地球化学第一章 总论分解
- 格式:ppt
- 大小:1.49 MB
- 文档页数:46
第一章太阳系和地球系统化学元素的分布与分配研究任何物质的存在和运动规律,都必须观察研究对象的质和量的特征。
地壳和地球的化学组成如何,元素的相对含量怎样,无疑是地球化学必须探讨的基础课题。
地球化学在研究太阳系、地球和地壳及其它不同地质体中元素的含量时,常采用“丰度”(abundance)“分布”(distribution)和“分布量”等不同术语,它们都表示一定空间中物质组成的相对平均含量。
1.1太阳系的化学成分太阳系由太阳、行星、行星物体(宇宙尘、彗星、小行星)和卫星所组成,其中太阳集中了整个太阳系99.8%的质量。
行星沿着椭圆轨道绕太阳而运行(图1.1)。
在它们中间可以划分为两种类型:接近太阳的较小的内行星-水星、金星、地球、火星,也称为类地行星;远离太阳的大的外行星-木星、土星、天王星、海王星和冥王星。
在火星和木星之间存在着数以兆计的小行星(小行星带)。
它们的大小相差极大,其中最大的谷神星直径达770km。
据估计,直径大于10km的小行星有104个,而直径大于1m 的则有1011个。
有些小行星的轨道是横切过行星的轨道。
在殒落到地球上来的陨石中,已经发现有两颗的轨道曾位于小行星带内。
确定太阳系或宇宙丰度的途径计有:(1)直接分析测定地壳岩石、各类陨石和月球岩石的样品;(2)对太阳及其它星体辐射的光谱进行定性和定量研究;(3)利用宇宙飞行器对邻近地球的星体进行就近观察和测定,或取样分析;(4)分析测定气体星云和星际间的物质;(5)分析研究宇宙射线。
图1.1 太阳系及其行星示意图上图-示大小比例,下图-示分布及运行轨道1.1.1陨石的化学成分陨石是落到地球上来的行星物体的碎块。
它们可能起源于彗星。
更加可能来自火星和木星之间的小行星带。
陨石可由显微质点大小到具有几千公斤的巨块。
据估计,每年落到地球表面的大约有500个陨石,其总质量可达3×106至3×107t。
然而,每年见到其殒落,但又能找到的陨石仅5到6个。
第一章太阳系和地球系统的元素丰度第1节基本概念1、地球化学体系按照地球化学的观点,把所要研究的对象看作是一个地球化学体系,每个地球化学体系都有一定的空间,都处于特定的物理化学状态,并且有一定的时间连续。
这个体系可大可小。
某个矿物包裹体,某矿物、某岩石可看作一个地球化学体系,某个地层、岩体、矿床、某个流域、某个城市也是一个地球化学体系,从更大范围来讲,某一个区域、地壳、地球直至太阳系、整个宇宙都可看作为一个地球化学体系。
地球化学的基本问题之一就是研究元素在地球化学体系中的分布(丰度)、分配问题,也就是地球化学体系中“量”的研究。
2、分布和丰度体系中元素的分布,一般认为是指的是元素在这个体系中的相对含量(平均含量),即元素的“丰度”,体系中元素的相对含量是以元素的平均含量来表示的。
体系中元素的丰度值实际上只能对这个体系里元素真实含量的一种估计;元素在一个体系中的分布,特别是在较大体系中决不是均一的。
3、分布与分配分布指的是元素在一个地球化学体系中(太阳、陨石、地球、地壳某地区)整体总含量。
元素的分配指的是元素在各地球化学体系内各个区域、区段中的含量。
分布是整体,分配是局部,两者是一个相对的概念,既有联系也有区别. 把某岩石作为一个整体,元素在某组成矿物中的分布,也就是元素在岩石中分配的表现.4第2节元素在太阳系中的分布规律(一)获得太阳系丰度资料的主要途径。
主要有以下几种:1、光谱分析:对太阳和其它星体的辐射光谱进行定性和定量分析,但这些资料有两个局限性:一是有些元素产生的波长小于2900Å,这部分谱线在通过地球化学大气圈时被吸收而观察不到;二是这些光谱产生于表面,它只能说明表面成分,如太阳光谱是太阳表面产生的,只能说明太阳气的组成。
2 、直接分析:如测定地壳岩石、各类陨石和月岩、火星的样品.上个世纪七十年代美国“阿波罗”飞船登月,采集了月岩、月壤样品,1997年美国“探路者”号,2004年美国的“勇敢者”、“机遇”号火星探测器测定了火星岩石的成分。
《地球化学》课程笔记第一章:地球化学概述一、地球化学的定义与范畴1. 定义地球化学是研究地球及其组成部分的化学组成、化学作用、化学演化规律以及这些过程与地球其他物理、生物过程的相互关系的学科。
2. 范畴地球化学的研究范畴包括但不限于以下几个方面:- 地球的物质组成和结构- 元素在地球各圈层中的分布、迁移和循环- 岩石和矿物的形成、演化和分类- 生物与地球化学过程的相互作用- 地球表面环境的化学演化- 自然资源和能源的地球化学特征- 环境污染和生态破坏的地球化学机制二、地球化学的研究内容1. 地球的物质组成- 地壳:研究地壳的化学成分、岩石类型、矿物组成及其变化规律。
- 地幔:探讨地幔的化学结构、岩石类型、矿物组成和地球化学动力学过程。
- 地核:分析地核的物质组成、物理状态和地球化学性质。
- 地球表面流体:研究大气、水圈和生物圈的化学组成和演化。
2. 元素地球化学- 元素的丰度:研究元素在地壳、地幔、地核中的丰度分布。
- 元素的分布:分析元素在地球各圈层中的分布规律和影响因素。
- 元素的迁移与富集:探讨元素在地质过程中的迁移机制和富集条件。
- 元素循环:研究元素在地球系统中的循环路径和循环速率。
3. 岩石地球化学- 岩石成因分类:根据岩石的化学成分、矿物组成和形成环境对岩石进行分类。
- 岩浆岩地球化学:研究岩浆的起源、演化、结晶过程和岩浆岩的地球化学特征。
- 沉积岩地球化学:分析沉积物的来源、沉积环境和沉积岩的地球化学特点。
- 变质岩地球化学:探讨变质作用过程中岩石的化学变化和变质岩的地球化学特征。
4. 矿物地球化学- 矿物的化学成分:研究矿物的化学组成、晶体结构和化学键合。
- 矿物的形成与变化:探讨矿物的形成条件、变化过程和稳定性。
- 矿物物理性质与地球化学:分析矿物的物理性质与地球化学环境的关系。
- 矿物化学分类:根据矿物的化学成分和结构特点进行分类。
5. 生物地球化学- 生物地球化学循环:研究元素在生物体内的循环过程和生物地球化学循环的模式。
第一章绪论1. 地球化学的定义地球化学是研究地球的化学成分及元素在其中分布、分配、集中、分散、共生组合与迁移规律、演化历史的科学。
2.地球化学研究的基本问题第一:元素(同位素)在地球及各子系统中的组成(量)第二: 元素的共生组合和存在形式(质);第三: 研究元素的迁移(动;第四: 研究元素(同位素)的行为;第五: 元素的地球化学演化第二章自然体系中元素共生结合规律1、元素的地球化学亲和性定义在自然体系中元素形成阳离子的能力和所显示出的有选择地与某种阴离子结合的特性称为元素的地球化学亲和性。
2、电离能:指从原子电子层中移去电子所需要的能量。
电离能愈大,则电子与原子核之间结合得愈牢固。
3.电子亲和能原子得到电子所放出的能量(E)叫电子亲和能。
E越大,表示越容易得到电子成为负离子。
4、电负性中性原子得失电子的难易程度。
或者说原子在分子中吸引价电子的能力叫电负性。
5、元素的地球化学亲和性戈式分类:①亲氧性(亲石)元素;②亲硫性(亲铜)元素;③亲铁元素;④亲气元素6、亲氧元素特点:离子的最外层为8电子稀有气体稳定结构,具有较低的电负性,所形成的化合物键性主要是离子键,其氧化物的生成热大于FeO的生成热,位于原子容积曲线的下降部分,主要集中于地球的岩石圈。
亲硫元素的特点:离子的最外层为18电子结构,元素的电负性较大,其所形成的化合物键性主要是共价键,氧化物的生成热小于FeO的生成热,位于原子容积曲线的上升部分,主要集中于地球的硫化物——氧化物过度圈。
7、离子电位:离子电价(W)与离子半径(R)的比值,是离子表面正电荷的一个度量。
8、类质同象的定义某些物质在一定的外界条件下结晶时,晶体中的部分构造位置随机地被介质中的其他质点(原子、离子、配离子、分子)所占据,结果只引起晶格常数的微小改变,晶体的构造类型、化学键类型等保持不变,这一现象称为“类质同象”。
9、类质同像置换法则1)戈氏法则(适用于离子键化合物)①优先法则:两种元素电价相同,半径较小者优先进入矿物晶格。
地球化学第一章第一章太阳系和地球系统的元素丰度一、基本概念地球化学体系把所研究对象称为一个地球化学体系,每个地球化学体系都有一定的空间,都处于特定的物理化学状态,并且有一定的时间连续性。
(P15)元素的分布分布:指元素在各种宇宙体或地质体中(太阳、行星、陨石、地球、地圈、地壳)整体(母体)的含量元素的分配分配:则指元素在构成该宇宙体或地质体内各个部分或各区段(子体)中的含量。
与分布既有联系又有区别,而且是一个相对的概念。
化学元素在地球中的分布,也就是元素在地球(母体)中的各层圈(子体)分配的总和。
而元素在构成地壳的各构造层及各类型岩石中的分布,则又是元素在地壳(母体)中各子体中分配。
(注意元素分配和分布的区别与联系)元素在地壳中的原始分布受控于:元素的起源元素的质量原子核的结构和性质地球演化过程中的热核反应元素在地壳中各圈层的分配受控于:地质作用中元素的迁移元素的化学反应元素电子壳层结构及其地球化学性质元素的丰度指化学元素在地球化学系统(太阳、行星、陨石、地球、地圈、地壳)中的平均分布量。
自然体系中不同级别、不同规模的宇宙体或地质体中(如太阳系、行星、陨石、地球、地壳、各地圈)元素的平均含量就相应的称为元素的宇宙丰度、地球丰度、地壳丰度,各种岩石的元素丰度等。
丰度的表示方法:常量元素常用重量%表示,微量元素常用百万分之一(ppm,10-6)和十亿分之一(ppb,10-9)表示。
元素丰度的研究意义1. 丰度是每一个地球化学体系的基本数据。
近代地球化学正是在探索和了解丰度这一过程中逐渐形成的。
2. 一些重要的地球化学基本理论问题都离不开地球化学体系中元素丰度分布特征和规律研究。
二、宇宙(太阳系)中元素的组成现代宇宙成因假说“宇宙大爆炸”假说:由美国天体物理学家加莫夫最先提出的(Gamow, 1952)。
该假说认为,大约在150亿年以前,所有的天体物质都集中在一起,密度极大,温度极高,被称为原始火球。