专题07 极坐标系与参数方程-高考数学备考关键问题指导高端精品(2018版)(解析版)
- 格式:pdf
- 大小:903.90 KB
- 文档页数:18
2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整)的全部内容。
2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整) 这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <2018高考数学试题分项版_极坐标参数方程[解析版](推荐完整)〉这篇文档的全部内容。
2017年高考数学试题分项版—极坐标参数方程(解析版)一、填空题1.(2017·北京理,11)在极坐标系中,点A在圆ρ2-2ρcos θ-4ρsin θ+4=0上,点P 的坐标为(1,0),则|AP|的最小值为________.1.【答案】1【解析】由ρ2-2ρcos θ-4ρsin θ+4=0,得x2+y2-2x-4y+4=0,即(x-1)2+(y-2)2=1,圆心坐标为C(1,2),半径长为1。
第7讲 坐标系与参数方程[明考情]坐标系与参数方程是高考必考题,以选做题形式出现,基础性知识考查为主,中低档难度. [知考向]1.极坐标与直角坐标的互化.2.参数方程与普通方程的互化.3.极坐标与参数方程的综合应用.考点一 极坐标与直角坐标的互化要点重组 把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标系中取相同的长度单位.如图,设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ),则 ⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0).1.已知圆C 的极坐标方程为ρ2+22ρ·sin ⎝⎛⎭⎫θ-π4-4=0,求圆C 的半径. 解 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xOy .圆C 的极坐标方程为ρ2+22ρ⎝⎛⎭⎫22sin θ-22cos θ-4=0,化简,得ρ2+2ρsin θ-2ρcos θ-4=0.则圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0, 即(x -1)2+(y +1)2=6,所以圆C 的半径为 6.2.已知圆的极坐标方程为ρ=4cos θ,圆心为C ,点P 的极坐标为⎝⎛⎭⎫4,π3,求CP 的长. 解 由ρ=4cos θ,得ρ2=4ρcos θ, 即x 2+y 2=4x ,即(x -2)2+y 2=4,∴圆心C (2,0),又由点P 的极坐标为⎝⎛⎭⎫4,π3, 可得点P 的直角坐标为(2,23), ∴CP =(2-2)2+(23-0)2=2 3.3.在极坐标系中,曲线C 1:ρ(2cos θ+sin θ)=1与曲线C 2:ρ=a (a >0)的一个交点在极轴上,求a 的值.解 ρ(2cos θ+sin θ)=1,即2ρcos θ+ρsin θ=1对应的普通方程为2x +y -1=0, ρ=a (a >0)对应的普通方程为x 2+y 2=a 2. 在2x +y -1=0中,令y =0,得x =22. 将⎝⎛⎭⎫22,0代入x 2+y 2=a 2,得a =22. 4.在以O 为极点的极坐标系中,直线l 与曲线C 的极坐标方程分别是ρcos ⎝⎛⎭⎫θ+π4=32和ρsin 2θ=8cos θ,直线l 与曲线C 交于点A ,B ,求线段AB 的长.解 ∵ρcos ⎝⎛⎭⎫θ+π4=ρcos θcos π4-ρsin θsin π4=22ρcos θ-22ρsin θ=32, ∴直线l 对应的直角坐标方程为x -y =6. 又∵ρsin 2θ=8cos θ,∴ρ2sin 2θ=8ρcos θ, ∴曲线C 对应的直角坐标方程是y 2=8x .解方程组⎩⎪⎨⎪⎧x -y =6,y 2=8x ,得⎩⎪⎨⎪⎧ x =2,y =-4或⎩⎪⎨⎪⎧x =18,y =12,所以A (2,-4),B (18,12),所以AB =(18-2)2+[12-(-4)]2=16 2. 即线段AB 的长为16 2.考点二 参数方程与普通方程的互化 要点重组 常见曲线的参数方程(1)过定点P (x 0,y 0),倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆心在P (x 0,y 0),半径等于r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数).(4)抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数).方法技巧 参数方程化为普通方程:由参数方程化为普通方程就是要消去参数,消参数时常常采用代入消元法、加减消元法、乘除消元法、三角代换法,且消参数时要注意参数的取值范围对x ,y 的限制.5.在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数),直线l 经过点P (1,2),倾斜角α=π6.(1)写出圆C 的标准方程和直线l 的参数方程; (2)设直线l 与圆C 相交于A ,B 两点,求|P A |·|PB |的值. 解 (1)圆C 的标准方程为x 2+y 2=16.直线l 的参数方程为⎩⎨⎧x =1+t cos π6,y =2+t sin π6(t 为参数),即⎩⎨⎧x =1+32t ,y =2+12t (t 为参数).(2)把直线l 的参数方程⎩⎨⎧x =1+32t ,y =2+12t 代入x 2+y 2=16,得⎝⎛⎭⎫1+32t 2+⎝⎛⎭⎫2+12t 2=16, t 2+(3+2)t -11=0.所以t 1t 2=-11,即|P A |·|PB |=11.6.已知椭圆C :x 24+y 23=1,直线l :⎩⎨⎧x =-3+3t ,y =23+t(t 为参数).(1)写出椭圆C 的参数方程及直线l 的普通方程;(2)设A (1,0),若椭圆C 上的点P 满足到点A 的距离与其到直线l 的距离相等,求点P 的坐标.解 (1)椭圆C 的参数方程为⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为x -3y +9=0. (2)设P (2cos θ,3sin θ),则|AP |=(2cos θ-1)2+(3sin θ)2=2-cos θ,点P 到直线l 的距离d =|2cos θ-3sin θ+9|2=2cos θ-3sin θ+92.由|AP |=d ,得3sin θ-4cos θ=5, 又sin 2θ+cos 2θ=1, 得sin θ=35,cos θ=-45.故P ⎝⎛⎭⎫-85,335.7.(2016·江苏)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1+12t ,y =32t(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.解 直线l 的方程化为普通方程为3x -y -3=0, 椭圆C 的方程化为普通方程为x 2+y 24=1.联立方程组⎩⎪⎨⎪⎧3x -y -3=0,x 2+y 24=1,解得⎩⎪⎨⎪⎧x 1=1,y 1=0或⎩⎨⎧x 2=-17,y 2=-837,∴A (1,0),B ⎝⎛⎭⎫-17,-837.故AB =⎝⎛⎭⎫1+172+⎝⎛⎭⎫0+8372=167.8.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,曲线C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值. 解 (1)曲线C 2的直角坐标方程为x 2+y 2-2y =0, 曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧ x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.考点三 极坐标与参数方程的综合应用方法技巧 解决极坐标与参数方程的综合问题的关键是掌握极坐标方程与直角坐标方程的互化,参数方程与普通方程的互化.涉及圆、圆锥曲线上的点的最值问题,往往通过参数方程引入三角函数,利用三角函数的最值求解.9.(2017·全国Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt (t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k (m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.解 (1)消去参数t ,得l 1的普通方程l 1:y =k (x -2); 消去参数m ,得l 2的普通方程l 2:y =1k (x +2).设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =k (x -2),y =1k (x +2),消去k 得x 2-y 2=4(y ≠0),所以C 的普通方程为x 2-y 2=4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π),联立⎩⎨⎧ρ2(cos 2θ-sin 2θ)=4,ρ(cos θ+sin θ)-2=0,得cos θ-sin θ=2(cos θ+sin θ).故tan θ=-13,从而cos 2θ=910,sin 2θ=110.代入ρ2(cos 2θ-sin 2θ)=4,得ρ2=5, 所以l 3与C 的交点M 的极径为 5.10.在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ2-4ρcos θ+3=0,θ∈[0,2π]. (1)求C 1的直角坐标方程;(2)曲线C 2的参数方程为⎩⎨⎧x =t cos π6,y =t sin π6(t 为参数),求C 1与C 2的公共点的极坐标.解 (1)把ρ2=x 2+y 2,x =ρcos θ代入曲线C 1的极坐标方程ρ2-4ρcos θ+3=0,θ∈[0,2π],可得x 2+y 2-4x +3=0,故C 1的直角坐标方程为(x -2)2+y 2=1.(2)由曲线C 2的参数方程为⎩⎨⎧x =t cos π6,y =t sin π6(t 为参数),可知此直线经过原点,倾斜角为π6,因此C 2的极坐标方程为θ=π6或θ=7π6(ρ>0).将θ=π6代入C 1的极坐标方程,可得ρ2-23ρ+3=0,解得ρ=3;将θ=7π6代入C 1的极坐标方程,可得ρ2+23ρ+3=0,解得ρ=-3,舍去.故C 1与C 2的公共点的极坐标为⎝⎛⎭⎫3,π6. 11.在平面直角坐标系中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ(φ为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2是圆心在极轴上且经过极点的圆,射线θ=π3与曲线C 2交于点D ⎝⎛⎭⎫2,π3. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知极坐标系中两点A (ρ1,θ0),B ⎝⎛⎭⎫ρ2,θ0+π2,若A ,B 都在曲线C 1上,求1ρ21+1ρ22的值.解 (1)因为C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ(φ为参数),所以C 1的普通方程为x 24+y 2=1.由题意知曲线C 2的极坐标方程为ρ=2a ·cos θ(a 为半径),将D ⎝⎛⎭⎫2,π3代入,得2=2a ×12,所以a =2.所以圆C 2的圆心的直角坐标为(2,0),半径为2, 所以C 2的直角坐标方程为(x -2)2+y 2=4. (2)曲线C 1的极坐标方程为ρ2cos 2θ4+ρ2sin 2θ=1.即ρ2=44sin 2θ+cos 2θ. 所以ρ21=44sin 2θ0+cos 2θ0,ρ22=44sin 2⎝⎛⎭⎫θ0+π2+cos 2⎝⎛⎭⎫θ0+π2=4sin 2θ0+4cos 2θ0. 所以1ρ21+1ρ22=4sin 2θ0+cos 2θ04+4cos 2θ0+sin 2θ04=54.12.(2017·全国Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ (θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标;(2)若C 上的点到l 的距离的最大值为17,求a . 解 (1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0. 由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1, 解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎨⎧x =-2125,y =2425,从而C 与l 的交点坐标是(3,0),⎝⎛⎭⎫-2125,2425. (2)直线l 的普通方程是x +4y -4-a =0,故C 上的点(3cos θ,sin θ)到l 距离d = |3cos θ+4sin θ-a -4|17.当a ≥-4时,d 的最大值为a +917. 由题设得a +917=17,所以a =8;当a <-4时,d 的最大值为-a +117. 由题设得-a +117=17,所以a =-16.综上,a =8或a =-16.例 (10分)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知直线l 与椭圆C 的极坐标方程分别为cos θ+2sin θ=0和ρ2=4cos 2θ+4sin 2θ.(1)求直线l 与椭圆C 的直角坐标方程;(2)若Q 是椭圆C 上的动点,求点Q 到直线l 距离的最大值. 审题路线图利用极坐标和直角坐标互化公式―→得直线和椭圆的直角坐标方程――――→引入参数α得椭圆的参数方程―――→代入距离公式用α的三角函数表示Q 到l 的距离――――→利用辅助角公式转化 Q 到l 距离的最大值 规范解答·评分标准解 (1)由cos θ+2sin θ=0⇒ρcos θ+2ρsin θ=0⇒x +2y =0, 即直线l 的直角坐标方程为x +2y =0.由ρ2=4cos 2θ+4sin 2θ⇒ρ2cos 2θ+4ρ2sin 2θ=4⇒x 2+4y 2=4,即x 24+y 2=1.即椭圆C 的直角坐标方程为x 24+y 2=1.…………………………………………………4分(2)因为椭圆C :x 24+y 2=1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =sin α(α为参数),………………6分可设Q (2cos α,sin α),因此点Q 到直线l :x +2y =0的距离d =|2cos α+2sin α|12+22=22⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π45,……8分所以当α=k π+π4,k ∈Z 时,d 取得最大值2105.故点Q 到直线l 的距离的最大值为2105.……………………………………………10分构建答题模板[第一步] 互化:将极坐标方程与直角坐标方程互化. [第二步] 引参:引进参数,建立椭圆的参数方程. [第三步] 列式:利用距离公式求出距离表达式. [第四步] 求最值:利用三角函数求出距离的最值.1.在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解 (1)由x =ρcos θ,y =ρsin θ,可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0. (2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程,得ρ2+12ρcos α+11=0,于是ρ1+ρ2=-12cos α,ρ1ρ2=11,|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44. 由|AB |=10,得cos 2α=38,tan α=±153.所以l 的斜率为153或-153. 2.已知曲线C 1的参数方程为⎩⎨⎧x =-2-32t ,y =12t ,曲线C 2的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ-π4,以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系. (1)求曲线C 2的直角坐标方程;(2)求曲线C 2上的动点M 到曲线C 1的距离的最大值. 解 (1)ρ=22cos ⎝⎛⎭⎫θ-π4=2(cos θ+sin θ), 即ρ2=2(ρcos θ+ρsin θ),可得x 2+y 2-2x -2y =0,故C 2的直角坐标方程为(x -1)2+(y -1)2=2. (2)易知C 1的普通方程为x +3y +2=0. 由(1)知曲线C 2是以(1,1)为圆心的圆, 且圆心到直线C 1的距离d =|1+3+2|12+(3)2=3+32, 所以动点M 到曲线C 1的距离的最大值为3+3+222.3.已知曲线C 的参数方程为⎩⎨⎧x =3+10cos α,y =1+10sin α(α为参数),以直角坐标系原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程,并说明其表示什么轨迹;(2)若直线l 的极坐标方程为sin θ-cos θ=1ρ,求直线l 被曲线C 截得的弦长.解 (1)因为曲线C 的参数方程为⎩⎨⎧x =3+10cos α,y =1+10sin α(α为参数),所以曲线C 的普通方程为(x -3)2+(y -1)2=10, ①曲线C 表示以(3,1)为圆心,10为半径的圆.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入①并化简,得ρ=6cos θ+2sin θ, 即曲线C 的极坐标方程为ρ=6cos θ+2sin θ. (2)因为直线l 的直角坐标方程为y -x =1, 所以圆心C 到直线y =x +1的距离为d =322,所以直线被曲线C 截得的弦长为210-92=22.4.(2017·全国Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值. 解 (1)设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0),由题设知|OP |=ρ,|OM |=ρ1=4cos θ.由|OM |·|OP |=16,得C 2的极坐标方程ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0).(2)设点B 的极坐标为(ρB ,α)(ρB >0).由题设知|OA |=2,ρB =4cos α.于是△OAB 的面积S =12|OA |·ρB ·sin ∠AOB =4cos α⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3 =4cos α⎪⎪⎪⎪12sin α-32cos α=|sin 2α-3cos 2α-3| =2⎪⎪⎪⎪sin ⎝⎛⎭⎫2α-π3-32≤2+ 3. 当2α-π3=-π2即α=-π12时,S 取得最大值2+3, 所以△OAB 面积的最大值为2+ 3.5.坐标系与参数方程在直角坐标系xOy 中,以坐标原点O 为极点,以x 轴正半轴为极轴建立极坐标系.已知曲线C 1:⎩⎪⎨⎪⎧x =4+t ,y =5+2t (t 为参数),曲线C 2:ρ2-6ρcos θ-10ρsin θ+9=0. (1)将曲线C 1化成普通方程,将曲线C 2化成参数方程;(2)判断曲线C 1和曲线C 2的位置关系.解 (1)∵⎩⎪⎨⎪⎧x =4+t ,y =5+2t (t 为参数),∴t =x -4, 代入y =5+2t ,得y =5+2(x -4),即y =2x -3,∴曲线C 1的普通方程是y =2x -3.将ρ=x 2+y 2,ρcos θ=x ,ρsin θ=y 代入曲线C 2的方程ρ2-6ρcos θ-10ρsin θ+9=0,得x 2+y 2-6x -10y +9=0,即(x -3)2+(y -5)2=25.设x -3=5cos α,y -5=5sin α得曲线C 2的参数方程为⎩⎪⎨⎪⎧x =3+5cos α,y =5+5sin α(α为参数). (2)由(1)知,曲线C 1是经过点P (4,5)的直线,曲线C 2是以O ′(3,5)为圆心,5为半径的圆. ∵|PO ′|=1<5,∴点P (4,5)在曲线C 2内,∴曲线C 1和曲线C 2相交.。
专题七 极坐标系与参数方程2018年高考数学备考关键问题对策及新题好题训练含答案【高考考场实情】极坐标与参数方程为高考选考内容之一,一道解答题,满分10分,考查难度定位中等偏易,是考生容易突破的一道题目。
【考查重点难点】主要考查直线与特殊位置的圆的极坐标方程,考查直线、圆、椭圆的参数方程,考查参数方程与普通方程、极坐标方程与直角坐标方程的互化、极坐标方程与参数方程的互化,考查利用参数方程求轨迹的问题及轨迹方程的建立,考查参数方程与极坐标方程的直接应用,如极坐标系下两点间距离的求解等,交汇考查直线与圆锥曲线的位置关系、平面几何的有关基础知识、三角函数的性质等. 试题分设两问,第一问考查内容多为“互化”. 第二问考查内容均为利用参数方程中参数的几何意义或极坐标方程中ϑρ,的几何意义解决问题,内容涉及距离、面积、弦长、交点、轨迹等问题. 理论上说,本系列的问题通过“互化”转化为普通直角坐标方程后,均可用解析几何的相关知识加以解决,但是高考全国卷更加关注用本领域知识解决相关问题的考查,下面从学生存在的主要问题剖析出发,提出相应的教学对策. 【存在问题分析】(一)对直线参数方程中参数的几何意义认识不到位 【例1】在平面直角坐标系xOy 中,直线l 的参数方程为2,()2x tt y =--⎧⎪⎨=⎪⎩为参数.直线与曲线22:(2)1C y x --=交于,A B 两点.求||AB 的长;【名师点睛】本题易错的主要原因是对直线参数方程中参数的几何意义的认识不清,错误的由点,A B 对应的参数分别为12,t t 得12||||AB t t =-==当直线的参数方程非标准式时,其参数并不具有距离的几何意义,只有把直线的参数方程化为标准的参数方程时,||t 才表示距离.一般地,直线⎩⎨⎧+=+=bt y y atx x 00(t表示参数),当122=+b a 时,||t 表示点),(y x p 到点00()P x ,y 的距离.【例2】在直角坐标系xOy ,直线l 的参数方程是1+cos ,sin .x t y t αα=⎧⎨=⎩(t 是参数).在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C :4cos ρθ=,若直线l 与曲线C 相交于,A B 两点,设(1,0)P ,且1PA PB -=,求直线l 的倾斜角.【解析】直线l 为经过点(1,0)P 倾斜角为α的直线,由1cossin x t y t αα=+⎧⎨=⎩代入22(2)4x y -+=,整理得22cos 30t t α--=,2(2cos )120α∆=+>,设,A B 对应的参数分别为12,t t ,则122cos t t α+=,1230t t ⋅=-<, 所以1t ,2t 异号, 则12|||||||||2cos |1PA PB t t α-=+==,所以1cos 2α=±,又),0[π∈α所以直线l 倾斜角3π=α或32π. 【名师点睛】本题易错的主要原因仍是直线参数方程中参数t 的几何意义认识不到位所致,||t 表示距离,t 是包含符号的,由于本题中,,A B 在P 点的两侧,12t ,t 异号,故12|||||||||2cos |1PA PB t t α-=+==而不是121212||||||||()44cos 121PA PB t t t t t t α-=-=+-⋅=+=. 此外,本题的参数方程中含两个字母参量,哪个是参数在审题时也是值得特别注意的. (二)忽略参数的取值范围导致“互化”不等价【例题3】将曲线1C 的参数方程1sin 22sin cos x y θθθ⎧=⎪⎨⎪=+⎩(θ为参数)化为普通方程.【名师点睛】本题易错点主要在于忽视了三角函数sin y x =的有界性,即R,θ∈,212sin 2121≤≤-θ所以.2121≤≤-x 在将曲线的参数方程化为普通方程时,不仅要把其中的参数消去,还要注意y x ,的取值范围. (三)对极径的意义理解不到位,不能灵活使用极径解决问题【例题4】(2017全国II 卷22)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为4cos =θρ.(Ⅰ)M 为曲线1C 上的动点,点P 在线段OM 上,且满足6⋅=OM OP ,求点P 的轨迹2C 的直角坐标方程; (Ⅱ)设点A 的极坐标为)3,2(π,点B 在曲线2C 上,求OAB ∆面积的最大值.【解析】(Ⅰ)设P 的极坐标为(,)(>0)ρρθ,M 的极坐标为11()(>0),ρθρ,则由已知得116⋅=ρρ即416cos ⋅=ρθ,得2C 的极坐标方程为4cos (0)=>ρθρ, 所以2C 的直角坐标方程为22(2)4(0)x y x -+=≠【名师点睛】本题的主要问题在于对于极径的意义理解不到位,其一,不能将极径与OM 、OP 建立联系,从而无法快速求出P 的轨迹方程,其二,不能利用极径的几何意义建立OAB ∆的面积模型进行求解,而是顺着第一问的思路在直角坐标系下寻求解题出路,结果造成不能顺利建模亦或是建立OAB ∆面积关于直线OB 斜率的函数关系,致使解题过程复杂化,计算量加大,最终无法准确求解. 此外,在第(Ⅰ)问题目中还隐含着一个条件0>ρ,如果审题稍有不慎极易遗漏这一限制条件. (四)思维不严谨性,完备性欠缺【例题5】在平面直角坐标系中,曲线1C 的参数方程为22cos ,(2sin x y θθθ=+⎧⎨=⎩为参数).(Ⅰ)将1C 的方程化为普通方程;(Ⅱ)以O 为极点,x 轴正半轴为极轴建立极坐标系,设曲线2C 的极坐标方程是)(3R π∈=ρθ求曲线1C 与2C 交点的极坐标.【解析】(Ⅰ)曲线1C 的参数方程为22cos ,(2sin x y θθθ=+⎧⎨=⎩为参数)的普通方程为22(2)4x y -+=; (Ⅱ)把cos sin x y ρθρθ=⎧⎨=⎩代入22(2)4x y -+=得曲线1C 的极坐标方程为4cos ρθ=,把3π=θ代入得4co s 23πρ==,又因为曲线1C 和曲线2C 的均过原点,.所以曲线1C 与2C 交点的极坐标为(0,0),(2,).3π【名师点睛】本题直接用极坐标方程求交点的极坐标非常容易遗漏(0,0)点.在极坐标方程与直角坐标方程互化的过程中,经常需要在方程两边同乘以或除以ρ,这时需要考虑等价问题:如果曲线0),(=θρϕ不通过极点,那么0),(=⋅θρϕρ与0),(=θρϕ不等价;如果曲线0),(=θρϕ通过极点,那么0),(=⋅θρϕρ与0),(=θρϕ等价,这是因为0=ρ包含在方程(,)0ϕρθ=的曲线中. 本题由于曲线1C 和曲线2C 的均过原点,所以交点的极坐标还包含有(0,0).如果本题用直角坐标方程求解也不难,且不易遗漏原点.所以求交点坐标的问题,一般宜用我们熟悉的直角坐标方程求解.【例题6】在直角坐标系xOy 中,直线4:1=+y x C 曲线⎩⎨⎧=+=θθsin cos 1:2y x C (θ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(Ⅰ)写出直线1C 与2C 的极坐标方程;(Ⅱ)若射线)0(:>=ραθl 分别交1C 与2C 于A ,B 两点,求OAOB 的取值范围.【解析】(Ⅰ) 在直角坐标系xOy 中,直线4:1=+y x C ∴直线1C 的极坐标方程为,4)sin (cos =+θθρ 曲线⎩⎨⎧=+=θθsin cos 1:2y x C 的普通方程为1)1(22=+-y x ,∴曲线2C 的极坐标方程为θρcos 2=.【名师点睛】本题的易漏点在于对题目隐含条件的挖掘,求出OA OB ],1)42(cos 2[41)12sin 2(cos 41)sin (cos cos 241||||12+-=++=+⋅==πααααααρρOA OB 后直接得OAOB 的取值范围是]4221,4221[+-忽略了射线)0(:>=ραθl 分别交1C 与2C 于相交,隐含着24ππ<<-α这一条件.【解决问题对策】(一)关注两个“互化”的技能训练【指点迷津】参数方程和普通方程的互化、极坐标方程与直角坐标方程的互化是高考每年必考的内容之一,考查形式多样,有直接要求互化的,也有通过转化化为直角坐标方程或普通方程,然后利用解析几何的相关知识解决问题的,因此,应通过专项训练使之熟练化、自动化.【例7】(2017年高考全国III 卷23)在平面直角坐标系xOy 中,直线1l 的参数方程为2+x t y kt =⎧⎨=⎩(t 为参数),直线2l 的参数方程为2x m m m y k =-+⎧⎪⎨=⎪⎩(为参数).设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C .(Ⅰ)写出C 的普通方程;(Ⅱ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3cos sin 0l ρθθ+=:,M 为3l 与C 的交点,求M 的极径.(Ⅱ)将极坐标方程转化为一般方程3:0l x y +=,联立2204x y x y ⎧+⎪⎨-=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩. 由cos sin x y ρθρθ=⎧⎨=⎩,解得ρ=M. (二)强化对直线参数方程中参数t 的几何意义的认识【指点迷津】利用直线参数方程中参数t 的几何意义,可以快速求解与线段长度、距离等相关的问题. 使用时应注意t 表示距离时方程的特征和t 所具有的“方向”性.【例8】在极坐标系中,已知曲线1C :θρcos 2=和曲线2C :3cos =θρ,以极点O 为坐标原点,极轴为x 轴非负半轴建立平面直角坐标系. (Ⅰ)求曲线1C 和曲线2C 的直角坐标方程;(Ⅱ)若点P 是曲线1C 上一动点,过点P 作线段OP 的垂线交曲线2C 于点Q ,求线段PQ 长度的最小值.可知2|||||2cos |AP t θ==代入2C 可得2cos 3,t θ+=解得/1cos t θ=, 可知/1||||||cos AQ t θ==所以PQ=1|||||2cos |||cos AP AQ θθ+=+≥当且仅当1|2cos |||cos θθ=时取等号,所以线段PQ 长度的最小值为(三)关注圆、椭圆参数方程在求最值方面的应用【指点迷津】涉及有关最值或参数范围问题的求解,常可利用圆与椭圆的参数方程,化为三角函数的最值问题处理.【例9】(2017年高考全国I 卷22)在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为()41x a tt y t =+⎧⎨=-⎩为参数. (Ⅰ)若1a =-,求C 与l 的交点坐标;(Ⅱ)若C 上的点到la.(四)关注极径、极角几何意义的认识与应用 【例10】在直角坐标系xOy 中,曲线1C 的参数方程为22cos ,2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数).以原点O 为极点,x轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4sin ρθ=.(Ⅰ)求曲线1C 普通方程和2C 的直角坐标方程;(Ⅱ)已知曲线3C 的极坐标方程为(0,)R θααπρ=<<∈,点A 是曲线3C 与1C 的交点,点B 是曲线3C 与2C 的交点,且A ,B 均异于原点O,且||AB =α的值. 【解析】(Ⅰ)由22cos ,2sin x y ϕϕ=+⎧⎨=⎩消去参数ϕ可得1C 普通方程为22(2)4x y -+=,.4sin ρθ=,∴24sin ρρθ=,由cos sin x y ρθρθ=⎧⎨=⎩,得曲线2C 的直角坐标方程为22(2)4x y +-=;(Ⅱ)由(Ⅰ)得曲线1C :22(2)4x y -+=,其极坐标方程为4cos ρθ=, 由题意设1(,)A a ρ,2(,)B a ρ,则12||||4|sin cos |AB ρραα=-=-sin()|4πα=-=∴sin()14πα-=±,∴42k ππαπ-=+()k Z ∈,π<<α0,∴43π=α. (五)注重算法的选择,关注运用本领域知识进行的问题解决【指点迷津】将陌生的问题化为已知的问题加以解决,是问题解决的常见思维模式,对极坐标、参数方程的有关问题解决,最简洁的思路就是将极坐标方程转化为直角坐标方程、参数方程转化为普通方程,再利用解析几何的知识解决问题,然而在有些情况下这种转化却会加大运算过程,有时还会出现无法计算结果的情形,近年来高考全国卷就经常出现这种情况,因此除了掌握化为普通直角坐标方程求解的算法外,还应关注运用本领域知识解决问题的算法.【例11】(2016年高考全国Ⅲ卷22)在直角坐标系xOy 中,曲线1C 的参数方程为()sin x y θθθ⎧=⎪⎨=⎪⎩为参数,以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+=(Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求PQ 的最小值及此时P 的直角坐标.【解法一】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=.(Ⅱ)设点sin )P αα+,因2C 为直线,所以PQ 的最小值即为点P 到直线2C 的距离的最小值.而点P 到直线2C 的距离为)23d πα+-当且仅当2(Z)6k k παπ=+∈时,d PQ 31(,)22P . 【解法二】(Ⅰ)同法(Ⅰ).当2c =-时,方程2246(33)0x cx c ++-=可化为241290x x -+=,即2(23)0x -=所以32x =,122y x =-+=,即切点31(,)22P ,此时 d ==PQ 【名师点睛】显然,法一优于法二,即利用椭圆参数方程,将问题转化为三角函数最值运算优于转化为直角坐标用解析几何知识解决. 【新题好题训练】 1.已知直线的参数方程:(为参数),曲线的参数方程:(为参数),且直线交曲线于两点.(Ⅰ)将曲线的参数方程化为普通方程,并求时,的长度; (Ⅱ)已知点,求当直线倾斜角变化时,的范围.【答案】(I );(II ).【解析】试题分析: (I )利用消参后可得曲线C 的普通方程,把代入交消去参数可得直线的普通方程,再把直线方程代入曲线C 方程,结合韦达定理、弦长公式可得弦长;(II )直线的参数方程是标准参数方程,直接代入曲线C 的普通方程,A 、B 两点参数是此方程的解,且,由此可得其取值范围.试题解析:(Ⅰ)曲线的参数方程:(为参数),曲线的普通方程为.当时,直线的方程为,代入,可得,∴.∴.(Ⅱ)直线参数方程代入,得.设对应的参数为,∴.2.选修4-4:坐标系与参数方程在平面直角坐标系中,已知曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程与的直角坐标方程;(2)判断曲线是否相交,若相交,求出相交弦长.【答案】(1)曲线的普通方程为,曲线的直角坐标方程为;(2).试题解析:(1)由题知,将曲线的参数方程消去参数,可得曲线的普通方程为.由,得.将,代入上式,得,即.故曲线的直角坐标方程为.(2)由(1)知,圆的圆心为,半径,因为圆心到直线的距离,所以曲线相交,所以相交弦长为.3.在直角坐标系中,曲线的参数方程为:,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.(1) 若把曲线上的点的横坐标不变,纵坐标伸长到原来的2倍,得到曲线,求的极坐标方程;(2) 直线的极坐标方程是,与曲线交于两点,求三角形的面积.【答案】(1);(2).【解析】试题分析:(1)根据坐标变换得到曲线,利用极坐标转换公式即可写出极坐标方程;(2)转化为直角坐标系方程后,联立方程组,解出点的坐标,计算即可.(2)(法一)直线与曲线的交点为,则的极坐标满足方程组:解之得:、,(法二)直线与曲线C1的交点为,则A、B的直角坐标满足方程组:联立方程可得:、,所以边上的高为,4.已知圆锥曲线(为参数)和定点,是此圆锥曲线的左、右焦点,以原点为极点,以轴正半轴为极轴建立极坐标系.(1)求直线的直角坐标方程;(2)经过点且与直线垂直的直线交此圆锥曲线于两点,求的值.【答案】(1);(2).解析:(1)得圆锥曲线的直角坐标方程为,椭圆的左焦点为,右焦点为,∴直线的直角坐标方程为,即为(2)∵直线与直线垂直且过点,∴直线的参数方程为(为参数).将其代入得,即,∴,,∴与异号,∴.∴=.5.选修4-4:坐标系与参数方程已知在极坐标系中,点,,是线段的中点,以极点为原点,极轴为轴的正半轴,并在两坐标系中取相同的长度单位,建立平面直角坐标系,曲线的参数方程是(为参数). (1)求点的直角坐标,并求曲线的普通方程;(2)设直线过点交曲线于两点,求的值.【答案】(Ⅰ),. (Ⅱ)12.试题解析:((Ⅰ)将点,的极坐标化为直角坐标,得和.所以点的直角坐标为.将消去参数,得,即为曲线的普通方程.(Ⅱ)解法一:直线的参数方程为(为参数,为直线的倾斜角)代入,整理得:.设点、对应的参数值分别为、.则,.解法二:过点作圆:的切线,切点为,连接,因为点由平面几何知识得:,所以.6.在平面直角坐标系中,以为极点,轴的非负半轴为极轴取相同的长度单位建立极坐标系,曲线的参数方程为(为参数,),直线的极坐标方程为.(1)写出曲线的普通方程和直线的直角坐标方程;(2)若为曲线上任意一点,为直线任意一点,求的最小值.【答案】(1) 直线的直角坐标方程为,曲线的轨迹方程是上半圆;(2) 的最小值为.试题解析:(1)曲线的参数方程为(为参数,),消去参数可得,由于,所以,故曲线的轨迹方程是.由,可得,即,把代入上式可得,故直线的直角坐标方程为.(2)由题意可得点在直线上,点在半圆上,半圆的圆心到直线的距离等于,故的最小值为.点睛:解答本题时注意以下两点:(1)消去参数方程中的参数得到普通方程时,要注意参数取值范围的限制,在普通方程中仍要注明取值范围.(2)解答解析几何中的最值问题时,对于一些特殊的问题,可根据几何法求解,以增加形象性、减少运算量.7.选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为(为参数,),已知直线的方程为. (1)设是曲线上的一个动点,当时,求点到直线的距离的最小值;(2)若曲线上的所有点均在直线的右下方,求的取值范围.【答案】(1).(2).(Ⅱ)若曲线上的所有点均在直线的右下方则,有恒成立,即恒成立,恒成立,即可求的取值范围.试题解析:(Ⅰ)依题意,设,则点到直线的距离,当,即,时,,故点到直线的距离的最小值为.(Ⅱ)因为曲线上的所有点均在直线的右下方,所以对,有恒成立,即恒成立,所以,又,所以.故的取值范围为.【点睛】本题考查极坐标方程与普通方程的互化,考查参数方程的运用,考查学生转化问题的能力,属于中档题.8.选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出曲线的极坐标方程和曲线的直角坐标方程;(2)已知点是曲线上一点,点是曲线上一点,的最小值为,求实数的值.【答案】(1)见解析;(2)或.试题解析(1)由曲线的参数方程,消去参数,可得的普通方程为,即,化为极坐标方程为,由曲线的极坐标方程(),得(),∴曲线的直角坐标方程为,即.(2)曲线的圆心到直线的距离,故的最小值为,解得或.9.选修4-4:坐标系与参数方程在直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,点的曲线上运动.(I)若点在射线上,且,求点的轨迹的直角坐标方程;(Ⅱ)设,求面积的最大值.【答案】(Ⅰ).(Ⅱ) .【解析】试题分析:试题解析:(Ⅰ)设,则,又,,,,.将代入上式可得点的直角坐标方程为.(Ⅱ)设,则,的面积,当且仅当,即时等号成立面积的最大值为.10.选修4-4:坐标系与参数方程已知直线的参数方程为 (为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(I)求圆的直角坐标方程;(II)若是直线与圆面的公共点,求的取值范围.【答案】(Ⅰ)见解析;(Ⅱ) 见解析.【解析】分析: (I)直接利用极坐标公式把圆C的极坐标方程化为直角坐标方程. (II)先求出直线l与圆的公共点,再数形结合分析出的取值范围.详解:(Ⅰ)∵圆的极坐标方程为又∴∴圆普通方程为,设.故点在线段上从而当与点重合时,当与点重合时,故的取值范围为[-1,1].点睛:对于第(Ⅱ)问,方法比较多,本题的解答时利用了数形结合的方法.,z表示直线的纵截距,纵截距最大,z最大,纵截距最小,z最小. 一般看到二元一次多项式要联想到利用直线的纵截距的几何意义解答比较方便.。
2018高考数学解题技巧解答题模板3:极坐标与参数方程1、 题型与考点(1){极坐标与普通方程的互相转化极坐标与直角坐标的互相转化(2){参数方程与普通方程互化参数方程与直角坐标方程互化 (3){利用参数方程求值域参数方程的几何意义2、【知识汇编】 参数方程:直线参数方程:00cos ()sin x x t t y y t θθ=+⎧⎨=+⎩为参数 00(,)x y 为直线上的定点, t 为直线上任一点(,)x y 到定点00(,)x y 的数量;圆锥曲线参数方程:圆的参数方程:cos ()sin x a r y b r θθθ=+⎧⎨=+⎩为参数(a,b)为圆心,r 为半径; 椭圆22221xy a b +=的参数方程是cos ()sin x a y b θθθ=⎧⎨=⎩为参数; 双曲线2222-1x y a b =的参数方程是sec ()tan x a y b φθφ=⎧⎨=⎩为参数; 抛物线22y px =的参数方程是22()2x pt t y pt ⎧=⎨=⎩为参数 极坐标与直角坐标互化公式:若以直角坐标系的原点为极点,x 轴正半轴为极轴建立坐标系,点P 的极坐标为(,)ρθ,直角坐标为(,)x y ,则cos x ρθ=, sin y ρθ=, 222x y ρ=+, tan y x θ=。
解题方法及步骤(1)、参数方程与普通方程的互化化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程(),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标)例1、方程⎪⎩⎪⎨⎧+=-=--t t t t y x 2222(t 为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆解析:注意到2t t 与2t-互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t 的项,4)22()22(2222-=+--=---t t t t y x ,即有422=+y x ,又注意到 02>t ,222222=⋅≥+--t t t t ,即2≥y ,可见与以上参数方程等价的普通方程为)2(422≥=-y y ,显然它表示焦点在y 轴上,以原点为中心的双曲线的上支,选B.(2)、极坐标与直角坐标的互化利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题,这二者互化的前提条件是(1)极点与原点重合;(2)极轴与x 轴正方向重合;(3)取相同的单位长度.设点P 的直角坐标为),(y x ,它的极坐标为),(θρ,则⎩⎨⎧==θρθρsin cos y x 或⎪⎩⎪⎨⎧=+=x y y x θρtan 222;若把直角坐标化为极坐标,求极角θ时,应注意判断点P 所在的象限(即角θ的终边的位置),以便正确地求出角θ. 例2、极坐标方程52sin 42=⋅θρ表示的曲线是( ) A. 圆 B. 椭圆 C. 双曲线的一支 D. 抛物线分析:这类问题需要将极坐标方程转化为普通方程进行判断. 解析:由21cos 4sin422cos 522θθρρρρθ-⋅=⋅=-=,化为直角坐标系方程为25x =,化简得22554y x =+.显然该方程表示抛物线,故选D. (3)、参数方程与直角坐标方程互化例3:已知曲线1C 的参数方程为⎪⎩⎪⎨⎧=+-=θθsin 10cos 102y x (θ为参数),曲线2C 的极坐标方程为θθρsin 6cos 2+=. (1)将曲线1C 的参数方程化为普通方程,将曲线2C 的极坐标方程化为直角坐标方程;(2)曲线1C ,2C 是否相交,若相交请求出公共弦的长,若不相交,请说明理由.解:(1)由⎪⎩⎪⎨⎧=+-=θθsin 10cos 102y x 得10)2(22=++y x ,∴曲线1C 的普通方程为10)2(22=++y x ,∵θθρsin 6cos 2+=,θρθρρsin 6cos 22+=∴,∵222y x +=ρ,θρcos =x ,θρsin =y ,∴y x y x 6222+=+,即10)2(22=++y x ,∴曲线2C 的直角坐标方程为10)2(22=++y x ; (2)∵圆1C 的圆心为)0,2(-,圆2C 的圆心为)3,1(, ∴10223)30()12(C 2221<=-+--=C ∴两圆相交,设相交弦长为d ,因为两圆半径相等,所以公共弦平分线段21C C∴222)10()223()2(=+d, ∴22=d ,∴公共弦长为22 (4)利用参数方程求值域D A FE O B C 例题4、在曲线1C :⎩⎨⎧=+=)y x 为参数θθθ(sin cos 1上求一点,使它到直线2C:12(112x t t y t ⎧=-⎪⎪⎨⎪=-⎪⎩为参数)的距离最小,并求出该点坐标和最小距离.解:直线2C 化成普通方程是122--+y x ,设所求的点为()θθsin ,cos 1+P , 则C 到直线2C 的距离2|122sin cos 1|-+++=θθd |2)4sin(|++=πθ, 当234ππθ=+时,即45πθ=时,d 取最小值1 ,此时,点P 的坐标是)22,221(--. 5)直线参数方程中的参数的几何意义例5、已知直线l 经过点)1,1(P ,倾斜角6πα=,①写出直线l 的参数方程;②设l 与圆422=+y x 相交与两点,A B ,求点P 到,A B 两点的距离之积. 解 (1)直线的参数方程为1cos 61sin 6x t y t ππ⎧=+⎪⎪⎨⎪=+⎪⎩,即. (2)把直线代入422=+y x ,得2221(1)(1)4,1)202t t t +++=+-=,122t t =-, 则点P 到,A B 两点的距离之积为2.。
2018年高考数学专题复习难点突破名师讲练:坐标系与参数方程一、考点突破1. 坐标系(1)理解坐标系的作用。
(2)能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化。
(3)能在极坐标系中写出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程。
通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义。
2. 参数方程(1)了解参数方程,了解参数的意义。
(2)能选择适当的参数写出直线、圆和圆锥曲线的参数方程。
二、重难点提示1. 参数方程的概念,常用参数方程中参数的意义,参数方程与普通方程的互化。
2. 极坐标的概念,极坐标与直角坐标的互化;直线和圆的极坐标方程。
一、知识脉络图二、知识点拨(一)极坐标1. 极坐标系平面内的一条规定有单位长度的射线,为极点,为极轴,选定一个长度单位和角的正方向(通常取逆时针方向),这就构成了极坐标系。
2. 极坐标系内一点P 的极坐标平面上一点P 到极点O 的距离OP 称为极径ρ,OP 与Ox 轴的夹角θ称为极角,有序实数对)(θρ,P 就叫做点P 的极坐标。
(1)一般情况下,不特别加以说明时表示非负数;当0=ρ时表示极点;当0<ρ时,点)(θρ,P 的位置这样确定:作射线OP ,使θ=∠xOP ,在OP 的反向延长线上取一点P ’,使得ρ='O P ,点'P 即为所求的点。
(2)点)(θρ,P 与点()θπρ+k 2,(Z k ∈)所表示的是同一个点,即角θ与θπ+k 2的终边是相同的。
综上所述,在极坐标系中,点与其点的极坐标之间不是一一对应而是一对多的对应,即()θρ,,()θπρ+k 2,,()()θπρ++-12k ,均表示同一个点。
3. 极坐标与直角坐标的互化当极坐标系与直角坐标系在特定条件下(①极点与原点重合;②极轴与轴正半轴重合;③长度单位相同),平面上一个点的极坐标()θρ,和直角坐标()y ,x 有如下关系:直角坐标化极坐标:θρθρsin y cos ==,x ;极坐标化直角坐标:()0x tan 222≠=+=xyy x θρ, 此即在两个坐标系下,同一个点的两种坐标间的互化关系。
2018届高三理科数学坐标系与参数方程解题方法规律技巧详细总结版【简介】坐标系与参数方程作为选做题,和不等式以二选一的形式出现,主要考查极坐标方程及应用,直线,圆和椭圆的参数方程的应用,难度一般不大,但是在做题过程有许多细节需要注意,例如审题时注意问的是参数方程还是极坐标方程,在应用上要从极坐标和参数方程中做出适合的选取,应用直线的参数方程解题时要理解参数t 的意义,如果理解不准极易出错,总之,对于本章的复习,要对概念要有准确的理解.【3年高考试题比较】坐标系与参数方程每年都以解答题的形式,和不等式以二选一的形式出现,在试卷中是最后一道题,但不是压轴题,属于解答题中的容易或比较容易的试题.内容主要涉及曲线与极坐标方程、参数方程、普通方程的关系,求曲线的轨迹、求曲线的交点,极坐标与直角坐标的转化等知识与方程,综合三年的高考题,对于极坐标的考察较多,不仅会极坐标与直角坐标转化,也要掌握极坐标的应用,同时椭圆、圆和直线的参数方程也要应用熟练,尤其是直线的参数方程易错点较多,复习时要引起重视. 【必备基础知识融合】1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换ϕ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换. 2.极坐标系与点的极坐标(1)极坐标系:如图所示,在平面内取一个定点O (极点);自极点O 引一条射线Ox (极轴);再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 3.极坐标与直角坐标的互化4.5.(1)直线l 过极点,且极轴到此直线的角为α,则直线l 的极坐标方程是θ=α(ρ∈R ). (2)直线l 过点M (a ,0)且垂直于极轴,则直线l 的极坐标方程为ρcos__θ=a .(3)直线过M ⎝⎛⎭⎪⎫b ,π2且平行于极轴,则直线l 的极坐标方程为ρsin__θ=b . 6.曲线的参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t )并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数. 7.参数方程与普通方程的互化通过消去参数从参数方程得到普通方程,如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程.在参数方程与普通方程的互化中,必须使用x ,y 的取值范围保持一致. 8.常见曲线的参数方程和普通方程(t 为参数)(θ为参数)(φ为参数)提醒一点M (x ,y )到M 0(x 0,y 0)的距离. 【解题方法规律技巧】典例1:将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)求曲线C 的标准方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.典例2:在极坐标系中,已知极坐标方程C 1:ρcos θ-3ρsin θ-1=0,C 2:ρ=2cos θ. (1)求曲线C 1,C 2的直角坐标方程,并判断两曲线的形状; (2)若曲线C 1,C 2交于A ,B 两点,求两交点间的距离. 解 (1)由C 1:ρcos θ-3ρsin θ-1=0, ∴x -3y -1=0,表示一条直线. 由C 2:ρ=2cos θ,得ρ2=2ρcos θ. ∴x 2+y 2=2x ,即(x -1)2+y 2=1. 所以C 2是圆心为(1,0),半径r =1的圆. (2)由(1)知,点(1,0)在直线x -3y -1=0上, 所以直线C 1过圆C 2的圆心.因此两交点A ,B 的连线段是圆C 2的直径. 所以两交点A ,B 间的距离|AB |=2r =2.典例3:在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a . 解 (1)消去t ,得C 1的普通方程x 2+(y -1)2=a 2, ∴曲线C 1表示以点(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0. (2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去),a =1. 当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.典例4:以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=21-sin θ.(1)将曲线的极坐标方程化为直角坐标方程;(2)过极点O 作直线l 交曲线于点P ,Q ,若|OP |=3|OQ |,求直线l 的极坐标方程.典例5:在极坐标系中,已知圆C 的圆心C ⎝⎛⎭⎪⎫3,π3,半径r =3.(1)求圆C 的极坐标方程;(2)若点Q 在圆C 上运动,点P 在OQ 的延长线上,且OQ →=2QP →,求动点P 的轨迹方程.解 (1)设M (ρ,θ)是圆C 上任意一点. 在△OCM 中,∠COM =⎪⎪⎪⎪⎪⎪θ-π3,由余弦定理得 |CM |2=|OM |2+|OC |2-2|OM |·|OC |cos ⎝ ⎛⎭⎪⎫θ-π3,化简得ρ=6cos ⎝ ⎛⎭⎪⎫θ-π3.(2)设点Q (ρ1,θ1),P (ρ,θ), 由OQ →=2QP →,得OQ →=23OP →,∴ρ1=23ρ,θ1=θ,代入圆C 的方程,得23ρ=6cos ⎝ ⎛⎭⎪⎫θ-π3,即ρ=9cos ⎝⎛⎭⎪⎫θ-π3. 典例6:已知曲线C 1:x +3y =3和C 2:⎩⎨⎧x =6cos φ,y =2sin φ(φ为参数).以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位. (1)把曲线C 1和C 2的方程化为极坐标方程;(2)设C 1与x ,y 轴交于M ,N 两点,且线段MN 的中点为P .若射线OP 与C 1,C 2交于P ,Q 两点,求P ,Q 两点间的距离.典例7:已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值. 解 (1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θy =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|, 则|PA |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255.当sin(θ+α)=1时,|PA |取得最小值,最小值为255.典例8:平面直角坐标系xOy 中,曲线C :(x -1)2+y 2=1.直线l 经过点P (m ,0),且倾斜角为π6.(1)求圆C 和直线l 的参数方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|PA |·|PB |=1,求实数m 的值.典例9:以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数,0<α<π),曲线C 的极坐标方程为ρsin 2θ=4cos θ.(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,当α变化时,求|AB |的最小值. 解 (1)由ρsin 2θ=4cos θ得(ρsin θ)2=4ρcos θ, ∴曲线C 的直角坐标方程为y 2=4x .(2)将直线l 的参数方程代入y 2=4x 得到t 2sin 2α-4t cos α-4=0. 设A ,B 两点对应的参数分别是t 1,t 2, 则t 1+t 2=4cos αsin 2 α,t 1t 2=-4sin 2α. ∴|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4sin 2α≥4,当α=π2时取到等号. ∴|AB |min =4,即|AB |的最小值为4.典例9:在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =sin α(α为参数),在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ-π4= 2.(1)求C 的普通方程和l 的倾斜角;(2)设点P (0,2),l 和C 交于A ,B 两点,求|PA |+|PB |的值.(2)由(1)知,点P (0,2)在直线l 上,可设直线l 的参数方程为⎩⎪⎨⎪⎧x =t cos π4,y =2+t sin π4(t 为参数),即⎩⎪⎨⎪⎧x =22t ,y =2+22t(t 为参数),代入x 29+y 2=1并化简,得5t 2+182t +27=0, Δ=(182)2-4×5×27=108>0, 设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=-1825<0,t 1t 2=275>0,所以t 1<0,t 2<0,所以|PA |+|PB |=|t 1|+|t 2|=-(t 1+t 2)=1825.典例10:在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.已知直线的参数方程为(为参数),曲线的极坐标方程为;(1)求直线的直角坐标系方程和曲线的直角坐标方程;(2)若直线与曲线交点分别为,,点,求的值.【答案】(1),曲线;(2) .【易错易混温馨提醒】一、直线参数方程的应用参数t解题时注意正负易错1:已知曲线的参数方程为(为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(Ⅰ)求曲线的直角坐标方程及曲线上的动点到坐标原点的距离的最大值;(Ⅱ)若曲线与曲线相交于,两点,且与轴相交于点,求的值.【答案】(1),(2)二、注意直线与圆锥曲线联立时的判别式大于0易错2:在平面直角坐标系xOy 中,以坐标原点为极点, x 轴正半轴为极轴,取相同的长度单位建立极坐标系,曲线C 的极坐标方程为2sin ρθ=. (1)求曲线C 的直角坐标方程;(2)在平面直角坐标系中,将曲线C 的纵坐标不变,横坐标变为原来的2倍,得到曲线D ,过点()2,0M 作直线l ,交曲线D 于A B 、两点,若2MA MB ⋅=,求直线l 的斜率.【答案】(1)2220x y y +-=;(2)线l 的斜率为【解析】试题分析:(1)利用222,sin x y y ρρθ=+=把极坐标方程化为直角坐标方程;(2)设直线l 的参试题解析:(1)由2sin ρθ=,得22sin ρρθ=,将222,sin x y y ρρθ=+=,代入整理得2220x y y +-=. (2)把2220x y y +-=中的x 换成2x ,即得曲线D 的直角坐标方程2204x y y +-=. 设直线l 的参数方程为2,{x tcos y tsin φφ=+=(t 为参数, [)0,φπ∈), 代入曲线D 的方程,整理得()()222cos 4sin 4cos 8sin 40t t φφφφ++-+=,()()2224cos 8sin 16cos 4sin 0φφφφ∆=--+>,cos sin 0φφ⇒<.设,A B 两点所对应的参数分别为12,t t , 则12,t t 为上述方程的两个根. 由122240cos 4sin t t φφ=>+,得,MA MB 同向共线. 故由122242cos 4sin MA MB t t φφ⋅===21sin tan 3φφ⇒=⇒=.由cos sin 0φφ<,得tan 2φ=-即直线l 的斜率为2-..三、非标准形式的直线参数方程应用参数t 时要注意换为标准的参数. 易错3:在平面直角坐标系xOy 中,直线l的参数方程是1{x y ==(t 为参数),以O 为极点, x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为22223cos 4sin 12ρθρθ+=,且直线l 与曲线C 交于,P Q 两点.(Ⅰ)求直线l 的普通方程及曲线C 的直角坐标方程; (Ⅱ)把直线l 与x 轴的交点记为A ,求AP AQ ⋅的值. 【答案】(1)见解析;(2)18.7(II )解法1:在10x y --=中,令0y =,得1x =,则()1,0A . 由223412{10x y x y +=--=消去y 得27880x x --=.设()11,P x y , ()22,Q x y ,其中12x x < , 则有1287x x +=, 1287x x =-.故)1111AP x =-=-,)2211AQ x =-=-,所以AP AQ ⋅ ()()12211x x =--- ()121218217x x x x ⎡⎤=--++=⎣⎦.解法2:把()()112,{2,2x t y t =+=+==代入223412x y +=,整理得21490t +-=, 则12914t t =-, 所以AP AQ ⋅ ()()1212182247t t t t =-⋅=-=. 四、注意参数范围对于方程的影响易错4:在平面直角坐标系xOy 中,曲线1C 的参数方程为22,{32x cos y sin αα=+=+(α为参数, 2παπ≤≤),以原点O 为极点, x 轴正半轴为极轴,建立极坐标系,曲线2C的极坐标方程为sin 4πρθ⎛⎫-= ⎪⎝⎭. (1)求曲线1C 与2C 的直角坐标方程;(2)当1C 与2C 有两个公共点时,求实数t 的取值范围.【答案】(1)曲线2C 的直角坐标方程为0x y t -+=;(2)11t -<≤-.1C 有两个公共点,则当2C 与1C2=,整理得1t -=∴1t =-或1t =(舍去), 当2C 过点()4,3时, 430t -+=,所以t=-1. ∴当1C 与2C 有两个公共点时,11t -<≤-.点睛:本题的易错点在把曲线1C 的参数方程化为直角坐标方程时,忽略了2παπ≤≤,得到曲线1C 是整个圆,那后面就会出错,所以在解题时,一定要注意认真审题,实行等价转化. 五、求轨迹方程时注意一些特殊点的取舍.易错5:在直角坐标系xOy 中,曲线1C 的参数方程为{x tcos y tsin αα== (t 为参数),其中0απ<<,以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是sin 5ρθ=, P 为曲线1C 与2C 的交点. (1)当3πα=时,求点P 的极径;(2)点Q 在线段OP 上,且满足20OP OQ ⋅=,求点Q 的轨迹的直角坐标方程.【答案】(2) ()()22240x y y +-=≠(2)在极坐标系中,设点(),Q ρθ, ()1,P ρθ,由题意可得, 1120[ 5sin ρρρθ==,进而可得4sin ρθ=,从而点Q 的轨迹的直角坐标方程为()()22240x y y +-=≠.六、参数方程化为普通方程时注意范围的变化在平面直角坐标系xOy 中,直线1l的参数方程为{x t y kt ==(t 为参数),直线2l的参数程为{3x mm y k==(m 为参数),设直线1l 与2l 的交点为P ,当k 变化时点P 的轨迹为曲线1C . (1)求出曲线1C 的普通方程; (2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线2C 的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭,点Q 为曲线1C 的动点,求点Q 到直线2C 的距离的最小值. 【答案】(1)1C 的普通方程为()22103x y y +=≠;(2) d的最小值为由于1C的参数方程为{x y sina==(a 为参数, a k π≠, k Z ∈),所以曲线1C上的点)sin Qa a ,到直线80x y +-=的距离为d ==所以当sin 13a π⎛⎫+= ⎪⎝⎭时, d的最小值为。
专题七 极坐标系与参数方程 【考生存在问题报告】(一)对直线参数方程中参数的几何意义认识不到位【例1】(2020·江苏高三)已知P 1,P 2是直线1122x t y ⎧=+⎪⎪⎨⎪=-+⎪⎩(t 为参数)上的两点,它们所对应的参数分别为t 1,t 2,则线段P 1P 2的中点到点P (1,-2)的距离是________. 【答案】122t t + 【解析】因为12,P P 对应的参数分别为12,t t 故其中点所对应的参数为122t t +, 又()1,2P -对应的参数为0t =,根据直线的参数方程中t 的几何意义可知:12P P 中点到点P 的距离为12121022t t t t +-=+,故答案为:122t t+. 【评析】本题考查直线的参数方程中参数的几何意义,属基础题,此类结论要非常熟悉. 【例2】在平面直角坐标系xOy 中,直线l的参数方程为2,()2x tt y =--⎧⎪⎨=⎪⎩为参数.直线与曲线22:(2)1C y x --=交于,A B 两点.求||AB 的长;【解析】把直线l的参数方程2()2x t t y =--⎧⎪⎨=⎪⎩为参数化为标准的参数方程⎪⎪⎩⎪⎪⎨⎧+=+-='232'212t y t x ('t 为参数)代入曲线:C ()2221,y x --=整理得010'4'2=-+t t ,所以10'',4''2121-=-=+t t t t ,所以142''4)''(''2122121=-+=-=t t t t t t AB .【评析】本题易错的主要原因是对直线参数方程中参数的几何意义的认识不清,由点,A B 对应的参数分别为12,t t错误得到12||||AB t t =-=当直线的参数方程非标准式时,其参数并不具有距离的几何意义,只有把直线的参数方程化为标准的参数方程时,||t 才表示距离.一般地,直线⎩⎨+=bt y y 00(t 表示参数),当122=+b a 时,||t 表示点),(y x p 到点00()P x ,y 的距离.【例3】(2020·江苏金陵中学高三)在平面直角坐标系xOy 中,直线315:45x t l y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),与曲线24:4x k C y k⎧=⎨=⎩(k 为参数)交于A 、B 两点,求线段AB 的长. 【答案】254【解析】解法一:将直线l 的参数方程化为普通方程得434x y -=, 将曲线C 的参数方程化为普通方程得24y x =,联立方程组24344x y y x -=⎧⎨=⎩,解得44x y =⎧⎨=⎩或141x y ⎧=⎪⎨⎪=-⎩,所以()4,4A 、1,14B ⎛⎫- ⎪⎝⎭. 所以254AB ==; 解法二:将曲线C 的参数方程化为普通方程得24y x =.将直线l 的参数方程代入抛物线C 的方程得2434155t t ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,整理得2415250t t --=,设点A 、B 对应的参数分别为1t 、2t ,解得154t =-,25t =, 因此,12525544AB t t =-=--=. 【评析】解法一:将直线l 与曲线C 的方程均化为普通方程,联立直线l 与曲线C 的普通方程求出交点A 、B 的坐标,利用两点间的距离公式可求出线段AB 的长;解法二:将曲线C 的方程化为普通方程,将直线l 的参数方程代入曲线C 的普通方程,解出t 的二次方程,结合t 的几何意义可得出12AB t t =-,进而求解. (二)忽略参数的取值范围导致“互化”不等价【例4】(2020·山西大同一中高三)在平面直角坐标系xOy 中,直线l的参数方程为1212x t y =--⎪⎪⎨⎪=-⎪⎩(t 为参数),直线l 与曲线C :(y ﹣1)2﹣x 2=1交于A ,B 两点. (1)求|AB |的长;(2)在以O 为极点,x 轴的正半轴为极轴建立的极坐标系中,设点P 的极坐标为34π⎫⎪⎭,,求点P 到线段AB 中点M 的距离. 【答案】(1)(2)1【解析】(1)∵直线l的参数方程为11212x t y ⎧=--⎪⎪⎨⎪=-⎪⎩(t 为参数),∴直线l的参数方程的标准形式为11212x y μμ⎧=-+⎪⎪⎨⎪=+⎪⎩(μ为参数),代入曲线C 的方程得μ2+2μ﹣4=0. 设点A ,B 对应的参数分别为μ1,μ2, 则μ1+μ2=﹣2,μ1μ2=﹣4, ∴|AB |=|μ1﹣μ2|=2(2)∵点P 的极坐标为34π⎫⎪⎭,,∴由极坐标与直角坐标互化公式得点P 的直角坐标为(﹣1,1), ∴点P 在直线l 上,中点M 对应参数为122μμ+=-1,由参数μ的几何意义,点P 到线段AB 中点M 的距离|PM |=1.【评析】本题考查了直线的参数方程及其应用、极坐标化为直角坐标等.在第(1)问中将直线l 的参数方程的标准形式,代入曲线C 的方程得.设点A ,B 对应的参数分别为μ1,μ2,可得μ1+μ2,μ1μ2的值,可得|AB |的长;在第(2)问中将点P 的极坐标化为直角坐标,可得中点M 对应参数,由参数μ的几何意义,可得点P 到线段AB 中点M 的距离|PM |.【例5】【广东省深圳市高考模拟】若直线b x y +=与曲线⎩⎨⎧==θθsin cos y x θ(为参数,且)22πθπ≤≤-有两个不同的交点,则实数b 的取值范围是__________. 【解析】曲线⎩⎨⎧==θθsin cos y x θ(为参数,且)22πθπ≤≤-表示的是以原点为圆心,以1为半径的右半圆,如图,直线b x y +=与曲线有两个不同的交点,直线应介于 两直线21,l l 之间,则(2,1]b ∈--.【评析】本题易错点主要在于忽视θ所给的范围,以为⎩⎨⎧==θθsin cos y x θ(为参数,且)22πθπ≤≤-表示的图形是圆.其实本题中参数方程表示的是以原点为圆心1为半径的非左半部分的圆的一部分,有了这个认识之后,便不容易出错.(三)对极径的意义理解不到位,不能灵活使用极径解决问题【例6】(2020·湖南长沙一中高三)已知在平面直角坐标系xOy 中,直线l 的参数方程为4x ty t=-⎧⎨=+⎩(t 为参数),曲线1C 的方程为()2211x y +-=.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求直线l 和曲线1C 的极坐标方程;(2)曲线2:0,02C πθαρα⎛⎫=><< ⎪⎝⎭分别交直线l 和曲线1C 于点A ,B ,求OB OA 的最大值及相应α的值.【答案】(1)直线l 的极坐标方程为:cos +sin 40ρθρθ-=;曲线C 的极坐标方程为:2sin ρθ=;(2) 当38πα=时,,OB OA 21+.【解析】(1)由题意,直线l 的直角坐标方程为:+40x y -=,∴直线l 的极坐标方程为:cos +sin 40ρθρθ-=, Q 曲线C 的直角坐标方程:2220x y y +-=,曲线C 的极坐标方程为:2sin ρθ=. (2)由题意设:(,)A A ρα,(,)B B ρα, 由(1)得4cos sin A ραα=+,2sin B ρα=,1111sin (cos sin )(sin 2cos 2))24444B A OB OAρπααααααρ∴==+=-+=-+, 02πα<<Q ,32444απππ∴-<-<, ∴当242ππα-=,即38πα=时,sin(2)14πα-=,此时OB OA取最大值14. 【评析】本题考查了曲线的极坐标方程与普通方程间的互化,以及极坐标系中极径的几何意义与三角函数的综合运用.(1)参数方程化为普通方程,只要消去参数方程中的参数即可;极坐标方程化为普通方程,只要利用极坐标与直角坐标的函数关系转换即可;(2)设出点,A B 的极坐标,结合极坐标的几何意义与三角函数求最值的知识,即可求解.【例7】(2019·广西大学附属中学高三)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为2,3π⎛⎫⎪⎝⎭,点B 在曲线2C 上,求ABO ∆面积的最大值. 【答案】(1)()22x 2y 40x -+=≠();(2)2【解析】(1)设P 的极坐标为(,ρθ)(ρ>0),M 的极坐标为()1,ρθ(10ρ>)由题设知 |OP|=ρ,OM =14cos θρ=. 由OM ⋅|OP|=16得2C 的极坐标方程4cos 0ρθρ=(>)因此2C 的直角坐标方程为()22x 2y 40x -+=≠(). (2)设点B 的极坐标为(),αB ρ (0B ρ>).由题设知|OA|=2,4cos αB ρ=,于是△OAB 面积1S AOB 4cos α|sin α|2|sin 2α|22332B OA sin ππρ∠=⋅=⋅-=--≤ 当α12π=-时, S取得最大值2.所以△OAB面积的最大值为2.【评析】本题考查了极坐标方程的求法及应用,重点考查了转化与化归能力.在求曲线交点、距离、线段长等几何问题时,求解的一般方法是将其化为普通方程和直角坐标方程后求解,或者直接利用极坐标的几何意义求解.要结合题目本身特点,确定选择何种方程. (四)思维不严谨性,完备性欠缺【例8】(2020·广东高三期末)在直角坐标系xOy 中,直线1l 的参数方程为2x ty kt =-⎧⎨=⎩(t 为参数),直线2l 的参数方程为2x mmy k =-+⎧⎪⎨=⎪⎩(m 为参数),设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线1C .以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4sin ρθ=. (1)写出1C 的普通方程;(2)求曲线1C 和曲线2C 交点的极坐标.【答案】(1)()2240x y y +=≠(2)2,6π⎛⎫⎪⎝⎭或52,6π⎛⎫ ⎪⎝⎭【解析】(1)由2x ty kt=-⎧⎨=⎩,消去参数t 得1l 的普通方程()2y k x =-,由2x m m y k =-+⎧⎪⎨=⎪⎩,消去参数m 得2l 的普通方程()12y x k =+, 设(),P x y ,由题意得()()212y k x y x k ⎧=-⎪⎨=+⎪⎩,消去k 得()2240x y y +=≠(2)由(1)曲线1C 的坐标方程为()20,ρθθπ=≠≠,由题意4sin 2ρθρ=⎧⎨=⎩得1sin 2θ=,故6πθ=或56πθ=, 所以曲线1C 和曲线2C 交点的极坐标为2,6π⎛⎫⎪⎝⎭或52,6π⎛⎫ ⎪⎝⎭【评析】本题考查参数方程与普通方程的转化,考查轨迹方程,考查直角坐标方程与极坐标方程的转化,考查极坐标系下的交点(1)分别求得直线1l 与直线2l 的普通方程,联立两直线方程消去k 即可;(2)由(1)可得曲线1C 的极坐标方程,联立曲线1C 与曲线2C 的极坐标方程,求解即可【例9】【2018全国卷II 22】在直角坐标系xOy 中,曲线C 的参数方程为2cos ,4sin ,x θy θ=⎧⎨=⎩(θ为参数),直线l 的参数方程为1cos ,2sin ,x t αy t α=+⎧⎨=+⎩(t 为参数).(Ⅰ)求C 和l 的直角坐标方程;(Ⅱ)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.【解析】(Ⅰ)曲线C 的直角坐标方程为221416x y +=.当cos 0α≠时,l 的直角坐标方程为tan 2tan y x αα=⋅+-, 当cos 0α=时,l 的直角坐标方程为1x =.(Ⅱ)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程22(13cos )4(2cos sin )80t t ααα+++-=.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为1t ,2t ,则120t t +=. 又由①得1224(2cos sin )13cos t t ααα++=-+,故2cos sin 0αα+=,于是直线l 的斜率tan 2k α==-. 【评析】(Ⅰ)根据同角三角函数关系将曲线C 的参数方程化为直角坐标方程,根据代入消元法将直线的参数方程化为直角坐标方程,此时要注意分0cos ≠α 与0cos =α两种情况——这也是考生容易忽略之处.( Ⅱ)将直线参数方程代入曲线的直角坐标方程,根据参数几何意义得ααcos ,sin 之间关系,求得αtan ,即得的斜率.这里,直线的参数方程的标准形式的应用显得特别重要——也是能否顺利求解的关键.(五)作图分析不到位【例10】(2020·内蒙古高三期末)平面直角坐标系xOy 中,直线l的参数方程为121x t y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin ρθ=. (1)求直线l 的极坐标方程及曲线C 的直角坐标方程; (2)若()1,A ρα是直线l 上一点,2,3B πρα⎛⎫-⎪⎝⎭是曲线C 上一点,求||||OB OA 的最大值. 【答案】(120y --=,2220x y y +-=;(2)2.【解析】(1)由题,直线l的参数方程为121x t y ⎧=⎪⎪⎨⎪=⎪⎩(其中t 为参数).消去参数t 得直线l20y --=, 由cos x ρθ=,sin y ρθ=,得直线l的极坐标方程)sin 2ρθθ-=,即cos 16πρθ⎛⎫+= ⎪⎝⎭曲线C 的极坐标方程为2sin ρθ=,所以22sin ρρθ=,由222x y ρ=+,sin y ρθ=,得曲线C 的直角坐标方程为2220x y y +-=.(2)因为()1,A ρα在直线l 上,2,3B πρα⎛⎫-⎪⎝⎭在曲线C 上, 所以1cos 16πρα⎛⎫+= ⎪⎝⎭,22sin 2cos 2cos 3326ππππρααα⎛⎫⎛⎫⎛⎫=-=--+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以221||2cos 2||6OB OA ρπαρ⎛⎫==-+≤ ⎪⎝⎭,OB OA 的最大值为2.【评析】本题考查了参数方程化普通方程,考查了极坐标与直角坐标互化公式,考查了极坐标的几何意义,考查了三角函数的最值.在第(1)中消去参数可得普通方程,极坐标与直角坐标互化公式可得答案;在第(2)中根据极坐标的几何意义以及三角函数的最值可得到答案.【命题专家现场支招】一、解决问题的思考与对策(一)关注两个“互化”的技能训练参数方程和普通方程的互化、极坐标方程与直角坐标方程的互化是高考每年必考的内容之一,考查形式多样,有直接要求互化的,也有通过转化化为直角坐标方程或普通方程,然后利用解析几何的相关知识解决问题的,因此,应通过专项训练使之熟练化、自动化.【例11】(2020·江苏高三)在极坐标系中,曲线C 的极方程为2sin (0)a a ρθ=≠.以极点为坐标原点,极轴为x 轴的正半轴的平面直角坐标系xOy 中,直线l的参数方程为1(x t y ⎧=-⎪⎪⎨⎪=⎪⎩为参数).已知直线l 与曲线C 有公共点,求实数a 的取值范围.【答案】(,1[1)-∞-⋃+∞【解析】在平面直角坐标系中,曲线C 的方程为222()x y a a +-=,直线l 的普通方程为10x y ++=, 因为直线l 与曲线C 有公共点, 所以圆心(0,)a 到直线l的距离||d a =,解得1a …,或1a …故实数a的取值范围是(,1[1)-∞⋃+∞.【例12】【湖北省2020届高三】已知极坐标系的极点为直角坐标系xOy 的原点,极轴为x 轴的正半轴,两种坐标系中的长度单位相同,圆C 的直角坐标方程为22220x y x y ++-=,直线l 的参数方程为1x t y t =-+⎧⎨=⎩(t 为参数),射线OM 的极坐标方程为3π4θ=. (1)求圆C 和直线l 的极坐标方程;(2)已知射线OM 与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.【答案】(1)圆C:π4ρθ⎛⎫=-⎪⎝⎭;直线l :sin cos 1ρθρθ-=;(2)2【解析】(1)由于222x y ρ+=,cos x ρθ=,sin y ρθ= ,又圆C 的直角坐标方程为22220x y x y ++-=,则圆C 的极坐标方程为22cos 2sin 0ρρθρθ+-=,即π4ρθ⎛⎫=- ⎪⎝⎭.直线l 的参数方程为1x ty t =-+⎧⎨=⎩(t 为参数),消去t 后得y =x +1,直线l 的极坐标方程为sin cos 1ρθρθ-=. (2)当3π4θ=时,3ππ||44OP ⎛⎫=-=⎪⎝⎭ 则点P的极坐标为3π4⎛⎫ ⎪⎝⎭,||222OQ ==,则点Q的极坐标为3π,24⎛⎫⎪ ⎪⎝⎭,故线段PQ的长为22=. 【评析】本题考查直角坐标方程、参数方程与极坐标方程间的转化,利用极坐标求两点间的距离是解决本题的关键.(1)结合直角坐标方程、参数方程及极坐标方程间的关系,求出圆C 和直线l 的极坐标方程即可; (2)将3π4θ=与圆C 和直线l 的极坐标方程联立,可求得,P Q 的极坐标,进而可求得线段PQ 的长.(二)强化对直线参数方程中参数t 的几何意义的认识利用直线参数方程中参数t 的几何意义,可以快速求解与线段长度、距离等相关的问题. 使用时应注意t 表示距离时方程的特征和t 所具有的“方向”性.【例13】(2020·广东高三)在直角坐标系xOy 中,直线l 的参数方程为2cos sin x t y t αα=-+⎧⎨=⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=,直线l 与曲线C交于不同的两点A ,B . (1)求曲线C 的参数方程; (2)若点P 为直线与x 轴的交点,求211||+2|PA|PB 的取值范围. 【答案】(1)1cos sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数);(2)15,416⎛⎤⎥⎝⎦【解析】(1)2cos ρθ=等价于22cos ρρθ=, 将222x y ρ=+,cos x ρθ=代入上式,可得曲线C 的直角坐标方程为2220+-=y y x ,即()2211x y -+=,所以曲线C 的参数方程为1cos sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数).(2)将2cos sin x t y t αα=-+⎧⎨=⎩代入曲线C 的直角坐标方程,整理得;26cos 80-+=t t α,由题意得236cos 320∆=->α,故28cos 9>α,又2cos 1≤α,∴28cos ,19⎛⎤∈ ⎥⎝⎦α, 设方程26cos 80-+=t t α的两个实根分别为1t ,2t ,则126cos t t α+=,128t t =, 所以1t 与2t 同号,由参数t 的几何意义,可得1212||||6|cos |+=+=+=PA PB t t t t α,12||||8⋅==PA PB t t ,∴()()22212122222212211(||||)2||||9cos 4||||||||16+-+-⋅-+===⋅t t t t PA PB PA PB PA PB PA PB t t α, ∵28cos ,19⎛⎤∈ ⎥⎝⎦α,∴29cos 415,16416-⎛⎤∈ ⎥⎝⎦α,所以2211||||+PA PB 的取值范围是15,416⎛⎤⎥⎝⎦. 【评析】本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,三角函数关系式的恒等变变换,正弦型函数性质的应用,一元二次方程根和系数关系的应用,主要考查学生的运算能力和转化能力,属于中档题.(三)关注圆、椭圆参数方程最值问题向三角函数问题的转化涉及有关最值或参数范围问题的求解,常可利用圆与椭圆的参数方程,化为三角函数的最值问题处理. 【例14】(2020·福建高三)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos (0)C a a ρθθ=>,过点()2,4P --的直线l的参数方程为2242x t y t ⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数),直线l 与曲线C 分别交于,A B 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程; (2)当1a =时,求11||||PA PB +的值. 【答案】(1)22(0)y ax a =>,2y x =-;(2)11||||4PA PB +=【解析】(1)由2sin 2cos (0)a a ρθθ=>得:2(sin )2cos a ρθρθ= ∴曲线C 的直角坐标方程为:22(0)y ax a =>由2242x y ⎧=-+⎪⎪⎨⎪=-+⎪⎩消去参数t 得直线l 的普通方程为2y x =- (2)解:当1a =时,曲线C 的直角坐标方程为:22y x =将直线l的参数方程2242x t y t ⎧=-+⎪⎪⎨⎪=-+⎪⎩,代入22y x =得:2400t -+=设,A B 两点对应的参数分别为12t t 、,则有121240t t t t +==∴1212||||||||||PA PB t t t t +=+=+=12||||||40PA PB t t ⋅=⋅=∴11||||||||||||PA PB PA PB PA PB ++===⋅ 【评析】(1)根据极坐标与参数方程和直角坐标的互化求解即可.(2)联立直线的参数方程与曲线C 的直角坐标方程,设,A B 两点对应的参数分别为12t t 、,再利用参数的几何意义求解即可.(四)理解极径、极角几何意义,强化应用意识【例15】(2020·云南昆明一中高三)在直角坐标系xOy 中,直线l 的参数方程为32x ty t =+⎧⎨=-+⎩(t 为参数),以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,点P的极坐标为54π⎛⎫⎪⎝⎭,曲线C 的极坐标方程为24sin 0ρρθ+=.(1)写出直线l 的普通方程和曲线C 的直角坐标方程;(2)若点Q 为曲线C 上的动点,求PQ 中点M 到直线l 的距离的最小值 【答案】(1)50x y --=,()2224x y ++=;(2)1.【解析】(1)直线l 的普通方程为:50x y --=,由线C 的直角坐标方程为:()2224x y ++=. (2)曲线C 的参数方程为2cos 22sin x y αα=⎧⎨=-+⎩(α为参数),点P 的直角坐标为()3,3--,中点32cos 52sin ,22M αα-+-+⎛⎫⎪⎝⎭,则点M 到直线l的距离d =, 当cos 14πα⎛⎫⎪⎝⎭+=时,d的最小值为1, 所以PQ 中点M 到直线l的距离的最小值为1.【评析】本题考查了参数方程与普通方程的互化,极坐标方程与直角坐标方程的转化,以及将距离的最值转化为三角函数问题,意在考查转化与化归的思想,以及计算求解的能力,属于基础题型. (五)注重算法的选择,关注运用本领域知识进行的问题解决将陌生的问题化为已知的问题加以解决,是问题解决的常见思维模式,对极坐标、参数方程的有关问题解决,最简洁的思路就是将极坐标方程转化为直角坐标方程、参数方程转化为普通方程,再利用解析几何的知识解决问题,然而在有些情况下这种转化却会加大运算过程,有时还会出现无法计算结果的情形,近年来高考全国卷就经常出现这种情况,因此除了掌握化为普通直角坐标方程求解的算法外,还应关注运用本领域知识解决问题的算法.【例16】【2018江苏卷】在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.【解析】因为曲线C 的极坐标方程为=4cos ρθ,所以曲线C 的圆心为(2,0),直径为4的圆. 因为直线l 的极坐标方程为πsin()26ρθ-=,则直线l 过A (4,0),倾斜角为π6,所以A 为直线l 与圆C 的一个交点. 设另一个交点为B ,则∠OAB =π6. 连结OB ,因为OA 为直径,从而∠OBA =π2,所以π4cos 236AB ==. 因此,直线l 被曲线C 截得的弦长为23.【评析】本题的解法多样,比如转化为平面直角坐标系中进行研究,如果通过本领域知识——极坐标系进行研究也是一个不错的选择,但对极坐标系中常见方程的类型要很熟悉. (六)注重作图能力的培养与解析几何相同,本部分核心内容也是利用代数的手段研究几何问题,因此正确的作图对于成功解题有着决定性作用,应养成边读边画,以图助理解,以图找思路的良好习惯,图形引领数形结合,战无不胜.【例17】(2020·重庆西南大学附中高三)已知平面直角坐标系中,直线l 的参数方程为1(82x t t y t =+⎧⎨=-⎩为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为223695sin ρθ=-.(1)求直线l 的普通方程以及曲线C 的参数方程;(2)过曲线C 上任意一点E 作与直线l 的夹角为75o 的直线,交l 于点F ,求EF 的最小值. 【答案】(1)2100x y +-=,2cos 3sin x y ϕϕ=⎧⎨=⎩;(2)3010-.【解析】(1)由182x t y t =+⎧⎨=-⎩得22282x t y t=+⎧⎨=-⎩,两式相加并化简得2100x y +-=.将222,cos x y xρρθ=+=代入曲线C 的极坐标方程,可得曲线C 的直角坐标方程为229436x y +=,即22194y x +=,故曲线C 的参数方程为2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数)(2)由(1)得(2cos ,3sin )E ϕϕ,则E 到l 的距离4cos 3sin 10105sin 55d ϕϕϕγ+--+==,其中4tan 3γ=. ()62sin 75sin 4530sin 45cos30cos 45sin 30+=+=+=o o o o o o o . 如图,过点E 作EG l ⊥,交l 于G ,则d EG =,在Rt EFG ∆中,62sin75dEF+==o,当()sin 1ϕγ+=,d 取得最小值5,故EF 的最小值为53010sin 12π=-二、典型问题剖析(一)两种“互化”及其应用【例18】(2020·河南高三)以直角坐标系xOy 的原点为极坐标系的极点,x 轴的正半轴为极轴.已知曲线1C 的极坐标方程为4cos 8sin ρθθ=+,P 是1C 上一动点,2OP OQ =u u u r u u u r,Q 的轨迹为2C .(1)求曲线2C 的极坐标方程,并化为直角坐标方程, (2)若点(0,1)M ,直线l 的参数方程为cos 1sin x t y t αα=⎧⎨=+⎩(t 为参数),直线l 与曲线2C 的交点为A ,B ,当||||MA MB +取最小值时,求直线l 的普通方程.【答案】(1)2cos 4sin ρθθ=+,22(1)(2)5x y -+-=(2)–10x y +=【解析】(1)设点P ,Q 的极坐标分别为()0,ρθ,(,)ρθ), 因为012cos 4sin 2ρρθθ==+, 所以曲线2C 的极坐标方程为2cos 4sin ρθθ=+, 两边同乘以ρ,得224cos sin ρρθρθ=+,所以2C 的直角坐标方程为2224x y x y +=+,即22(1)(2)5x y -+-=.(2)设点A ,B 对应的参数分别为1t ,2t ,则12||,||MA t MB t ==,将直线l 的参数方程cos 1sin x t y t αα=⎧⎨=+⎩,(t 为参数),代入2C 的直角坐标方程()()22–125x y +-=中,整理得22(cos sin )30t t αα-+-=.由根与系数的关系得12122(cos sin ),3t t t t αα+=+=-. ∴1212||||MA MB t t t t +=+=-===≥( 当且仅当sin 21α=-时,等号成立)∴当||||MA MB +取得最小值时,直线l 的普通方程为–10x y +=.【评析】本题考查极坐标方程、普通方程、参数方程的互化、直线参数方程的几何意义,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力. (1)设点P ,Q 的极坐标分别为()0,ρθ,(,)ρθ),利用012ρρ=这一关系,可得Q 的极坐标方程,再化成普通方程,即可得答案;(2)设点A ,B 对应的参数分别为1t ,2t ,则12||,||MA t MB t ==,将直线l 的参数方程cos 1sin x t y t αα=⎧⎨=+⎩,(t 为参数),代入2C 的直角坐标方程,利用韦达定理,从而将问题转化为三角函数的最值问题,求出此时的α值,即可得答案. (二)利用参数方程解决问题【例19】【2019年上海市浦东新区高考一模】已知点,,P 为曲线上任意一点,则的取值范围为( ) A .B .C .D .【解析】 设则由可得,令,, ,,,,,,.选A.(三)利用,ρθ的几何意义解决问题【例20】(2020·全国高三)在直角坐标系xOy 中,曲线C 的参数方程32sin x y ββ⎧=⎪⎨=⎪⎩(β为参数).直线l的参数方程3cos 1sin x t y t αα⎧=⎪⎨=+⎪⎩(t 为参数).(Ⅰ)求曲线C 在直角坐标系中的普通方程;(Ⅱ)以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,当曲线C 截直线l 所得线段的中点极坐标为2,6π⎛⎫⎪⎝⎭时,求直线l 的倾斜角. 【答案】(Ⅰ)221124x y +=;(Ⅱ)56π. 【解析】(Ⅰ)由曲线C的参数方程2sin x y ββ⎧=⎪⎨=⎪⎩(β为参数),得:cos sin 2yββ⎧=⎪⎪⎨⎪=⎪⎩∴曲线C 的参数方程化为普通方程为:221124x y +=; (Ⅱ)解法一:中点极坐标2,6π⎛⎫⎪⎝⎭化成直角坐标为).设直线l 与曲线C 相交于()11,A x y ,()22,B x y两点,则122x x +=,1212y y+=.则2211222211241124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①②,②-①得:222221210124x x y y --+=, 化简得:()211221123323y y x x x x y y -+=-=-=--+⨯,即tan 3l k α=-=, 又()0,απ∈Q ,∴直线l 的倾斜角为56π; 解法二:中点极坐标2,6π⎛⎫⎪⎝⎭化成直角坐标为),将cos 1sin x t y t αα⎧=⎪⎨=+⎪⎩分别代入221124x y +=,得)()22cos 1sin 1124t t αα++=.()()222cos 3sin 6sin 60t t αααα∴+++-=,12226sin 0cos 3sin t t αααα+∴+=-=+,即6sin 0αα--=. sin cos αα∴=,即tan α=.又(0,)απ∈Q ,∴直线l的倾斜角为56π. (四)极坐标与参数方程的综合应用【例21】【2017课标3,理22】在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m my k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C. (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3:cos sin 20l ρθθ+-=,M 为l 3与C 的交点,求M 的极径. 【解析】设(),p x y ,由题设得()()212y k x y x k ⎧=-⎪⎨=+⎪⎩,消去k 得()2240x y y -=≠. 所以C 的普通方程为()2240x y y -=≠.【例22】(2020·四川高三)在平面直角坐标系xOy 中,已知曲线1C 的参数方程为510()10x y ϕϕϕ⎧=⎪⎨=⎪⎩为参数,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos ρθ=.(1)求曲线1C 与曲线2C 两交点所在直线的极坐标方程;(2)若直线l的极坐标方程为sin()4ρθπ+=,直线l 与y 轴的交点为M ,与曲线1C 相交于,A B 两点,求MA MB +的值. 【答案】(1)5cos 2ρθ=;(2) 【解析】(1) 曲线1C 的普通方程为:22(5)10x y -+= 曲线2C 的普通方程为:224x y x +=,即22(2)4x y -+=由两圆心的距离32)d =∈,所以两圆相交, 所以两方程相减可得交线为6215x -+=,即52x =. 所以直线的极坐标方程为5cos 2ρθ=. (2) 直线l 的直角坐标方程:4x y +=,则与y 轴的交点为(0,4)M直线l的参数方程为4x y ⎧=⎪⎪⎨⎪=⎪⎩,带入曲线1C 22(5)10x y -+=得2310t ++=.设,A B 两点的参数为1t ,2t所以12t t +=-1231t t =,所以1t ,2t 同号.所以1212MA MB t t t t +=+=+=【评析】(1)先将1C 和2C 化为普通方程,可知是两个圆,由圆心的距离判断出两者相交,进而得相交直线的普通方程,再化成极坐标方程即可;(2)先求出l 的普通方程有4x y +=,点(0,4)M ,写出直线l的参数方程242x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩,代入曲线1C :22(5)10x y -+=,设交点,A B 两点的参数为1t ,2t ,根据韦达定理可得12t t +和12t t ,进而求得MA MB+的值.【新题好题针对训练】一、单选题1.(2020·北京101中学高三)已知曲线C :22{22x t y a t ==+(t 为参数),(1,0)A -,(1,0)B ,若曲线C 上存在点P 满足0AP BP ⋅=u u u r u u u r,则实数a 的取值范围为( )A .22,22⎡⎤-⎢⎥⎣⎦B .[]1,1-C .2,2⎡⎤-⎣⎦D .[]2,2-【答案】C【解析】曲线C 化为普通方程为:y x a =+,由0AP BP u u u r u u u r⋅=,可得点P 在以AB 为直径的圆221x y +=上,又P 在曲线C 上,即直线与圆存在公共点,故圆心()0,0到y x a =+的距离小于等于半径1,根据点到直线的距离公式有:12a ≤,解得22a -≤≤,故选C.2.(2020·吉林高三)在正方形ABCD 中,动点P 在以点C 为圆心且与BD 相切的圆上,若AP x AB y AD =+u u u v u u u v u u u v,则x y +的最大值为( )A .1B .2C .3D .4【答案】C【解析】设正方形ABCD 的边长为2,以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系xAy ,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,直线BD 的方程为221x y+=,即20x y +-=,点C 到直线BD的距离为d ==则以点C 为圆心且与直线BD 相切的圆C 的方程为()()22222x y -+-=, 设点P的坐标为()2,2θθ+,由AP x AB y AD =+u u u r u u u r u u u r,得()()()()2,22,00,22,2x y x y θθ+=+=,11x y θθ⎧=+⎪⎪∴⎨⎪=+⎪⎩,所以,cos 2sin 2224x y πθθθ⎛⎫+=++=++ ⎪⎝⎭, 因此,x y +的最大值为3.故选:C. 二、填空题3.(2020·北京市十一学校高三)在直角坐标系xOy 中,曲线1C 的方程为222x y +=,曲线2C 的参数方程为2x t y t=-⎧⎨=⎩(t 为参数).以原点O 为极点,x 轴非负半轴为极轴,建立极坐标系,则曲线1C 与2C 的交点的极坐标为___.【答案】4π⎫⎪⎭ 【解析】由曲线2C 的参数方程为2x ty t=-⎧⎨=⎩,则曲线2C 的普通方程为:2x y +=所以221212x x y y x y =⎧+=⎧⇒⎨⎨=+=⎩⎩,则交点为()1,1A由tan y x ρθ=,所以4πρθ= 则点A极坐标为4π⎫⎪⎭,故答案为:4π⎫⎪⎭4.(2020·浙江高三期末)已知正三角形ABC 的边长为4,P 是平面ABC 内一点,且满足3APB π∠=,则PB AC ⋅u u u v u u u v的最大值是______,最小值是______.【答案】不存在 163-【解析】设正三角形ABC 的外接圆为O e ,则O e 的直径4832sin3R π==,43R ∴=,如图以O 为坐标原点,以OC 为y 轴建立平面直角坐标系,3APB ACB π∠=∠=Q ,则点P 在O e 的优弧¼ACB上, 设4343P αα⎫⎪⎪⎝⎭,7,66παπ⎛⎫∈- ⎪⎝⎭ 又2323432,,2,,0,333A B C ⎛⎛⎛--- ⎝⎭⎝⎭⎝⎭, (432343832,2,238sin PB AC αααα⎛⎫=- ⎪ ⎪⎝⎭∴⋅=⋅u u u r u u u r 16336πα⎛⎫-+ ⎪⎝⎭=, 7,66παπ⎛⎫∈- ⎪⎝⎭Q ,40,63παπ⎛⎫∴+∈ ⎪⎝⎭3sin 126πα⎛⎫∴-<+≤ ⎪⎝⎭,则1631638336πα⎛⎫-≤-+< ⎪⎝⎭, 则PB AC ⋅u u u r u u u r的最大值不存在,最小值是163.故答案为:最大值不存在,最小值是. 5.(2020·江苏高三)在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sin θ与cos 1ρθ=-的交点的极坐标为______.【答案】34π⎫⎪⎭【解析】联立2,1sin cos ρθρθ==- 得32sin cos 1sin 214θθθθπ=-∴=-∴=32sin 4ρπ∴==34π⎫⎪⎭,故答案为:34π⎫⎪⎭.三、解答题6.(2020·江苏高三)在平面直角坐标系xOy 中,曲线C 的参数方程为cos (0sin x a a b y b ϕϕ=⎧>>⎨=⎩,ϕ为参数),且曲线C上的点M 对应的参数3πϕ=,以O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的普通方程;(2)若曲线C 上的A ,B 两点的极坐标分别为1(A ρ,)θ,2(B ρ,)2πθ+,求221211ρρ+的值.【答案】(1)221164x y +=;(2)516.【解析】(1)将M 及对应的参数3πϕ=,代入cos (0sin x a a b y b ϕϕ=⎧>>⎨=⎩,ϕ为参数),所以42a b =⎧⎨=⎩,所以曲线1C 的普通方程为221164x y+=.(2)曲线1C 的极坐标方程为2222cos sin 1164ρθρθ+=,将1(A ρ,)θ,2(B ρ,)2πθ+,代入得到:222211cos sin 1164ρθρθ+=,222222cos ()sin ()221164ππρθρθ+++=,所以221211516ρρ+=. 7.(2020·湖北高三期末)在直角坐标系xOy 中,曲线1C 的参数方程为:1cos sin x y θθ=+⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为:()4R πθρ=∈.(Ⅰ)求直线l 与曲线1C 公共点的极坐标;(Ⅱ)设过点()0,1P -的直线m 交曲线1C 于A ,B 两点,求PA PB ⋅的值. 【答案】(Ⅰ)(0,0),)4π(Ⅱ)1【解析】(Ⅰ)易得曲线1C 为圆心是()1,0,半径为1圆,故1C 的普通方程为()2211x y -+=,直线l 的普通方程为y x =,联立方程()2211x y y x ⎧-+=⎪⎨=⎪⎩,解得00x y =⎧⎨=⎩或11x y =⎧⎨=⎩, 所以直线l 与曲线1C 公共点的极坐标为()0,0与4π⎫⎪⎭. (Ⅱ)依题意,设直线m 的参数方程为cos 1sin x t y t αα=⎧⎨=-+⎩(α为倾斜角,t 为参数),代入()2211x y -+=,整理得()22sin cos 10t t αα-++=.设,A B 对应的参数分别为12,t t 则121PA PB t t ⋅==.8.(2019·福建上杭一中高三)在直角坐标系xOy 中,设倾斜角为α的直线2cos :sin x t l y t αα=+⎧⎪⎨=⎪⎩(t 为参数)与曲线2cos :sin x C y θθ=⎧⎨=⎩(θ为参数)相交于不同的两点,A B .(1)若3πα=,求线段AB 中点M 的坐标;(2)若2PA PB OP ⋅=,其中(2P ,求直线l 的斜率.【答案】(1)12,13⎛⎝⎭;(2【解析】设直线l 上的点A ,B 对应参数分别为1t ,2t .将曲线C 的参数方程化为普通方程2214x y +=.(1)当3πα=时,设点M 对应参数为0t .直线l方程为122{x ty =+=(t 为参数).代入曲线C 的普通方程2214x y +=,得21356480++=t t ,则12028213t t t +==-,所以,点M的坐标为12,13⎛ ⎝⎭.(2)将2cos {sin x t y t αα=+=代入2214x y +=,得()()222cos 4sin 4cos 120t t αααα++++=,因为122212cos 4sin t t ααPA ⋅PB ==+,27OP =,所以22127cos 4sin αα=+. 得25tan 16α=.由于()32cos cos 0ααα∆=->,故tan α=. 所以直线l的斜率为4. 9.(2020·鄂尔多斯市第一中学高三)在直角坐标系xOy 中,圆O 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),经过变换2x xy y=''⎧⎨=⎩,得曲线C .以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(Ⅰ)求曲线C 的极坐标方程.(Ⅱ)若A ,B 为曲线C 上的动点,且2AOB π∠=,证明:2211OAOB+为定值.【答案】(Ⅰ)2222cos sin 14ραρα+=;(Ⅱ)证明见解析.。
备战2018年高考高三数学热点难点突破 极坐标与参数方程考纲要求:极坐标与参数方程在高考中常以填空或选择的形式出现,在知识上结合解析几何,考查学生曲线方程的转化能力,以及解析几何的初步技能。
题目难度不大,但需要学生能够快速熟练的解决问题基础知识回顾:(一)极坐标:1、极坐标系的建立:以平面上一点为中心(作为极点),由此点引出一条射线,称为极轴,这样就建立了一个极坐标系2、点坐标的刻画:用一组有序实数对(),ρθ确定平面上点的位置,其中ρ代表该点到极点的距离,而θ表示极轴绕极点逆时针旋转至过该点时转过的角度,通常:[)0,0,2ρθπ>∈3、直角坐标系与极坐标系坐标的互化:如果将极坐标系的原点与直角坐标系的原点重合,极轴与x 轴重合,则同一个点可具备极坐标(),ρθ和直角坐标(),x y ,那么两种坐标间的转化公式为:222cos sin x y x y ρθρθρ⎧=⎪=⎨⎪=+⎩,由点组成的直角坐标方程与极坐标方程也可按照此法则进行转化,例如:极坐标方程cos sin 11x y ρθρθ+=⇒+=(在转化成,x y 时要设法构造cos ,sin ρθρθ ,然后进行整体代换即可) (二)参数方程:1、如果曲线(),0F x y =中的变量,x y 均可以写成关于参数t 的函数()()x f t y g t =⎧⎪⎨=⎪⎩,那么()()x f t y g t =⎧⎪⎨=⎪⎩就称为该曲线的参数方程,其中t 称为参数2、参数方程与一般方程的转化:消参法 (1)代入消参:()323323x t y x y t=+⎧⇒=+-⎨=+⎩(2)整体消参:2211x t t y t t ⎧=+⎪⎪⎨⎪=+⎪⎩,由222112t t t t ⎛⎫+=++ ⎪⎝⎭可得:22x y =+(3)平方消参:利用22sin cos 1θθ+=消去参数3、常见图形的参数方程:(1)圆:()()222x a y b r -+-=的参数方程为:[)cos 0,2sin x a r y b r θθπθ=+⎧∈⎨=+⎩,,其中θ为参数,其几何含义为该圆的圆心角(2)椭圆:()222210x y a b a b +=>>的参数方程为[)cos 0,2sin x a y b θθπθ=⎧∈⎨=⎩,,其中θ为参数,其几何含义为椭圆的离心角(3)双曲线:()222210x y a b a b -=>>的参数方程为[)10,2cos tan x ay b θπθθ⎧=⎪∈⎨⎪=⎩,,其中θ为参数,其几何含义为双曲线的离心角(4)抛物线:()220y px p =>的参数方程为222x pt y pt⎧=⎨=⎩,其中t 为参数(5)直线:过(),M a b ,倾斜角为θ的直线参数方程为cos sin x a t t R y b t θθ=+⎧∈⎨=+⎩,,其中t 代表该点与M 的距离注:对于极坐标与参数方程等问题,通常的处理手段是将方程均转化为直角坐标系下的一般方程,然后利用传统的解析几何知识求解应用举例:例1.【2018届高三南京市联合体学校调研测试】已知在平面直角坐标系xoy 中, O 为坐标原点,曲线C :{x sin y cos αααα=+=-(α为参数),在以平面直角坐标系的原点为极点, x 轴的正半轴为极轴,有相同单位长度的极坐标系中,直线l : sin 16πρθ⎛⎫+= ⎪⎝⎭. (Ⅰ)求曲线C 的普通方程和直线l 的直角坐标方程; (Ⅱ)求与直线l 平行且与曲线C 相切的直线的直角坐标方程。