利用对称性解决与二次函数有关的几何最值问题
- 格式:pptx
- 大小:1.56 MB
- 文档页数:11
二次函数复习二次函数解决最值问题的思路与策略二次函数复习:解决最值问题的思路与策略二次函数在高中数学中是一个重要的内容,涉及到了最值问题的求解。
本文将从复习二次函数的基本形式开始,逐步介绍解决最值问题的思路与策略。
一、二次函数的基本形式二次函数一般具有如下基本形式:f(x) = ax^2 + bx + c (a≠0)其中,a、b、c为实数,且a不等于0。
通过调整a、b、c的值,可以使二次函数的图像发生上下平移、左右平移和翻转等变化。
二、最值问题的定义在二次函数中,最值问题通常指的是求解函数的最大值或最小值。
最大值对应函数的顶点,最小值对应函数的谷点。
三、解决最值问题的思路解决最值问题的思路可以总结为以下几个步骤:1. 了解函数的基本形式:首先确定二次函数的基本形式,即f(x) = ax^2 + bx + c。
根据实际问题的给定条件,确定a、b、c的值。
2. 求解顶点坐标:通过平移变换,将二次函数的图像平移到合适的位置,使其顶点的坐标易于计算。
顶点的横坐标可通过 x = -b/(2a) 得到,而纵坐标可通过代入横坐标得到。
3. 判断最值类型:根据二次函数的开口方向(即a的正负)来判断最值类型。
当a>0时,函数开口向上,为最小值问题;当a<0时,函数开口向下,为最大值问题。
4. 求解最值:根据最值类型和顶点的坐标,可以直接得到函数的最值。
四、解决最值问题的策略解决最值问题的策略根据具体情况有所不同,下面列举了几种常见的策略:1. 利用函数的图像分析:通过观察二次函数的图像,分析函数在定义域上的变化趋势,找到最值所处的位置。
2. 利用对称性求解:当二次函数关于y轴对称时,可以利用对称性直接得到函数的最值。
3. 应用配方法:对于一些复杂的二次函数,可以通过配方法将其化简为标准的二次函数形式,然后再求解最值。
4. 利用一元二次不等式求解:通过将二次函数转化为一元二次不等式,可以得到函数的最值所在的区间,进而求解最值。
二次函数的最值与极值总结二次函数是高中数学中常见的一类函数,具有形如y=ax^2+bx+c的一般式。
在研究二次函数的性质时,最值与极值是非常重要的概念。
本文将对二次函数的最值与极值进行总结和讨论。
一、最值的概念在数学中,最值指的是函数在定义域内取得的最大值或最小值。
对于二次函数来说,最值的存在与二次项的系数a的正负有关。
1. 当a>0时,二次函数的抛物线开口向上,函数的最小值存在。
这个最小值即为函数的最小值。
2. 当a<0时,二次函数的抛物线开口向下,函数的最大值存在。
这个最大值即为函数的最大值。
二、最值的求解方法1. 最值的求解方法一:利用函数的对称性二次函数关于x轴对称,对称轴方程为x = -b/(2a)。
所以,函数的最值点的横坐标一定在对称轴上。
当对称轴上有x值时,带入函数表达式即可求得对应的y值,确定最值点。
2. 最值的求解方法二:利用二次函数的顶点公式二次函数的顶点公式为x = -b/(2a),y = f(x)。
通过求得的顶点坐标,就可以确定最值点的坐标。
根据二次函数的性质,当a>0时,对应的顶点为最小值点;当a<0时,对应的顶点为最大值点。
三、极值的概念在数学中,极值是指函数在一定范围内取得的最大值或最小值。
对于二次函数来说,极值的存在与一阶导数的符号有关。
1. 当一阶导数大于0时,函数递增,没有极小值。
2. 当一阶导数小于0时,函数递减,没有极大值。
3. 当一阶导数等于0时,函数可能存在极值或拐点。
此时,需要通过二阶导数或其他方法来进一步判断。
四、极值的求解方法1. 极值的求解方法一:利用导数法对二次函数进行求导,得到一阶导数f'(x)。
将一阶导数f'(x)等于0解方程,求得x的值。
然后,将求得的x值代入原函数f(x)中,求得对应的y值,确定极值点。
2. 极值的求解方法二:利用二阶导数法对二次函数进行求导,得到一阶导数f'(x)和二阶导数f''(x)。
数学篇解题指南几何图形与二次函数的综合题难度一般较大.在解答此类问题时,同学们要认真观察、分析图形的结构特征,充分挖掘几何图形的性质,再利用二次函数的性质求解.下面笔者就以二次函数中线段最值问题与图形面积最值问题的常见解法举例说明.一、二次函数中的线段最值问题常见的二次函数中的线段最值问题有:(1)求某条线段的最值;(2)求几条线段的和的最小值或差的最大值.这类问题侧重于考查二次函数与直线的位置关系、二次函数的性质、平面几何图形的性质.解答此类问题,通常需根据直线与二次函数的位置关系,利用二次函数的对称性转换点或线段的位置,构造出三角形、平行四边形、三点共线的情况等,从而运用三角形、平四边形的性质,以及一些平面几何定理,如“两点间线段最短”“两边之差小于第三边”,求得最值.例1在平面直角坐标系中,抛物线y =ax 2+bx +c 经过A (-2,-4),O (0,0),B(2,0)三点.(1)求抛物线y =ax 2+bx +c 的解析式;(2)若点M 是该抛物线对称轴上的一点,求AM +OM 的最小值.分析:题目(1)是一个求二次函数解析式的简单问题,只要把三个点代入解析式,组成方程组求解即可;(2)是在(1)求解出的二次函数解析式的基础上,求对称轴上一点到两个固定点的距离和问题,即“求AM +OM 的最小值”.准确画出二次函数的图象,如图1所示,利用二次函数的对称性以及对称轴的相关知识,可以得出OM =BM ,从而将AM +OM 转化为当A 、B 、M 三点共线时,两线段和最小.解:(1)把A (-2,-4),O (0,0),B (2,0)三点的坐标代入y =ax 2+bx +c 中,得方程组的解为,a =-12,b =1,c =0,所以抛物线的解析式为y =-12x 2+x ;(2)由y =-12x 2+x =-12(x -1)2+12,可得抛物线的对称轴为x =1,并且对称轴垂直平分线段OB ,∵点M 是抛物线对称轴上的一点,∴OM =BM ,∴OM +AM =BM +AM ,连接AB 交直线x =1于M 点,此时OM +AM 最小.过点A 作AN ⊥x 轴于点N ,在Rt△ABN 中,AB =AB 2+BN 2=42+42=42,因此OM +AM 的最小值为42.评注:二次函数的图象具有对称性,点M 是对称轴上的一点,利用此性质可以得到OM =BM ,这样便将“OM +AM ”转化为“BM +AM ”,进一步转化为求AM +BM 最小值问题,然后利用“两点之间线段最短”的原理求解即可.二、二次函数中图形面积的最值问题二次函数中图形面积的最值问题往往是二次函数线段最值问题的升华.求解此类问题时往往需要将不规则或复杂的图形通过“分割法”或“补形法”转化为规则的图形,然后利用规则图形的面积公式来求解.一般地,怎样求解二次函数中的几何最值问题南京师范大学盐城实验学校程梦书x y 图119数学篇解题指南二次函数中图形面积的最值问题往往通过“转化”思想,化为“线段(和)”最值问题.此外,经过割补后所求区域的面积,可通过不同区域的面积相加或相减来求得.例2已知抛物线经过点A (-1,0)、B (3,0)、C(0,3).(1)求抛物线的解析式;(2)点M 是线段BC 上的点(不与B ,C 重合),过M 作MN //y 轴交抛物线于N ,若点M 的横坐标为m ,请用m 的代数式表示MN 的长;(3)在(2)的条件下,连接NB 、NC ,是否存在m ,使△BNC 的面积最大?若存在,求m 的值;若不存在,说明理由.分析:(1)求二次函数解析式比较容易,直接将三点坐标代入组成方程组即可.(2)中点M 虽是动点,但坐标可以用二次函数的解析式表示出来,随后表示出点N 的坐标,即可表示MN 的长.(3)△BNC 面积直接求解比较困难,利用转化思想化为S △MNC +S △MNB .利用面积公式,将“面积”最值问题转化为“线段”最值问题来求解.(如图2所示).解:(1)∵抛物线过点A (-1,0)、B (3,0),∴设抛物线的解析式为:y =a (x +1)(x -3),又∵抛物线过点C (0,3),∴a (0+1)(0-3)=3,解得a =-1,所以,抛物线的解析式为:y =-(x +1)(x -3)=-x 2+2x +3;(2)设直线BC 的解析式为y =kx +b ,则有:故直线BC 的解析式为:y =-x +3,已知点M 的横坐标为m ,则M (m ,-m +3)、N (m ,-m 2+2m +3),∴MN =|(-m 2+2m +3)-(-m +3)|=|-m 2+3m |,∵点M 在B 、C 之间,∴点N 高于点M ,∴0<m <3,∴MN =|-m 2+3m |=-m 2+3m 即MN =-m 2+3m (0<m <3);(3)存在,S △BNC =S △MNC +S △MNB ,∵MN //y 轴,∴延长NM 交x 轴于点D ,∴点C 到MN 的距离为OD ,∴S △MNC =12MN ×OD ,S △MNB =12MN ×DB ,S △BNC =S △MNC +S △MNB =12MN (OD +DB )=12MN ×OB ,∴当|MN |最大时,△BNC 的面积最大,MN =-m 2+3m =-(m -32)2+94,当m =32时,MN 有最大值为94,所以当m =32时,S △BNC 的面积最大,故△BNC 的面积最大值为12×94×3=278.评注:求解二次函数的最值问题时,一定要准确绘制出函数的图象,特别是开口方向、与x 轴的交点、与y 轴的交点、对称轴.否则,可能得到错解或无解.利用二次函数求最值需要注意:当二次函数的开口向下时,在顶点处取得最大值;当二次函数的开口向上时,在顶点处取得最小值.二次函数中的几何最值问题往往涉及“线段和最小”或“图形面积最大”等问题.同学们应掌握二次函数的图象和性质,将最值图2。
二次函数最值问题解析二次函数最值问题是数学中的一个重要概念,通过分析二次函数的图像和相关性质,我们可以求得函数的最大值或最小值,从而解决实际问题。
本文将对二次函数最值问题进行详细解析。
一、二次函数的一般形式二次函数的一般形式为:y = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。
通过这个一般形式,我们可以得到二次函数的图像特点。
二、二次函数图像的性质1. 对称性:二次函数的图像关于抛物线的对称轴具有对称性,即对于任意x,有f(x) = f(-x)。
2. 开口方向:当a > 0时,二次函数的抛物线开口向上;当a < 0时,二次函数的抛物线开口向下。
3. 最值问题:二次函数的最大值或最小值出现在抛物线的顶点处。
三、二次函数最值的求解方法求解二次函数最值可以通过几种不同的方法。
1. 利用顶点公式:二次函数的顶点公式为x = -b/2a,将此值代入原函数,即可求得最值点的纵坐标。
这种方法适用于一般情况下的二次函数最值问题。
2. 利用完全平方公式:利用完全平方公式,将一般形式的二次函数转化为顶点形式,即y= a(x - h)^2 + k。
其中,(h, k)为顶点坐标,通过对此式的分析可以求得最值点的纵坐标。
这种方法适用于需要更详细分析二次函数图像的情况。
3. 利用导数:对二次函数进行求导,求得导函数并令其等于0,然后求解方程即可得到二次函数的最值点。
这种方法适用于需要更深入研究二次函数性质的情况。
四、实例分析为了更好地理解和应用二次函数最值问题的解法,我们来看一个实际问题的例子。
例:某工厂生产碳酸饮料,每瓶售价为10元。
市场调研显示,当售价为x元时,每天的销量(单位:万瓶)由二次函数y = -2x^2 + 20x + 5表示。
问该工厂能够获得最大利润时,每瓶碳酸饮料的售价和销量分别是多少?解:我们已知二次函数的表达式为y = -2x^2 + 20x + 5,该函数的最值即为该工厂的最大利润对应的售价和销量。
二次函数的最值与最值问题的应用二次函数是数学中常见的一类函数,具有很多重要的性质和应用。
其中最值与最值问题是二次函数的重要内容之一。
本文将详细介绍二次函数的最值性质,以及如何利用最值问题解决实际应用中的相关问题。
一、二次函数的基本性质二次函数的一般形式为:y = ax² + bx + c其中,a、b、c为常数,且a ≠ 0。
二次函数的图像为抛物线,开口方向取决于a的正负性。
在讨论二次函数的最值之前,我们先了解一些与最值相关的基本性质。
1. 首先,二次函数的开口方向由系数a的正负性决定。
当a > 0时,抛物线开口向上,函数的最小值出现在顶点上;当a < 0时,抛物线开口向下,函数的最大值出现在顶点上。
2. 其次,二次函数的顶点即为函数的最值点。
顶点坐标为(h, k),其中h为抛物线的对称轴的横坐标,k为函数的最值(最小值或最大值)。
3. 再次,二次函数的对称轴与顶点的横坐标相同。
对称轴的方程为x = h。
二、二次函数的最值问题二次函数的最值问题是指求解函数的最小值或最大值的问题。
在实际应用中,最值问题经常出现,例如求解投掷问题中的飞行距离最大值或者盈利问题中的最大利润等。
1. 求解二次函数的最值为了求解二次函数的最值,我们可以利用二次函数图像的特点,即找出抛物线的顶点坐标。
通过完成平方项的平方,将二次函数转换为顶点形式,可以轻松地求解最值问题。
例如,对于函数y = x² - 4x + 3,我们可以完成平方项的平方,将其转换为顶点形式:y = (x - 2)² - 1从中可以看出,顶点坐标为(2, -1),函数的最小值为-1。
因此,原二次函数的最小值为-1。
2. 应用最值问题最值问题在实际应用中非常常见,下面以一个具体的应用为例进行解析。
例题:某商品的价格为p(元),销量为x(件),已知该商品的价格和销量满足二次函数关系p = 0.5x² - 2x + 8,求该商品的最佳销量以及最佳价格。
对称方法求最值在数学问题中,求解最值是常见的一类问题。
对称方法是一种利用几何图形的对称性来求解最值的有效手段。
本文将详细阐述如何使用对称方法求解最值。
**对称方法求最值**对称方法是一种基于几何图形的对称性质来求解最值的方法。
在几何问题中,尤其是平面几何问题,通过观察图形的对称性,我们可以找到最值点的位置,进而求解出最值。
### 基本原理对称方法的核心在于“对称轴”或“对称中心”。
对于一个几何问题,如果存在对称轴或对称中心,那么问题的最值往往出现在对称轴或对称中心上。
### 求解步骤1.**确定对称轴或对称中心**:观察题目给出的几何图形,确定是否存在对称轴或对称中心。
2.**分析问题**:根据问题的具体要求,分析什么是最值点,例如最大值点或最小值点。
3.**应用对称性**:利用对称性,确定最值点的位置。
通常,最值点会出现在对称轴或对称中心上。
4.**建立方程**:根据问题的具体条件,建立方程或方程组,求解最值点。
5.**计算最值**:将最值点的坐标代入目标函数,计算出最大值或最小值。
### 实例应用#### 例题:在平面直角坐标系中,求点A(1,2)到直线y=3x+1的距离的最小值。
**解**:1.确定对称轴:直线y=3x+1的斜率为3,故垂直于该直线的直线的斜率为-1/3,即垂直线为对称轴。
2.分析问题:要求点A到直线的距离的最小值,此最值出现在点A关于直线y=3x+1的对称点上。
3.应用对称性:点A关于直线y=3x+1的对称点B,其坐标可以通过求解点A到直线的垂线方程与直线y=3x+1的交点得到。
4.建立方程:根据点斜式,垂线方程为y-2=-(1/3)(x-1)。
5.解方程:将垂线方程代入直线方程y=3x+1,解得交点坐标。
6.计算最值:通过求解得到的对称点B的坐标,计算点A到直线y=3x+1的距离,即为所求的最小值。
通过以上步骤,我们可以求解出该问题的答案。
**注意**:实际应用中,问题可能会更加复杂,需要结合具体问题具体分析。
坐标对称及最值问题是数学中的常见问题,常常出现在函数、几何、三角函数等领域。
这类问题需要运用对称思想,以及寻找最值的方法。
下面列举了5种常见的题型及相应的解法。
题型一:函数的最值对于函数f(x),其最值可能出现在最小值(f(x)min)和最大值(f(x)max)上。
对于这类问题,我们通常需要观察函数的对称性,例如,如果函数是关于原点对称的,那么最小值和最大值可能在左右两侧取得。
解法上,我们通常需要利用导数或其他方法来找到函数的极值点,从而确定最值。
题型二:两点之间的距离在两点之间的距离问题中,如果两个点关于某个轴对称,那么它们之间的距离可以通过简单的轴对称距离公式来计算。
解法上,我们通常需要利用轴对称距离公式,以及两点之间的距离公式来求解。
题型三:圆的半径的最值在圆的半径的最值问题中,如果圆关于某条直线对称,那么我们需要找到圆的半径与对称轴的位置关系,从而确定圆的半径的最值。
解法上,我们通常需要利用圆的半径公式,以及对称轴的位置关系来求解。
题型四:三角形的重心坐标在三角形的重心坐标问题中,如果三个顶点关于某条直线对称,那么我们需要找到重心坐标与对称轴的关系,从而确定重心的坐标。
解法上,我们通常需要利用重心的几何性质,以及对称轴的位置关系来求解。
题型五:椭圆的离心率在椭圆的离心率问题中,如果焦点关于某轴对称,那么我们需要找到椭圆的离心率与对称轴的关系,从而确定椭圆的离心率。
解法上,我们通常需要利用椭圆的离心率公式,以及对称轴的位置关系来求解。
总的来说,坐标对称及最值问题的解法主要依赖于对称性和位置关系。
对于不同类型的题目,我们需要灵活运用这些方法来解决问题。
同时,对于不同类型的题目,也需要进行相应的变化和拓展,以适应更复杂的情况。
希望以上信息对您有所帮助。
如果您有任何具体问题或需要进一步的解释,请随时告诉我。
二次函数的最值与优化应用题的解决思路在解决二次函数的最值与优化应用题时,我们需要遵循一定的解决思路。
本文将介绍如何分析和求解这类问题,并提供一些实际应用的例子。
1. 分析问题:首先,我们需要理解问题陈述,并将其转化为数学语言。
通常,这种问题会涉及到二次函数的具体形式以及限制条件。
我们可以通过以下步骤进行分析:- 确定变量和目标:明确问题中涉及的变量,以及我们希望优化的目标。
- 建立模型:利用已知条件建立二次函数模型,并将目标函数化为数学表达式。
- 分析限制条件:将限制条件翻译为数学不等式或等式,并将其添加到模型中。
- 确定求解范围:确定函数的定义域和最值可能出现的范围。
2. 求解问题:有了正确的分析,我们可以使用以下方法来求解二次函数的最值和优化问题:- 求导法:对二次函数进行求导,找到导数等于零的点,并分析这些点的性质以确定最值的位置。
- 完成平方法:通过将二次函数转化为完全平方形式,从而直接得到最值点的位置。
- 利用性质法:利用二次函数的性质,如对称性、平移等,来简化求解过程。
- 图像分析法:通过绘制函数的图像,直观地找到最值点的位置。
3. 应用实例:下面是一些二次函数最值与优化应用题的解决示例:题目1:围墙建造某人想围建一个矩形花园,但他只有50米的围墙材料。
问他能建造的最大花园面积是多少?解决思路:设矩形长为x米,宽为y米。
建立问题的模型:- 目标:最大化花园的面积A,即A = x*y。
- 限制条件:围墙总长度不能超过50米,即2x + 2y <= 50。
通过求解目标函数的最值,我们可以得到最大化花园面积的解。
题目2:喷水装置一个花坛的形状是一个长为12米、宽为8米的矩形,需要在花坛中央安装一台喷水装置。
装置的效果范围是一个以装置为中心,半径为r米的圆形区域。
求喷水装置的半径,使得覆盖的花坛面积最大。
解决思路:设喷水装置的半径为r米。
建立问题的模型:- 目标:最大化喷水装置覆盖的花坛面积A,即A = πr²。
高中数学解二次函数求极值和最值的技巧和分析二次函数在高中数学中占据着重要的地位,它的求极值和最值是我们学习的重点内容之一。
本文将通过具体的例题,详细介绍解二次函数求极值和最值的技巧和分析,帮助高中学生和他们的父母更好地掌握这一知识点。
首先,我们来看一个简单的例题:已知函数f(x) = x^2 - 2x + 1,求f(x)的最小值。
要求函数的最小值,我们需要先找到函数的极值点。
根据二次函数的性质,当二次函数的导数等于0时,函数的极值点就出现了。
所以,我们首先需要求出f(x)的导数。
f'(x) = 2x - 2。
将f'(x) = 0带入,得到2x - 2 = 0,解得x = 1。
这就是函数f(x)的极值点。
接下来,我们需要判断这个极值点是函数的最小值还是最大值。
这可以通过二次函数的凹凸性来确定。
二次函数的凹凸性由二次项的系数决定,当二次项系数大于0时,函数开口向上,为凹函数,极值点为最小值;当二次项系数小于0时,函数开口向下,为凸函数,极值点为最大值。
回到我们的例题,函数f(x) = x^2 - 2x + 1的二次项系数为1,大于0,因此函数是凹函数,极值点x = 1是最小值。
通过这个例题,我们可以总结出求二次函数极值和最值的一般步骤:1. 求出函数的导数;2. 令导数等于0,解方程得到极值点;3. 判断二次函数的凹凸性,确定极值点是最小值还是最大值。
接下来,我们来看一个稍微复杂一些的例题:已知函数g(x) = -2x^2 + 4x + 3,求g(x)的最大值。
同样地,我们首先求出函数g(x)的导数。
g'(x) = -4x + 4。
令g'(x) = 0,得到-4x + 4 = 0,解得x = 1。
这是函数g(x)的极值点。
然后,我们需要判断这个极值点是最大值还是最小值。
由于函数g(x)的二次项系数为-2,小于0,所以函数是凸函数,极值点x = 1是最大值。
通过这个例题,我们可以看到,求二次函数极值和最值的步骤是相同的,只是需要注意函数的凹凸性来确定极值点的性质。