t检验
- 格式:xls
- 大小:15.50 KB
- 文档页数:2
t 检验方法t检验方法是一种常用的统计方法,用于比较两组样本均值是否有显著差异。
它是由英国统计学家William Sealy Gosset(1876-1937)开发的,因为他在Guinness酒厂工作,所以也被称为“学生t检验”。
t检验方法的应用广泛,可以用于医学、社会科学、商业等领域的研究。
它的基本思想是通过比较两组样本的均值,判断它们之间是否存在显著差异。
在进行t检验之前,我们需要满足以下几个假设:样本数据应该是独立的、正态分布的,且方差相等。
t检验方法可以分为独立样本t检验和配对样本t检验两种。
独立样本t检验适用于两个独立样本之间的比较。
例如,我们想比较男性和女性的平均身高是否有差异,我们可以采集一组男性和一组女性的身高数据,然后使用独立样本t检验来判断两组数据的均值是否显著不同。
配对样本t检验适用于同一组样本在不同条件下的比较。
例如,我们想研究一种新药物对患者血压的影响,我们可以在给患者使用新药物之前和之后分别测量他们的血压,并使用配对样本t检验来判断新药物是否对血压产生显著影响。
进行t检验时,我们首先计算两组样本的均值和标准差,然后计算t值。
t值可以用来判断两组样本均值是否有显著差异。
在t检验中,我们还需要设置显著性水平,一般为0.05,即我们认为当p值小于0.05时,结果具有统计学意义。
除了独立样本t检验和配对样本t检验,t检验方法还有一些扩展应用,如单样本t检验、多样本t检验等。
单样本t检验适用于只有一个样本的情况,例如我们想知道某个产品的平均销售量是否达到预期值;多样本t检验适用于比较多个样本之间的差异,例如我们想比较不同品牌手机的平均续航时间是否有显著差异。
虽然t检验方法在统计学中被广泛应用,但也有一些限制。
首先,t 检验方法要求样本数据满足一些假设,如独立性、正态分布和方差相等,如果这些假设不满足,t检验的结果可能不可靠。
其次,t检验只能用于比较两组样本的均值差异,无法比较其他统计指标的差异。
t检验总结归纳t检验是一种常用的统计方法,用于比较两组数据的平均值是否存在显著差异。
它基于样本均值和样本标准差,通过计算t值来判断两组数据是否具有统计学意义的差异。
本文将对t检验的基本原理、应用场景、步骤以及结果解读进行总结归纳。
一、基本原理t检验是在给定的显著性水平下,比较两组样本均值的差异是否显著。
它基于以下两个重要假设:1. 零假设(H0):两组数据的均值没有显著差异。
2. 备择假设(H1):两组数据的均值存在显著差异。
二、应用场景t检验适用于以下场景:1. 比较两组独立样本的均值差异,如对不同治疗方法的患者进行对比;2. 比较两组相关样本(配对样本)的均值差异,如对同一组学生在不同时间的考试成绩进行对比。
三、步骤进行t检验的基本步骤如下:1. 确定零假设(H0)和备择假设(H1),选择显著性水平;2. 收集两组样本数据,并计算样本均值、样本标准差以及样本容量;3. 计算t值,使用t检验公式:t = (样本均值差 - 总体均值差) / (标准误差);4. 查表或使用统计软件计算得到临界值,比较t值和临界值;5. 根据比较结果,判断零假设是否成立,并给出结论。
四、结果解读通过比较t值和临界值,可以得出以下结论:1. 若t值小于临界值,则无法拒绝零假设,即两组数据的均值没有显著差异;2. 若t值大于临界值,则可以拒绝零假设,即两组数据的均值存在显著差异;3. 结果一般还会给出p值,它表示在零假设成立情况下,观察到当前样本差异的概率。
一般而言,p值小于显著性水平(通常为0.05)时,可以拒绝零假设。
五、注意事项在进行t检验时需要注意以下几点:1. 样本容量要足够大,通常要求每组样本容量大于30,否则结果可能不准确;2. 数据的分布要符合正态分布假设,否则结果可能不准确;3. 若两组样本方差不相等,可以使用修正的t检验方法,如Welch's t检验。
六、总结t检验是一种常用的统计方法,适用于比较两组数据的平均值是否存在显著差异。
第9章t 检验t检验(t—tests)又称Student t检验(学生氏t检验),它用以检验单样本均数与总体均数间的差异性,两独立样本均数的差异性(独立样本t检验,又称成组t检验,团体t检验)和两样本配对样本t检验(自身对照)。
它以t分布为其理论基础,具体假设依各种问题的不同而异。
9.1 单样本均数t检验单样本均数t检验(one—Sample t-test for a Mean)可以对单样本均数与已知总体均数(一般为理论值、标准值或经过大量观察所得的稳定值等)进行比较,目的是推断样本所代表的未知总体均数与已知的总体均数有无差别(即样本均数与总体均数的比较)。
[例9—1] 已知某水样中含CaC03的真值(均数)为20.7mg/L,现用某方法重复测定该水样11次,CaC03的含量(mg/L)如下:20.99,20.41,20.10,20.00,20.91,22.60,20q99,20.41,20,00,23.00,22.00问该方法测得的均数是否偏高?(杨树勤。
中国医学百科全书/医学统计学。
上海:上海科学技术出版社,1985.10.3)(1)进入SAS/Win(v8)系统,单击Solutions-Analysis-Analyst,显示分析家窗口。
建立如图9—1所示的SAS数据集文件Sasuser.CaCO3。
A为变量CaCO3;,并保存为Sasuser.CaCO3。
(2)单击Statistics-Hypothesis(假设检验) -one—Samplet-test for a Mean (单样本均数t检验),得到图9.2所示对话框。
图9.1数据文件(部分) 图9—2 one—Sample t-test for a Mean:Cac03(单样本均数t检验)对话框在图9—2所示对话框中可进行如下设置。
、V ariable,待选变量为A(CaCO3)(单击A—Variable)。
Hypotheses,假设检验。
(二)t检验当总体呈正态分布,如果总体标准差未知,而且样本容量n v30,那么这时一切可能的样本平均数与总体平均数的离差统计量呈t分布。
t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显着。
t检验分为单总体t检验和双总体t检验。
1.单总体t检验单总体t检验是检验一个样本平均数与一已知的总体平均数的差异是否显着。
当总体分布是正态分布,如总体标准差未知且样本容量n v30,那么样本平均数与总体平均数的离差统计量呈t分布。
检验统计量为:如果样本是属于大样本(n>30)也可写成:X。
Xn在这里,t为样本平均数与总体平均数的离差统计量;X为样本平均数;为总体平均数;为样本标准差;n 为样本容量。
例:某校二年级学生期中英语考试成绩,其平均分数为73 分,标准差为17 分,期末考试后,随机抽取20 人的英语成绩,其平均分数为79.2 分。
问二年级学生的英语成绩是否有显着性进步?检验步骤如下:第一步建立原假设H。
:=73第二步计算t 值第三步判断因为,以0.05为显着性水平,df n 1 19,查t值表,临界值t(19)o.o5 2.093 ,而样本离差的t 1.63 小与临界值2.093 。
所以,接受原假设,即进步不显着。
2.双总体t检验双总体t检验是检验两个样本平均数与其各自所代表的总体的差异是否显着。
双总体t检验又分为两种情况,一是相关样本平均数差异的显着性检验,用于检验匹配而成的两组被试获得的数据或同组被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本。
二是独立样本平均数的显着性检验。
各实验处理组之间毫无相关存在,即为独立样本。
该检验用于检验两组非相关样本被试所获得的数据的差异性现以相关检验为例,说明检验方法。
因为独立样本平均数差异的显着性检验完全类似,只不过r 0。
相关样本的t 检验公式为:X i X 2在这里,X ;,X ;分别为两样本平均数;为相关样本的相关系数例:在小学三年级学生中随机抽取10名学生,在学期初和学期末分别进行了两 次推理能力测验,成绩分别为79.5和72分,标准差分别为9.124,9.940。
t检验及公式Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GTT检验分为三种方法T检验分为三种方法:?1. 单一样本t检验(One-sample t test),是用来比较一组数据的平均值和一个数值有无差异。
例如,你选取了5个人,测定了他们的身高,要看这五个人的身高平均值是否高于、低于还是等于,就需要用这个检验方法。
?2. 配对样本t检验(paired-samples t test),是用来看一组样本在处理前后的平均值有无差异。
比如,你选取了5个人,分别在饭前和饭后测量了他们的体重,想检测吃饭对他们的体重有无影响,就需要用这个t检验。
?注意,配对样本t检验要求严格配对,也就是说,每一个人的饭前体重和饭后体重构成一对。
?3. 独立样本t检验(independent t test),是用来看两组数据的平均值有无差异。
比如,你选取了5男5女,想看男女之间身高有无差异,这样,男的一组,女的一组,这两个组之间的身高平均值的大小比较可用这种方法。
?总之,选取哪种t检验方法是由你的数据特点和你的结果要求来决定的。
?t检验会计算出一个统计量来,这个统计量就是t值,?spss根据这个t值来计算sig值。
因此,你可以认为t值是一个中间过程产生的数据,不必理他,你只需要看sig值就可以了。
sig值是一个最终值,也是t检验的最重要的值。
上海神州培训中心 SPSS培训sig值的意思就是显着性(significance),它的意思是说,平均值是在百分之几的几率上相等的。
?一般将这个sig 值与相比较,如果它大于,说明平均值在大于5%的几率上是相等的,而在小于95%的几率上不相等。
我们认为平均值相等的几率还是比较大的,说明差异是不显着的,从而认为两组数据之间平均值是相等的。
?如果它小于,说明平均值在小于5%的几率上是相等的,而在大于95%的几率上不相等。
我们认为平均值相等的几率还是比较小的,说明差异是显着的,从而认为两组数据之间平均值是不相等的。
t检验公式:=TTEST(range1,range2,tails,type),会直接报告P值,而不会报告t值。
验。
Type为1是配对t检验(两组数据来源于同一个体),而为2时则是非配对t检验,
非配对样本t检验配对样本t检验
plot fertiliser A fertiliser B subject
127281
220192
316183
418214
522245
619206
723257
821278
91729mean
101921t-test P
mean20.223.2
t-test P0.078759353
t检验要求数据是连续性的,且符合正态分布,但对于计数或计算数据则不符合t检验
用t检验的目的。
不幸的是,EXCEL并不支持该检验,但能计算U值,至于显著与否,还需要参照统计表。
本t检验
before eating after eating
105109
7987
7986
103109
8790
7478
7378
8289
85.2590.75
0.00005
t检验,此种情况下,非参数检验中的于显著与否,还需要参照统计表。
t值。
tail为1时是单侧检验,为2则为非配对t检验,。