2011级高数(下)试题及答案
- 格式:doc
- 大小:540.52 KB
- 文档页数:11
成都七中2008-2009学年下期 高2011级期中考试数学试卷参考答案及评分标准命题人:邱旭 审题人:魏华一、选择题(本大题共12小题,每小题5分,共60分)二、填空题(本大题共4小题,每小题4分,共16分)13.{x|2k π+2π<x<2k π+23π,其中k ∈Z}; 14.2; 15.[-23,3]; 16.①③④.三、解答题(本大题共6小题,共74分)17.解:(1)由已知,得311=+-tan αtan α,…………………………………………(2分)解得tan α=-2; …………………………………………………(4分)(2)原式=)(22cos αsin αsin ααcos αsin --…………………………………………(6分)=sin αcos αsin α+ ………………………………………………(8分)=1+tan α1……………………………………………………(10分)=21.…………………………………………………………(12分) 18.解:(1)由已知,得cosA(cosAcosB+sinAsinB)=cosB, …………………(1分)即(1-cos 2A)cosB=sinAcosAsinB, ………………………………(2分) 亦即sin 2AcosB=sinAcosAsinB.…………………………………(3分) 因为sinA>0,所以sinAcosB=cosAsinB, ………………………(4分) 于是sin(A-B)=0.…………………………………………………(5分) 又-π<A-B<π,从而A=B.故ΔABC 是等腰三角形.………………(6分) (2)在ΔABC 中,有C=π-(A+B)=π-2A,………………………………(7分) 所以tanC=tan(π-2A)=-tan2A.…………………………………(9分)由tanA=2得tan2A=Atan tanA 212-=-34.……………………………(11分)所以tanC 的值为34. ……………………………………………(12分)19.解:(1)由tan α=21,且0<α<π得:0<α<2π, …………………………(1分) 且sin α=55,cos α=552. ……………………………………(2分) 又0<β<π,所以0<α+β<23π. …………………………………(3分) 又由sin(α+β)=102-<0得: π<α+β<23π,且cos(α+β)=1027-.…………………………(4分) 故cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=1027-•552102-•55=10103-.…………………………(6分) (2)由cos β=10103-<0且0<β<π得,2π<β<π,且sin β=1010. (8分)所以cos(α-β)=cos αcos β+sin αsin β=552•(10103-)+55•1010=22-.…………(10分)又由0<α<2π,2π<β<π,得-π<α-β<0.…………………………(11分) 所以α-β=43π-.……………………………………………………(12分)20.解:连结BD,由已知得AD=2cos θ,BD=2sin θ(其中4π<θ<2π).………(2分)在ΔBCD 中,由弦切角定理得∠BDC=θ,又DC=AB=2,∴ΔBCD 面积为2sin 2θ; ……………………………………………(4分) 又Rt ΔABD 的面积为2sin θ•cos θ. ………………………………(5分) ∴四边形ABCD 的面积为S=2sin θ•cos θ+2sin 2θ. ………………(6分) 因为S=sin2θ+(1-cos2θ) …………………………………………(8分)=2sin(2θ-4π)+1 …………………………………………(10分)所以当θ=83π时,四边形ABCD 面积取得最大值2+1. …………(12分)21.解:(1)由已知得g(α)=cos α•sin αsin α+-11+sin α•cos αcos α+-11…………(1分)=cos α•αcos sin α22)1(-+sin α•αsin cos α22)1(- …(2分) =cos α•cos αsin α-1+sin α•sin αcos α-1 ……………(3分) 由α为第二象限角,得sin α>0,cos α<0.…………………………(4分)所以g(α)=-(1-sin α)+(1-cos α) ………………………………(5分)=sin α-cos α……………………………………………(6分)(2)由已知,得g(α)=sin α-cos α=57. ……………………………(7分)平方,得sin α•cos α=-2512.① …………………………………(8分) 又由α∈(43π,π),得sin α+cos α<0.…………………………(9分)所以sin α+cos α=-cos αsin α⋅+21=-51.② ………………(10分)又sin 3α+cos 3α=(sin α+cos α)(sin 2α-sin αcos α+cos 3α)=(sin α+cos α)(1-sin αcos α) …………(11分)结合①②,得sin 3α+cos 3α=-12537.……………………………(12分) 22.解:(1)由f(x)=cos(ωx+φ)是R 上的奇函数,得f(0)=cos φ=0.又-π≤φ≤0,所以φ=-2π.………………………………………(1分)所以f(x)=cos(ωx-2π)=sin ωx. ………………………………(2分)由y=f(x)的图象关于直线x=4π对称,且ω>0,得ω•4π=k π+2π(k ∈N),解得ω=4k+2(k ∈N). ① ………………(3分)又f(x)在区间⎥⎦⎤⎢⎣⎡6,0π上是单调函数,所以0≤ω•x ≤ω•6π≤2π,解得ω≤3.② ……………………………………………………(4分)由①②,得ω=2.所以f(x)=sin2x. ………………………………(5分)(2)g(x)=f(x-4π)=sin(2x-2π)=-cos2x.……………………………(6分) ①原式=2044040140401sin cos sin cos sin +++-+ =204)2020(202)2020202sin cos sin cos sin (cos sin +++ =2042020sin cos sin + …………………………………………(7分) =20202042020cos cos sin cos sin ⋅+=2040sin 220cos sin + …………………………………………(8分) =20)2060(220cos sin sin -+ …………………………………(9分)=202020320cos sin cos sin -+ =3. ………………………………………………………(10分) ②m=f(x)-g(x)=sin2x+cos2x=2sin(2x+4π).…………………(11分) 易知函数y=2sin(2x+4π)在区间⎥⎦⎤⎢⎣⎡8,0π上单调递增,在区间⎥⎦⎤⎢⎣⎡6,8ππ上单调递减.…………………………………………………………………(12分)又当x=0时,f(x)-g(x)=1; 当x=8π时,f(x)-g(x)=2;当x=6π时,f(x)-g(x)=213+. ………………………………(13分) 故所求实数m 的取值范围是m=2或1≤m<213+.……………(14分)。
2011年普通高等学校招生全国统一考试数 学(理科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.(1) 复数212ii +-的共轭复数是 (A) 35i - (B) 35i (C) i - (D) i(2) 下列函数中,既是偶函数又在(0,+∞)单调递增的函数是(A)y=x 2(B)y=|x|+1(C)y=-x 2+1 (D)y=2-|x|(3) 执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A ) 120(B) 720 (C) 1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则两位同学参加同一个兴趣小组的概率为 (A )13 (B) 12 (C) 23 (D )34(5) 已知角θ的顶点与原点重合,始边与x 轴的正半周重合,始边在直线y=2x 上,则cos2θ= (A )45-(B) 35- (C) 35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(A ) (B ) (C ) (D )(7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB|为C 的实轴长的2倍,则C 的实轴长的2倍,则C 的离心率为 (A (C ) (B ) 2 (D )3(8)51()(2a x x x x+-的展开式中各项系数的和为2,则该展开式中常数项为 (A )-40 (C ) -20 (B ) 20 (D )40 (9)由曲线y ,直线y=x-2及y 轴所围成的图形的面积为(A )310 (B )4 (C )163(D )6 (10)已知a与b 均为单位向量,其夹角为θ,有下列四个命题12:||10,3p a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:||1,3p a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦3:||10,3p a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:||1,3p a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,p p (B )13,p p (C )23,p p (D )24,p p (11)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=,则(A )()f x 在(0,)2π单调递减 (B )()f x 在3(,)44ππ单调递减(C )()f x 在(0,)2π单调递增 (D )()f x 在3(,)44ππ单调递增 (12)函数11y x=-的图象与函数2sin (24)y x x π=-≤≤的图象所有交点的横坐标之和等于(A) 2 (B)4 (C)6 (D)8第Ⅱ卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答,第(22)题~第(24)题为选考题,考生根据要求作答。
华南农业大学期末考试试卷(A 卷)2010--2011学年第2学期 考试科目: 高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、单项选择题(本大题共5小题,每小题3分,共15分)1.与三坐标轴夹角均相等的单位向量为 ( )A.(1,1,1) B.111(,,)333 C. D.111(,,)333--- 2.设lnxz y=,则11x y dz ===( )A.dy dx - B.dx dy - C.dx dy + D.03.下列级数中收敛的是 ( )A.1n ∞= B.1n ∞= C.113n n ∞=∑ D.113n n∞=∑4.当||1x <时,级数11(1)n n n x ∞-=-∑是 ( )A.绝对收敛 B.条件收敛 C.发散 D.敛散性不确定 5.设函数()p x ,()q x ,()f x 都连续,()f x 不恒为零,1y ,2y ,3y 都是()()()y p x y q x y f x '''++=的解,则它必定有解是( )(今年不作要求)A.123y y y ++ B.123y y y +- C.123y y y -- D.123y y y ---二、填空题(本大题共5小题,每小题3分,共15分)1.微分方程''6'90y y y -+=的通解为_____.(今年不作要求) 2.设有向量(4,3,1)a →=,(1,2,2)b →=-,则2a b →→-=_________. 3.过点(1,1,0)-且与平面32130x y z +--=垂直的直线方程是______. 4.设2cos()z xy =,则zy∂∂=_______. 5.设L 为曲线2y x =上从点(0,0)到点(1,1)的一线段,则32(2)Lx y dx +⎰___.三、计算题(本大题共7小题,每小题6分,共42分) 1.求微分方程2(12)(1)0x y dx x dy +++=的通解.2.设22()xyz x y =+,求z x ∂∂及2z x y∂∂∂.3.判断级数23112123!10101010nn ⋅⋅⋅+++++的敛散性.4.设一矩形的周长为2,现让它绕其一边旋转,求所得圆柱体体积为最大时矩形的面积及圆柱体的体积.5.将函数2()x f x xe -=展开成x 的幂级数,并确定其收敛域. 6.设(,)z z x y =是由方程2z x y z e +-=确定的隐函数,求全微分dz. 7.计算二重积分cos Dydxdy y⎰⎰,其中D 是由y y x =围成的区域.四、解答题(本大题共4小题,每小题7分,共28分) 1.计算曲线积分22(2)()Lxy x dx x y dy -++⎰,其中L 是由曲线2y x =和2y x =所围成的区域的正向边界曲线. 2.计算二重积分Dσ⎰⎰,其中区域D 由221x y +≤,0x ≥及0y ≥所确定.3.设()u f xyz =,(0)0f =,(1)1f '=,且3222()ux y z f xyz x y z ∂'''=∂∂∂,试求u 的表达式.(今年不作要求)4.计算曲面积分)I xdydz ydzdx zdxdy ∑=++,其中∑为上半球面z =(今年不作要求)参考答案一、选择题(本大题共5小题,每小题3分,共15分) 1.C 2.B 3.C 4.A 5.B 二、填空题(本大题共5小题,每小题3分,共15分) 1.312()x y C C x e =+ 2.(7,8,0) 3.11321x y z+-==- 4.22sin()xy xy - 5.710三、计算题(本大题共7小题,每小题6分,共42分) 1.求微分方程2(12)(1)0x y dx x dy +++=的通解. 解:21112x dx dy x y =-++⎰⎰..........(1分) 221111(1)(12)21212d x d y x y+=-+++⎰⎰.........(5分) 2ln(1)ln |12|ln x y C +=-++,即2(1)(12)x y C ++=......(6分) 2.设22()xyz x y =+,求z x ∂∂及2zx y∂∂∂.解:设v z u =,22u x y =+,v xy =..........(1分)22222222()(ln())xy z z u z v x y x y y x y x u x v x x y∂∂∂∂∂=+=+++∂∂∂∂∂+..........(3分)243342222222222(2)()[(21ln())ln()]()xy z x x y y x y xy xy x y x y x y x y ∂++=++++++∂∂+.(6分) 3.判断级数23112123!10101010n n ⋅⋅⋅+++++的敛散性.解:11(1)!10lim lim !10n n n n n nu n u n ρ++→∞→∞+==..........(3分) 1lim10n n →∞+==∞...........(5分)所以级数发散........(6分)4.设一矩形的周长为2,现让它绕其一边旋转,求所得圆柱体体积为最大时矩形的面积及圆柱体的体积.解:设矩形两边长分别为,x y .则1x y +=,假设绕长度为y 的一边旋转,则圆柱体体积为2V x y π=............(2分)作拉氏函数2(,,)(1)F x y x y x y λπλ=++-........(3分) 解方程组22001xy x x y πλπλ+=⎧⎪+=⎨⎪+=⎩................(4分) 得可能的极值点21(,)33..............(5分)由题意知道其一定是所求的最值点,所以最大体积为427π,对应面积为29..........(6分) 5.将函数2()x f x xe -=展开成x 的幂级数,并确定其收敛域.解:因为212!!n xx x e x n =+++++ .......(1分)所以2221(1)222!2!xnnn x x x en -=-+++-+⋅⋅ ..........(3分)23112211()(1)(1)222!2!2(1)!x n nnn n n n x x x x f x xex n n +∞---===-+++-+=-⋅⋅⋅-∑(5分)收敛域为(,)-∞+∞..................(6分)6.设(,)z z x y =是由方程2z x y z e +-=确定的隐函数,求全微分dz . 解:2(,,)z F x y z x y z e =+--........(1分) 1,2,1z x y z F F y F e ===--...........(3分) 所以12,11y x z z z z F F z z y x F e y F e ∂∂=-==-=∂+∂+.........(5分) 故1(2)1zz z dz dx dy dx ydy x y e ∂∂=+=+∂∂+..........(6分) 7.计算二重积分cos Dydxdy y ⎰⎰,其中D 是由y =及y x =围成的区域. 解:积分区域为:2{(,)|01,}D x y y y x y =≤≤≤≤........(1分)210cos cos y y Dyy dxdy dy dx y y =⎰⎰⎰⎰..........(3分) 1(1)cos y ydy =-⎰............(5分) 1cos1=-.........(6分)四、解答题(本大题共4小题,每小题7分,共28分) 1.计算曲线积分22(2)()Lxy x dx x y dy -++⎰,其中L 是由曲线2y x =和2y x =所围成的区域的正向边界曲线. 解:22(2)()(12)LDxy x dx x y dy x d σ-++=-⎰⎰⎰......(2分) 212)xdx x dy =-⎰........(4分) 1312322(22)x x x x dx =--+⎰........(6分)130=......(7分) 2.计算二重积分Dσ⎰⎰,其中区域D 由221x y +≤,0x ≥及0y ≥所确定. 解:'DD σθ=..........(2分)120d πθ=⎰⎰............(4分) 224d ππθ-=⎰......(6分)=(2)8ππ-=.........(7分)3.设()u f xyz =,(0)0f =,'(1)1f =,且3222()ux y z f xyz x y z ∂'''=∂∂∂,试求u 的表达式.解:22(),()()u u yzf xyz zf xyz xyz f xyz x x y∂∂''''==+∂∂∂3222()3()()uf xyz xyzf xyz x y z f xyz x y z∂''''''=++∂∂∂........(2分) 因为3222()u x y z f xyz x y z∂'''=∂∂∂,所以()3()0f xyz xyzf xyz '''+=令xyz t =,得3()()0tf t f t '''+=......(4分)解之得113311(),(1)1,1,()由得所以f t C t f C f t t --'''====.....(5分)解得22332233(),(0)0,0,()22由得所以f t t C f C f t t =+===.....(6分)即233()()2u f xyz xyz ==.......(7分)4.计算曲面积分)I xdydz ydzdx zdxdy ∑=++,其中∑为上半球面z = 解:因为在曲面∑a ,所以()I a xdydz ydzdx zdxdy ∑=++⎰⎰..........(1分)补曲面2221{(,,)|0,}x y z z x y a ∑==+≤,1∑取下侧..........(2分) 由高斯公式得1()I a xdydz ydzdx zdxdy ∑+∑=++⎰⎰=342(111)323a dv a a a ππΩ++=⨯=⎰⎰⎰..(4分) 而111()00a xdydz ydzdx zdxdy azdxdy dxdy ∑∑∑++===⎰⎰⎰⎰⎰⎰.....(6分)故)I xdydz ydzdx zdxdy ∑=++=114()()2a xdydz ydzdx zdxdy a π∑+∑∑-++=⎰⎰⎰⎰.......(7分)。
绝密★启用前2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题...卷上作答无效....... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U=(M N )I ð (A ){}12,(B ){}23, (C ){}2,4 (D ){}1,4 【答案】D【命题意图】本题主要考查集合交并补运算. 【解析】{2,3},(){1,4}U M N M N =∴=ðQ I I(2)函数0)y x =≥的反函数为(A )2()4xy x R =∈ (B )2(0)4xy x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【答案】B【命题意图】本题主要考查反函数的求法.【解析】由原函数反解得24yx =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4xy x =≥.(3)设向量,a b 满足||||1a b == ,12a b ⋅=-r r ,则2a b +=(A (B (C (D【答案】B【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=r r r r r u r ,所以2a b +=r r (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5.(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b > 【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = (A )8 (B )7 (C )6 (D )5 【答案】D【命题意图】本题主要考查等差数列的基本公式的应用. 【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =.解法二: 221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9【答案】C【命题意图】本题主要考查三角函数的周期性与三角函数图像变换的关系.【解析】由题意将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍,得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(8)已知直二面角l αβ--,点A α∈,A C l ⊥,C 为垂足,B β∈,B D l ⊥,D 为垂 足,若2,1AB AC BD ===,则C D = (A ) 2 (B(C (D )1 【答案】C【命题意图】本题主要考查二面角的平面角及解三角形.【解析】因为l αβ--是直二面角, A C l ⊥,∴AC ⊥平面β,A C B C ∴⊥BC ∴=又B D l ⊥,CD ∴=(9) 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 (A) 12种 (B) 24种 (C) 30种 (D)36种 【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.(10) 设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5()2f -=(A) -12(B)1 4- (C)14(D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值.【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111((2)()()2(12222222f f f f -=-+=-=-=-⨯⨯-=-(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C = (A)4 (B)【答案】C【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.(12)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π 【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离O M =,在R t O M N ∆中,30OMN ︒∠=, ∴12O N O M ==故圆N 的半径r ==,∴圆N的面积为213S r ππ==.第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2011-2012学年第二学期《高等数学》答案一.填空题(每小题4分,共20分)1.函数2249z x y =+在点()2,1的梯度为grad z ={16,18};2.函数44222z x y x xy y =+---的极值点是()()1,1,,1,1--;3.假设L 为圆222x y a +=的右半部分,则22Lx y ds +=⎰____2a π;4.设22e sin (2)x A y xy z xzy =+++i j k ,则(1,0,1)div |A = 0 ,5.设13y =,223y x =+,233e x y x =++都是方程22(2)(2)(22)66x x y x y x y x '''---+-=-的解,则方程的通解为 2123e x y c x c =++.二.(本题8分)计算三重积分222()x y z dv Ω++⎰⎰⎰,其中Ω是由2221x y z ++=所围成的闭球体.解:⎰⎰⎰⋅=122020sin dr r r d d ϕϕθππ4’π54= 4’三. (本题8分)证明:(),f x y xy =在点()0,0处连续,()0,0x f 与()0,0y f 存在,但在()0,0处不可微.证 ()0l i m 00,0x y x y f →→== ,故(),f x y 在点()0,0处连续; 2’又由定义()()(),00,00,0lim00x x f x f f x →-==-, ()0000,0lim00y y y f y →⋅-==-; 2’但22000limxy x yx yρ→--⋅-⋅+不存在,故在()0,0 处不可微。
4’四.(本题8分)设函数),(y x u 有连续偏导数,试用极坐标与直角坐标的转化公式θθsin ,cos r y r x == ,将xuyy u x∂∂-∂∂变换为θ,r 下的表达式. 解,u u r u u u r ux r x x y r y yθθθθ∂∂∂∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂∂∂∂ 2’ 再由cos ,sin x r y y θθ==,分别对,x y 求导数,得1cos sin 0sin cos r r x x r r x x θθθθθθ∂∂⎧=-⎪⎪∂∂⎨∂∂⎪=+⎪∂∂⎩和0cos sin 0sin cos r r y y r r y y θθθθθθ∂∂⎧=-⎪∂∂⎪⎨∂∂⎪=+⎪∂∂⎩解得sin cos ,r x x r θθθ∂∂==-∂∂,cos sin ,r y x rθθθ∂∂==∂∂从而sin cos u u u x r r θθθ∂∂∂=-∂∂∂,cos sin u u u y r r θθθ∂∂∂=+∂∂∂, 4’ 所以x u yy u x ∂∂-∂∂=θ∂∂u2’五.(8分)计算22d d L x y y xx y -+⎰ ,其中L 为(1)圆周()()22111x y -+-=(按反时针方向);解:()()222222222222222x x y x x y x y x x y y x y x y x y ⎛⎫⎛⎫∂+-⋅-∂-=== ⎪ ⎪∂+∂+⎝⎭⎝⎭++,而且原点不在该圆域内部,从而由格林公式,原式0= 4’ (2)闭曲线1x y +=(按反时针方向).解:()()222222222222222x x y x x y x y x x y y x y x y x y ⎛⎫⎛⎫∂+-⋅-∂-=== ⎪ ⎪∂+∂+⎝⎭⎝⎭++, 原式()1122d d d d 1001120.01L L Dx y y x x y y x dxdy x y π--===+=+⎰⎰⎰⎰ 4’六.(8分)计算d y S ∑⎰⎰,∑是平面4=++z y x 被圆柱面122=+y x 截出的有限部分. 解: 4,1,1x y z x y z z =--=-=-,1113dS dxdy dxdy =++=,:01,02D r θπ≤≤≤≤ 原式3D ydxdy =⎰⎰4’1232203sin 3cos 03ar d r dr ππθθθ==-⋅=⎰⎰ 4’七.(8分)计算曲面积分2I yzdzdx dxdy ∑=+⎰⎰,其中∑为上半球面224z x y =--的上侧解 取1∑为xOy 平面上圆224x y +≤的下侧,记Ω为1∑与∑所围的空间闭区域。
2011年江苏数学高考试卷一、填空题(共14小题,每小题5分,满分70分)1.(5分)已知集合A={﹣1,1,2,4},B={﹣1,0,2},则A∩B=_________.2.(5分)函数f(x)=log5(2x+1)的单调增区间是_________.3.(5分)设复数z满足i(z+1)=﹣3+2i(i为虚数单位),则z的实部是_________.4.(5分)根据如图所示的伪代码,当输入a,b分别为2,3时,最后输出的m的值为_________.5.(5分)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是_________.6.(5分)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差s2=_________.7.(5分)已知,则的值为_________.8.(5分)在平面直角坐标系xOy中,过坐标原点的一条直线与函数的图象交于P、Q两点,则线段PQ长的最小值是_________.9.(5分)函数f(x)=Asin(ωx+ϕ),(A,ω,ϕ是常数,A>0,ω>0)的部分图象如图所示,则f(0)= _________.10.(5分)已知,是夹角为的两个单位向量,=﹣2,=k+,若•=0,则实数k的值为_________.11.(5分)已知实数a≠0,函数,若f(1﹣a)=f(1+a),则a的值为_________.12.(5分)在平面直角坐标系xOy中,已知P是函数f(x)=e x(x>0)的图象上的动点,该图象在点P处的切线l交y轴于点M,过点P作l的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是_________.13.(5分)设 1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,则q的最小值是_________.14.(5分)设集合,B={(x,y)|2m≤x+y≤2m+1,x,y∈R},若A∩B≠∅,则实数m的取值范围是_________.二、解答题(共9小题,满分120分)15.(14分)在△ABC中,角A、B、C的对边分别为a,b,c(1)若,求A的值;(2)若,求sinC的值.16.(14分)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.17.(14分)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.18.(16分)如图,在平面直角坐标系xOy中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k(1)若直线PA平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k>0,求证:PA⊥PB.19.(16分)已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致(1)设a>0,若函数f(x)和g(x)在区间[﹣1,+∞)上单调性一致,求实数b的取值范围;(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a﹣b|的最大值.20.(16分)设M为部分正整数组成的集合,数列{a n}的首项a1=1,前n项和为S n,已知对任意整数k∈M,当整数n>k时,S n+k+S n﹣k=2(S n+S k)都成立(1)设M={1},a2=2,求a5的值;(2)设M={3,4},求数列{a n}的通项公式.21.(10分)A.选修4﹣1:几何证明选讲如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2).圆O1的弦AB交圆O2于点C ( O1不在AB 上).求证:AB:AC为定值.B.选修4﹣2:矩阵与变换已知矩阵,向量.求向量,使得A2=.C.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy中,求过椭圆(φ为参数)的右焦点,且与直线(t为参数)平行的直线的普通方程.D.选修4﹣5:不等式选讲(本小题满分10分)解不等式:x+|2x﹣1|<3.22.(10分)如图,在正四棱柱ABCD﹣A1B1C1D1中,AA1=2,AB=1,点N是BC的中点,点M在CC1上.设二面角A1﹣DN﹣M的大小为θ(1)当θ=90°时,求AM 的长;(2)当时,求CM 的长.23.(10分)设整数n≥4,P(a,b)是平面直角坐标系xOy 中的点,其中a,b∈{1,2,3,…,n},a>b.(1)记A n为满足a﹣b=3 的点P 的个数,求A n;(2)记B n为满足是整数的点P 的个数,求B n.2011年江苏数学高考试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.(5分)已知集合A={﹣1,1,2,4},B={﹣1,0,2},则A∩B={﹣1,2}.考点:交集及其运算.专题:计算题.分析:根据已知中集合A={﹣1,1,2,4},B={﹣1,0,2},根据集合交集运算法则我们易给出A∩B 解答:解:∵集合A={﹣1,1,2,4},B={﹣1,0,2},∴A∩B={﹣1,2}故答案为:{﹣1,2}点评:本题考查的知识点是集合交集及其运算,这是一道简单题,利用交集运算的定义即可得到答案.2.(5分)函数f(x)=log5(2x+1)的单调增区间是(﹣,+∞).考点:对数函数的单调性与特殊点.专题:计算题.分析:要求函数的单调区间,我们要先求出函数的定义域,然后根据复合函数“同增异减”的原则,即可求出函数的单调区间.解答:解:要使函数的解析有有意义则2x+1>0故函数的定义域为(﹣,+∞)由于内函数u=2x+1为增函数,外函数y=log5u也为增函数故函数f(x)=log5(2x+1)在区间(﹣,+∞)单调递增故函数f(x)=log5(2x+1)的单调增区间是(﹣,+∞)故答案为:(﹣,+∞)点评:本题考查的知识点是对数函数的单调性与特殊点,其中本题易忽略定义域,造成答案为R 的错解.3.(5分)设复数z满足i(z+1)=﹣3+2i(i为虚数单位),则z的实部是1.考点:复数代数形式的混合运算.专题:计算题.分析:复数方程两边同乘i,化简后移项可得复数z,然后求出它的实部.解答:解:因为i(z+1)=﹣3+2i,所以i•i(z+1)=﹣3i+2i•i,所以z+1=3i+2,z=1+3i它的实部为:1;故答案为:1点评:本题是基础题,考查复数代数形式的混合运算,考查计算能力,常考题型.4.(5分)根据如图所示的伪代码,当输入a,b分别为2,3时,最后输出的m的值为3.考点:伪代码.专题:图表型.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数 m=的值,代入a=2,b=3,即可得到答案.解答:解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数 m=的值,∵a=2<b=3,∴m=3故答案为:3点评:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.5.(5分)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是.考点:古典概型及其概率计算公式.专题:计算题.分析:根据题意,首先用列举法列举从1,2,3,4这四个数中一次随机取两个数的全部情况,可得其情况数目,进而可得其中一个数是另一个的两倍的情况数目,由古典概型的公式,计算可得答案.解答:解:从1,2,3,4这四个数中一次随机取两个数,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种情况;其中其中一个数是另一个的两倍的有两种,即(1,2),(2,4);则其概率为=;故答案为:.点评:本题考查古典概型的计算,解本题时,用列举法,注意按一定的顺序,做到不重不漏.6.(5分)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差s2= 3.2.考点:极差、方差与标准差.专题:计算题.分析:首先根据所给的这组数据求出这组数据的平均数,再利用求方差的公式,代入数据求出这组数据的方差,得到结果.解答:解:∵收到信件数分别是10,6,8,5,6,∴收到信件数的平均数是=7,∴该组数据的方差是,故答案为:3.2点评:本题考查求一组数据的方差,对于一组数据,通常要求的是这组数据的众数,中位数,平均数,方差分别表示一组数据的特征,这样的问题可以出现在选择题或填空题.7.(5分)已知,则的值为.考点:二倍角的正切;两角和与差的正切函数.专题:计算题;方程思想.分析:先利用两角和的正切公式求得tanx的值,从而求得tan2x,即可求得.解答:解:∵,∴=2,解得tanx=;∴tan2x===∴==故答案为点评:本题考查了二倍角的正切与两角和的正切公式,体现了方程思想,是个基础题.8.(5分)在平面直角坐标系xOy中,过坐标原点的一条直线与函数的图象交于P、Q两点,则线段PQ长的最小值是4.考点:两点间距离公式的应用.专题:计算题.分析:由题意和函数的图象关于原点对称知当过原点的直线的斜率是1时,直线与函数图形的交点之间的距离最短,写出直线的方程,求出直线与函数的交点坐标,利用两点之间的距离公式得到结果.解答:解:由题意知当过原点的直线的斜率是1时,直线与函数图形的交点之间的距离最短,而y=x与y=的两个交点的坐标是(,)(﹣,﹣),∴根据两点之间的距离公式得到|PQ|===4,故答案为:4点评:本题考查反比例函数的图形的特点,考查直线与双曲线之间的交点坐标的求法,考查两点之间的距离公式,是一个综合题目.9.(5分)函数f(x)=Asin(ωx+ϕ),(A,ω,ϕ是常数,A>0,ω>0)的部分图象如图所示,则f(0)=.考点:函数y=Asin(ωx+φ)的图象变换.专题:计算题;数形结合.分析:根据已知的函数图象,我们根据函数图象过(,0),(,﹣)点,我们易结合A>0,w>0求出满足条件的A、ω、φ的值,进而求出满足条件的函数f(x)的解析式,将x=0代入即可得到f(0)的值.解答:解:由的图象可得函数的周期T满足=解得T=π=又∵ω>0,故ω=2又∵函数图象的最低点为(,﹣)点故A=且sin(2×+φ)=﹣即+φ=故φ=∴f(x)=sin(2x+)∴f(0)=sin=故答案为:点评:本题考查的知识点是函数y=Asin(ωx+φ)的图象变换,其中利用已知函数的图象求出满足条件的A、ω、φ的值,是解答本题的关键.10.(5分)已知,是夹角为的两个单位向量,=﹣2,=k+,若•=0,则实数k的值为.考点:平面向量数量积的运算.专题:计算题.分析:利用向量的数量积公式求出;利用向量的运算律求出,列出方程求出k.解答:解:∵是夹角为的两个单位向量∴∴==∵∴解得故答案为:点评:本题考查向量的数量积公式、考查向量的运算律、考查向量模的平方等于向量的平方.11.(5分)已知实数a≠0,函数,若f(1﹣a)=f(1+a),则a的值为.考点:函数的值;分段函数的应用.专题:计算题.分析:对a分类讨论判断出1﹣a,1+a在分段函数的哪一段,代入求出函数值;解方程求出a.解答:解:当a>0时,1﹣a<1,1+a>1∴2(1﹣a)+a=﹣1﹣a﹣2a解得a=舍去当a<0时,1﹣a>1,1+a<1∴﹣1+a﹣2a=2+2a+a解得a=故答案为点评:本题考查分段函数的函数值的求法:关键是判断出自变量所在的范围.12.(5分)在平面直角坐标系xOy中,已知P是函数f(x)=e x(x>0)的图象上的动点,该图象在点P处的切线l交y轴于点M,过点P作l的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是.考点:利用导数研究曲线上某点切线方程.专题:计算题.分析:先设切点坐标为(m,e m),然后根据导数的几何意义求出函数f(x)在x=m处的导数,从而求出切线的斜率,求出切线方程,从而求出点M的纵坐标,同理可求出点N的纵坐标,将t用m表示出来,最后借助导数的方法求出函数的最大值即可.解答:解:设切点坐标为(m,e m)∴该图象在点P处的切线l的方程为y﹣e m=e m(x﹣m)令x=0,解得y=(1﹣m)e m过点P作l的垂线的切线方程为y﹣e m=﹣e﹣m(x﹣m)令x=0,解得y=e m+me﹣m∴线段MN的中点的纵坐标为t=[(2﹣m)e m+me﹣m]t'=[﹣e m+(2﹣m)e m+e﹣m﹣me﹣m],令t'=0解得:m=1当m∈(0,1)时,t'>0,当m∈(1,+∞)时,t'<0∴当m=1时t取最大值故答案为:点评:本题主要考查了利用导数研究曲线上某点切线方程,以及利用导数研究函数的最值问题,属于中档题.13.(5分)设 1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,则q的最小值是.考点:等差数列与等比数列的综合.专题:计算题;压轴题.分析:利用等差数列的通项公式将a6用a2表示,求出a6的最小值进一步求出a7的最小值,利用等比数列的通项求出公比的范围.解答:解:方法1:∵1=a1≤a2≤…≤a7; a2,a4,a6成公差为1的等差数列,∴a6=a2+2≥3,∴a6的最小值为3,∴a7的最小值也为3,此时a1=1且a1,a3,a5,a7成公比为q的等比数列,必有q>0,∴a7=a1q3≥3,∴q3≥3,q≥,方法2:由题意知1=a1≤a2≤…≤a7;中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,得,所以,即q3﹣2≥1,所以q3≥3,解得q≥,故q的最小值是:.故答案为:.点评:解决等差数列、等比数列的综合问题一般利用通项公式、前n项和公式列出方程组,解方程组求解.即基本量法.14.(5分)设集合,B={(x,y)|2m≤x+y≤2m+1,x,y∈R},若A∩B≠∅,则实数m的取值范围是[,2+].考点:直线与圆的位置关系.专题:计算题;压轴题.分析:根据题意可把问题转换为圆与直线有交点,即圆心到直线的距离小于或等于半径,进而联立不等式组求得m的范围.解答:解:依题意可知集合A表示一系列圆内点的集合,集合B表示出一系列直线的集合,要使两集合不为空集,需直线与圆有交点,由可得m≤0或m≥当m≤0时,有||>﹣m且||>﹣m;则有﹣m>﹣m,﹣m>﹣m,又由m≤0,则2>2m+1,可得A∩B=∅,当m≥时,有||≤m或||≤m,解可得:2﹣≤m≤2+,1﹣≤m≤1+,又由m≥,则m的范围是[,2+];综合可得m的范围是[,2+];故答案为[,2+].点评:本题主要考查了直线与圆的位置关系.一般是利用数形结合的方法,通过圆心到直线的距离来判断.二、解答题(共9小题,满分120分)15.(14分)在△ABC中,角A、B、C的对边分别为a,b,c(1)若,求A的值;(2)若,求sinC的值.考点:正弦定理;两角和与差的正弦函数.专题:计算题.分析:(1)利用两角和的正弦函数化简,求出tanA,然后求出A的值即可.(2)利用余弦定理以及b=3c,求出a与c 的关系式,利用正弦定理求出sinC的值.解答:解:(1)因为,所以sinA=,所以tanA=,所以A=60°(2)由及a2=b2+c2﹣2bccosA得a2=b2﹣c2故△ABC是直角三角形且B=所以sinC=cosA=点评:本题是基础题,考查正弦定理的应用,两角和的正弦函数的应用,余弦定理的应用,考查计算能力,常考题型.16.(14分)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:证明题.分析:(1)要证直线EF∥平面PCD,只需证明EF∥PD,EF不在平面PCD中,PD⊂平面PCD 即可.(2)连接BD,证明BF⊥AD.说明平面PAD∩平面ABCD=AD,推出BF⊥平面PAD;然后证明平面BEF⊥平面PAD.解答:证明:(1)在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD.又因为EF不在平面PCD中,PD⊂平面PCD所以直线EF∥平面PCD.(2)连接BD.因为AB=AD,∠BAD=60°.所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF⊂平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF⊂平面EBF,所以平面BEF⊥平面PAD.点评:本题是中档题,考查直线与平面平行,平面与平面的垂直的证明方法,考查空间想象能力,逻辑推理能力,常考题型.17.(14分)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.考点:函数模型的选择与应用.专题:应用题.分析:(1)可设包装盒的高为h(cm),底面边长为a(cm),写出a,h与x的关系式,并注明x的取值范围.再利用侧面积公式表示出包装盒侧面积S关于x的函数解析式,最后求出何时它取得最大值即可;(2)利用体积公式表示出包装盒容积V关于x的函数解析式,最后利用导数知识求出何时它取得的最大值即可.解答:解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30﹣x),0<x <30.(1)S=4ah=8x(30﹣x)=﹣8(x﹣15)2+1800,∴当x=15时,S取最大值.(2)V=a2h=2(﹣x3+30x2),V′=6x(20﹣x),由V′=0得x=20,当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0;∴当x=20时,包装盒容积V(cm3)最大,此时,.即此时包装盒的高与底面边长的比值是.点评:考查函数模型的选择与应用,考查函数、导数等基础知识,考查运算求解能力、空间想象能力、数学建模能力.属于基础题.18.(16分)如图,在平面直角坐标系xOy中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k(1)若直线PA平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k>0,求证:PA⊥PB.考点:直线与圆锥曲线的综合问题.专题:计算题;证明题;压轴题;数形结合;分类讨论;转化思想.分析:(1)由题设写出点M,N的坐标,求出线段MN中点坐标,根据线PA过原点和斜率公式,即可求出k的值;(2)写出直线PA的方程,代入椭圆,求出点P,A的坐标,求出直线AB的方程,根据点到直线的距离公式,即可求得点P到直线AB的距离d;(3)要证PA⊥PB,只需证直线PB与直线PA的斜率之积为﹣1,根据题意求出它们的斜率,即证的结果.解答:解:(1)由题设知,a=2,b=,故M(﹣2,0),N(0,﹣),所以线段MN中点坐标为(﹣1,﹣).由于直线PA平分线段MN,故直线PA过线段MN的中点,又直线PA过原点,所以k=.(2)直线PA的方程为y=2x,代入椭圆方程得,解得x=±,因此P(,),A(﹣,﹣)于是C(,0),直线AC的斜率为1,故直线AB的方程为x﹣y﹣=0.因此,d=.(3)设P(x1,y1),B(x2,y2),则x1>0,x2>0,x1≠x2,A(﹣x1,﹣y1),C(x1,0).设直线PB,AB的斜率分别为k1,k2.因为C在直线AB上,所以k2=,从而kk1+1=2k1k2+1=2•===.因此kk1=﹣1,所以PA⊥PB.点评:此题是个难题.考查椭圆的标准方程和简单的几何性质,以及直线斜率的求法,以及直线与椭圆的位置关系,体现了方程的思想和数形结合思想,同时也考查了学生观察、推理以及创造性地分析问题、解决问题的能力.19.(16分)已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致(1)设a>0,若函数f(x)和g(x)在区间[﹣1,+∞)上单调性一致,求实数b的取值范围;(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a﹣b|的最大值.考点:利用导数研究函数的单调性.专题:计算题.分析:(1)先求出函数f(x)和g(x)的导函数,再利用函数f(x)和g(x)在区间[﹣1,+∞)上单调性一致即f'(x)g'(x)≥0在[﹣1,+∞)上恒成立,以及3x2+a>0,来求实数b的取值范围;(2)先求出f'(x)=0的根以及g'(x)=0的根,再分别求出两个函数的单调区间,综合在一起看何时函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,进而求得|a﹣b|的最大值.解答:解:f'(x)=3x2+a,g'(x)=2x+b.(1)由题得f'(x)g'(x)≥0在[﹣1,+∞)上恒成立.因为a>0,故3x2+a>0,进而2x+b≥0,即b≥﹣2x在[﹣1,+∞)上恒成立,所以b≥2.故实数b的取值范围是[2,+∞)(2)令f'(x)=0,得x=.若b>0,由a<0得0∈(a,b).又因为f'(0)g'(0)=ab<0,所以函数f(x)和g(x)在(a,b)上不是单调性一致的.因此b≤0.现设b≤0,当x∈(﹣∞,0)时,g'(x)<0;当x∈(﹣∝,﹣)时,f'(x)>0.因此,当x∈(﹣∝,﹣)时,f'(x)g'(x)<0.故由题设得a≥﹣且b≥﹣,从而﹣≤a<0,于是﹣<b<0,因此|a﹣b|≤,且当a=﹣,b=0时等号成立,又当a=﹣,b=0时,f'(x)g'(x)=6x(x2﹣),从而当x∈(﹣,0)时f'(x)g'(x)>0.故函数f(x)和g(x)在(﹣,0)上单调性一致,因此|a﹣b|的最大值为.点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.20.(16分)设M为部分正整数组成的集合,数列{a n}的首项a1=1,前n项和为S n,已知对任意整数k∈M,当整数n>k时,S n+k+S n﹣k=2(S n+S k)都成立(1)设M={1},a2=2,求a5的值;(2)设M={3,4},求数列{a n}的通项公式.考点:数列递推式;数列与函数的综合.专题:综合题.分析:(1)由集合M的元素只有一个1,得到k=1,所以当n大于1即n大于等于2时,S n+1+S n﹣1=2(S n+S1)都成立,变形后,利用S n+1﹣S n=a n+1,及a1=1化简,得到当n大于等于2时,此数列除去首项后为一个等差数列,根据第2项的值和确定出的等差写出等差数列的通项公式,因为5大于2,所以把n=5代入通项公式即可求出第5项的值;(2)当n大于k时,根据题意可得S n+k+S n﹣k=2(S n+S k),记作①,把n换为n+1,得到一个关系式记作②,②﹣①后,移项变形后,又k等于3或4得到当n大于等于8时此数列每隔3项或4项成等差数列,即a n﹣6,a n﹣3,a n,a n+3,a n+6成等差数列,根据等差数列的性质得到一个关系式,记作(*),且a n﹣6,a n﹣2,a n+2,a n+6也成等差数列,又根据等差数列的性质得到另外一个关系式,等量代换得到a n+2﹣a n=a n﹣a n﹣2,得到当n大于等于9时,每隔两项成等差数列,设出等差数列的四项,根据等差数列的性质化简变形,设d=a n﹣a n﹣1,从而得到当n大于等于2小于等于8时,n+6大于等于8,把n+6代入(*)中,得到一个关系式,同时把n+7也代入(*)得到另外一个关系式,两者相减后根据设出的d=a n﹣a n﹣1,经过计算后,得到n大于等于2时,d=a n﹣a n﹣1都成立,从而把k=3和k=4代入到已知的等式中,化简后得到d与前3项的和及d与前4项和的关系式,两关系式相减即可表示出第4项的值,根据d=a n﹣a n﹣1,同理表示出第3项,第2项及第1项,得到此数列为等差数列,由首项等于1即可求出d的值,根据首项和等差写出数列的通项公式即可.解答:解:(1)由M={1},根据题意可知k=1,所以n≥2时,S n+1+S n=2(S n+S1),﹣1即(S n+1﹣S n)﹣(S n﹣S n﹣1)=2S1,又a1=1,则a n+1﹣a n=2a1=2,又a2=2,所以数列{a n}除去首项后,是以2为首项,2为公差的等差数列,故当n≥2时,a n=a2+2(n﹣2)=2n﹣2,所以a5=8;(2)根据题意可知当k∈M={3,4},且n>k时,S n+k+S n﹣k=2(S n+S k)①,且S n+1+k+S n+1﹣k=2(S n+1+S k)②,②﹣①得:(S n+1+k﹣S n+k)+(S n+1﹣k﹣S n﹣k)=2(S n+1﹣S n),即a n+1+k+a n+1﹣k=2a n+1,可化为:a n+1+k﹣a n+1=a n+1﹣a n+1﹣k所以n≥8时,a n﹣6,a n﹣3,a n,a n+3,a n+6成等差数列,且a n﹣6,a n﹣2,a n+2,a n+6也成等差数列,从而当n≥8时,2a n=a n﹣3+a n+3=a n﹣6+a n+6,(*)且a n﹣2+a n+2=a n﹣6+a n+6,所以当n≥8时,2a n=a n﹣2+a n+2,即a n+2﹣a n=a n﹣a n﹣2,于是得到当n≥9时,a n﹣3,a n﹣1,a n+1,a n+3成等差数列,从而a n﹣3+a n+3=a n﹣1+a n+1,由(*)式可知:2a n=a n﹣1+a n+1,即a n+1﹣a n=a n﹣a n﹣1,当n≥9时,设d=a n﹣a n﹣1,则当2≤n≤8时,得到n+6≥8,从而由(*)可知,2a n+6=a n+a n+12,得到2a n+7=a n+1+a n+13,两式相减得:2(a n+7﹣a n+6)=a n+1﹣a n+(a n+13﹣a n+12),则a n+1﹣a n=2d﹣d=d,因此,a n﹣a n﹣1=d对任意n≥2都成立,又由S n+k+S n﹣k﹣2S n=2S k,可化为:(S n+k﹣S n)﹣(S n﹣S n﹣k)=2S k,当k=3时,(S n+3﹣S n)﹣(S n﹣S n﹣3)=9d=2S3;同理当k=4时,得到16d=2S4,两式相减得:2(S4﹣S3)=2a4=16d﹣9d=7d,解得a4=d,因为a4﹣a3=d,解得a3=d,同理a2=d,a1=,则数列{a n}为等差数列,由a1=1可知d=2,所以数列{a n}的通项公式为a n=1+2(n﹣1)=2n﹣1.点评:此题考查学生灵活运用数列的递推式化简求值,掌握确定数列为等差数列的方法,会根据等差数列的首项和等差写出数列的通项公式,是一道中档题.21.(10分)A.选修4﹣1:几何证明选讲如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2).圆O1的弦AB交圆O2于点C ( O1不在AB 上).求证:AB:AC为定值.B.选修4﹣2:矩阵与变换已知矩阵,向量.求向量,使得A2=.C.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy中,求过椭圆(φ为参数)的右焦点,且与直线(t为参数)平行的直线的普通方程.D.选修4﹣5:不等式选讲(本小题满分10分)解不等式:x+|2x﹣1|<3.考点:椭圆的参数方程.专题:数形结合;转化思想.分析:A、如图,利用 EC∥DB,AB:AC=AD:AE=2r1:2r2,证出结论.B、设向量=,由 A2=,利用矩阵的运算法则,用待定系数法可得x 和 y 的值,从而求得向量.C、把椭圆的参数方程化为普通方程,求出右焦点的坐标,把直线参数方程化为普通方程,求出斜率,用点斜式求得所求直线的方程.D、原不等式可化为,或,分别解出这两个不等式组的解集,再把解集取并集.解答:解:A、如图:连接AO1并延长,交两圆于D,E,则O2在AD上,根据直径对的圆周角等于90°可得,∠ACE=∠ABD=90°,∴EC∥DB,∴AB:AC=AD:AE=2r1:2r2=r1:r2为定值.B、A2==,设向量=,由 A2=可得=,∴,解得 x=﹣1,y=2,∴向量=.C、椭圆(φ为参数)的普通方程为+=1,右焦点为(4,0),直线(t为参数)即 x﹣2 y+2=0,斜率等于,故所求的直线方程为y﹣0=(x﹣4),即 x﹣2 y﹣4=0.D、原不等式可化为,或,解得≤x<,或﹣2<x<,故不等式的解集为 {x|﹣2<x<}.点评:本题考查圆与圆的位置关系,参数方程与普通方程的互化,矩阵的运算法则,绝对值不等式的解法.22.(10分)如图,在正四棱柱ABCD﹣A1B1C1D1中,AA1=2,AB=1,点N是BC的中点,点M在CC1上.设二面角A1﹣DN﹣M的大小为θ(1)当θ=90°时,求AM 的长;(2)当时,求CM 的长.考点:向量在几何中的应用.专题:综合题;压轴题;转化思想.分析:(1)建立如图所示的空间直角坐标系,D﹣xyz,设CM=t(0≤t≤2),通过,求出平面DMN的法向量为,,求出平面A1DN的法向量为,推出(1)利用θ=90°求出M的坐标,然后求出AM的长.(2)利用cos=以及,求出CM 的长.解答:解:建立如图所示的空间直角坐标系,D﹣xyz,设CM=t(0≤t≤2),则各点的坐标为A (1,0,0),A1(1,0,2),N(,1,0),M(0,1,t);所以=(,1,0).=(1,0,2),=(0,1,t)设平面DMN的法向量为=(x1,y1,z1),则,,即x1+2y1=0,y1+tz1=0,令z1=1,则y1=﹣t,x1=2t所以=(2t,﹣t,1),设平面A1DN的法向量为=(x2,y2,z2),则,,即x2+2z2=0,x2+2y2=0,令z2=1则y2=1,x2=﹣2所以=(﹣2,1,1),(1)因为θ=90°,所以解得t=从而M(0,1,),所以AM=(2)因为,所以,cos==因为=θ或π﹣θ,所以=解得t=0或t=根据图形和(1)的结论,可知t=,从而CM的长为.点评:本题是中档题,考查直线与平面,直线与直线的位置关系,考查转化思想的应用,向量法解答立体几何问题,方便简洁,但是注意向量的夹角,计算数据的准确性.23.(10分)设整数n≥4,P(a,b)是平面直角坐标系xOy 中的点,其中a,b∈{1,2,3,…,n},a>b.(1)记A n为满足a﹣b=3 的点P 的个数,求A n;(2)记B n为满足是整数的点P 的个数,求B n.考点:数列递推式.专题:综合题;压轴题;转化思想.分析:(1)A n为满足a﹣b=3 的点P 的个数,显然P(a,b)的坐标的差值,与A n中元素个数有关,直接写出A n的表达式即可.(2)设k为正整数,记f n(k)为满足题设条件以及a﹣b=3k的点P的个数,讨论f n(k)≥1的情形,推出f n(k)=n﹣3k,根据k的范围,说明n﹣1是3的倍数和余数,然后求出B n.解答:解:(1)点P的坐标中,满足条件:1≤b=a﹣3≤n﹣3,所以A n=n﹣3;(2)设k为正整数,记f n(k)为满足题设条件以及a﹣b=3k的点P的个数,只要讨论f n(k)≥1的情形,由1≤b=a﹣3k≤n﹣3k,知f n(k)=n﹣3k且,设n﹣1=3m+r,其中m∈N+,r∈{0,1,2},则k≤m,所以B n===mn﹣=将m=代入上式,化简得B n=所以B n=点评:本题是难题,考查数列通项公式的求法,数列求和的方法,考查发现问题解决问题的能力,解题中注意整除知识的应用,转化思想的应用.。
2011-2012学年第二学期《高等数学》期末试卷一、填空题(每小题3分,共30分)1. 与点()2,1,11-M ,()1,3,32M ,()3,1,33M 决定的平面垂直的单位向量=0a。
2. 过点()1,2,1与向量k j i S 321--=,k j S --=2平行的平面方程为 。
3. 设y e x y x z --=223,则=dz 。
4. 曲线3231,2,t z t y t x ===在点⎪⎭⎫ ⎝⎛31,2,1处的切线方程是 。
5. 如果幂级数()∑∞=-01n n nx a 的收敛半径是1,则级数在开区间 内收敛。
6. 设L 为圆周122=+y x ,则=⎰Lds x 2。
7. 交换积分次序()=⎰⎰dx y x f dy ee y ,10 。
8. 设区域D 是122≤+y x 与x y x 222≤+的公共部分,试写出()⎰⎰Ddxdy y x f ,在极坐标系下先对r积分的累次积分 。
9. 已知一个二阶常系数线性齐次微分方程的特征方程有两个实根a 与b ,且b a ≠,此微分方程是,通解是 。
10. 设()⎪⎩⎪⎨⎧<≤-<<=21,110,1x x x x f ,又设()x S 是()x f 的以4为周期的正弦级数展开式的和函数,则 ()=7S 。
二、计算题(每小题6分,共36分)1. 设()y x e xy xF z 2,2=,F 有连续偏导数,求x z ,y z 。
2. 在椭圆抛物面222y x z +=上求一点,使曲面在该点处的切平面垂直于直线⎪⎩⎪⎨⎧=+=+0302z y y x ,并写出曲面在该点处的法线方程。
3. 计算dy y dx dz x ⎰⎰⎰121010sin 。
4. 计算曲线积分()⎰-+L y ydx dy e x sin ,其中L 是从点()0,1A 沿213x y -=到点()0,1-B 的上半椭圆。
5. 判别级数1)1(2--∑∞=n n n n 的敛散性,对收敛情况说明是绝对收敛还是条件收敛。
2011年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分。
考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1、答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上。
2、第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3、第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
4、填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:柱体的体积公式:V Sh=,其中S是柱体的底面积,h是柱体的高。
圆柱的侧面积公式:S cl=,其中c是圆柱的地面周长,l是圆柱的母线长。
球的体积公式:343V R π=,其中R 是球的半径。
球的表面积公式:,其中R 是球的半径。
用最小二乘法求线性回归方程系数公式:=1221ˆˆ,.ni ii n ii X Y nx yay bx Xnx ==-=--∑∑ 如果事件A 、B 互斥,那么()()+()P A B P A P B +=; 如果事件A 、B 独立,那么()()()P AB P A P B =。
第Ⅰ卷(共60分)一、选择题:本大题共12小题。
每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、设集合{}{}2|60,|13,M x xx N x x =+-<=≤≤则MN =(A)[1,2)(B) [1,2] (C) (2,3] (D) [2,3]2、复数2()2iz i i-=+为虚数单位在复平面内对应的点所在象限为 (A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限3、若点a (,9)在函数3xy =的图象上,则tan 6a π的值为(A) 0(B)(C) 1(D) 4、不等式5310x x -++≥的解集是(A) []5,7- (B) []4,6- (C) (][),57,-∞-+∞ (D) (][),46,-∞-+∞ 5、对于函数(),y f x x R =∈,“()y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的(A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充要条件 (D) 既不充分也不必要条件6、若函数()sin (0)f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=(A) 3 (B) 2 (C) 32(D) 237、某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y bx a =+中的b 为9.4,据此模型预报广告费用为6万元时销售额为(A) 63.6万元(B) 65.5万元 (C) 67.7万元 (D) 72.0万元8、已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均和圆C :22650x y x +--=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为 (A)22154x y -= (B)22145x y -= (C)22136x y -= (D)22163x y -= 9、函数2sin 2xy x =-的图象大致是(A) (B)(C) (D)10、已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x xx =-,则函数()y f x = 的图象在区间[的交点的个数为(A) 6 (B) 7 (C) 8 (D) 911 ①存在三棱柱,其正(主)视图、俯视图如右图; ②存在四棱柱,其正(主)视图、俯视图如右图; ③存在圆柱,其正(主)视图、俯视图如右图。
2011年普通高等学校夏季招生全国统一考试数学(江西卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟. 参考公式(理科):样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性相关系数()()()()niii nni ii i x x y y r x x y y 2=12=1=1--=--∑∑∑其中,n nx x x y y y x y n n1212++++==L L锥体体积公式 V Sh 1=3,其中S 为底面积,h 为高参考公式(文科):样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的回归方程ˆya bx =+ 其中()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =-1212,n nx x x y y y x y n n++⋅⋅⋅+++⋅⋅⋅+==锥体体积公式 13V Sh =,其中S 为底面积,h 为高第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若1+2iiz =,则复数z = ( ) A .-2-iB .-2+iC .2-iD .2+i2.若集合{},{}x A x x B x x-2=-1≤2+1≤3=≤0,则A ∩B =( ) A .{x |-1≤x <0} B .{x |0<x ≤1} C .{x |0≤x ≤2}D .{x |0≤x ≤1}3.若()log ()f x x 121=2+1,则f (x )的定义域为 …( )A .(,)1-02 B .(,]1-02C .(,)1-+∞2D .(0,+∞)4.若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为 …( ) A .(0,+∞) B .(-1,0)∪(2,+∞) C .(2,+∞) D .(-1,0)5.已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1.那么a 10=( ) A .1 B .9 C .10 D .556.变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则() A.r2<r1<0 B.0<r2<r1C.r2<0<r1D.r2=r17.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 011的末四位数字为() A.3125 B.5625 C.0625 D.81258.已知α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之间的距离为d2.直线l与α1,α2,α3分别相交于P1,P2,P3.那么“P1P2=P2P3”是“d1=d2”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.若曲线C1:x2+y2-2x=0与曲线C2:y(y-mx-m)=0有四个不同的交点,则实数m的取值范围是()A.(33-,33) B.(33-,0)∪(0,33)C.[33-,33] D.(-∞,33-)∪(33,+∞)10.如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N 是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是()第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.11.已知|a|=|b|=2,(a+2b)·(a-b)=-2,则a与b的夹角为________.12.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.13.下图是某算法的程序框图,则程序运行后输出的结果是________.14.若椭圆22221x ya b+=的焦点在x轴上,过点(1,12)作圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是________.三、选做题:请考生在下列两题中任选一题作答.若两题都做,则按所做的第一题评阅计分.本题共5分.15.(1)(坐标系与参数方程选做题)若曲线的极坐标方程为ρ=2sinθ+4cosθ,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方程为______________.(2)(不等式选做题)对于实数x,y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为________.四、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X 表示此人选对A 饮料的杯数.假设此人对A 和B 两种饮料没有鉴别能力.(1)求X 的分布列;(2)求此员工月工资的期望.17.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知sin cos sinC C C +=1-2. (1)求sin C 的值;(2)若a 2+b 2=4(a +b )-8,求边c 的值.18.已知两个等比数列{a n },{b n },满足a 1=a (a >0),b 1-a 1=1,b 2-a 2=2,b 3-a 3=3.(1)若a =1,求数列{a n }的通项公式; (2)若数列{a n }唯一,求a 的值.19.设()f x x x ax 3211=-++232. (1)若f (x )在(,2+∞3)上存在单调递增区间,求a 的取值范围; (2)当0<a <2时,f (x )在[1,4]上的最小值为16-3,求f (x )在该区间上的最大值. 20.P (x 0,y 0)(x 0≠±a )是()2222:10,0x y E a b a b-=>>上一点,M ,N 分别是双曲线E 的左、右顶点,直线PM ,PN 的斜率之积为15.(1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于A ,B 两点,O 为坐标原点,C 为双曲线上一点,满足OC OA OB λ=+,求λ的值.21.(1)如图,对于任一给定的四面体A 1A 2A 3A 4,找出依次排列的四个相互平行的平面α1,α2,α3,α4,使得A i ∈αi (i =1,2,3,4),且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面α1,α2,α3,α4,其中每相邻两个平面间的距离都为1,若一个正四面体A 1A 2A 3A 4的四个顶点满足:A i ∈αi (i =1,2,3,4),求该正四面体A 1A 2A 3A 4的体积.参考答案1.D 2.B 3.A 4.C 5.A 6.C 7.D 8.C 9.B 10.A11.答案:π312.答案:131613.答案:1014.答案:22=154x y + 15.(1)答案:x 2+y 2-4x -2y =0(2)答案:516.解:(1)X 的所有可能取值为:0,1,2,3,4,14-4445C C ()(0,1,2,3,4)C i P X i i ===, 即X 01234P170 1670 3670 1670 170(2)令Y 表示新录用员工的月工资,则Y 的所有可能取值为2 100,2 800,3 500,1(3500)(4)708(2800)(3)3553(2100)(2)70116533500280021002280.707070P Y P X P Y P X P Y P X EY ==========≤==⨯+⨯+⨯=则所以新录用员工月工资的期望为2 280元. 17.解:(1)由已知得sin sin 1cos ,2CC C +=- 即2sin(2cos 1)2sin 222C C C +=, 由1sin 02cos 12sin ,sin cos 222222C C C C C ≠+=-=得即,两边平方得3sin 4C =.(2)由1ππsin cos 0222422C C C -=><<得,即π37π,sin cos 244C C C <<==-则由,得. 由a 2+b 2=4(a +b )-8,得(a -2)2+(b -2)2=0,则a =2,b =2.由余弦定理得2222cos 827,7 1.c a b ab C c =+-=+=+所以.18.解:(1)设{a n }的公比为q ,则b 1=1+a =2,b 2=2+aq =2+q ,b 3=3+aq 2=3+q 2. 由b 1,b 2,b 3成等比数列,得(2+q )2=2(3+q 2), 即212420,22,22q q q q -+==+=-解得.所以{a n }的通项公式为11(22)(22).n n n n a a --=+=-或.(2)设{a n }的公比为q ,则由(2+aq )2=(1+a )(3+aq 2),得aq 2-4aq +3a -1=0(*). 由a >0得Δ=4a 2+4a >0,故方程(*)有两个不同的实根. 由{a n }唯一,知方程(*)必有一根为0,代入(*)得1.3a =19.解:(1)由2211()2()224f x x x a x a '=-++=--++,当222[,),()()2;339x f x f a ''∈+∞=+时的最大值为;令2120,99a a +>>-得, 所以,当12,()(,)93a f x >-+∞时在上存在单调递增区间.(2)令12118118()0,,.22a af x x x -+++'===得两根.所以f (x )在(-∞,x 1),(x 2,+∞)上单调递减,在(x 1,x 2)上单调递增. 当0<a <2时,有x 1<1<x 2<4,所以f (x )在[1,4]上的最大值为f (x 2).又27(4)(1)60,(4)(1)2f f a f f -=-+<<即, 所以f (x )在[1,4]上的最小值为4016(4)833f a =-=-, 得a =1,x 2=2,从而f (x )在[1,4]上的最大值为10(2).3f =. 20.解:(1)点P (x 0,y 0)(x 0≠±a )在双曲线22221x y a b -=上,有2200221x y a b-=,由题意又有00001,5y y x a x a ⋅=-+可得222222305,6,5c a b c a b b e a ==+===则. (2)联立2222255,410350,x y b x cx b y x c ⎧-=-+=⎨=-⎩得设A (x 1,y 1),B (x 2,y 2),则122125,2354c x x b x x ⎧+=⎪⎪⎨⎪=⎪⎩① 设31211312(,),,x x x OC x y OC OA OB y y y λλλ=+⎧==+⎨=+⎩ 即又C 为双曲线上一点,即2223355,x y b -=,有(λx 1+x 2)2-5(λy 1+y 2)2=5b 2,化简得22222211221212(5)(5)2(5)5x y x y x x y y b λλ-+-+-=.②又A (x 1,y 1),B (x 2,y 2)在双曲线上,所以222222112255,55x y b x y b -=-=. 由①式又有x 1x 2-5y 1y 2=x 1x 2-5(x 1-c )(x 2-c )=-4x 1x 2+5c (x 1+x 2)-5c 2=10b 2, 得λ2+4λ=0,解出λ=0,或λ=-4. 21.解:(1)如图所示,取A 1A 4的三等分点P 2,P 3,A 1A 3的中点M ,A 2A 4的中点N ,过三点A 2,P 2,M 作平面α2,过三点A 3,P 3,N 作平面α3,因为A 2P 2∥NP 3,A 3P 3∥MP 2,所以平面α2∥平面α3,再过点A 1,A 4分别作平面α1,α4与平面α2平行,那么四个平面α1,α2,α3,α4依次相互平行,由线段A 1A 4被平行平面α1,α2,α3,α4截得的线段相等知,其中每相邻两个平面间的距离相等,故α1,α2,α3,α4为所求平面.(2)解法一:当(1)中的四面体为正四面体,若所得的四个平行平面,每相邻两平面之间的距离为1,则正四面体A 1A 2A 3A 4就是满足题意的正四面体.设正四面体的棱长为a ,以△A 2A 3A 4的中心O 为坐标原点,以直线A 4O 为y 轴,直线OA 1为z 轴建立如(1)中图的右手直角坐标系,则12346333(0,0,),(,,0),(,,0),(0,,0)326263a a A a A a A a A a --则. 令P 2,P 3为A 1A 4的三等分点,N 为A 2A 4的中点,有33342363(0,,),(,,0)9941253633,(,,),(,,0)43694413(,,0)44a P a a N a a P N a a NA a a A N a a ---=--==- 所以.设平面A 3P 3N 的法向量n =(x ,y ,z ),有330953460,0330P N x y z NA x y ⎧⎧⋅=-+=⎪⎪⎨⎨⋅=+=⎪⎪⎩⎩即n n 所以(1,3,6).=--n 因为α1,α2,α3,α4相邻平面之间的距离为1,所以点A 4到平面A 3P 3N 的距离为223|()1(3)0(6)|4411(3)(6)a a -⨯+⨯-+⨯-=+-+-,解得10a =.由此可得,边长为10的正四面体A 1A 2A 3A 4满足条件. 所以所求正四面体的体积23113625 5.3343123V Sh a a a ==⨯⨯==. 解法二:如图,现将此正四面体A 1A 2A 3A 4置于一个正方体ABCD —A 1B 1C 1D 1中(或者说,在正四面体的四个面外侧各镶嵌一个直角正三棱锥,得到一个正方体),E 1,F 1分别是A 1B 1,C 1D 1的中点,EE 1D 1D 和BB 1F 1F 是两个平行平面,若其距离为1,则四面体A 1A 2A 3A 4即为满足条件的正四面体.如图是正方体的上底面,现设正方体的棱长为a ,若A 1M =MN =1,则有1122111111,252a A E D E A D A E a ==+=.据A 1D 1×A 1E 1=A 1M ×D 1E 1,得5a =, 于是正四面体的棱长210,d a ==,其体积33311554.633V a a a =-⨯==.(即等于一个棱长为a 的正方体割去四个直角正三棱锥后的体积)。
南昌大学 2011~2012学年第二学期期末考试试卷一、填空题(每空 3 分,共 15 分)1. 设)(y x f y x z -++=,且当0=y 时,2x z =,则=z _____.2. 设y z x =,则21x y dz ===_________________.设22(2)(2)()mx y dx x y dy x y ++++是某个二元 函数的全微分,则=m _______.计算2110y x I dx e dy -==⎰⎰________.将函数1()4f x x =-展开成x 的幂级数为__________.二、单项选择题 (每小题3分,共15分)已知曲面224y x z --=在点P 处的切平面平行于平面0122=-++z y x ,则点P 的坐标是( )(A )(1,1,2)-; (B )(1,1,2)-;(C );(1,1,2)-- (D )(1,1,2).2.设函数⎪⎩⎪⎨⎧=+≠++=0,00,),(2222422y x y x y x xy y x f ,则在点(0,0)处( )(A )连续且偏导数存在; (B )连续但偏导数不存在;(C )不连续但偏导数存在; (D )不连续且偏导数不存在.3.下列方程中,设21,y y 是它的解,可以推知21y y +也是它的解的方程是( )(A )0)()(=++'x q y x p y ;(B ) 0)()(=+'+''y x q y x p y ;(C ))()()(x f y x q y x p y =+'+'';(D ) 0)()(=+'+''x q y x p y .4.若级数0(2)n n n a x ∞=-∑在1x =-处收敛,则此级数在1x =处( )(A )敛散性不确定 (B )发散(C )条件收敛 (D )绝对收敛 5.设(,)f x y 为连续函数,(,)(,)Df x y xy f u v dudv =+⎰⎰,其中D 是由曲线0y =,2y x =,1x =所围闭区域,则(,)f x y 是( )(A )xy ; (B )2xy ;(C )18xy +; (D )1xy +三、计算题(一)(共24分,每小题6分) 1、设ln z =求z x ∂∂和2z x y ∂∂∂2、判断级数1()41n n n n ∞=+∑的敛散性 3、求过点(2,0,3)-且与直线23702210x y z x y z -+-=⎧⎨+-+=⎩垂直的平面方程 4、设函数),(y x z z =是由方程2221z x y z e ++=+ 所确定的隐函数,求zx ∂∂和z y ∂∂四、计算题(二)(共21分,每小题7分)1、计算对弧长的曲线积分L ⎰,其中L 为曲线221x y += 2、计算(sin )(cos 1)x xL e y y dx e y dy -+-⎰, 其中L 是从点(2,0)A经y =到点(0,0)O 的弧.3、设∑为柱面122=+y x 和平面0,1z z == 所围成的空间闭区域Ω的整个边界曲面的外侧,利用高斯公式计算曲面积分⎰⎰∑++ydxdz x xzdydz zdxdy y 22. 五、解答题(共14分,每小题7分)1、求幂级数11n n n x n ∞=+∑的收敛域及其和函数2、求微分方程5432y y y x '''++=-的通解六、应用题(本题满分6分)求函数22(,)2f x y x xy y x y =-+-+的极值七、证明题(本题满分5分)设正项级数∑∞=1n n u 和1n n v ∞=∑都收敛, 证明级数21()n n n u v ∞=+∑也收敛南昌大学 2011~2012学年第二学期期末考试试卷及答案一、填空题(每空 3 分,共 15 分)1. 设)(y x f y x z -++=,且当0=y 时, 2x z =,则=z ()22x y y -+.2. 设y z x =,则21x y dz ===2ln2dx dy +.3. 设22(2)(2)()m x y dx x y dy x y ++++是某个二元函数的全微分,则=m 0.4. 计算2110y x I dx e dy -==⎰⎰ 1122e -.5. 将函数1()4f x x =-展开成x 的幂级数 为()10444nn n x x ∞+=-<<∑.二、单项选择题 (每小题3分,共15分)1. 已知曲面224y x z --=在点P 处的切平面平行于平面0122=-++z y x ,则点P 的坐标是( D )(A )(1,1,2)-; (B )(1,1,2)-;(C );(1,1,2)-- (D )(1,1,2).2.设函数⎪⎩⎪⎨⎧=+≠++=0,00,),(2222422y x y x y x xy y x f , 则在点(0,0)处( C )(A )连续且偏导数存在; (B )连续但偏导数不存在;(C )不连续但偏导数存在; (D )不连续且偏导数不存在. 3.下列方程中,设21,y y 是它的解,可以推知21y y +也是它的解的方程是( B )(A )0)()(=++'x q y x p y ;(B )0)()(=+'+''y x q y x p y ; (C ))()()(x f y x q y x p y =+'+'';(D ) 0)()(=+'+''x q y x p y .4.若级数0(2)n n n a x ∞=-∑在1x =-处收敛,则此级数在1x =处( D )(A )敛散性不确定 (B )发散(C )条件收敛 (D )绝对收敛5.设(,)f x y 为连续函数,(,)(,)Df x y xy f u v dudv =+⎰⎰,其中D 是由曲线0y =,2y x =,1x =所围闭区域,则(,)f x y 是( C )(A )xy ; (B )2xy ;(C )18xy +; (D )1xy +三、计算题(一)(共24分,每小题6分) 1、设ln z =求z x ∂∂和2z x y ∂∂∂解: 22z xx x y ∂=∂+;22222()zxyx y x y ∂=-∂∂+2、判断级数1()41nn nn ∞=+∑的敛散性解: 1lim lim 1414n n n n →∞→∞==<+所以该级数收敛3、求过点(2,0,3)-且与直线23702210x y z x y z -+-=⎧⎨+-+=⎩垂直的平面方程解: 取所求平面法向量:(1,2,3)(1,2,2)(2,5,4)n =-⨯-=- 所以所求平面方程为:2(2)54(3)0x y z --+++= 即:254160x y z -+++=。
4、设函数),(y x z z =是由方程2221z x y z e ++=+ 所确定的隐函数,求z x ∂∂和zy ∂∂解: 令222(,,)1z F x y z x y z e =++--, 则2,2,2zx y z F x F y F z e ===- 所以22x z z Fz x x F e z ∂=-=∂-,22y z zF z yy F e z ∂=-=∂-。
四、计算题(二)(共21分,每小题7分) 1、计算对弧长的曲线积分L ⎰,其中L 为曲线221x y +=解: 法一: 2L L ds π==⎰⎰法二:令cos ,sin x t y t ==,则202L dt ππ==⎰⎰2、计算(sin )(cos 1)x x L e y y dx e y dy -+-⎰,其中L 是从点(2,0)A经y =到点(0,0)O 的弧.解: 补充1:0(02)L y x =≤≤取OA 方向,则L 与1L 构成一封闭曲线, 取逆时针方向,所围区域记为D ,由格林公式可得 1(sin )(cos 1)2x x L L D I e y y dx e y dy dxdy π+=-+-==⎰⎰⎰又1(sin )(cos 1)0x x L I e y y dx e y dy =-+-=⎰ 所以(sin )(cos 1)2x x L I e y y dx e y dy π=-+-=⎰。
3、设∑为柱面122=+y x 和平面0,1z z == 所围成的空间闭区域Ω的整个边界曲面的外侧,利用高斯公式计算曲面积分⎰⎰∑++ydxdz x xzdydz zdxdy y 22. 解: 记22{(,,)|1,01}x y z x y z Ω=+≤≤≤, 由高斯公式可得:2222()y zdxdy xzdydz x ydxdz x y z dxdydz ∑Ω++=++⎰⎰⎰⎰⎰ ()2112000d d z dz πθρρρπ=+=⎰⎰⎰五、解答题(共14分,每小题7分)1、求幂级数11n n n x n ∞=+∑的收敛域及其和函数解: 121lim lim 1n n n n n a n a nρ+→∞→∞++===, 收敛半径11R ρ==;当1x =±时,原级数都发散,所以级数收敛域为(1,1)-;设级数和函数为()S x ,则()S x =11n n n n x x n ∞∞==+∑∑, 又设1nn x n ∞=∑的和函数为1()S x则()11111()1n n n n x S x x n x ∞∞-==''===-∑∑,而1(0)0S =所以()101ln(1)1xS x dt x t ==---⎰ 所以()ln(1)1xS x x x =--- (11)x -<<2、求微分方程5432y y y x '''++=-的通解 解: 特征方程为2540r r ++=,其两根为121,4r r =-=-, 对应齐次微分方程540y y y '''++=的通解为412x xY C e C e --=+,设原方程特解为y ax b *=+,代入原方程可得111,28a b =-= 所以原方程的通解为41211128x x y Y y C e C e x *--=+=+-+ 六、应用题(本题满分6分)求函数22(,)2f x y x xy y x y =-+-+的极值 解:22x f x y =-- ,21y f x y =-++ 由0x y f f ==可得驻点(1,0)又2xx f =,1xy f =-,2yy f =所以在驻点(1,0)处,(1,0)20xx A f ==>, (1,0)1xy B f ==-,(1,0)2yy C f == 230B AC ∆=-=-<所以函数22(,)2f x y x xy y x y =-+-+ 在(1,0)处有极小值1-。