a=4 2, 解得b=4,
c=4.
所以所求的椭圆方程为3x22 +1y62 =1 或3y22 +1x62 =1,
离心率
e=ac=
2 2.
当焦点在 x 轴上时,焦点坐标为(-4,0),(4,0),
顶点坐标为(-4 2,0),(4 2,0),(0,-4),(0,4);
当焦点在 y 轴上时,焦点坐标为(0,-4),(0,4),
[题后感悟] (1)利用椭圆的几何性质求标准方程通常采用待定系数 法. (2)根据已知条件求椭圆的标准方程的思路是“选标准, 定参数”,一般步骤是:①求出a2,b2的值;②确定焦 点所在的坐标轴;③写出标准方程. (3)解此类题要仔细体会方程思想在解题中的应用.
2.求合适下列条件的椭圆的标准方程. (1)在x轴上的一个焦点,与短轴两个端点的连线互相垂 直,且焦距为6; (2)以坐标轴为对称轴,长轴长是短轴长的5倍,且经过 点A(5,0).
2a=5×2b, 由题意,得2a52 +b02=1,
解得ab= =51, ,
故所求的标准方程为2x52 +y2=1;
若椭圆的焦点在 y 轴上,设其标准方程为ay22+bx22=1(a>b>0),
2a=5×2b, 由题意,得a02+2b52 =1,
解得ab= =255,,
故所求的标准方程为6y225+2x52 =1.
∴b2=4c2,∴a2-c2=4c2,∴ac22=15.……………10 分 ∴e2=15,即 e= 55,所以椭圆的离心率为 55.…12 分
[题后感悟] (1)求离心率e时,除用关系式a2=b2+c2外,还要注意e =的代换,通过方程思想求离心率. (2)在椭圆中涉及三角形问题时,要充分利用椭圆的定 义、正弦定理及余弦定理、全等三角形、类似三角形 等知识.