF∥AB,∴∠1=∠3,∴∠1=∠2=∠3=∠4,∴△CBA∽△CDE,所以②正确;∵△ABC不能确定为直角三角形,∴∠1不能确定等于45°,∴与不能确定相等,所以③错误;∵DA=DC=DE,∴点E在以AC为直径的圆上,∴∠AEC=90°,∴CE⊥AE,而CF∥AB,∴AB⊥AE,∴AE为⊙O的切线,所以④正确.故选D.一.填空题4.(台州)如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O 可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个正六边形的边长最大时,AE的最小值为﹣.解:当这个正六边形的边长最大时,作正方形ABCD的内切圆⊙O.当正六边形EFGHIJ的顶点H与O重合,且点E在线段OA上时,AE最小,如图所示.∵正方形ABCD的边长为1,∴⊙O的半径OE为,AO=AC=×=,则AE的最小值为﹣.故答案为﹣.8.(恩施州)如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于5π.解:由图形可知,圆心先向前走OO1的长度即圆的周长,然后沿着弧O1O2旋转圆的周长,则圆心O运动路径的长度为:×2π×5+×2π×5=5π,故答案为:5π.21.(河南)如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为+.解:连接OE、AE,∵点C为OC的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE==π,∴S阴影=S扇形ABO﹣S扇形CDO﹣(S扇形AOE﹣S△COE)=﹣﹣(π﹣×1×)=π﹣π+=+.故答案为:+.24.(乐山)如图,已知A(2,2)、B(2,1),将△AOB绕着点O逆时针旋转,使点A旋转到点A′(﹣2,2)的位置,则图中阴影部分的面积为π.解:∵A(2,2)、B(2,1),∴OA=4,OB=,∵由A(2,2)使点A旋转到点A′(﹣2,2),∴∠A′OA=∠B′OB=90°,根据旋转的性质可得,S=S OBC,∴阴影部分的面积等于S扇形A'OA﹣S扇形C'OC=π×42﹣π×()2=,故答案为:π.29.(遵义)如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为(π+﹣)cm2.解:连结OC,过C点作CF⊥OA于F,∵半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,∴OD=OE=1cm,OC=2cm,∠AOC=45°,∴CF=,∴空白图形ACD的面积=扇形OAC的面积﹣三角形OCD的面积=﹣×=π﹣(cm2)三角形ODE的面积=OD×OE=(cm2),∴图中阴影部分的面积=扇形OAB的面积﹣空白图形ACD的面积﹣三角形ODE的面积=﹣(π﹣)﹣=π+﹣(cm2).故图中阴影部分的面积为(π+﹣)cm2.1.(大连)如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F.(1)求证:EF与⊙O相切;(2)若AB=6,AD=4,求EF的长.(1)证明:连接OD,∵AD平分∠CAB,∴∠OAD=∠EAD.∵OE=OA,∴∠ODA=∠OAD.∴∠ODA=∠EAD.∴OD∥AE.∵∠ODF=∠AEF=90°且D在⊙O上,∴EF与⊙O相切.(2)连接BD,作DG⊥AB于G,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=6,AD=4,∴BD==2,∵OD=OB=3,设OG=x,则BG=3﹣x,∵OD2﹣OG2=BD2﹣BG2,即32﹣x2=22﹣(3﹣x)2,解得x=,∴OG=,∴DG==,∵AD平分∠CAB,AE⊥DE,DG⊥AB,∴DE=DG=,∴AE==,∵OD∥AE,∴△ODF∽△AEF,∴=,即=,∴=,∴EF=.2.(潍坊)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.(1)证明:如图,连接OD.∵AB=AC,∴∠B=∠C,∵OD=OC,∴∠ODC=∠C,∴∠ODC=∠B,∴OD∥AB,∵DF⊥AB,∴OD⊥DF,∵点D在⊙O上,∴直线DF与⊙O相切;(2)解:∵四边形ACDE是⊙O的内接四边形,∴∠AED+∠ACD=180°,∵∠AED+∠BED=180°,∴∠BED=∠ACD,∵∠B=∠B,∴△BED∽△BCA,∴=,∵OD∥AB,AO=CO,∴BD=CD=BC=3,又∵AE=7,∴=,∴BE=2,∴AC=AB=AE+BE=7+2=9.3.(枣庄)如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心、OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=CD•2OE;(3)若cos∠BAD=,BE=6,求OE的长.(1)证明:连接OD,BD,∵AB为圆O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE=BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,即∠C+∠A=90°,∴∠ADO+∠CDE=90°,即∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为⊙O的切线;(2)证明:∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴=,即BC2=AC•CD.∴BC2=2CD•OE;(3)解:∵cos∠BAD=,∴sin∠BAC==,又∵BE=6,E是BC的中点,即BC=12,∴AC=15.又∵AC=2OE,∴OE=AC=.4.(西宁)如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足=,过点O作OM⊥AC于点E,交⊙O于点M,连接BM,AM.(1)求证:AD是⊙O的切线;(2)若sin∠ABM=,AM=6,求⊙O的半径.(1)证明:连接OA;∵BC为⊙O的直径,BA平分∠CBF,AD⊥BF,∴∠ADB=∠BAC=90°,∠DBA=∠CBA;∵∠OAC=∠OCA,∴∠DAO=∠DAB+∠BAO=∠BAO+∠OAC=90°,∴DA为⊙O的切线.(2)解:连接CM,∵OM⊥AC于点E,OM是半径,∴=,∴∠ABM=∠CBM,AM=CM=6,∴sin∠ABM=sin∠CBM=,∵BC为⊙O的直径,∴∠BMC=90°,在RT△BMC中,sin∠CBM=,∴=,∴BC=10,∴⊙O的半径为5.5.(广元)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF、BF,求∠ABF的度数;(3)如果CD=15,BE=10,sinA=,求⊙O的半径.(1)证明:连接OB∵OB=OA,CE=CB,∴∠A=∠OBA,∠CEB=∠ABC又∵CD⊥OA ∴∠A+∠AED=∠A+∠CEB=90°∴∠OBA+∠ABC=90°∴OB⊥BC ∴BC是⊙O的切线.(2)解:如图1,连接OF,AF,BF,∵DA=DO,CD⊥OA,∴AF=OF,∵OA=OF,∴△OAF是等边三角形,∴∠AOF=60°∴∠ABF=∠AOF=30°;(3)解:如图2,过点C作CG⊥BE于G,∵CE=CB,∴EG=BE=5,∵∠ADE=∠CGE=90°,∠AED=∠GEC,∴∠GCE=∠A,∴△ADE∽△CGE,∴sin∠ECG=sin∠A=,在R t ECG中,∵CG==12,∵CD=15,CE=13,∴DE=2,∵△ADE∽△CGE,∴,∴AD=,CG=,∴⊙O的半径OA=2AD=.6.(北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.(1)证明:如图,连接OE.∵CD是圆O的直径,∴∠CED=90°.∵OC=OE,∴∠1=∠2.又∵∠PED=∠C,即∠PED=∠1,∴∠PED=∠2,∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,∴OE⊥EP,又∵点E在圆上,∴PE是⊙O的切线;(2)证明:∵AB、CD为⊙O的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等).又∵∠PED=∠1,∴∠PED=∠4,即ED平分∠BEP;(3)解:设EF=x,则CF=2x,∵⊙O的半径为5,∴OF=2x﹣5,在RT△OEF中,OE2=OF2+EF2,即52=x2+(2x﹣5)2,解得x=4,∴EF=4,∴BE=2EF=8,CF=2EF=8,∴DF=CD﹣CF=10﹣8=2,∵AB为⊙O的直径,∴∠AEB=90°,∵AB=10,BE=8,∴AE=6,∵∠BEP=∠A,∠EFP=∠AEB=90°,∴△AEB∽△EFP,∴=,即=,∴PF=,∴PD=PF﹣DF=﹣2=.7.(莆田)如图,在四边形ABCD中,AB=AD,对角线AC,BD交于点E,点O在线段AE上,⊙O过B,D 两点,若OC=5,OB=3,且cos∠BOE=.求证:CB是⊙O的切线.证明:连接OD,可得OB=OD,∵AB=AD,∴AE垂直平分BD,在Rt△BOE中,OB=3,cos∠BOE=,∴OE=,根据勾股定理得:BE==,CE=OC﹣OE=,在Rt△CEB中,BC==4,∵OB=3,BC=4,OC=5,∴OB2+BC2=OC2,∴∠OBC=90°,即BC⊥OB,则BC为圆O的切线.10.(包头)如图,AB是⊙O的直径,点D是上一点,且∠BDE=∠CBE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:DE2=DF•DB;(3)在(2)的条件下,延长ED,BA交于点P,若PA=AO,DE=2,求PD的长和⊙O的半径.(1)证明:∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∵∠EDB=∠EAB,∠BDE=∠CBE,∴∠EAB=∠CBE,∴∠ABE+∠CBE=90°,∴CB⊥AB,∵AB是⊙O的直径,∴BC是⊙O的切线;(2)证明:∵BD平分∠ABE,∴∠ABD=∠DBE,=,∴∠DEA=∠DBE,∵∠EDB=∠BDE,∴△DEF∽△DBE,∴=,∴DE2=DF•DB;(3)解:连接DA、DO,∵OD=OB,∴∠ODB=∠OBD,∵∠EBD=∠OBD,∴∠EBD=∠ODB,∴OD∥BE,∴=,∵PA=AO,∴PA=AO=OB,∴=∴=,∴=,∵DE=2,∴PD=4,∵∠PDA+∠ADE=180°,∠ABE+∠ADE=180°,∴∠PDA=∠ABE,∵OD∥BE,∴∠AOD=∠ABE,∴∠PDA=∠AOD,∵∠P=∠P,∴△PDA∽△POD,∴=,设OA=x,∴PA=x,PO=2x,∴=,∴2x2=16,x=2,∴OA=2.11.(本溪)如图,点D是等边△ABC中BC边的延长线上一点,且AC=CD,以AB为直径作⊙O,分别交边AC、BC于点E、点F(1)求证:AD是⊙O的切线;(2)连接OC,交⊙O于点G,若AB=4,求线段CE、CG与围成的阴影部分的面积S.(1)证明:∵△ABC为等边三角形,∴AC=BC,又∵AC=CD,∴AC=BC=CD,∴△ABD为直角三角形,∴AB⊥AD,∵AB为直径,∴AD是⊙O的切线;(2)解:连接OE,∵OA=OE,∠BAC=60°,∴△OAE是等边三角形,∴∠AOE=60°,∵CB=BA,OA=OB,∴CO⊥AB,∴∠AOC=90°,∴∠EOC=30°,∵△ABC是边长为4的等边三角形,∴AO=2,由勾股定理得:OC==2,同理等边三角形AOE边AO上高是=,S阴影=S△AOC﹣S等边△AOE﹣S扇形EOG==.12.(常德)已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.证明:(1)如图1,连接FO,∵F为BC的中点,AO=CO,∴OF∥AB,∵AC是⊙O的直径,∴CE⊥AE,∵OF∥AB,∴OF⊥CE,∴OF所在直线垂直平分CE,∴FC=FE,OE=OC,∴∠FEC=∠FCE,∠0EC=∠0CE,∵∠ACB=90°,即:∠0CE+∠FCE=90°,∴∠0EC+∠FEC=90°,即:∠FEO=90°,∴FE为⊙O的切线;(2)如图2,∵⊙O的半径为3,∴AO=CO=EO=3,∵∠EAC=60°,OA=OE,∴∠EOA=60°,∴∠COD=∠EOA=60°,∵在Rt△OCD中,∠COD=60°,OC=3,∴CD=,∵在Rt△ACD中,∠ACD=90°,CD=,AC=6,∴AD=.13.(武汉)如图,AB是⊙O的直径,∠ABT=45°,AT=AB.(1)求证:AT是⊙O的切线;(2)连接OT交⊙O于点C,连接AC,求tan∠TAC.解:(1)∵∠ABT=45°,AT=AB.∴∠TAB=90°,∴TA⊥AB,∴AT是⊙O的切线;(2)作CD⊥AT于D,∵TA⊥AB,TA=AB=2OA,设OA=x,则AT=2x,∴OT=x,∴TC=(﹣1)x,∵CD⊥AT,TA⊥AB∴CD∥AB,∴==,即==,∴CD=(1﹣)x,TD=2(1﹣)x,∴AD=2x﹣2(1﹣)x=x,∴tan∠TAC===.15.(攀枝花)如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.(1)求证:DE是⊙O的切线;(2)若OF:OB=1:3,⊙O的半径R=3,求的值.(1)证明:连结OD,如图,∵EF=ED,∴∠EFD=∠EDF,∵∠EFD=∠CFO,∴∠CFO=∠EDF,∵OC⊥OF,∴∠OCF+∠CFO=90°,而OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:∵OF:OB=1:3,∴OF=1,BF=2,设BE=x,则DE=EF=x+2,∵AB为直径,∴∠ADB=90°,∴∠ADO=∠BDE,而∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DAE,∴△EBD∽△EDA,∴==,即==,∴x=2,∴==.16.(河池)如图,AB为⊙O的直径,CO⊥AB于O,D在⊙O上,连接BD,CD,延长CD与AB的延长线交于E,F在BE上,且FD=FE.(1)求证:FD是⊙O的切线;(2)若AF=8,tan∠BDF=,求EF的长.(1)证明:连结OD,如图,∵CO⊥AB,∴∠E+∠C=90°,∵FE=FD,OD=OC,∴∠E=∠FDE,∠C=∠ODC,∴∠FDE+∠ODC=90°,∴∠ODF=90°,∴OD⊥DF,∴FD是⊙O的切线;(2)解:连结AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠A+∠ODB=90°,∵∠BDF+∠ODB=90°,∴∠A=∠BDF,而∠DFB=∠AFD,∴△FBD∽△FDA,∴=,在Rt△ABD中,tan∠A=tan∠BDF==,∴=,∴DF=2,∴EF=2.23.(厦门)已知四边形ABCD内接于⊙O,∠ADC=90°,∠DCB<90°,对角线AC平分∠DCB,延长DA,CB相交于点E.(1)如图1,EB=AD,求证:△ABE是等腰直角三角形;(2)如图2,连接OE,过点E作直线EF,使得∠OEF=30°,当∠ACE≥30°时,判断直线EF与⊙O的位置关系,并说明理由.(1)证明:∵对角线AC平分∠DCB,∴∠ACD=∠ABC,∴=,∴AD=AB,∵EB=AD,∴AB=EB,∵∠EBA=∠ADC=90°,∴△ABE是等腰直角三角形(2)解:直线EF与⊙O相离.理由如下:∵∠DCB<90°,∠ACD=∠ABC,∵∠ACE≥30°,∴60°≤∠DCE<90°,∴∠AEC≤30°,∴AE≥AC,∵OE>AE,∴OE>AC,作OH⊥EF于H,如图,在Rt△OEH中,∵∠OEF=30°,∴OH=OE,∴OH>OA,∴直线EF与⊙O相离.26.(营口)如图,点P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP 交⊙O于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=cm,AC=8cm,求图中阴影部分的面积;(3)在(2)的条件下,若点E是的中点,连接CE,求CE的长.(1)证明:如图1,连接OC,∵PA切⊙O于点A,∴∠PAO=90°,∵BC∥OP,∴∠AOP=∠OBC,∠COP=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠AOP=∠COP,在△PAO和△PCO中,,∴△PAO≌△PCO,∴∠PCO=∠PAO=90°,∴PC是⊙O的切线;(2)解:由(1)得PA,PC都为圆的切线,∴PA=PC,OP平分∠APC,∠ADO=∠PAO=90°,∴∠PAD+∠DAO=∠DAO+∠AOD,∴∠PAD=∠AOD,∴△ADP∽△PDA,∴,∴AD2=PD•DO,∵AC=8,PD=,∴AD=AC=4,OD=3,AO=5,由题意知OD为△的中位线,∴BC=6,OD=6,AB=10.∴S阴=S⊙O﹣S△ABC=﹣24;(3)解:如图2,连接AE、BE,作BM⊥CE于M,∴∠CMB=∠EMB=∠AEB=90°,∵点E是的中点,∴∠ECB=∠CBM=∠ABE=45°,CM=MB=3,BE=AB•cos45°=5,∴EM==4,则CE=CM+EM=7.27.(宜宾)如图,CE是⊙O的直径,BD切⊙O于点D,DE∥BO,CE的延长线交BD于点A.(1)求证:直线BC是⊙O的切线;(2)若AE=2,tan∠DEO=,求AO的长.解:(1)连接OD,∵DE∥BO,∴∠1=∠4,∠2=∠3,∵OD=OE,∴∠3=∠4,∴∠1=∠2,在△DOB与△COB中,,∴△DOB≌△COB,∴∠OCB=∠ODB,∵BD切⊙O于点D,∴∠ODB=90°,∴∠OCB=90°,∴AC⊥BC,∴直线BC是⊙O的切线;(2)∵∠DEO=∠2,∴tan∠DEO=tan∠2=,设;OC=r,BC=r,由(1)证得△DOB≌△COB,∴BD=BC=r,由切割线定理得:AD2=AE•AC=2(2+r),∴AD=2,∵DE∥BO,∴,∴,∴r=1,∴AO=3.30.(广安)如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接PA、AO,并延长AO交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若=,且OC=4,求PA的长和tanD的值.资料内容仅供您学习参考,如有不当之处,请联系改正或者删除(1)证明:连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB ,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O 的切线;(2)连接BE,∵=,且OC=4,∴AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO==2,∴AE=2OA =4,OB=OA=2,在Rt△APO中,∵AC⊥OP,∴AC2=OC•PC,解得:PC=9,∴OP=PC+OC=13,在Rt △APO中,由勾股定理得:AP==3,∴PB=PA=3,∵AC=BC,OA=OE,∴OC=BE,OC∥BE,∴BE=2OC=8,BE∥OP ,∴△DBE ∽△DPO,∴,即,解得:BD=,在Rt △OBD中,tanD===.----完整版学习资料分享----。
2015中考数学真题分类汇编:圆(3)一.选择题(共10小题)1.(2015•河池)如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的面积是()A. 240πcm2B. 480πcm2C. 1200πcm2D. 2400πcm22.(2015•黄石)在长方形ABCD中AB=16,如图所示裁出一扇形ABE,将扇形围成一个圆锥(AB和AE重合),则此圆锥的底面半径为()A. 4 B. 16 C. 4D. 83.(2015•潜江)已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是()A. 24cm B. 48cm C. 96cm D. 192cm4.(2015•营口)将弧长为2πcm,圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高及侧面积分别是()A.cm,3πcm2B. 2cm,3πcm2C. 2cm,6πcm2D.cm,6πcm2 5.(2015•宁波)如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()A. 5cm B. 10cm C. 20cm D. 5πcm6.(2015•湖州)若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是()A. 6cm B. 9cm C. 12cm D. 18cm7.(2015•凉山州)将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为()A. 1cm B. 2cm C. 3cm D. 4cm8.(2015•德州)如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为()A. 288°B. 144°C. 216°D. 120°9.(2015•莱芜)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,以BC为直径的⊙O与AD相切,点E为AD的中点,下列结论正确的个数是()(1)AB+CD=AD;(2)S△BCE=S△ABE+S△DCE;(3)AB•CD=;(4)∠ABE=∠DCE.A. 1 B. 2 C. 3 D. 410.(2015•乐山)如图,已知直线y=x﹣3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最大值是()A. 8 B. 12 C.D.二.填空题(共20小题)11.(2015•义乌市)如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于度.12.(2015•黔西南州)如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.13.(2015•甘孜州)如图,AB是⊙O的直径,弦CD垂直平分半径OA,则∠ABC的大小为度.14.(2015•牡丹江)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE=.15.(2015•宁夏)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC.若AB=2,∠BCD=30°,则⊙O的半径为.16.(2015•长沙)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为.17.(2015•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为cm.18.(2015•黔东南州)如图,AD是⊙O的直径,弦BC⊥AD于E,AB=BC=12,则OC=.19.(2015•黄石)如图,圆O的直径AB=8,AC=3CB,过C作AB的垂线交圆O于M,N两点,连结MB,则∠MBA的余弦值为.20.(2015•成都)如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PB于点C,当△PAB是等腰三角形时,线段BC的长为.21.(2015•莱芜)如图,在扇形OAB中,∠AOB=60°,扇形半径为r,点C在上,CD⊥OA,垂足为D,当△OCD的面积最大时,的长为.22.(2015•六盘水)赵洲桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R=米.23.(2015•黔南州)如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是.24.(2015•衢州)一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于m.25.(2015•东营)如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为m.26.(2015•丽水)如图,圆心角∠AOB=20°,将旋转n°得到,则的度数是度.27.(2015•黔西南州)如图,AB是⊙O的直径,BC是⊙O的弦,若∠AOC=80°,则∠B=.28.(2015•宿迁)如图,四边形ABCD是⊙O的内接四边形,若∠C=130°,则∠BOD=°.29.(2015•南昌)如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为.30.(2015•六盘水)如图所示,A、B、C三点均在⊙O上,若∠AOB=80°,则∠ACB=°.2015中考数学真题分类汇编:圆(3)参考答案与试题解析一.选择题(共10小题)1.(2015•河池)如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的面积是()A. 240πcm2B. 480πcm2C. 1200πcm2D. 2400πcm2考点:圆锥的计算.专题:计算题.分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算即可.解答:解:这张扇形纸板的面积=×2π×10×24=240π(cm2).故选A.点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.2.(2015•黄石)在长方形ABCD中AB=16,如图所示裁出一扇形ABE,将扇形围成一个圆锥(AB和AE重合),则此圆锥的底面半径为()A. 4 B. 16 C. 4D. 8考点:圆锥的计算.分析:圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.解答:解:设圆锥的底面圆半径为r,依题意,得2πr=,解得r=4.故小圆锥的底面半径为4;故选A.点评:本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化:1、圆锥的母线长为扇形的半径,2、圆锥的底面圆周长为扇形的弧长.3.(2015•潜江)已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是()A. 24cm B. 48cm C. 96cm D. 192cm考点:圆锥的计算.分析:利用底面周长=展开图的弧长可得.解答:解:设这个扇形铁皮的半径为rcm,由题意得=π×80,解得r=48.故这个扇形铁皮的半径为48cm,故选B.点评:本题考查了圆锥的计算,解答本题的关键是确定圆锥的底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.4.(2015•营口)将弧长为2πcm,圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高及侧面积分别是()A.cm,3πcm2B. 2cm,3πcm2C. 2cm,6πcm2D.cm,6πcm2考点:圆锥的计算.分析:已知弧长为2πcm,圆心角为120°的扇形为4 cm,就可以求出扇形的半径,即圆锥的母线长,根据扇形的面积公式可求这个圆锥的侧面积,根据勾股定理可求出圆锥的高.解答:解:(2π×180)÷120π=3(cm),2π÷π÷2=1(cm),=2(cm),=3π(cm2).故这个圆锥的高是2cm,侧面积是3πcm2.故选:B.点评:考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.5.(2015•宁波)如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()A. 5cm B. 10cm C. 20cm D. 5πcm考点:圆锥的计算.分析:由圆锥的几何特征,我们可得用半径为30cm,面积为300πcm2的扇形铁皮制作一个无盖的圆锥形容器,则圆锥的底面周长等于扇形的弧长,据此求得圆锥的底面圆的半径.解答:解:设铁皮扇形的半径和弧长分别为R、l,圆锥形容器底面半径为r,则由题意得R=30,由Rl=300π得l=20π;由2πr=l得r=10cm;故选B.点评:本题考查的知识点是圆锥的体积,其中根据已知制作一个无盖的圆锥形容器的扇形铁皮的相关几何量,计算出圆锥的底面半径和高,是解答本题的关键.6.(2015•湖州)若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是()A. 6cm B. 9cm C. 12cm D. 18cm考点:圆锥的计算.分析:利用弧长公式可得圆锥的侧面展开图的弧长,除以2π即为圆锥的底面半径.解答:解:圆锥的弧长为:=24π,∴圆锥的底面半径为24π÷2π=12,故选C.点评:考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长;7.(2015•凉山州)将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为()A. 1cm B. 2cm C. 3cm D. 4cm考点:圆锥的计算.专题:计算题.分析:设扇形的半径为R,根据扇形面积公式得=4π,解得R=4;设圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•r•4=4π,然后解方程即可.解答:解:设扇形的半径为R,根据题意得=4π,解得R=4,设圆锥的底面圆的半径为r,则•2π•r•4=4π,解得r=1,即所围成的圆锥的底面半径为1cm.故选A.点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8.(2015•德州)如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为()A. 288°B. 144°C. 216°D. 120°考点:圆锥的计算.分析:根据底面圆的半径与母线长的比设出二者,然后利用底面圆的周长等于弧长列式计算即可.解答:解:∵底面圆的半径与母线长的比是4:5,∴设底面圆的半径为4x,则母线长是5x,设圆心角为n°,则2π×4x=,解得:n=288,故选A.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.9.(2015•莱芜)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,以BC为直径的⊙O与AD相切,点E为AD的中点,下列结论正确的个数是()(1)AB+CD=AD;(2)S△BCE=S△ABE+S△DCE;(3)AB•CD=;(4)∠ABE=∠DCE.A. 1 B. 2 C. 3 D. 4考点:圆的综合题.分析:设DC和半圆⊙O相切的切点为F,连接OF,根据切线长定理以及相似三角形的判定和性质逐项分析即可.解答:解:设DC和半圆⊙O相切的切点为F,∵在直角梯形ABCD中AB∥CD,AB⊥BC,∴∠ABC=∠DCB=90°,∵AB为直径,∴AB,CD是圆的切线,∵AD与以AB为直径的⊙O相切,∴AB=AF,CD=DF,∴AD=AE+DE=AB+CD,故①正确;如图1,连接OE,∵AE=DE,BO=CO,∴OE∥AB∥CD,OE=(AB+CD),∴OE⊥BC,∴S△BCE=BC•OE=(AB+CD)=(AB+CD)•BC==S△ABE+S△DCE,故②正确;如图2,连接AO,OD,∵AB∥CD,∴∠BAD+∠ADC=180°,∵AB,CD,AD是⊙O的切线,∴∠OAD+∠EDO=(∠BAD+∠ADC)=90°,∴∠AOD=90°,∴∠AOB+∠DOC=∠AOB+∠BAO=90°,∴∠BAO=∠DOC,∴△ABO∽△CDO,∴,∴AB•CD=OB•OC=BC BC=BC2,故③正确,如图1,∵OB=OC,OE⊥BC,∴BE=CE,∴∠BEO=∠CEO,∵AB∥OE∥CD,∴∠ABE=∠BEO,∠DCE=∠OEC,∴∠ABE=∠DCE,故④正确,综上可知正确的个数有4个,故选D.点评:本题考查了切线的判定和性质、相似三角形的判定与性质、直角三角形的判定与性质.解决本题的关键是熟练掌握相似三角形的判定定理、性质定理,做到灵活运用.10.(2015•乐山)如图,已知直线y=x﹣3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最大值是()A. 8 B. 12 C.D.考点:圆的综合题.分析:求出A、B的坐标,根据勾股定理求出AB,求出点C到AB的距离,即可求出圆C上点到AB的最大距离,根据面积公式求出即可.解答:解:∵直线y=x﹣3与x轴、y轴分别交于A、B两点,∴A点的坐标为(4,0),B点的坐标为(0,﹣3),3x﹣4y﹣12=0,即OA=4,OB=3,由勾股定理得:AB=5,∴点C(0,1)到直线3x﹣4y﹣3=0的距离是=,∴圆C上点到直线y=x﹣3的最大距离是1+=,∴△PAB面积的最大值是×5×=,故选:C.点评:本题考查了三角形的面积,点到直线的距离公式的应用,解此题的关键是求出圆上的点到直线AB的最大距离,属于中档题目.二.填空题(共20小题)11.(2015•义乌市)如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于60度.考点:垂径定理;坐标与图形性质;等边三角形的判定与性质;勾股定理.分析:求出OA、AC,通过余弦函数即可得出答案.解答:解:∵A(0,1),B(0,﹣1),∴AB=2,OA=1,∴AC=2,在Rt△AOC中,cos∠BAC==,∴∠BAC=60°,故答案为60.点评:本题考查了垂径定理的应用,关键是求出AC、OA的长.12.(2015•黔西南州)如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.考点:垂径定理;勾股定理.分析:连接OC,由垂径定理得出CE=CD=2,设OC=OA=x,则OE=x﹣1,由勾股定理得出CE2+OE2=OC2,得出方程,解方程即可.解答:解:连接OC,如图所示:∵AB是⊙O的直径,CD⊥AB,∴CE=CD=2,∠OEC=90°,设OC=OA=x,则OE=x﹣1,根据勾股定理得:CE2+OE2=OC2,即22+(x﹣1)2=x2,解得:x=;故答案为:.点评:本题考查了垂径定理、勾股定理、解方程;熟练掌握垂径定理,并能进行推理计算是解决问题的关键.13.(2015•甘孜州)如图,AB是⊙O的直径,弦CD垂直平分半径OA,则∠ABC的大小为30度.考点:垂径定理;含30度角的直角三角形;圆周角定理.分析:根据线段的特殊关系求角的大小,再运用圆周角定理求解.解答:解:连接OC,∵弦CD垂直平分半径OA,∴OE=OC,∴∠OCD=30°,∠AOC=60°,∴∠ABC=30°.故答案为:30.点评:本题主要是利用直角三角形中特殊角的三角函数先求出∠OCE=30°,∠EOC=60°.然后再圆周角定理,从而求出∠ABC=30°.14.(2015•牡丹江)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE=4﹣.考点:垂径定理;勾股定理.分析:连接OC,根据垂径定理得出CE=ED=CD=3,然后在Rt△OEC中由勾股定理求出OE的长度,最后由BE=OB﹣OE,即可求出BE的长度.解答:解:如图,连接OC.∵弦CD⊥AB于点E,CD=6,∴CE=ED=CD=3.∵在Rt△OEC中,∠OEC=90°,CE=3,OC=4,∴OE==,∴BE=OB﹣OE=4﹣.故答案为4﹣.点评:本题主要考查了垂径定理,勾股定理等知识,关键在于熟练的运用垂径定理得出CE、ED的长度.15.(2015•宁夏)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC.若AB=2,∠BCD=30°,则⊙O的半径为.考点:垂径定理;勾股定理;圆周角定理.分析:连接OB,根据垂径定理求出BE,求出∠BOE=60°,解直角三角形求出OB即可.解答:解:连接OB,∵OC=OB,∠BCD=30°,∴∠BCD=∠CBO=30°,∴∠BOE=∠BCD+∠CBO=60°,∵直径CD⊥弦AB,AB=2,∴BE=AB=,∠OEB=90°,即⊙O的半径为,故答案为:.点评:本题考查了垂径定理,等腰三角形的性质,解直角三角形,三角形外角性质的应用,能根据垂径定理求出BE和解直角三角形求出OB长是解此题的关键,难度适中.16.(2015•长沙)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为4.考点:垂径定理;勾股定理.分析:根据垂径定理求得BD,然后根据勾股定理求得即可.解答:解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴OD==4.故答案为4.点评:题考查了垂径定理、勾股定理,本题非常重要,学生要熟练掌握.17.(2015•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为4cm.考点:垂径定理;等腰直角三角形;圆周角定理.专题:计算题.分析:连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.解答:解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴OC=CE=4cm,故答案为:4点评:此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.18.(2015•黔东南州)如图,AD是⊙O的直径,弦BC⊥AD于E,AB=BC=12,则OC= 4.考点:垂径定理;勾股定理.分析:如图,作辅助线;首先运用勾股定理求出AE的长度,然后运用射影定理求出AD的长度,即可解决问题.解答:解:如图,连接BD;∵直径AD⊥BC,∴BE=CE=BC=6;由勾股定理得:AE==6;∵AD为⊙O的直径,∴∠ABD=90°;由射影定理得:,∴AD==8,∴OC=AD=4,故答案为4.点评:该题主要考查了垂径定理、射影定理等几何知识点及其应用问题;解题的方法是作辅助线,构造直角三角形;解题的关键是牢固掌握垂径定理、射影定理等几何知识点,这是灵活运用、解题的基础和关键.19.(2015•黄石)如图,圆O的直径AB=8,AC=3CB,过C作AB的垂线交圆O于M,N两点,连结MB,则∠MBA的余弦值为.考点:垂径定理;解直角三角形.分析:如图,作辅助线;求出BC的长度;运用射影定理求出BM的长度,借助锐角三角函数的定义求出∠MBA的余弦值,即可解决问题.解答:解:如图,连接AM;∵AB=8,AC=3CB,∴BC=AB=2:∵AB为⊙O的直径,∴∠AMB=90°;由射影定理得:BM2=AB•CB,∴BM=4,cos∠MBA==,故答案为.点评:该题主要考查了圆周角定理及其推论、射影定理、锐角三角函数的定义等知识点及其应用问题;解题的方法是作辅助线,构造直角三角形;解题的关键是灵活运用圆周角定理及其推论、射影定理等知识点来分析、判断、解答.20.(2015•成都)如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PB于点C,当△PAB是等腰三角形时,线段BC的长为8,或.考点:垂径定理;等腰三角形的性质;勾股定理.专题:分类讨论.分析:①当BA=BP时,利用直角三角形斜边的中线等于斜边的一半;②当AB=AP时,如图1,延长AO交PB于点D,过点O作OE⊥AB于点E,易得△AOE ∽△ABD,利用相似三角形的性质求得BD,PB,然后利用相似三角形的判定定理△ABD ∽△CPA,代入数据得出结果;③当PA=PB时,如图2,连接PO并延长,交AB于点F,过点C作CG⊥AB,交AB 的延长线于点G,连接OB,则PF⊥AB,易得AF=FB=4,利用勾股定理得OF=3,FP=8,易得△PFB∽△CGB,利用相似三角形的性质,设BG=t,则CG=2t,利用相似三角形的判定定理得△APF∽△CAG,利用相似三角形的性质得比例关系解得t,在Rt△BCG 中,得BC.解答:解:①当BA=BP时,易得AB=BP=BC=8,即线段BC的长为8.②当AB=AP时,如图1,延长AO交PB于点D,过点O作OE⊥AB于点E,则AD⊥PB,AE=AB=4,∴BD=DP,在Rt△AEO中,AE=4,AO=5,∴OE=3,易得△AOE∽△ABD,∴,∴,∴,即PB=,∵AB=AP=8,∴∠ABD=∠P,∵∠PAC=∠ADB=90°,∴△ABD∽△CPA,∴,∴CP=,∴BC=CP﹣BP==;③当PA=PB时如图2,连接PO并延长,交AB于点F,过点C作CG⊥AB,交AB的延长线于点G,连接OB,则PF⊥AB,∴AF=FB=4,在Rt△OFB中,OB=5,FB=4,∴OF=3,∴FP=8,易得△PFB∽△CGB,∴,设BG=t,则CG=2t,易得∠PAF=∠ACG,∵∠AFP=∠AGC=90°,∴△APF∽△CAG,∴,∴,解得t=,在Rt△BCG中,BC=t=,综上所述,当△PAB是等腰三角形时,线段BC的长为8,,,故答案为:8,,.点评:本题主要考查了垂径定理,相似三角形的性质及判定,等腰三角形的性质及判定,数形结合,分类讨论是解答此题的关键.21.(2015•莱芜)如图,在扇形OAB中,∠AOB=60°,扇形半径为r,点C在上,CD⊥OA,垂足为D,当△OCD的面积最大时,的长为.考点:垂径定理;弧长的计算;解直角三角形.分析:由OC=r,点C在上,CD⊥OA,利用勾股定理可得DC的长,求出OD=时△OCD的面积最大,∠COA=45°时,利用弧长公示得到答案.解答:解:∵OC=r,点C在上,CD⊥OA,∴DC==,∴S△OCD=OD•,∴S△OCD2=OD2•(r2﹣OD2)=﹣OD4+r2OD2=﹣(OD2﹣)2+∴当OD2=,即OD=r时△OCD的面积最大,∴∠OCD=45°,∴∠COA=45°,∴的长为:=πr,故答案为:.点评:本题主要考查了扇形的面积,勾股定理,求出OD=时△OCD的面积最大,∠COA=45°是解答此题的关键.22.(2015•六盘水)赵洲桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R=25米.考点:垂径定理的应用;勾股定理.分析:根据垂径定理和勾股定理求解即可.解答:解:根据垂径定理,得AD=AB=20米.设圆的半径是r,根据勾股定理,得R2=202+(R﹣10)2,解得R=25(米).故答案为25.点评:此题综合运用了勾股定理以及垂径定理.注意构造由半径、半弦、弦心距组成的直角三角形进行有关的计算.23.(2015•黔南州)如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是50cm.考点:垂径定理的应用;勾股定理;切线的性质.分析:根据垂径定理求得AD=30cm,然后根据勾股定理即可求得半径.解答:解:如图,连接OA,∵CD=10cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴AD=AB=30cm,∴设半径为r,则OD=r﹣10,根据题意得:r2=(r﹣10)2+302,解得:r=50.∴这个车轮的外圆半径长为50cm.故答案为:50cm.点评:本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键.24.(2015•衢州)一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于 1.6m.考点:垂径定理的应用;勾股定理.分析:先根据勾股定理求出OE的长,再根据垂径定理求出CF的长,即可得出结论.解答:解:如图:∵AB=1.2m,OE⊥AB,OA=1m,∴AE=0.8m,∵水管水面上升了0.2m,∴AF=0.8﹣0.2=0.6m,∴CF=m,∴CD=1.6m.故答案为:1.6.点评:本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.25.(2015•东营)如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为0.8m.考点:垂径定理的应用;勾股定理.分析:过O点作OC⊥AB,C为垂足,交⊙O于D,连OA,根据垂径定理得到AC=BC=0.5m,再在Rt△AOC中,利用勾股定理可求出OC,即可得到CD的值,即水的深度.解答:解:如图,过O点作OC⊥AB,C为垂足,交⊙O于D、E,连OA,OA=0.5m,AB=0.8m,∵OC⊥AB,∴AC=BC=0.4m,在Rt△AOC中,OA2=AC2+OC2,∴OC=0.3m,则CE=0.3+0.5=0.8m,故答案为:0.8.点评:本题考查了垂径定理的应用,掌握垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧是解题的关键,注意勾股定理的运用.26.(2015•丽水)如图,圆心角∠AOB=20°,将旋转n°得到,则的度数是20度.考点:圆心角、弧、弦的关系;旋转的性质.专题:计算题.分析:先根据旋转的性质得=,则根据圆心角、弧、弦的关系得到∠DOC=∠AOB=20°,然后根据圆心角的度数等于它所对弧的度数即可得到的度数.解答:解:∵将旋转n°得到,∴=,∴∠DOC=∠AOB=20°,∴的度数为20度.故答案为20.点评:本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了旋转的性质.27.(2015•黔西南州)如图,AB是⊙O的直径,BC是⊙O的弦,若∠AOC=80°,则∠B=40°.考点:圆周角定理.专题:计算题.分析:直接根据圆周角定理求解.解答:解:∵∠AOC=80°,∴∠B=∠AOC=40°.故答案为40°.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.28.(2015•宿迁)如图,四边形ABCD是⊙O的内接四边形,若∠C=130°,则∠BOD= 100°.考点:圆周角定理;圆内接四边形的性质.专题:计算题.分析:先根据圆内接四边形的性质得到∠A=180°﹣∠C=50°,然后根据圆周角定理求∠BOD.解答:解:∵∠A+∠C=180°,∴∠A=180°﹣130°=50°,∴∠BOD=2∠A=100°.故答案为100.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了圆内接四边形的性质.29.(2015•南昌)如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为110°.考点:圆周角定理.分析:根据圆周角定理求得∠BOC=100°,进而根据三角形的外角的性质求得∠BDC=70°,然后根据邻补角求得∠ADC的度数.解答:解:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+⊂BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故答案为110°.点评:本题考查了圆心角和圆周角的关系及三角形外角的性质,圆心角和圆周角的关系是解题的关键.30.(2015•六盘水)如图所示,A、B、C三点均在⊙O上,若∠AOB=80°,则∠ACB= 40°.考点:圆周角定理.专题:计算题.分析:直接根据圆周角定理求解.解答:解:∠ACB=∠AOB=×80°=40°.故答案为40.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.。