高考理科数学小题训练
- 格式:pdf
- 大小:125.91 KB
- 文档页数:6
小题分类练(二) 推理论证类(建议用时:50分钟)1.下列函数为奇函数的是( ) A .y =x B .y =e xC .y =cos xD .y =e x -e -x2.设a ,b 是实数,则“a +b >0”是“ab >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件3.(2021·临沂模拟)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π,则函数f (x )的图象( )A .关于直线x =π4对称B .关于直线x =π8对称C .关于点⎝⎛⎭⎫π4,0对称D .关于点⎝⎛⎭⎫π8,0对称4.若a >b >0,c <d <0,则肯定有( ) A.a d >b c B.a d <b c C.a c >b d D.a c <b d5.在△ABC 中,若(CA →+CB →)·AB →=|AB →|2,则( ) A .△ABC 是锐角三角形 B .△ABC 是直角三角形 C .△ABC 是钝角三角形 D .△ABC 的外形不能确定6.(2021·济南质量监测)若tan (α+45°)<0,则下列结论正确的是( ) A .sin α<0 B .cos α<0 C .sin 2α<0 D .cos 2α<0 7.若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论肯定正确的是( ) A .l 1⊥l 4 B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定8.已知点P (x 0,y 0),圆O :x 2+y 2=r 2(r >0),直线l :x 0x +y 0y =r 2,有以下几个结论:①若点P 在圆O 上,则直线l 与圆O 相切;②若点P 在圆O 外,则直线l 与圆O 相离;③若点P 在圆O 内,则直线l 与圆O 相交;④无论点P 在何处,直线l 与圆O 恒相切,其中正确的个数是( )A .1B .2C .3D .49.(2021·潍坊调研)观看等式:sin 230°+cos 260°+sin 30°cos 60°=34,sin 220°+cos 250°+sin 20°cos 50°=34,sin 215°+cos 245°+sin 15°·cos 45°=34,…,由此得出以下推广命题,不正确的是( )A .sin 2α+cos 2β+sin αcos β=34B .sin 2(α-30°)+cos 2α+sin(α-30°)cos α=34C .sin 2(α-15°)+cos 2(α+15°)+sin(α-15°)cos(α+15°)=34D .sin 2α+cos 2(α+30°)+sin αcos(α+30°)=3410.给出下列命题:①在区间(0,+∞)上,函数y =x -1,y =x 12,y =(x -1)2,y =x 3中有3个是增函数;②若log m 3<log n 3<0,则0<n <m <1;③若函数f (x )是奇函数,则f (x -1)的图象关于点A (1,0)对称;④已知函数f (x )=⎩⎪⎨⎪⎧3x -2,x ≤2,log 3(x -1),x >2,则方程f (x )=12有2个实数根,其中正确命题的个数为( )A .1B .2C .3D .411.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市;丙说:我们三人去过同一城市.由此可推断乙去过的城市为________.12.数列{a n }满足a 1=3,a n -a n a n +1=1,A n 表示{a n }的前n 项之积,则A 2 016的值为________. 13.(2021·东营模拟)在同一平面直角坐标系中,函数y =g (x )的图象与y =e x 的图象关于直线y =x 对称.而函数y =f (x )的图象与y =g (x )的图象关于y 轴对称.若f (m )=-1,则m 的值是________.14.(2021·安丘模拟)观看下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,依据上述规律,第n 个等式为________.15.△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论中正确的是________.(写出全部正确结论的编号)①a 为单位向量;②b 为单位向量;③a ⊥b ;④b ∥BC →;⑤(4a +b )⊥BC →.小题分类练(二) 推理论证类1.解析:选D.对于A ,定义域不关于原点对称,故不符合要求;对于B ,f (-x )≠-f (x ),故不符合要求;对于C ,满足f (-x )=f (x ),故不符合要求;对于D ,由于 f (-x )=e -x -e x =-(e x -e -x )=-f (x ),所以 y =e x-e -x 为奇函数,故选D.2.解析:选D.特值法:当a =10,b =-1时,a +b >0,ab <0,故a +b >0 ab >0;当a =-2,b =-1时,ab >0,但a +b <0,所以ab >0 a +b >0.故“a +b >0”是“ab >0”的既不充分也不必要条件.3.解析:选B.由于f (x )=sin ⎝⎛⎭⎫ωx +π4的最小正周期为π,所以2πω=π,ω=2,所以f (x )=sin ⎝⎛⎭⎫2x +π4.当x =π4时,2x +π4=3π4,所以A ,C 错误;当x =π8时,2x +π4=π2,所以B 正确,D 错误.4.解析:选B.法一:令a =3,b =2,c =-3,d =-2, 则a c =-1,bd =-1,排解选项C ,D ; 又a d =-32,b c =-23,所以a d <b c, 所以选项A 错误,选项B 正确.故选B.法二:由于c <d <0,所以-c >-d >0,所以1-d >1-c>0.又a >b >0,所以a -d >b -c,所以a d <bc .故选B.5.解析:选B.依题意得,(CA →+CB →)·(CB →-CA →)=|AB →|2,即CB →2-CA →2=|AB →|2,|CB →|2=|CA →|2+|AB →|2,CA ⊥AB ,因此△ABC 是直角三角形,故选B.6.解析:选D.由于tan (α+45°)<0,所以k ·180°-135°<α<k ·180°-45°,所以k ·360°-270°<2α<k ·360°-90°,所以cos 2α<0,故选D.7.解析:选D.如图,在长方体ABCD -A 1B 1C 1D 1中,记l 1=DD 1,l 2=DC ,l 3=DA ,若l 4=AA 1,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,此时l 1∥l 4,可以排解选项A 和C.若l 4=DC 1,也满足条件,可以排解选项B.故选D.8.解析:选A.依据点到直线的距离公式有d =r 2x 20+y 20.若点P 在圆O 上,则x 20+y 20=r 2,d =r ,相切;若点P 在圆O 外,则x 20+y 20>r 2,d <r ,相交;若点P 在圆O 内,则x 20+y 20<r 2,d >r ,相离,故只有①正确. 9.解析:选A.观看已知等式不难发觉,60°-30°=50°-20°=45°-15°=30°,推广后的命题应具备此关系,但A 中α与β无联系,从而推断错误的命题为A.10.解析:选C.命题①中,在(0,+∞)上只有y =x 12,y =x 3为增函数,故①不正确;②中不等式等价于0>log 3m >log 3n ,故0<n <m <1,②正确;③中函数y =f (x -1)的图象是把y =f (x )的图象向右平移一个单位得到的,由于函数y =f (x )的图象关于坐标原点对称,故函数y =f (x -1)的图象关于点A (1,0)对称,③正确;④中当3x -2=12时,x =2+log 312<2,当log 3(x -1)=12时,x =1+3>2,故方程f (x )=12有2个实数根,④正确.11.解析:由题意可推断:甲没去过B 城市,但比乙去的城市多,而丙说“三人去过同一城市”,说明甲去过A ,C 城市,而乙“没去过C 城市”,说明乙去过城市A ,由此可知,乙去过的城市为A.答案:A12.解析:由a 1=3,a n -a n a n +1=1,得a n +1=a n -1a n ,所以a 2=3-13=23,a 3=-12,a 4=3,所以{a n }是以3为周期的周期数列,且a 1a 2a 3=-1.又2 016=3×672,所以A 2 016=(-1)672=1.答案:113.解析:由题意知g (x )=ln x ,则f (x )=ln(-x ),若f (m )=-1,则ln(-m )=-1,解得m =-1e.答案:-1e14.解析:由第一个等式13=12,得13=(1+0)2;其次个等式13+23=32,得13+23=(1+2)2;第三个等式13+23+33=62,得13+23+33=(1+2+3)2;第四个等式13+23+33+43=102,得13+23+33+43=(1+2+3+4)2;由此可猜想第n 个等式为13+23+33+43+…+n 3=(1+2+3+…+n )2=⎣⎡⎦⎤n (n +1)22.答案:13+23+33+43+…+n 3=⎣⎡⎦⎤n (n +1)2215.解析:由于 AB →2=4|a |2=4,所以 |a |=1,故①正确;由于 BC →=AC →-AB →=(2a +b )-2a =b ,又△ABC为等边三角形,所以 |BC →|=|b |=2,故②错误;由于 b =AC →-AB →,所以 a ·b =12AB →·(AC →-AB →)=12×2×2×cos60°-12×2×2=-1≠0,故③错误;由于 BC →=b ,故④正确;由于 (AB →+AC →)·(AC →-AB →)=AC →2-AB →2=4-4=0,所以 (4a +b )⊥BC →,故⑤正确.答案:①④⑤。
高考数学理科模拟试卷及答案迎战高考,十年寒窗,今日出招。
早睡早起休息好,餐餐养分搭配好,生冷零食远离好,考试用具预备好,有备而战发挥好。
祝高考顺当,金榜题名!下面就是我给大家带来的高考数学理科模拟试卷及答案,盼望大家喜爱!第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目要求。
1.设全集,集合,则()A.{2,4}B.{2,4,6}C.{0,2,4}D.{0,2,4,6}2.若复数是纯虚数,则实数()A.±1B.C.0D.13.已知为等比数列,若,则()A.10B.20C.60D.1004.设点是线段BC的中点,点A在直线BC外,,则()A.2B.4C.6D.85.右图的算法中,若输入A=192,B=22,输出的是()A.0B.2C.4D.66.给出命题p:直线相互平行的充要条件是;命题q:若平面内不共线的三点到平面的距离相等,则∥。
对以上两个命题,下列结论中正确的是()A.命题“p且q”为真B.命题“p或q”为假C.命题“p且┓q”为假D.命题“p且┓q”为真7.若关于的不等式组表示的区域为三角形,则实数的取值范围是()A.(-∞,1)B.(0,1)C.(-1,1)D.(1,+∞)8.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,不许有空盒且任意一个小球都不能放入标有相同标号的盒子中,则不同的(方法)有()A.36种B.45种C.54种D.84种9.设偶函数的部分图像如图所示,为等腰直角三角形,∠=90°,||=1,则的值为()A.B.C.D.10.已知点,动圆C与直线切于点B,过与圆C相切的两直线相交于点P,则P点的轨迹方程为()A.B.C.D.11.函数有且只有两个不同的零点,则b的值为()A.B.C.D.不确定12.已知三边长分别为4、5、6的△ABC的外接圆恰好是球的一个大圆,P为球面上一点,若点P到△ABC的三个顶点的距离相等,则三棱锥P-ABC的体积为()A.5B.10C.20D.30第Ⅱ卷二、填空题:本大题共4小题,每小题5分。
专题十四计数原理考点45:排列与组合(1-6题,13,14题,17-19题)考点46:二项式定理(7-12题,15,16题,20-22题)考试时间:120分钟满分:150分说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上第I卷(选择题)一、选择题(本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1、考点45 中难某校高三年级共有6个班,现在安排6名教师担任某次模拟考试的监考工作,每名教师监考一个班级.在6名教师中,甲为其中2个班的任课教师,乙为剩下4个班中2个班的任课教师,其余4名教师均不是这6个班的任课教师,那么监考教师都不担任自己所教班的监考工作的概率为( )A.715B.815C.115D.4152、考点45 中难某单位周一至周六要安排甲、乙、丙、丁四人值班,每人至少值一天班,则甲至少值两天班的概率为( )A. 11 26B. 9 26C. 11 52D. 9 523、考点45 中难某同学有7本不同的书,其中语文书2本、英语书2本、数学书3本,现在该同学把这7本书放到书架上排成一排,要求2本语文书相邻、2本英语书相邻、3本数学书中任意2本不相邻,则不同的排法种数为( )A.12B.24C.48D.7204、考点45 中难一个停车场有5个排成一排的空车位,现有2辆不同的车停进这个停车场,若停好后恰有2个相邻的停车位空着,则不同的停车方法共有( )种 A.6B.12C.36D.725、考点45 中难某种植基地将编号分别为1,2,3,4,5,6的六个不同品种的马铃薯种在如图所示的这六块实验田上进行对比试验,要求这六块实验田分别种植不同品种的马铃薯,若种植时要求编号1,3,5的三个品种的马铃薯中至少有两个相邻,且2号品种的马铃薯不能种植在A 、F 这两块实验田上,则不同的种植方法有 ( )A.360种B.432种C.456种D.480种 6、考点45 难2017年11月30日至12月2日,来自北京、上海、西安、郑州、青岛及凯里等七所联盟学校(“全国理工联盟”)及凯里当地高中学校教师代表齐聚凯里某校举行联盟教研活动,在数学同课异构活动中,7名数学教师各上一节公开课,教师甲不能上第三节课,教师乙不能上第六节课,则7名教师上课的不同排法有 种( )A.5040B.4800C.3720D.4920 7、考点46 易24)(121()x x ++的展开式中3x 的系数为( )A .12B .16C .20D .248、考点46 易 已知1021001210(1)(1)(1)(1)x a a x a x a x +=+-+-++-L ,则=8a ( )A.-180B.180C.45D.-45 9、考点46 易9(23)x y -的展开式中各项的二项式系数之和为( )A .-1B .1C .-512D .51210、考点46 中难已知5(1)(1)ax x ++的展开式中2x 的系数为5,则a =( ) A.-4B.-3C.-2D.-111、考点46 中难在二项式1121x x ⎛⎫- ⎪⎝⎭的展开式中,系数最大的项为( )A.第五项B.第六项C.第七项D.第六项或第七项 12、考点46 中难332除以9的余数是( )A.1B.2C.4D.8第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分。
高三理科数学选择、填空训练题(1)一.选择题:本大题共12 小题,每小题 5 分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
( 1)若复数z 满足iz 1 2i ,其中 i 为虚数单位,则在复平面上复数z 对应的点的坐标为()( A )( 2, 1)(B)(2,1)(C)(2,1)(D)(2, 1)( 2)已知全集U R ,集合A x 0 2x 1 , B x log3 x 0 ,则A I C U B()( A)x x 0(B)x x 0(C)x 0 x 1(D)x x1( 3)如图,在正方形ABCD 中,点 E 是 DC 的中点,点 F 是 BC 的一个三等分点,那么 EF =()( A )1AB1AD( B)23( C)1 uuur1 uuur( D)AB AD321 uuur1 uuurAB AD421 uuur2 uuurAB AD23( 4)已知a n为等比数列, a4a7 2 , a5a68 ,则 a1 a10()( A)7( B)7( C)5( D)5( 5)已知随机变量服从正态分布 N (1,1),若 P(3) 0.977 ,则 P( 13)()( A)0.683( B)0.853( C)0.954( D)0.977( 6)已知双曲线x2y21(a0,b 0) 的一个焦点到一条渐近线的距离为2a2b2c (c为双曲线的半焦3距),则双曲线的离心率为()( A)7( B)3 7(C)3 7( D)3 7 327( 7)设S n是等差数列{ a n}的前n项和,若a69S11=()a5,则S911( A)1( B)1( C)2(D)1 2( 8)如图给出了计算1 1 1 1 24 L L的值的程序框图,660其中①②分别是()( A ) i 30 , n n 2 ( B ) i 30 , n n 2 ( C ) i30 , n n 2( D ) i30 , n n 1( 9 )已知函数 f ( x) sin( x )( 0,0) 的最小正周期是,将函数f (x) 图象向左平移个单位长度后所得的函数图象过点P(0,1) ,则函数3 f ( x) sin( x) ()( A )在区间 [, ] 6 3( C )在区间 [, ]3 6上单调递减 (B )在区间上单调递减 ( D )在区间[, ] 上单调递增 6 3[, ] 上单调递增 3 61 n( 10) 若 x 6的展开式中含有常数项,则 n的最小值等于 ()x x( A ) 3( B ) 4 ( C ) 5 ( D ) 6( 11)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几3何体的()1 13正视图 ( A )外接球的半径为(B )表面积为73 13( C )体积为3( D )外接球的表面积为 4俯视图( 12)已知定义在R 上的函数 y f ( x) 满足:函数 yf (x 1) 的图象关于直线 x 1 对称,且当x (,0),f (x) xf '( x)0 成立 ( f '( x) 是函数 f ( x) 的导函数 ), 若 a(sin 1) f (sin 1) ,22b (ln2) f (ln 2) ,c 2 f (log 211) ,则 a, b, c 的大小关系是()4( A ) a b c( B ) b a c( C ) c a b( D ) a c b二.填空题:本大题共4小题,每小题5分。
第8讲二项分布与正态分布一、选择题1.甲、乙两地都位于长江下游,根据天气预报的纪录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则甲市为雨天,乙市也为雨天的概率为( )A.0.6 B.0.7C.0.8 D.0.66解析甲市为雨天记为事件A,乙市为雨天记为事件B,则P(A)=0.2,P(B)=0.18,P(AB)=0.12,∴P(B|A)=P ABP A=0.120.2=0.6.答案 A2.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是( )A.512B.12C.712D.34解析本题涉及古典概型概率的计算.本知识点在考纲中为B级要求.由题意得P(A)=12,P(B)=16,则事件A,B至少有一件发生的概率是1-P(A)·P(B)=1-12×56=712.答案 C3.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率p的取值范围是().A.[0.4,1] B.(0,0.4]C.(0,0.6] D.[0.6,1]解析设事件A发生的概率为p,则C14p(1-p)3≤C24p2(1-p)2,解得p≥0.4,故选A.答案 A4.设随机变量X 服从正态分布N (2,9),若P (X >c +1)=P (X <c -1),则c 等于( ). A .1B .2C .3D .4解析 ∵μ=2,由正态分布的定义,知其函数图象关于x =2对称,于是c +1+c -12=2,∴c =2. 答案 B5.在正态分布N ⎝ ⎛⎭⎪⎫0,19中,数值前在(-∞,-1)∪(1,+∞)内的概率为( ).A .0.097B .0.046C .0.03D .0.0026 解析 ∵μ=0,σ=13∴P (X <1或x >1)=1-P (-1≤x ≤1)=1-P (μ-3σ≤X ≤μ+3σ)=1-0.997 4=0.002 6. 答案 D6.已知三个正态分布密度函数φi (x )=12πσi·e -(x -μi )22σ2i (x ∈R ,i =1,2,3)的图象如图所示,则 ( ).A .μ1<μ2=μ3,σ1=σ2>σ3B .μ1>μ2=μ3,σ1=σ2<σ3C .μ1=μ2<μ3,σ1<σ2=σ3D .μ1<μ2=μ3,σ1=σ2<σ3解析 正态分布密度函数φ2(x )和φ3(x )的图象都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又φ2(x )的对称轴的横坐标值比φ1(x )的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图象可知,正态分布密度函数φ1(x )和φ2(x )的图象一样“瘦高”,φ3(x )明显“矮胖”,从而可知σ1=σ2<σ3. 答案 D 二、填空题7.三支球队中,甲队胜乙队的概率为0.4,乙队胜丙队的概率为0.5,丙队胜甲队的概率为0.6,比赛顺序是:第一局是甲队对乙队,第二局是第一局的胜者对丙队,第三局是第二局胜者对第一局的败者,第四局是第三局胜者对第二局败者,则乙队连胜四局的概率为________.解析设乙队连胜四局为事件A,有下列情况:第一局中乙胜甲(A1),其概率为1-0.4=0.6;第二局中乙胜丙(A2),其概率为0.5;第三局中乙胜甲(A3),其概率为0.6;第四局中乙胜丙(A4),其概率为0.50,因各局比赛中的事件相互独立,故乙队连胜四局的概率为:P(A)=P(A1A2A3A4)=0.62×0.52=0.09.答案 0.098.设随机变量X服从正态分布N(0,1),如果P(X≤1)=0.8413,则P(-1<X<0)=________.解析∵P(X≤1)=0.841 3,∴P(X>1)=1-P(X≤1)=1-0.841 3=0.158 7.∵X~N(0,1),∴μ=0.∴P(X<-1)=P(X>1)=0.158 7,∴P(-1<X<1)=1-P(X<-1)-P(X>1)=0.682 6.∴P(-1<X<0)=12P(-1<X<1)=0.341 3.答案0.341 39.设随机变量ξ服从正态分布N(0,1),记Ф(x)=P(ξ<x),给出下列结论:①Φ(0)=0.5;②Φ(x)=1-Φ(-x);③P(|ξ|<2)=2Φ(2)-1.则正确结论的序号是________.答案①②③10.商场经营的某种包装大米的质量(单位:kg)服从正态分布X~N(10,0.12),任选一袋这种大米,质量在9.8~10.2 kg的概率是________.解析P(9.8<X<10.2)=P(10-0.2<X<10+0.2)=0.954 4.答案0.954 4三、解答题11.设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分以上)的人数和130分以上的人数.解由题意得μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μ<-σ)+P(-σ≤X-μ≤σ)+P(X-μ>σ)=2P(X-μ<-σ)+0.682 6=1,∴P(X-μ<-σ)=0.158 7,∴P(X≥90)=1-P(X-μ<-σ)=1-0.158 7=0.841 3.∴54×0.841 3≈45(人),即及格人数约为45人.∵P(X≥130)=P(X-110≥20)=P(X-μ≥σ),∴P(X-μ≤-σ)+P(-σ≤X-μ≤σ)+P(X-μ>σ)=0.682 6+2P(X-μ≥σ)=1,∴P(X-μ≥σ)=0.158 7.∴54×0.158 7≈9(人),即130分以上的人数约为9人.12.在某市组织的一次数学竞赛中全体参赛学生的成绩近似服从正态分布N(60,100),已知成绩在90分以上的学生有13人.(1)求此次参加竞赛的学生总数共有多少人?(2)若计划奖励竞赛成绩排在前228名的学生,问受奖学生的分数线是多少?解设学生的得分情况为随机变量X,X~N(60,100).则μ=60,σ=10.(1)P(30<X≤90)=P(60-3×10<X≤60+3×10)=0.997 4.∴P(X>90)=12[1-P(30<X≤90)]=0.001 3∴学生总数为:130.001 3=10 000(人).(2)成绩排在前228名的学生数占总数的0.022 8. 设分数线为x.则P(X≥x0)=0.022 8.∴P(120-x0<x<x0)=1-2×0.022 8=0.954 4. 又知P(60-2×10<x<60+2×10)=0.954 4.∴x0=60+2×10=80(分).13.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)解(1)由已知得25+y+10=55,x+30=45,所以x=15,y=20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得P(X=1)=15100=320,P(X=1.5)=30100=310,P(X=2)=25100=14,P(X=2.5)=20100=15,P(X=3)=10100=110.X的分布列为X的数学期望为E(X)=1×320+1.5×310+2×14+2.5×15+3×110=1.9.(2)记A为事件“该顾客结算前的等候时间不超过2.5分钟”,X i(i=1,2)为该顾客前面第i位顾客的结算时间,则P(A)=P(X1=1且X2=1)+P(X1=1且X2=1.5)+P(X1=1.5且X2=1).由于各顾客的结算相互独立,且X1,X2的分布列都与X的分布列相同,所以P(A)=P(X1=1)×P(X2=1)+P(X1=1)×P(X2=1.5)+P(X1=1.5)×P(X2=1)=320×320+320×310+310×320=980.故该顾客结算前的等候时间不超过2.5分钟的概率为980.14.现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望E (X ).解 (1)记:“该射手恰好命中一次”为事件A ,“该射手射击甲靶命中”为事件B ,“该射手第一次射击乙靶命中”为事件C ,“该射手第二次射击乙靶命中”为事件D .由题意,知P (B )=34,P (C )=P (D )=23, 由于A =B C - D -+B -C D -+B - C -D , 根据事件的独立性和互斥性,得 P (A )=P (B C - D -+B -C D -+B - C -D ) =P (B C - D -)+P (B -C D -)+P (B - C -D )=P (B )P (C -)P (D -)+P (B -)P (C )P (D -)+P (B -)P (C -)P (D )=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=736.(2)根据题意,知X 的所有可能取值为0,1,2,3,4,5.根据事件的独立性和互斥性,得P (X =0)=P (B - C - D -) =[1-P (B )][1-P (C )][1-P (D )] =⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23=136; P (X =1)=P (B C - D -)=P (B )P (C -)P (D -)=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23=112;P (X =2)=P (B - C D -+B - C - D )=P (B - C D -)+P (B - C -D ) =⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=19; P (X =3)=P (BC D -+B C -D )=P (BC D -)+P (B C -D ) =34×23×⎝ ⎛⎭⎪⎫1-23+34×⎝ ⎛⎭⎪⎫1-23×23=13;P (X =4)=P (B -CD )=⎝ ⎛⎭⎪⎫1-34×23×23=19,P (X =5)=P (BCD )=34×23×23=13. 故X 的分布列为所以E (X )=0×136+1×112+2×19+3×13+4×19+5×13=4112.。
高考数学(理科)模拟试题含答案(一)精编版高考理科数学模拟试题精编(一)注意事项:1.作答选择题时,在答题卡上涂黑对应选项的答案信息点。
如需改动,先擦干净再涂其他答案。
不得在试卷上作答。
2.非选择题用黑色钢笔或签字笔作答,写在答题卡指定区域内。
如需改动,先划掉原答案再写新答案。
不得用铅笔或涂改液。
不按要求作答无效。
3.答题卡需整洁无误。
考试结束后,交回试卷和答题卡。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.设全集Q={x|2x²-5x≤0,x∈N},且P⊆Q,则满足条件的集合P的个数是()A。
3B。
4C。
7D。
82.若复数z=m(m-1)+(m-1)i是纯虚数,其中m是实数,则z=()A。
iB。
-iC。
2iD。
-2i3.已知等差数列{an}的公差为5,前n项和为Sn,且a1,a2,a5成等比数列,则S6=()A。
80B。
85C。
90D。
954.XXX每天上学都需要经过一个有交通信号灯的十字路口。
已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒。
如果XXX每天到路口的时间是随机的,则XXX上学时到十字路口需要等待的时间不少于20秒的概率是()A。
4/5B。
3/4C。
2/3D。
3/56.已知p:a=±1,q:函数f(x)=ln(x+a²+x²)为奇函数,则p 是q成立的()A。
充分不必要条件B。
必要不充分条件C。
充分必要条件D。
既不充分也不必要条件7.(省略了一个选项) 327.(1+x²+4x)²的常数项为()A。
120B。
160C。
200D。
2408.我们可以用随机模拟的方法估计π的值,如图所示的程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为()A。
3.119B。
高考理科数学模拟试卷测试第1卷一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2018•衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.∅B.(0,1)C.[0,1)D.[0,1]2.(5分)(2018•衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0.2,则P(3<ξ≤4)=()A.0.8 B.0.4 C.0.3 D.0.23.(5分)(2018•衡中模拟)已知复数z=(i为虚数单位),则3=()A.1 B.﹣1 C.D.4.(5分)(2018•衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x5.(5分)(2018•衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2 C.D.16.(5分)(2018•衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2 B.3 C.4 D.57.(5分)(2018•衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}的前8项和为()A.B.C.D.8.(5分)(2018•衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=()A.45 B.180 C.﹣180 D.7209.(5分)(2018•衡中模拟)如图为三棱锥S﹣ABC的三视图,其表面积为()A.16 B.8+6C.16D.16+610.(5分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),P为椭圆上一动点,椭圆内部点M(﹣1,3)满足PF+PM的最大值为17,则椭圆的离心率为()A.B.C.D.11.(5分)(2018•衡中模拟)已知f(x)=,若函数y=f(x)﹣kx恒有一个零点,则k的取值范围为()A.k≤0 B.k≤0或k≥1 C.k≤0或k≥e D.k≤0或k≥12.(5分)(2018•衡中模拟)已知数列{a n}的通项公式为a n=﹣2n+p,数列{b n}的通项公式为b n=2n﹣4,设c n=,若在数列{c n}中c6<c n(n∈N*,n≠6),则p的取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)第2卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.(5分)(2018•衡中模拟)若平面向量、满足||=2||=2,|﹣|=,则在上的投影为.14.(5分)(2018•衡中模拟)若数列{a n}满足a1=a2=1,a n+2=,则数列{a n}前2n项和S2n= .15.(5分)(2018•衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等的两部分,则的最大值为.16.(5分)(2018•衡中模拟)已知函数f(x)=(a+1)lnx+x2(a<﹣1)对任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则a的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2018•衡中模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C的大小;(2)求a2+b2的最大值,并求取得最大值时角A,B的值.18.(12分)(2018•衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段CD上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.19.(12分)(2018•衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.20.(12分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段MN的中点为(﹣1,).过椭圆E内一点P(1,)的两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;(Ⅱ)当λ变化时,k AB是否为定值?若是,请求出此定值;若不是,请说明理由.21.(12分)(2018•衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e2处的切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围.[选修4-1:几何证明选讲]22.(10分)(2018•衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC•BC=2AD•CD.[选修4-4:坐标系与参数方程]23.(2018•衡中模拟)在平面直角坐标系中,直线l的参数方程为(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.[选修4-5:不等式选讲]24.(2018•衡中模拟)已知函数f(x)=|x﹣l|+|x﹣3|.(I)解不等式f(x)≤6;(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,求实数a的取值范围.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2018•衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.∅B.(0,1)C.[0,1)D.[0,1]【解答】解:A={x|x2<1}={x|﹣1<x<1},B={y|y=|x|≥0},则A∩B=[0,1),故选:C.2.(5分)(2018•衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0.2,则P(3<ξ≤4)=()A.0.8 B.0.4 C.0.3 D.0.2【解答】解:∵随机变量X服从正态分布N(3,σ2),∴μ=3,得对称轴是x=3.∵P(ξ>4)=0.2∴P(3<ξ≤4)=0.5﹣0.2=0.3.故选:C3.(5分)(2018•衡中模拟)已知复数z=(i为虚数单位),则3=()A.1 B.﹣1 C.D.【解答】解:复数z=,可得=﹣=cos+isin.则3=cos4π+isin4π=1.故选:A.4.(5分)(2018•衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x【解答】解:如图若∠PFQ=π,则由对称性得∠QFO=,则∠QOx=,即OQ的斜率k==tan=,则双曲线渐近线的方程为y=±x,故选:B5.(5分)(2018•衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2 C.D.1【解答】解:∵2πr1=,∴r1=,同理,∴r1+r2+r3=1,故选:D.6.(5分)(2018•衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2 B.3 C.4 D.5【解答】解:第一次循环,sin>sin0,即1>0成立,a=1,T=1,k=2,k<6成立,第二次循环,sinπ>sin,即0>1不成立,a=0,T=1,k=3,k<6成立,第三次循环,sin>sinπ,即﹣1>0不成立,a=0,T=1,k=4,k<6成立,第四次循环,sin2π>sin,即0>﹣1成立,a=1,T=1+1=2,k=5,k<6成立,第五次循环,sin>sin2π,即1>0成立,a=1,T=2+1=3,k=6,k<6不成立,输出T=3,故选:B7.(5分)(2018•衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}的前8项和为()A.B.C.D.【解答】解:设等差数列{a n}的公差为d,a3=7,a5=11,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1,∴,∴b8=(1﹣+﹣+…+﹣)=(1﹣)=故选B.8.(5分)(2018•衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=()A.45 B.180 C.﹣180 D.720【解答】解:(x﹣3)10=[(x+1)﹣4]10,∴,故选:D.9.(5分)(2018•衡中模拟)如图为三棱锥S﹣ABC的三视图,其表面积为()A.16 B.8+6C.16D.16+6【解答】解:由三视图可知该三棱锥为边长为2,4,4的长方体切去四个小棱锥得到的几何体.三棱锥的三条边长分别为,∴表面积为4×=16.故选:C.10.(5分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),P 为椭圆上一动点,椭圆内部点M(﹣1,3)满足PF+PM的最大值为17,则椭圆的离心率为()A.B.C.D.【解答】解:设右焦点为Q,由F(﹣3,0),可得Q(3,0),由椭圆的定义可得|PF|+|PQ|=2a,即|PF|=2a﹣|PQ|,则|PM|+|PF|=2a+(|PM|﹣|PQ|)≤2a+|MQ|,当P,M,Q共线时,取得等号,即最大值2a+|MQ|,由|MQ|==5,可得2a+5=17,所以a=6,则e===,故选:A.11.(5分)(2018•衡中模拟)已知f(x)=,若函数y=f(x)﹣kx恒有一个零点,则k的取值范围为()A.k≤0 B.k≤0或k≥1 C.k≤0或k≥e D.k≤0或k≥【解答】解:由y=f(x)﹣kx=0得f(x)=kx,作出函数f(x)和y=kx的图象如图,由图象知当k≤0时,函数f(x)和y=kx恒有一个交点,当x≥0时,函数f(x)=ln(x+1)的导数f′(x)=,则f′(0)=1,当x<0时,函数f(x)=e x﹣1的导数f′(x)=e x,则f′(0)=e0=1,即当k=1时,y=x是函数f(x)的切线,则当0<k<1时,函数f(x)和y=kx有3个交点,不满足条件.当k≥1时,函数f(x)和y=kx有1个交点,满足条件.综上k的取值范围为k≤0或k≥1,故选:B.12.(5分)(2018•衡中模拟)已知数列{a n}的通项公式为a n=﹣2n+p,数列{b n}的通项公式为b n=2n﹣4,设c n=,若在数列{c n}中c6<c n(n∈N*,n≠6),则p的取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)【解答】解:∵a n﹣b n=﹣2n+p﹣2n﹣4,∴a n﹣b n随着n变大而变小,又∵a n=﹣2n+p随着n变大而变小,b n=2n﹣4随着n变大而变大,∴,(1)当(2)当,综上p∈(14,20),故选D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.(5分)(2018•衡中模拟)若平面向量、满足||=2||=2,|﹣|=,则在上的投影为﹣1 .【解答】解:根据条件,==7;∴;∴在上的投影为.故答案为:﹣1.14.(5分)(2018•衡中模拟)若数列{a n}满足a1=a2=1,a n+2=,则数列{a n}前2n项和S2n= 2n+n2﹣1 .【解答】解:∵数列{a n}满足a1=a2=1,a n+2=,∴n=2k﹣1时,a2k+1﹣a2k﹣1=2,为等差数列;n=2k时,a2k+2=2a2k,为等比数列.∴.故答案为:2n+n2﹣1.15.(5分)(2018•衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等的两部分,则的最大值为 2 .【解答】解:由ax+(a﹣2)y+4﹣a=0得a(x+y﹣1)+4﹣2y=0,则得,即直线恒过C(﹣1,2),若将区域分成面积相等的两部分,则直线过AB的中点D,由得,即A(1,6),∵B(3,0),∴中点D(2,3),代入a(x+y﹣1)+4﹣2y=0,得4a﹣2=0,则,则的几何意义是区域内的点到点(﹣2,0)的斜率,由图象过AC的斜率最大,此时最大值为2.故答案为:2.16.(5分)(2018•衡中模拟)已知函数f(x)=(a+1)lnx+x2(a<﹣1)对任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则a的取值范围为(﹣∞,﹣2] .【解答】解:由f′(x)=+x,得f′(1)=3a+1,所以f(x)=(a+1)lnx+ax2,(a<﹣1)在(0,+∞)单调递减,不妨设0<x1<x2,则f(x1)﹣f(x2)≥4x2﹣4x1,即f(x1)+4x1≥f(x2)+4x2,令F(x)=f(x)+4x,F′(x)=f′(x)+4=+2ax+4,等价于F(x)在(0,+∞)上单调递减,故F'(x)≤0恒成立,即+2ax+4≤0,所以恒成立,得a≤﹣2.故答案为:(﹣∞,﹣2].三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2018•衡中模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C的大小;(2)求a2+b2的最大值,并求取得最大值时角A,B的值.【解答】解:(1)cosBsinC+(a﹣sinB)cos(A+B)=0可得:cosBsinC﹣(a﹣sinB)cosC=0即:sinA﹣acosC=0.由正弦定理可知:,∴,c=1,∴asinC﹣acosC=0,sinC﹣cosC=0,可得sin(C﹣)=0,C是三角形内角,∴C=.(2)由余弦定理可知:c2=a2+b2﹣2abcosC,得1=a2+b2﹣ab又,∴,即:.当时,a2+b2取到最大值为2+.18.(12分)(2018•衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段CD上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.【解答】证明:(1)取PC的中点E,则连接DE,∵ME是△PBC的中位线,∴ME,又AD,∴ME AD,∴四边形AMED是平行四边形,∴AM∥DE.∵PA=AB,M是PB的中点,∴AM⊥PB,∵PA⊥平面ABCD,BC⊂平面ABCD,∴PA⊥BC,又BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,∵AM⊂平面PAB,∴BC⊥AM,又PB⊂平面PBC,BC⊂平面PBC,PB∩BC=B,∴AM⊥平面PBC,∵AM∥DE,∴DE⊥平面PBC,又DE⊂平面PCD,∴平面PBC⊥平面PCD.(2)以A为原点,以AD,AB,AP为坐标轴建立空间直角坐标系,如图所示:则A(0,0,0),B(0,2,0),M(0,1,1),P(0,0,2),C(2,2,0),D(1,0,0).∴=(1,2,0),=(0,1,1),=(1,0,0),∴=λ=(λ,2λ,0),=(λ+1,2λ,0),==(λ+1,2λ﹣1,﹣1).∵AD⊥平面PAB,∴为平面PAB的一个法向量,∴cos<>=====设MN与平面PAB所成的角为θ,则sinθ=.∴当即时,sinθ取得最大值,∴MN与平面PAB所成的角最大时.19.(12分)(2018•衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.【解答】解:(1)记转盘A指针指向1,2,3区域的事件为A1,A2,A3,同理转盘B指针指向1,2,3区域的事件为B1,B2,B3,∴P(A1)=,P(A2)=,P(A3)=,P(B1)=,P(B2)=,P(B3)=,P=P(A1)P(1﹣P(B1))=×(1﹣)==.…(5分)(2)由已知得ξ的可能取值为2,3,4,5,6,P(ξ=2)=P(A1)P(B1)===,P(ξ=3)=P(A1)P(B2)+P(A2)P(B1)==,P(ξ=4)=P(A1)P(B3)+P(A2)P(B2)+P(A3)P(B1)==,P(ξ=5)=P(A2)P(B3)+P(A3)P(B2)=+=,P(ξ=6)=P(A3)P(B3)==,∴ξ的分布列为:ξ 2 3 4 5 6PEξ==.…(12分)20.(12分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段MN的中点为(﹣1,).过椭圆E内一点P(1,)的两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;(Ⅱ)当λ变化时,k AB是否为定值?若是,请求出此定值;若不是,请说明理由.【解答】解:(Ⅰ)设M(m1,n1)、N(m2,n2),则,两式相减,故a2=3b2…(2分)当直线AP平行于x轴时,设|AC|=2d,∵,,则,解得,故点A(或C)的坐标为.代入椭圆方程,得…4分a2=3,b2=1,所以方程为…(6分)(Ⅱ)设A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4)由于,可得A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),…①同理可得…②…(8分)由①②得:…③将点A、B的坐标代入椭圆方程得,两式相减得(x1+x2)(x1﹣x2)+3(y1+y2)(y1﹣y2)=0,于是3(y1+y2)k AB=﹣(x1+x2)…④同理可得:3(y3+y4)k CD=﹣(x3+x4),…(10分)于是3(y3+y4)k AB=﹣(x3+x4)(∵AB∥CD,∴k AB=k CD)所以3λ(y3+y4)k AB=﹣λ(x3+x4)…⑤由④⑤两式相加得到:3[y1+y2+λ(y3+y4)]k AB=﹣[(x1+x2)+λ(x3+x4)]把③代入上式得3(1+λ)k AB=﹣2(1+λ),解得:,当λ变化时,k AB为定值,.…(12分)21.(12分)(2018•衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e2处的切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围.【解答】解:(Ⅰ)由,得,解得m=2,故,则,函数g(x)的定义域为(0,1)∪(1,+∞),而,又函数g(x)在(1,+∞)上是减函数,∴在(1,+∞)上恒成立,∴当x∈(1,+∞)时,的最大值.而,即右边的最大值为,∴,故实数a的最小值;(Ⅱ)由题可得,且定义域为(0,1)∪(1,+∞),要使函数F(x)无零点,即在(0,1)∪(1,+∞)内无解,亦即在(0,1)∪(1,+∞)内无解.构造函数,则,(1)当k≤0时,h'(x)<0在(0,1)∪(1,+∞)内恒成立,∴函数h(x)在(0,1)内单调递减,在(1,+∞)内也单调递减.又h(1)=0,∴当x∈(0,1)时,h(x)>0,即函数h(x)在(0,1)内无零点,同理,当x∈(1,+∞)时,h(x)<0,即函数h(x)在(1,+∞)内无零点,故k≤0满足条件;(2)当k>0时,.①若0<k<2,则函数h(x)在(0,1)内单调递减,在内也单调递减,在内单调递增.又h(1)=0,∴h(x)在(0,1)内无零点;又,而,故在内有一个零点,∴0<k<2不满足条件;②若k=2,则函数h(x)在(0,1)内单调递减,在(1,+∞)内单调递增.又h(1)=0,∴当x∈(0,1)∪(1,+∞)时,h(x)>0恒成立,故无零点.∴k=2满足条件;③若k>2,则函数h(x)在内单调递减,在内单调递增,在(1,+∞)内也单调递增.又h(1)=0,∴在及(1,+∞)内均无零点.易知,又h(e﹣k)=k×(﹣k)﹣2+2e k=2e k﹣k2﹣2=ϕ(k),则ϕ'(k)=2(e k﹣k)>0,则ϕ(k)在k>2为增函数,∴ϕ(k)>ϕ(2)=2e2﹣6>0.故函数h(x)在内有一零点,k>2不满足.综上:k≤0或k=2.[选修4-1:几何证明选讲]22.(10分)(2018•衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC•BC=2AD•CD.【解答】证明:(Ⅰ)连接BD,因为D为的中点,所以BD=DC.因为E为BC的中点,所以DE⊥BC.因为AC为圆的直径,所以∠ABC=90°,所以AB∥DE.…(5分)(Ⅱ)因为D为的中点,所以∠BAD=∠DAC,又∠BAD=∠DCB,则∠DAC=∠DCB.又因为AD⊥DC,DE⊥CE,所以△DAC∽△ECD.所以=,AD•CD=AC•CE,2AD•CD=AC•2CE,因此2AD•CD=AC•BC.…(10分)[选修4-4:坐标系与参数方程]23.(2018•衡中模拟)在平面直角坐标系中,直线l的参数方程为(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.【解答】解:(1)由曲线C的极坐标方程为ρ=得ρ2sin2θ=2ρcosθ.∴由曲线C的直角坐标方程是:y2=2x.由直线l的参数方程为(t为参数),得t=3+y代入x=1+t中消去t得:x﹣y﹣4=0,所以直线l的普通方程为:x﹣y﹣4=0…(5分)(2)将直线l的参数方程代入曲线C的普通方程y2=2x,得t2﹣8t+7=0,设A,B两点对应的参数分别为t1,t2,所以|AB|===,因为原点到直线x﹣y﹣4=0的距离d=,所以△AOB的面积是|AB|d==12.…(10分)[选修4-5:不等式选讲]24.(2018•衡中模拟)已知函数f(x)=|x﹣l|+|x﹣3|.(I)解不等式f(x)≤6;(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,求实数a的取值范围.【解答】解:函数f(x)=|x﹣l|+|x﹣3|=的图象如图所示,(I)不等式f(x)≤6,即①或②,或③.解①求得x∈∅,解②求得3<x≤5,解③求得﹣1≤x≤3.综上可得,原不等式的解集为[﹣1,5].(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,则函数f(x)的图象不能在y=ax﹣1的图象的下方.如图所示:由于图中两题射线的斜率分别为﹣2,2,点B(3,2),∴3a﹣1≤2,且 a≥﹣2,求得﹣2≤a≤1.。
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 函数y=f(x)的图象如下,则f(0)的值为()A. -1B. 0C. 1D. 22. 已知等差数列{an}的公差为d,且a1=3,a5=13,则d=()A. 2B. 3C. 4D. 53. 在平面直角坐标系中,点P的坐标为(2,3),点Q在直线y=2x上,且PQ的长度为5,则点Q的坐标为()A. (1,2)B. (3,6)C. (-1,2)D. (-3,6)4. 若复数z=3+4i,则|z|=()A. 5B. 7C. 9D. 115. 已知向量a=(2,3),向量b=(1,-2),则a·b=()A. 7B. -1C. -7D. 16. 函数y=2x^2-3x+1的对称轴为()A. x=1/2B. x=1C. x=-1/2D. x=-17. 在△ABC中,若∠A=60°,∠B=45°,则∠C的度数为()A. 75°B. 105°C. 135°D. 165°8. 若等比数列{an}的首项a1=2,公比q=3,则第n项an=()A. 2×3^(n-1)B. 2×3^nC. 6×3^(n-1)D. 6×3^n9. 已知函数f(x)=x^3-3x+2,若f'(x)=0,则x=()A. -1B. 1C. -2D. 210. 在△ABC中,若a=3,b=4,c=5,则△ABC的面积S=()A. 6B. 8C. 10D. 12二、填空题(本大题共5小题,每小题5分,共25分。
把答案填写在题目的横线上。
)11. 已知等差数列{an}的首项a1=1,公差d=2,则第10项a10=______。
12. 函数y=√(x^2-1)的定义域为______。
13. 若复数z=1-i,则z的共轭复数为______。
15 随机变量及其应用1.一个盒子中装有12个乒乓球,其中9个没有使用过的、3个已经使用过的,从盒中任取3个球来用,用完后装回盒中,此时盒中已经使用过的球个数X 是一个随机变量,则P (X=4)的值为( ).A .1220 B .2755 C .27220D .2155解析▶ “X=4”表示从盒中取了2个已经使用过的球,1个没有使用过的球,故P (X=4)=C 32C 91C 123=27220.答案▶ C2.已知离散型随机变量X 的分布列为X 1 2 3 P35310110则X 的数学期望E (X )=( ).A .32 B .2C .52D .3解析▶ 由数学期望公式可得E (X )=1×35+2×310+3×110=32. 答案▶ A3.已知随机变量X 服从正态分布N (0,82),若P (X>2)=0.023,则P (-2≤X ≤2)= .解析▶ 因为μ=0,所以P (X>2)=P (X<-2)=0.023,所以P (-2≤X ≤2)=1-2×0.023=0.954. 答案▶ 0.9544.若随机变量X~B (n ,p ),且E (X )=7,D (X )=6,则p= .解析▶ 因为随机变量X~B (n ,p ),且E (X )=7,D (X )=6,所以{nn =7,nn (1-n )=6,解得p=17.答案▶ 17能力1 ▶求离散型随机变量的分布列【例1】私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查结果进行整理后制成下表:年龄/岁[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]频数510151055赞成人数469634(1)若从年龄在[15,25)和[25,35)这两组的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率;(2)在(1)的条件下,令选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列.解析▶(1)由表知,年龄在[15,25)内的有5人,不赞成的有1人,年龄在[25,35)内的有10人,不赞成的有4人,则恰有2人不赞成的概率为P=C41C52·C41·C61C102+C42C52·C42C102=410×2445+610×645=2275.(2)ξ的所有可能取值为0,1,2,3.P(ξ=0)=C42C52·C62C102=610×1545=15,P(ξ=1)=C41C52·C62C102+C42C52·C41·C61C102=410×1545+610×2445=3475,P(ξ=2)=2275,P(ξ=3)=C41C52·C42C102=410×645=475,∴ξ的分布列是ξ 0 1 2 3 P153475 2275475离散型随机变量分布列的求解步骤(1)明取值:明确随机变量的可能取值有哪些,且每一个取值所表示的意义. (2)求概率:要弄清楚随机变量的概率类型,利用相关公式求出变量所对应的概率. (3)画表格:按规范要求写出分布列.(4)做检验:利用分布列的性质检验分布列是否正确.已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列.解析▶ (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,则P (A )=A 21A 31A 52=310.(2)X 的可能取值为200,300,400.P (X=200)=A 22A 52=110,P (X=300)=A 33+C 21C 31A 22A 53=310,P (X=400)=1-P (X=200)-P (X=300) =1-110-310=35.故X 的分布列为X 200 300 400 P11031035能力2 ▶ 相互独立事件同时发生的概率【例2】 某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B ,设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率.(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列.解析▶ 记E={甲组研发新产品成功},F={乙组研发新产品成功},由题设知P (E )=23,P (n )=13,P (F )=35,P (n )=25,且事件E 与F ,n 与F ,E 与n ,n 与n 都相互独立.(1)记H={至少有一种新产品研发成功},则n =nn , 于是P (n )=P (n )P (n )=13×25=215, 故所求的概率P (H )=1-P (n )=1-215=1315.(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220, 因为P (X=0)=P (nn )=13×25=215,P (X=100)=P (n F )=13×35=15, P (X=120)=P (E n )=23×25=415, P (X=220)=P (EF )=23×35=25.故所求的分布列为X 0 100 120 220 P21515 41525(1)求解该类问题在于正确分析所求事件的构成,将其转化为彼此互斥事件的和或相互独立事件的积,然后利用相关公式进行计算.(2)求相互独立事件同时发生的概率的主要方法①利用相互独立事件的概率乘法公式直接求解.②正面计算较烦琐(如求用“至少”表述的事件的概率)或难以入手时,可从其对立事件入手计算.某中学篮球体育测试要求学生完成“立定投篮”和“三步上篮”两项测试,“立定投篮”与“三步上篮”各有2次投篮机会,先进行“立定投篮”测试,如果合格才有机会进行“三步上篮”测试,为了节约时间,每项只需且必须投中一次即为合格.小明同学“立定投篮”的命中率为12,“三步上篮”的命中率为34,假设小明不放弃任何一次投篮机会且每次投篮是否命中互不影响.(1)求小明同学两项测试合格的概率;(2)设测试过程中小明投篮的次数为ξ,求ξ的分布列.解析▶ 设小明第i 次“立定投篮”命中为事件A i (i=1,2),第j 次“三步上篮”命中为事件B j (j=1,2),依题意有P (A i )=12(i=1,2),P (B j )=34(j=1,2),“小明同学两项测试合格”为事件C. (1)P (n )=P (n 1n 2)+P (n 1A 2n 1n 2)+P (A 1n 1n 2)=P (n 1)P (n 2)+P (n 1)P (A 2)P (n 1)P (n 2)+P (A 1)P (n 1)P (n 2) =(1−12)2+(1−12)×12×(1−34)2+12×(1−34)2=1964. ∴P (C )=1-1964=4564.(2)依题意知ξ=2,3,4,P (ξ=2)=P (A 1B 1)+P (n 1n 2)=P (A 1)P (B 1)+P (n 1)P (n 2)=58, P (ξ=3)=P (A 1n 1B 2)+P (n 1A 2B 1)+P (A 1n 1n 2)=P (A 1)P (n 1)P (B 2)+P (n 1)P (A 2)P (B 1)+P (A 1)P (n 1)P (n 2)=516, P (ξ=4)=P (n 1A 2n 1)=P (n 1)P (A 2)P (n 1)=116.故投篮的次数ξ的分布列为ξ 2 3 4 P58516116能力3 ▶ 独立重复试验与二项分布【例3】 某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本,然后称出它们的质量(单位:克),质量的分组区间为(490,495],(495,500],…,(510,515].由此得到样本的频率分布直方图(如下图).(1)根据频率分布直方图,求质量超过505克的产品数量;(2)在上述抽取的40件产品中任取2件,设X 为质量超过505克的产品数量,求X 的分布列;(3)用样本估计总体,从该流水线上任取2件产品,设Y 为质量超过505克的产品数量,求Y 的分布列.解析▶ (1)质量超过505克的产品的频率为5×0.05+5×0.01=0.3, 故质量超过505克的产品数量为40×0.3=12(件).(2)质量超过505克的产品数量为12件,则质量未超过505克的产品数量为28件. 由题意知X 的取值为0,1,2,X 服从超几何分布. ∴P (X=0)=C 282C 402=63130,P (X=1)=C 121C 281C 402=2865,P (X=2)=C 122C 402=11130,∴X 的分布列为X 0 1 2 P63130286511130(3)根据样本估计总体的思想,取一件产品,该产品的质量超过505克的概率为1240=310.从流水线上任取2件产品互不影响,该问题可看成2次独立重复试验,质量超过505克的件数Y 的可能取值为0,1,2,且Y~B (2,310),P (Y=k )=C 2n (1−310)2−n(310)n,∴P (Y=0)=C 20·(710)2=49100, P (Y=1)=C 21·310·710=2150,P (Y=2)=C 22·(310)2=9100.∴Y 的分布列为Y 0 1 2 P4910021509100利用独立重复试验概率公式可以简化求概率的过程,但需要注意检查该概率模型是否满足公式P (X=k )=C n n p k(1-p )n-k的三个条件:(1)在一次试验中某事件A 发生的概率是一个常数p ;(2)n 次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;(3)该公式表示n 次试验中事件A 恰好发生了k 次的概率.为了解一种植物果实的情况,随机抽取一批该植物果实样本测量重量(单位:克),按照[27.5,32.5),[32.5,37.5),[37.5,42.5),[42.5,47.5),[47.5,52.5]分为5组,其频率分布直方图如图所示.(1)求图中a 的值.(2)估计这种植物果实重量的平均数n 和方差s 2(同一组中的数据用该组区间的中点值作代表).(3)已知这种植物果实重量不低于32.5克的为优质果实,用样本估计总体.若从这种植物果实中随机抽取3个,其中优质果实的个数为X ,求X 的分布列和数学期望E (X ).解析▶ (1)组距d=5,由5×(0.02+0.04+0.075+a+0.015)=1得a=0.05. (2)各组中点值和相应的频率依次为中点值 30 35404550频率0.1 0.2 0.375 0.25 0.075n =30×0.1+35×0.2+40×0.375+45×0.25+50×0.075=40,s 2=(-10)2×0.1+(-5)2×0.2+02×0.375+52×0.25+102×0.075=28.75.(3)由已知,这种植物果实的优质率p=0.9,且X~B (3,0.9), 故P (X=k )=C 3n ·0.9k·(1-0.9)3-k(k=0,1,2,3),X 的分布列为X 0123P0.001 0.027 0.243 0.729∴E (X )=np=2.7.能力4 ▶ 正态分布【例4】 (1)已知随机变量ξ服从正态分布N (2,σ2),且P (ξ<4)=0.8,则P (0<ξ<4)=( ).A .0.6B .0.4C .0.3D .0.2(2)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布N (-1,1)的密度曲线的一部分)的点的个数的估计值为( ).附:若X~N (μ,σ2),则P (μ-σ<X<μ+σ)=0.6826,P (μ-2σ<X<μ+2σ)=0.9544. A .1193 B .1359 C .2718 D .3413解析▶ (1)∵随机变量ξ服从正态分布N (2,σ2),μ=2,∴对称轴为x=2,∵P (ξ<4)=0.8,∴P (ξ≥4)=P (ξ≤0)=0.2, ∴P (0<ξ<4)=0.6.(2)对于正态分布N (-1,1),μ=-1,σ=1,正态曲线关于直线x=-1对称, 故题图中阴影部分的面积为12×[P (-3<X<1)-P (-2<X<0)]=12×[P (μ-2σ<X<μ+2σ)-P (μ-σ<X<μ+σ)]=12×(0.9544-0.6826)=0.1359,∴点落入题图中阴影部分的概率P=0.13591=0.1359,故投入10000个点,落入阴影部分的个数约为10000×0.1359=1359.答案▶ (1)A (2)B(1)利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.(2)利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x=μ对称,及曲线与x 轴之间的面积为1.注意下面两个结论的活用:①P (X<a )=1-P (X ≥a );②P (X<μ-σ)=P (X ≥μ+σ).已知某批零件的长度误差X (单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( ).(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=0.6826,P (μ-2σ<ξ<μ+2σ)=0.9544)A .0.0456B .0.1359C .0.2718D .0.3174解析▶ 依题意知,X~N (0,32),其中μ=0,σ=3.∴P (-3<X<3)=0.6826,P (-6<X<6)=0.9544.因此P (3<X<6)=12[P (-6<X<6)-P (-3<X<3)]=12×(0.9544-0.6826)=0.1359.答案▶ B能力5 ▶ 离散型随机变量的均值与方差【例5】 为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准如下:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场滑雪,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时.(1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ(单位:元),求ξ的分布列与数学期望E (ξ),方差D (ξ).解析▶ (1)两人所付费用相同,相同的费用可能为0元,40元,80元,两人都付0元的概率为P 1=14×16=124, 两人都付40元的概率为P 2=12×23=13,两人都付80元的概率为P 3=(1−14-12)×(1−16-23)=14×16=124, 则两人所付费用相同的概率为P=P 1+P 2+P 3=124+13+124=512. (2)由题设知ξ可能取值为0,40,80,120,160,则P (ξ=0)=14×16=124; P (ξ=40)=14×23+12×16=14; P (ξ=80)=14×16+12×23+14×16=512; P (ξ=120)=12×16+14×23=14; P (ξ=160)=14×16=124.故ξ的分布列为ξ 0 40 80 120 160 P1241451214124E (ξ)=0×124+40×14+80×512+120×14+160×124=80.D (ξ)=(0-80)2×124+(40-80)2×14+(80-80)2×512+(120-80)2×14+(160-80)2×124=40003.(1)求离散型随机变量的均值与方差的关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用均值、方差公式进行计算.(2)注意E (aX+b )=aE (X )+b ,D (aX+b )=a 2D (X )的应用.某投资公司在2019年年初准备将1000万元投资到“低碳”项目上,现有两个项目供选择.项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为79和29.项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为35,13和115.针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由. 解析▶ 若按“项目一”投资,设获利为X 1万元,则X 1的分布列为X 1 300 -150P79 29∴E (X 1)=300×79+(-150)×29=200(万元).若按“项目二”投资,设获利为X 2万元, 则X 2的分布列为X 2 500 -3000 P3513115∴E (X 2)=500×35+(-300)×13+0×115=200(万元).D (X 1)=(300-200)2×79+(-150-200)2×29=35000,D (X 2)=(500-200)2×35+(-300-200)2×13+(0-200)2×115=140000. ∴E (X 1)=E (X 2),D (X 1)<D (X 2),这说明虽然项目一、项目二获利相等,但项目一更稳妥. 综上所述,建议该投资公司选择项目一投资.一、选择题1.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一个目标,则他们同时中靶的概率是( ).A .1425 B .1225 C .34 D .35解析▶ 因为甲每打10次可中靶8次,乙每打10次可中靶7次,所以P (甲)=45,P (乙)=710,所以他们都中靶的概率是45×710=1425.答案▶ A2.若随机变量X 的分布列为X -2 -1 0 1 2 3P 0.1 0.2 0.2 0.3 0.1 0.1则当P (X<a )=0.8时,实数a 的取值范围是( ). A .(-∞,2] B .[1,2] C .(1,2] D .(1,2)解析▶ 由随机变量X 的分布列知P (X<-1)=0.1,P (X<0)=0.3,P (X<1)=0.5,P (X<2)=0.8,则当P (X<a )=0.8时,实数a 的取值范围是(1,2].答案▶ C3.从装有3个白球、4个红球的箱子中,随机取出了3个球,恰好是2个白球、1个红球的概率是( ). A .435 B .635C .1235 D .36343解析▶ 如果将白球视为合格品,红球视为不合格品,那么这是一个超几何分布问题,故所求概率为P=C 32C 41C 73=1235.答案▶ C4.已知离散型随机变量X 的分布列为X 1 3 5 P0.5m0.2则其方差D (X )=( ). A .1 B .0.6 C .2.44 D .2.4解析▶ 由0.5+m+0.2=1得m=0.3,∴E (X )=1×0.5+3×0.3+5×0.2=2.4,∴D (X )=(1-2.4)2×0.5+(3-2.4)2×0.3+(5-2.4)2×0.2=2.44.答案▶ C5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ). A .0.8 B .0.75 C .0.6 D .0.45解析▶ 记事件A 表示“一天的空气质量为优良”,事件B 表示“随后一天的空气质量为优良”,则P (A )=0.75,P (AB )=0.6. 由条件概率,得P (B|A )=n (nn )n (n )=0.60.75=0.8. 答案▶ A6.已知随机变量X 服从二项分布B (n ,p ),且E (X )=2.4,D (X )=1.44,则n ,p 的值为( ). A .n=4,p=0.6 B .n=6,p=0.4 C .n=8,p=0.3 D .n=24,p=0.1解析▶ 由X~B (n ,p )及E (X )=np ,D (X )=np ·(1-p )得2.4=np ,且1.44=np (1-p ),解得n=6,p=0.4.故选B .答案▶ B7.设随机变量X 服从正态分布N (1,σ2),则函数f (x )=x 2+2x+X 不存在零点的概率为( ). A .14B .13C .12D .23解析▶ ∵函数f (x )=x 2+2x+X 不存在零点,∴Δ=4-4X<0,∴X>1.∵X~N (1,σ2),∴P (X>1)=12,故选C .答案▶ C8.某居民小区有两个相互独立的安全防范系统A 和B,系统A 和系统B 在任意时刻发生故障的概率分别为18和p ,若在任意时刻恰有一个系统不发生故障的概率为940,则p=( ).A .110B .215 C .16 D .15解析▶ 由题意得18(1-p )+(1−18)p=940,∴p=215,故选B .答案▶ B9.甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数X 的期望E (X )为( ). A .24181B .26681C .27481D .670243解析▶ 依题意,知X 的所有可能值为2,4,6,设每两局比赛为一轮,则该轮结束时比赛停止的概率为(23)2+(13)2=59.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有P (X=2)=59,P (X=4)=49×59=2081,P (X=6)=(49)2=1681,故E (X )=2×59+4×2081+6×1681=26681. 答案▶ B 二、填空题10.若随机变量X~N (μ,σ2),且P (X>5)=P (X<-1)=0.2,则P (2<X<5)= .解析▶ ∵P (X>5)=P (X<-1),∴μ=5−12=2,∴P (2<X<5)=12P (-1<X<5)=12×(1-0.2-0.2)=0.3.答案▶ 0.311.已知随机变量ξ的分布列为ξ 1 2 3P12xy若E (ξ)=158,则D (ξ)= .解析▶ 由分布列性质,得x+y=12. 又E (ξ)=158,得2x+3y=118,可得{n =18,n =38.D (ξ)=(1−158)2×12+(2−158)2×18+(3−158)2×38=5564.答案▶556412.一个质地均匀小正方体的六个面中,三个面上标有数字0、两个面上标有数字1、一个面上标有数字2.将这个小正方体抛掷2次,则向上的数之积X 的数学期望是 .解析▶ 随机变量X 的取值为0,1,2,4,则P (X=0)=34,P (X=1)=19,P (X=2)=19,P (X=4)=136,因此E (X )=49.答案▶ 4913.某大厦的一部电梯从底层出发后只能在第18,19,20层停靠.若该电梯在底层有5个乘客,且每位乘客在这三层中任一层下电梯的概率均为13,用X 表示这5位乘客在第20层下电梯的人数,则P (X=4)= .解析▶ 考察一位乘客是否在第20层下电梯为一次试验,这是5次独立重复试验,故X~B (5,13),即P (X=k )=C 5n (13)n×(23)5−n,k=0,1,2,3,4,5.故P (X=4)=C 54(13)4×(23)1=10243. 答案▶10243三、解答题14.雾霾天气对人体健康有伤害,应对雾霾污染、改善空气质量的首要任务是控制PM2.5.我们要从压减燃煤、严格控车、调整产业、强化管理、联防联控、依法治理等方面采取重大举措,聚焦重点领域,严格指标考核.某省环保部门为加强环境执法监管,派遣四个不同的专家组对A ,B ,C 三个城市进行治霾落实情况抽查.(1)若每个专家组随机选取一个城市,四个专家组选取的城市可以相同,也可以不同,求恰有一个城市没有专家组选取的概率.(2)若每一个城市都要由四个专家组分别对抽查情况进行评价,每个专家组给每一个城市评价为优的概率均为12,若四个专家组均评价为优则检查通过不用复检,否则需进行复检.设需进行复检的城市的个数为X ,求X 的分布列和期望.解析▶ (1)随机选取,共有34=81种不同方法,恰有一个城市没有专家组选取的有C 32C A (4122C +42)=42种不同方法,故恰有一个城市没有专家组选取的概率为4281=1427.(2)设事件A 为“城市需复检”, 则P (A )=1-(12)4=1516,由题意知X 的所有可能取值为0,1,2,3, 则P (X=0)=C 30×(116)3=14096,P (X=1)=C 31×(116)2×1516=454096,P (X=2)=C 32×116×(1516)2=6754096,P (X=3)=C 33×(1516)3=33754096.所以X 的分布列为X 0 1 2 3 P14096454096 675409633754096因为X~B (3,1516),所以E (X )=3×1516=4516.15.某手机卖场对市民进行国产手机认可度调查,随机抽取100名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如下:分组/岁 频数 [25,30) x [30,35) y [35,40) 35 [40,45) 30 [45,50] 10 合计 100(1)求频率分布表中x ,y 的值,并补全频率分布直方图;(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人中随机选取2人各赠送精美礼品一份,设这2名市民中年龄在[35,40)内的人数为X ,求X 的分布列.解析▶ (1)由题意知,年龄在[25,30)内的频率为0.01×5=0.05, 故x=100×0.05=5.因为年龄在[30,35)内的频率为1-(0.01+0.07+0.06+0.02)×5=1-0.8=0.2, 所以y=100×0.2=20,且[30,35)这组对应的频率组距=0.25=0.04.补全频率分布直方图如图所示.(2)因为年龄按从小到大的各层人数之间的比为5∶20∶35∶30∶10=1∶4∶7∶6∶2,且共抽取20人,所以抽取的20人中,年龄在[35,40)内的人数为7. 由题意知,X 可取0,1,2, 则P (X=0)=C 132C 202=78190,P (X=1)=C 131C 71C 202=91190,P (X=2)=C 72C 202=21190.故X 的分布列为X 0 1 2 P78190911902119016.某企业有甲、乙两个分厂生产某种产品,按规定该产品的某项质量指标值落在[45,75)的为优质品.从两个分厂生产的产品中各随机抽取500件,测量这些产品的该项质量指标值,结果如下表:指标值分组[25,35) [35,45) [45,55) [55,65) [65,75) [75,85) [85,95]甲厂频数 10 40 115 165 120 45 5 乙厂频数 5 60 110 160 90 70 5(1)根据以上统计数据完成下面2×2列联表,并回答是否有99%的把握认为两个分厂生产的产品的质量有差异.甲厂 乙厂 合计 优质品 760 非优质品 240 合计5005001000(2)求优质品率较高的分厂的500件产品质量指标值的样本平均数n (同一组中的数据用该组区间的中点值作代表).(3)经计算,甲分厂的500件产品质量指标值的样本方差n 12=142,乙分厂的500件产品质量指标值的样本方差n 22=162,可认为优质品率较高的分厂的产品质量指标值X 服从正态分布N (μ,σ2),其中μ近似为样本平均数n ,σ2近似为样本方差s 2.由优质品率较高的分厂的抽样数据,能否认为该分厂生产的产品中,质量指标值不低于71.92的产品至少占全部产品的18%? 附注:P (K 2≥k 0) 0.050.010 0.001 k 03.8416.63510.828参考数据:√142≈11.92,√162≈12.73. 参考公式:K2=n (nn -nn )2(n +n )(n +n )(n +n )(n +n ),其中n=a+b+c+d.若X~N (μ,σ2),则P (μ-σ<X<μ+σ)=0.6826,P (μ-2σ<X<μ+2σ)=0.9544,P (μ-3σ<X<μ+3σ)=0.9974.解析▶ (1)由以上统计数据填写2×2列联表甲厂 乙厂 合计 优质品 400 360 760 非优质品 100 140 240 合计5005001000K 2的观测值k=1000×(400×140−100×360)2500×500×760×240≈8.772>6.635,所以有99%的把握认为两个分厂生产的零件的质量有差异. (2)甲分厂优质品率=400500=0.8,乙分厂优质品率=360500=0.72, 所以甲分厂优质品率高.甲分厂的500件产品质量指标值的样本平均数n =1500×(30×10+40×40+50×115+60×165+70×120+80×45+90×5)=60.(3)由(2)知μ=60,σ2=142,甲分厂的产品的质量指标值X 服从正态分布X~N (60,142), 又σ=√142≈11.92,则P (60-11.92<X<60+11.92)=P (48.08<X<71.92)=0.6826,P (X ≥71.92)=1−n (48.08<n <71.92)2=1−0.68262=0.1587<0.18,故不能认为甲分厂生产的产品中,质量指标值不低于71.92的产品至少占全部产品的18%.。