分数百分数总复习
- 格式:docx
- 大小:99.00 KB
- 文档页数:7
百分数(一)、百分数的意义和写法1、百分数的意义:表示一个数是另一个数的百分之几。
百分数是指的两个数的比,因此也叫百分率或百分比。
2、 百分数和分数的主要联系与区别:(1) 联系:都可以表示两个量的倍比关系。
(2) 区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。
②、百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数。
3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示。
(二)、百分数和分数、小数的互化(Ⅰ)百分数与小数的互化:1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。
2. 百分数化成小数:把小数点向左移动两位,同时去掉百分号。
(Ⅱ)百分数的和分数的互化1、百分数化成分数:先把百分数改写成分母是100的分数,能约分要约成最简分数。
2、分数化成百分数:① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。
②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
(Ⅲ)常见的分数与小数、百分数之间的互化21 = 0.5 = 50% 51 = 0.2 = 20% 85 = 0.625 = 62.5% 41 = 0.25 = 25% 52 = 0.4 = 40% 81 = 0.125 = 12.5%43 = 0.75 = 75% 53 = 0.6 = 60% 83 = 1.375 = 37.5% 161 = 0.0625 = 6.25% 54 = 0.8 = 80% 87 = 0.875 = 87.5% (三)、用百分数解决问题1、常见的百分率的计算方法:①合格率 = %100⨯产品总数合格产品数 ②发芽率 = %100⨯种子总数发芽种子数 ③出勤率 = %100⨯总人数出勤人数 ④达标率 = %100⨯学生总人数达标学生人数 ⑤成活率 = %100⨯总数量成活的数量 ⑥出粉率 = %100⨯出粉物的重量粉的重量 ⑦烘干率 = %100⨯烘干前的重量烘干后的重量 ⑧含水率 = %100⨯-烘干前的重量烘干后的重量烘干前的重量 一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。
分数与百分数的概念复习整理分数与百分数知识属于数与代数中数的认识这一内容,知识点以理解和掌握机及运用位主。
一、基本知识点:1、 分数的意义与性质包括7个小知识点:分数的意义、分数大小的比较、分数与除法的关系、真分数、假分数(带分数)、分数的基本性质、最简分数、约分与通分、分数和小数的互化。
2、 百分数包括4个小知识点:百分数的意义、成数、折扣、百分数和分数、小数的互化。
二、通过复习应该达到以下复习目标:理解分数的意义和性质;百分数的意义和特征。
掌握分数和百分数的读法、写法。
能运用对意义的理解解决相关问题。
掌握分数、小数、百分数互化的方法,能比较分数、小数、百分数的大小。
理解分数乘除法的意义,能正确解答分数、百分数的应用题。
掌握分数混合运算的顺序和方法,能根据运算定律、运算性质进行简便运算。
三、知识重点的疏理。
一)分数1、分数的意义①分数表示“把单位1平均分成若干份,表示这样一份或几份的数”。
“1”可以是一个物体、一个图形、一个计量单位或者一个整体……。
分数的分数单位区别于整数和小数是十进制,而要根据分母来确定分数单位。
学生应该能正确找到一个分数的分数单位及包含几个这样分数单位。
②正确区分分率和数量:2米的绳子平均截成5段。
每段长( ),每段是这根绳子的()()。
③能灵活运用分数的意义解决问题,这是学生学习的难点。
如:甲绳比乙绳长13 ,乙绳比甲绳少( )( )。
学生能够通过对13 的理解,即把乙绳看成“1”,平均分成3份,甲绳多了这样的1份,也就是甲绳有4份。
乙绳比甲绳少一份,以甲绳为“1”,也就是比甲绳少了14 。
当然老师还可以变换问题,如问,乙绳是甲绳的( )( ),甲绳是乙绳的( )( )等。
同样也可以替换信息,如甲绳是乙绳的43 ,乙绳是甲绳的34 等,与问题合理匹配,主要是让学生体会思考问题的步骤,抓住解决问题的关键。
在学生掌握了基本方法的基础上,教师还要给学生提供独立运用方法的机会,可以在提供信息的形式上继续变化,强化对思考步骤和方法的掌握。
小学六年级下册数学总复习分数与百分数练习题小学六年级数学总复《分数与百分数》练题一、填空1、$\frac{1}{10}$的意义是(十分之一),它的分数单位是(十分之一),它有(10)个(十分之一)。
2、有aXXX举办的“道德伴随我成长”德育总结大会,其中上台参加文艺演出的学生有($\frac{3a}{10}$)人。
3、一根长2米的绳子,用去$\frac{3}{4}$米,还剩下($\frac{1}{4}$)米;如果用去2米的,还剩下($\frac{1}{2}$)米。
4、一个分数,分子与分母的和是55,若分子、分母都减去5,所得的新分数约分后为$\frac{18}{29}$,原分数为($\frac{23}{30}$)。
5、在$\frac{1}{3}$、$\frac{2}{5}$、$\frac{3}{4}$、$\frac{5}{15}$四个分数中,分数单位相同的是($\frac{5}{15}$),相等的分数是($\frac{1}{3}$和$\frac{5}{15}$)。
6、分数$\frac{A}{15}$,当A=(14)时,它是分母是15的最大真分数;当A=(1)时,它是分母是15的最小的最简假分数。
7、一个分数加上它的一个分数单位等于1;减去它的一个分数单位等于$\frac{1}{2}$,这个分数是($\frac{1}{2}$)。
8、有两种螺丝钉,一种用3角可以买4个,另一种用4角可以买3个,这两种螺丝钉的单价的最简整数比是(4:3)。
9、一捆电线长30米,第一次剪去$\frac{1}{3}$,第二次剪去$\frac{1}{5}$米,还剩(18)米。
10、修一段600米长的路,甲队单独修8天完成,乙队单独修10天完成。
两队合修($\frac{120}{19}$)天完成它的。
11、有甲、乙两只桶,把甲桶里的半桶水倒入乙桶,刚好装乙桶的,再把乙桶里的水倒出后,剩下15千克水。
甲桶可装水(30)千克。
12、一堆煤,第一次用去$\frac{1}{5}$,第二次用去$\frac{1}{4}$吨。
-- ) - - ) 分数(百分数)应用题典型解法的整理和复习分数(百分数)应用题是小学数学应用题的主要内容之一,它是整、小数倍数关系应用题的继续和深化,是研究数量之间份数关系的典型应用题。
分数应用题涉及的知识面广, 题目变化的形式多,解题的思路宽,既有独特的思维模式,又有基本的解题思路。
小学即将毕业阶段,如何通过分数(百分数)应用题方法的复习,让孩子们掌握一些基本解题方法,感悟数学的基本思想,从而达到培养初步的逻辑思维能力和运用所学知识解决实际问题能力之目的,笔者根据长期的教学实践和体会,总结出以下一些典型方法,以飨读者。
一、数形结合思想数形结合是研究数学问题的重要思想,画线段图能将题目中抽象的数量关系,直观形象地表示出来,进行分析、推理和计算,从而降低解题难度。
画线段图常常与其它解题方法结合使用,可以说,它是学生弄清分数(百分数)应用题题意、分析其数量关系的基本方法。
【例 1 120 千克,还剩下 22 千克。
原】一桶油第一次用去 ,第二次比第一次多用去5来这桶油有多少千克?[分析与解]从图中可以清楚地看出:这桶油的千克数×(1 1 1=20+225 5则这桶油的千克数为:(20+22)÷(1 1 1=70(千克)5 5【例 2】一堆煤,第一次用去这堆煤的 20%,第二次用去 290 千克,这时剩下的煤比原来这堆煤的一半还多 10 千克,求原来这堆煤共有多少千克?[分析与解]显然,这堆煤的千克数×(1-20%-50%)=290+10则这堆煤的千克数为:(290+10)÷(1-20%-50%)=1000(千克)二、对应思想】菜农张大伯卖一批大白菜,第一天卖出这批大白菜的 ,第二天卖出余下的 , 量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。
(量率对应常常和画线段图结合使用,效果 极佳。
)【例 3】缝纫机厂女职工占全厂职工人数的 720 工多少人?[分析与解],比男职工少 144 人,缝纫机厂共有职解题的关键是找到与具体数量 144 人的相对应的分率。
小学阶段分数和百分数知识点汇总复习分数【真分数、假分数】一、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
表示其中一份的数,是这个分数的分数单位。
二、两个数相除,它们的商可以用分数表示。
即:a÷b=a/b (b≠0)三、小数和分数的意义可以看出,小数实际上就是分母是10、100、1000…的分数。
四、分数可以分为真分数和假分数。
五、分子小于分母的分数叫做真分数。
真分数小于1。
六、分子大于或等于分母的分数叫做假分数。
假分数大于或等于1。
七、分子和分母只有公因数1的分数叫做最简分数。
八、分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
九、小数的性质和分数的基本性质一致的,应用分数的基本性质,可以通分和约分。
百分数【税率、利息、折扣、成数】一、表示一个数是另一个数的百分之几的数叫做百分数。
百分数也叫百分率或百分比,百分数通常用“%”表示。
二、分数与百分数比较:不同点相同点分数可以表示具体数量,可以有单位名称表示两个数之间的关系百分数不可以表示具体数量,不可以有单位名称三、分数、小数、百分数的互化。
(1)把分数化成小数,用分数的分子除以分母。
(2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约分。
(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。
(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。
(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数。
(6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
四、熟记常用三数的互化。
五、1、出勤率表示出勤人数占总人数的百分之几。
2、合格率表示合格件数占总件数的百分之几。
3、成活率表示成活棵数占总棵数的百分之几。
六、求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几。
七、1、多的÷“1”=多百分之几 2、少的÷“1”= 少百分之几八、应得利息是税前利息,实得利息是税后利息。
分数与百分数课标要求1.理解分数和百分数的意义,并能熟练运用。
2.知道分数可以分为真分数、假分数,知道真分数、假分数、带分数的意义。
3.掌握分数的基本性质,能用分数的基本性质解决相关的问题。
4.会进行小数。
分数和百分数的互化(不包括将循环小数化为分数),能比较它们的大小。
5.理解最简分数的额意义,能正确判断一个数是否是最简分数。
6.掌握倒数的意义,并能灵活地加以运用。
考点1 分数、百分数的意义1. 在下面各图中涂色表示它下面的数。
2. 用分数、小数、百分数表示右图中的涂色部分。
分数( ) 小数( ) 百分数( )3. 在下面两幅图中分别用阴影部分表示出 公顷。
4. 分数单位是( ),40%的计数单位是( )。
5. “小学生的近视率是18%。
”这句话的意思是( )。
6. 分数单位是( ),3里面有( )个这样的分数单位。
7. 的分数单位是( ),再添上( )个这样的分数单位就等于1。
8. 的分数单位是( ),再减去( )个这样的分数单位就是最小的质数。
9. 的分数单位是( ),当a 为( )时,这个分数的值等于最小的质数。
745415775745ba10. 党的十九大提出“精准扶贫”,李叔叔蹲点扶贫的乡镇贫困人民中有 已经脱贫,还剩( )没有脱贫,单位“1”是( )。
11. 把一根绳子对折3次,每段占全长的( )。
12. 如右图,将一张长方形纸的一角折起后放在桌上,已知长方形的长是12cm ,则桌面被遮住部分的面积是长方形面积的 。
13. 判断。
(1)因为 大于 ,所以前者的分数单位比后者的大。
( )(2)一堆黄沙,运走 吨,这里的 可以用75%表示。
( )(3)一块地, 种了黄瓜,还剩 公顷。
( )(4)六(一)班植树102棵,全部成活,成活率是102%。
( ) (5)“三天打鱼两天晒网”中,打鱼时间占总时间的60%。
( ) (6)四成五就是百分之四十五。
( )(7)一种商品连续两次降价5%,第二次降价幅度一定比第一次小。
知识要点归总——总复习数的认识(二)小数、分数、百分数和比知识点一小数1.读法:读小数的时候,整数部分按照整数的读法来读(整数部分是0的读作“零”),小数点读作:“点”,小数部分从高位到低位顺次读出每个数位上的数字。
2.写法:写小数的时候,整数部分按照整数的写法来写(整数部分是零的写作“0”,小数点点在个位的右下角,小数部分从高位到低位顺次写出每一个数位上的数字。
3.小数的大小比较:比较两个小数的大小,先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数相同的,百分位上的数大的那个数就大……4.求小数的近似数:根据要求保留小数位数,确定好从哪一位起按照“四舍五入”的方法省略尾数。
5.小数化成分数的方法:先把小数改写成分母是10,100,1000…的分数,再约分,就化成了分数。
6.小数化成百分数的方法:先将小数点向右移动两位,再在后面添上“%”,就化成了百分数。
7.小数的分类:(1)按整数部分分类:分为“纯小数”和“带小数”两种。
“纯小数”是指整数部分为“0”的小数。
例如:0.8,0.207,0.0012等。
“带小数”是指整数部分不为“0”的小数。
例如:2.3,12.608,300.168等。
一般说来,纯小数都小于1,而带小数都大于1或等于1。
(2)按小数部分分类:分为“有限小数”和“无限小数”两种。
小数部分的位数有限的小数,叫做有限小数;小数部分的位数是无限的小数,叫做无限小数。
(3)无限小数的分类:在无限小数中又分为无限循环不数和无限不循环小数。
无限循环小数是指一个无限小数,如果从小数部分的某一位起,都是由一个或几个数字依照一定的顺序连续不断地重复出现,这样的小数叫做无限循环小数,简称“循环小数”。
无限不循环小数是指一个小数的数位无限多,而且小数部分各数位上的数字是不循环的,这样的小数叫做无限不循环小数。
在小学数学中,圆周率(π)3.1415926…便是一个无限不循环小数(无理数)。
六年级数学下册期末总复习《2单元百分数》必记知识点如下:一、百分数的定义与理解1.百分数表示一个数是另一个数的百分之几。
2.百分数由数字和百分号(%)组成,如25%读作百分之二十五。
二、百分数的计算1.百分数转化为小数:将百分数除以100。
例如,25% = 25 ÷ 100 = 0.25。
2.小数转化为百分数:将小数乘以100,并在后面加上百分号。
例如,0.25 =0.25 × 100% = 25%。
3.分数转化为百分数:先将分数转化为小数,再将小数转化为百分数。
例如,1/4= 0.25 = 25%。
三、百分数的应用1.折扣:商品打折时,“几折”就表示十分之几或百分之几十。
例如,打九折就是按原价的90%出售。
1.现价= 原价× 折扣2.原价= 现价÷ 折扣3.折扣= 现价÷ 原价2.成数:表示一个数是另一个数的十分之几,通称“几成”。
例如,三成五就是十分之三点五(或35%)。
1.实际应用时,需将成数转化成百分数。
3.税率:1.应纳税额= 应纳税部分× 税率2.应纳税部分= 应纳税额÷ 税率3.税率= 应纳税额÷ 应纳税部分× 100%4.本金、利率、存期与利息:1.利息= 本金× 利率× 存期2.利率= (利息÷ 存期) ÷ 本金× 100%3.本金= (利息÷ 存期) ÷ 利率四、百分数常考题型1.折扣问题:涉及现价、原价和折扣之间的关系。
2.税率问题:涉及应纳税额、税率和应纳税部分之间的关系。
3.利息问题:涉及本金、利率、存期和利息之间的关系。
4.利润问题:涉及售价、成本和利润之间的关系。
五、百分数应用题解题策略1.理解题意:仔细阅读题目,理解题目的要求和条件。
2.确定关系:根据题意,确定已知条件和未知量之间的数学关系。
3.列出方程:根据确定的关系,列出相应的数学方程。
《分数、百分数应用题整理与复习》说课稿《分数、百分数应用题整理与复习》说课稿范文我说课的内容是人教版小学数学第十二册总复习部分《分数、百分数应用题整理与复习》的教学内容,下面我着重从五个方面来谈谈我对本课的教学设计。
一、说教材:1.教材分析本单元内容不仅是本册教科书的一个重点,也是全套教材的一个重要组成部分。
这部分教学质量的高低直接关系到小学数学教学目标的任务能否圆满地完成。
应用题部分是这一单元的重要组成部分,分数、百分数应用题的数量关系也是这一部分的难点所在,因此,我们要通过复习和比较使学生牢固地掌握分数、百分数应用题之间的数量关系,提高学生的辨析能力,使学生弄清复杂的分数应用题,从而为中学学习打下坚实基础。
2.学情分析我们的学生在思想上都积极要求进步,学习态度上都很严谨认真,大多数学生能按照老师的要求自主完成学习任务。
但有少部分学生学习态度不够端正,应用题的分析、解答能力较差,在老师和同学的帮助下学习成绩虽然有所攀升,也不是太尽人意。
3.教学目标的确立根据本课的内容和学生已有的知识和心理特征,我制订如下教学目标:知识目标:1.使学生在解答生活问题的过程中,进一步理解和掌握分数、百分数应用题的数量关系和解题方法。
2.沟通分数、百分数应用题之间的联系,通过学生自主建构使知识系统化。
能力目标:增强学生的数学应用意识,提高学生分析、推理、判断能力以及解决简单的实际问题的能力。
情感目标:培养学生收集、处理信息的能力,使学生体会到数学的价值。
依据本节课的特点和在本小节中的地位和作用,结合学生的认知水平和年龄特征,将本课的教学重难点确定为:教学重点:熟悉分数和百分数应用题的数量关系,进一步掌握解题方法,解决简单的生活实际问题。
教学难点:沟通分数、百分数之间的练习,建构完善的知识体系。
二、说教法、学法:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上,以学生为主体,教师进行点拨,引导学生进行主动探索、积极思考和讨论交流,形成技能。