水泥的力学性质.
- 格式:ppt
- 大小:879.50 KB
- 文档页数:11
水泥的物理性能知识1、细度与比表面积水泥一般由几微米到几十微米大小不同的颗粒组成,它的粗细程度(颗粒大小)称为水泥细度。
水泥细度直接影响水泥的凝结和硬化速度、强度、需水性、析水率、干缩性、水化热等一系列物理性能,因此生产单位和使用单位对水泥细度都很重视。
水泥细度有筛余百分数、比表面积、颗粒平均直径和颗粒级配等表示方法。
在相同的粉磨条件下,影响水泥粉磨细度的主要因素是熟料的易磨性、混合材的易磨性及掺加量。
一般讲,C3S含量高的熟料易磨,C2S含量高的熟料难磨。
混合材料中火山灰质材料、粉煤灰易磨矿渣难磨。
水泥中粗细颗粒级配恰当,则可得到良好的流发性能。
一般认为,水泥中3~30μm的颗粒主要起强度增长作用,而大于60μm颗粒由于水化程度低,对水泥强度贡献不大,因此,水泥中3~30μm的颗粒通常占到90%以上。
小于10μm的颗粒主要起早强作用,而其中3μm以下的颗粒只起早强作用。
10μm 以下颗粒比表面积大、需水量大、水化速度快,因而水泥的流发性能不利,故水泥中10μm以下颗粒含量应尽量少一些为好。
水泥一般从强度出发来确定细度指标,尤其是当熟料强度低,混合材掺量高时,往往都采取提高粉磨细度来保证水泥强度。
水泥细度越大,细颗粒含量越多,需水量越大。
需水量大的水泥与外加剂的相容性较差,混凝土坍落度损失快。
水泥终粉磨系统所用的磨机不同(球磨、辊压磨、振动磨),所得的水泥颗粒的形状会不一样。
在相同细度及颗粒组成的情况下,水泥颗粒球形度越大,则需水量越小,与外加剂的相容性越好。
普通硅酸盐水泥细度以比表面积表示,其比表面积不小于300m2/kg。
比表面积过小,水泥容易泌水,失去胶凝作用效果;比表面积过大,水泥需水量明显增大,容易使混凝土极件收缩,产生裂缝,导致水泥极件强度减小。
通用硅酸盐水泥的其他五种水泥的细度以筛余表示,其80μm方孔筛筛余不大于10%或45μm方孔筛筛余不大于30%。
2、需水性在水泥制备净浆、砂浆或拌制混凝土时,都需要加入一定量的水分。
水泥物理力学性能检验杨利雄第一节水泥1.1基本知识1.1.1水泥的定义、用途及分类1、定义:凡细磨材料,加水后变为塑性浆体,既能在水中硬化又能在空气中硬化的水硬性胶凝材料统称为水泥。
2、用途:水泥属于无机水硬性胶凝材料,不仅可用于干燥环境中的工程,而且也可以用于潮湿环境及水中的工程,在建筑、交通、水利电力、能源矿山、国防、航空航天、农业等基础设施建筑工程中得到广泛应用。
3、分类:水泥的分类方法主要有以下两种。
按水泥的性能和用途分水泥按性能和用途分为通用水泥、专用水泥和特性水泥三大类,见表1.1-1.表1.1-1 水泥按性能和用途的分类(2)按水泥中主要水硬性物质分水泥按主要水硬性物质的分类见表1.1-2。
1.1.2水泥生产所用的原材料及主要化学组成1、原材料:硅酸盐系列水泥原材料分为生产硅酸盐水泥熟料的原材料、石膏和混合材料三类。
(1)硅酸盐系列水泥熟料的原材料①石灰石:石灰质原料采用天然石灰石、凝灰岩和贝壳等,主要提供水泥中的CaO。
②粘土:主要为黏土(或页岩、泥岩、粉砂岩、河泥等),其主要成分为SiO2,其次为Al2O3和少量Fe2O3。
③铁粉:铁矿粉采用赤铁矿,化学成分为Fe2O3,主要弥补黏土中铁质含量的不足。
(2)石膏:在生产水泥时,必须掺入适量石膏,以延缓水泥的凝结。
在硅酸盐水泥、普通硅酸盐水泥中石膏主要起缓凝作用;而在掺较多混合材料的水泥中,石膏还起激发混合材料活性的作用。
掺入的石膏主要为天然石膏、工业副产石膏(无水硫酸钙)等。
(3)混合材料:为了改善水泥的性能,调节水泥强度等级,提高水泥的产量,扩大水泥品种,降低成本,在生产水泥时加入的矿物质材料,称为混合材料。
混合材料分为活性混合材料和非活性混合材料两类,其种类、性能及常用品种见表1.1-3。
①粒化高炉矿渣。
它是高炉冶炼生铁的副产品,以硅酸钙和铝酸钙为主要成分的熔融物,经水淬成粒后的产品。
粒化高炉矿渣的化学成分主要为CaO、Al2O3 、SiO2 ,约占总质量的90%以上,另外还含有少量的MgO、Fe2O3 和一些硫化物。
水泥表观密度、细度、标准稠度用水量
水泥的物理力学性质主要包括表观密度、细度、标准稠度用水量、凝结时间、安定性、水泥胶砂强度(标号)。
必要时还应进行水泥的水化热和抗水的侵蚀性试验。
(一)表观密度
硅酸盐水泥的相对密度为 3. 1~3.2,疏松状态时的表观密度为1000~1300kg/m3,紧密状态时可达1400~1700kg/m3如掺有掺合料时,表观密度将稍有降低。
存放过久的水泥,表观密度也将稍为减小。
水泥的表观密度对于混凝土并没有什么大的实际意义,仅在混凝土配合比计算时才会用到。
测定水泥的相对密度,一般均采用专用仪器(李氏瓶)进行。
由于水泥能与水起化合作用,试验必须采用不与水起作用的液体,通常采用无水煤油进行试验。
(二)细度
细度是指水泥颗粒的粗细程度。
在制造方面,水泥磨细的程度关系到设备和电力的消耗。
在使用上,水泥颗粒的细度对于水泥与水之间的反应速率是一个重
要的因素。
水泥越细,颗粒和水接触的表面积越大,因而水化越迅速,强度增长
越快,早期强度越高。
如果水泥粒子大于lOOtjm,则活性很小;若水泥粒子小于40Um,则活性较高。
提高水泥的细度,对于安定性还可以起到一定的改善作用。
因为水泥颗粒的表面积加大后,水泥中的游离石灰在储存期间,容易和空气中的水蒸气及C02起作用,因而可以减少水泥硬化后体积膨胀的危害性。
水泥越细,制成的混凝土黏性越好,析水越少,并可以改善混凝土的和易性。
混凝土有哪些性质正文:混凝土是一种由水泥、骨料、粗骨料和水等原料按一定比例混合而成的人工石材。
混凝土具有以下几种性质:1. 力学性能混凝土的力学性能是指其在外力作用下的抗压、抗拉、抗弯、抗剪等性能。
具体有以下几个方面:(1) 抗压强度:混凝土在受到垂直于其表面的压力时的抵抗能力。
(2) 抗拉强度:混凝土在受到拉力时的抵抗能力。
(3) 抗弯强度:混凝土在受到弯曲力矩时的抵抗能力。
(4) 抗剪强度:混凝土在受到剪切力时的抵抗能力。
(5) 抗冻融性:混凝土在冻融循环作用下的性能稳定性。
2. 物理性能混凝土的物理性能包括密度、吸水性、干缩性等。
(1) 密度:混凝土的质量与体积的比值。
(2) 吸水性:混凝土对水的吸收能力。
(3) 干缩性:混凝土在干燥过程中发生的收缩现象。
3. 耐久性能混凝土的耐久性能是指其在不同环境条件下的长期使用性能。
具体有以下几个方面:(1) 抗化学侵蚀:混凝土对酸碱、氯离子等腐蚀物的抵抗能力。
(2) 抗渗透性:混凝土对水和气体的渗透能力。
(3) 抗碳化性:混凝土对二氧化碳的抵抗能力。
(4) 抗裂性:混凝土在受到荷载作用时的裂缝抵抗能力。
附件:本文档涉及的附件包括:1. 混凝土配合比表格2. 混凝土试验报告法律名词及注释:1. 混凝土:指由水泥、骨料、粗骨料和助凝剂等组成的人工石材。
2. 抗冻融性:指混凝土在冻融循环作用下的性能稳定性。
3. 干缩性:指混凝土在干燥过程中发生的收缩现象。
4. 抗化学侵蚀:指混凝土对酸碱、氯离子等腐蚀物的抵抗能力。
5. 抗渗透性:指混凝土对水和气体的渗透能力。
6. 抗碳化性:指混凝土对二氧化碳的抵抗能力。
7. 抗裂性:指混凝土在受到荷载作用时的裂缝抵抗能力。
正文:混凝土是一种由水泥、骨料、粗骨料和水等原料按一定比例混合而成的人工石材。
混凝土具有以下几种性质:1. 力学性能1.1 抗压强度混凝土在受到垂直于其表面的压力时的抵抗能力。
可根据不同的强度等级进行分类。
硅酸盐水泥的物理力学性能指标
硅酸盐水泥是一种新型的混凝土材料,它由铝硅酸钙和石膏组成。
硅酸盐水泥具有优异的物理力学性能,它是用于建筑工程、维修工程
和修复工程的首选材料。
硅酸盐水泥的物理力学性能包括抗弯性能、抗压性能、抗裂性能、水稳性能、抗冻性能等。
它的抗弯性能可以抗拒特定的压力,并且抗
弯强度可以大大增强,即使在情况恶劣的情况下也能保证工程建设的
结构可靠。
此外,它的抗压性能也很强,耐压性强,可以非常好地抵
抗不断变化的水压。
它的抗裂性能也很强,可以在收缩损坏下保持它
的稳定性。
此外,它还具有良好的水稳性能,表面有凹凸不平,可以
防止水蒸气和水分子进入混凝土,从而确保材料的坚固性和绝热性能。
最后,硅酸盐水泥的抗冻性能很好,能够有效抗冻融损坏,特别是在
低温环境中可以保持较高的耐受性。
综上所述,硅酸盐水泥具有优异的物理力学性能,可以抗拒特定
的压力、抗弯强度大大增强、抗压性强、抗裂性好、水稳性能好、抗
冻性能强等优点。
它不仅可以大大提高工程建设的稳定性和可靠性,
而且还可以在低温环境中抵抗冻融破坏。
由此可见,硅酸盐水泥是一
种具有很高性能的混凝土材料,它在建筑、维修和修复工程中具有重
要的作用。
混凝土材料的力学性能原理一、混凝土的组成和分类混凝土是一种由水泥、砂、石子和水等组成的人造材料,广泛应用于工程建设中。
混凝土的主要组成部分是水泥熟料和矿物掺合料,其中水泥熟料是通过煅烧石灰石、粘土等原材料得到的熔融物质,矿物掺合料是指通过研磨、筛分等工艺得到的粉状物质。
混凝土按照材料的组成和性能可以分为普通混凝土、高强度混凝土、自密实混凝土等多种类型。
二、混凝土的力学性能混凝土的力学性能是指其在外力作用下的变形和破坏性能,主要包括强度、刚度、稳定性等指标。
混凝土的力学性能与其组成部分、施工工艺等因素密切相关。
1.强度混凝土的强度是指在外力作用下抵抗破坏的能力,通常用抗压强度表示。
抗压强度是指在规定的试验条件下,混凝土试样在受到压力作用下的最大承载能力。
混凝土的抗压强度与其成分、配合比、养护条件等因素有关。
2.刚度混凝土的刚度是指在外力作用下对变形的抵抗能力,通常用弹性模量表示。
弹性模量是指在小应变条件下,混凝土试样受到应力变化时产生的应变与应力之比。
混凝土的刚度与其配合比、水胶比、龄期等因素有关。
3.稳定性混凝土的稳定性是指在外力作用下的变形和破坏过程中的稳定性能,通常用韧度和延性表示。
韧度是指混凝土试样在破坏前的能量吸收能力,通常用面积表示;延性是指混凝土试样在破坏前的变形能力,通常用应变表示。
混凝土的稳定性与其配合比、养护条件、龄期等因素有关。
三、混凝土的破坏机理混凝土的破坏机理是指在外力作用下混凝土试样发生破坏的过程和规律,主要有拉应力破坏、剪应力破坏、压应力破坏等多种形式。
1.拉应力破坏拉应力破坏是指混凝土试样在受到拉应力作用下发生破坏的过程。
拉应力破坏通常发生在轴心受拉试件上,主要通过裂缝的形成和扩展来实现。
拉应力破坏的主要特点是试样破坏前的变形较大,而且在破坏后试样容易出现破碎。
2.剪应力破坏剪应力破坏是指混凝土试样在受到剪应力作用下发生破坏的过程。
剪应力破坏通常发生在梁、板等构件上,主要通过剪切面的形成和扩展来实现。
水泥物理力学性能相关标准:GB175-1999《硅酸盐和普通硅酸盐水泥》(P I、PII、PO);GB1344-1999(PC、PP、PF水泥);GB12658-1999(PC水泥);GB/T1346-2001(水泥标准稠度用水量、凝结时间、安定性检验方法);GB1345-2005(水泥细度筛析法)GB/T17671-1999(水泥胶砂强度检验方法)一、六大通用水泥:1、硅酸盐水泥:PI无混合材料;PII掺0-15%混合材料,等级:42.5-62.5R2、普通硅酸盐水泥:PO掺6%-15%混合材料;等级:32.5-52.5R3、矿渣硅酸盐水泥:PS掺20%-70%粒化高炉矿渣;4、火山灰硅酸盐水泥:PP掺20%-50%火山灰质混合材料;5、粉煤灰硅酸相加水泥:PF掺20%-40%粉煤灰;6、复合硅酸盐水泥:PC掺15%-50%混合材料;细度:PI及PII为比表面积>300㎡/㎏,其它水泥试验时应取二次平行值,误差为0.5%,45μm筛称10g,80μm称25g,精确到0.01g;凝结时间:六类水泥初凝都不得早于45min,终凝,PI及PII不得迟于6.5h,其它不得迟于10h;二、水泥软练常规项目:(各种实验方法、判定规则及其计算方式,仲裁判定以标准法为准)(水泥净浆拌制:先加水再加500g水泥,低速120s,停15s,把水泥净浆刮入锅中,再高速120s,量水器:最小刻度0.1mL、精度1%;天平:≥1000g,分度值不大于1g)1、标准稠度用水量:标准法为试杆法当试杆下沉到距底板(6±1)㎜的水泥净浆用水量。
代用法为试稚法,调节水量法及不变水量法,试稚下沉到(28±2)㎜。
标准稠度用水量以水泥质量的百分比计。
细度:硅酸盐水泥用比表面积表示,其它用80μm(样重25克)或45μm(样重10克)筛筛佘表示:样先过0.9㎜筛,再称重。
标准法为负压筛析法,负压4000-6000Pa,负压2min。
水泥土的基本物理力学性能探究一、重度和相对密度由于水泥浆的重度与土的重度相近,所以形成的水泥土重度与天然软土的重度相差不大。
如表1所示,当水泥掺量αw=25%时,水泥土的重度仅比天然软土增加4.5%。
由此可见,用水泥土加固软土地基,其加固部分对下卧层不致产生过大的附加荷载,从而也不会引起较大的附加沉降。
由于水泥的相对密度(3.1)比一般土体的相对密度(2.65~2.75)大,故水泥土的相对密度也比天然土的相对密度稍大,且随着水泥掺入比的增加而增大,但增大的幅度很小,见表1。
表1 水泥土的物理性质二、渗透系数水泥土的渗透系数,随水泥掺入比的增加和含水量的降低而降低,8%~10%的掺入比是最经济的,再提高水泥掺入比也不能显著减小渗透系数;随养护龄期的增长而减小。
加固初期,水泥水化释放大量的Ca2+,离子溶度和化合价增加,双电层厚度降低,土颗粒发生絮凝作用,形成一种大空隙的结构,水泥土渗透系数增大。
但是随着水泥的水化反应和火山灰反应的进行,产生大量的水化产物,填充在土颗粒集合之间,固化土的含水量或者孔隙比也随之降低,土体渗透系数降低。
三、无侧限抗压强度无侧限抗压强度试验,是水泥土在侧向应力为零的条件下,施加轴向压力使试样破坏,与三轴压缩中围压σ3=0相对应。
由于试样是在压缩条件下破坏的,因此把这种情况下水泥土所承受的最大轴向压力称为无侧限抗压强度(unconfined compression strength),通常以q u或f cu表示。
无侧限抗压强度是水泥土最重要的力学指标,有关试验研究和分析将在后面几章做详细论述。
四、抗拉强度水泥土的抗拉强度可以由传统的拉伸试验和劈裂试验确定,但是前者测定的抗拉强度较后者测定的抗拉强度高,且离散性也大。
随着水泥掺入比的增加,抗拉强度也随之增大,但是破坏时的应变随之减少。
水泥土的抗拉强度σ1随无侧限抗压强度f cu的增加而增加,抗压和抗拉这两类强度有密切关系。
高亚成得出结论是抗拉强度为抗压强度8%~16%,一般为14%。
水泥表观密度、细度、标准稠度用水量水泥的物理力学性质主要包括表观密度、细度、标准稠度用水量、凝结时间、安定性、水泥胶砂强度(标号)。
必要时还应进行水泥的水化热和抗水的侵蚀性试验。
(一)表观密度硅酸盐水泥的相对密度为3. 1~3.2,疏松状态时的表观密度为1000~1300kg/m3,紧密状态时可达1400~1700kg/m3如掺有掺合料时,表观密度将稍有降低。
存放过久的水泥,表观密度也将稍为减小。
水泥的表观密度对于混凝土并没有什么大的实际意义,仅在混凝土配合比计算时才会用到。
测定水泥的相对密度,一般均采用专用仪器(李氏瓶)进行。
由于水泥能与水起化合作用,试验必须采用不与水起作用的液体,通常采用无水煤油进行试验。
(二)细度细度是指水泥颗粒的粗细程度。
在制造方面,水泥磨细的程度关系到设备和电力的消耗。
在使用上,水泥颗粒的细度对于水泥与水之间的反应速率是一个重要的因素。
水泥越细,颗粒和水接触的表面积越大,因而水化越迅速,强度增长越快,早期强度越高。
如果水泥粒子大于lOOtjm,则活性很小;若水泥粒子小于40Um,则活性较高。
提高水泥的细度,对于安定性还可以起到一定的改善作用。
因为水泥颗粒的表面积加大后,水泥中的游离石灰在储存期间,容易和空气中的水蒸气及C02起作用,因而可以减少水泥硬化后体积膨胀的危害性。
水泥越细,制成的混凝土黏性越好,析水越少,并可以改善混凝土的和易性。
测量水泥细度的方法主要是采用筛分析法,筛孔孔径为80tLm,细度采用筛余量(%)表示。
细度的另一种袁示方法是测定水泥的比表面积。
表面积是水泥颗粒外表面的面积,比表面积是单位质量水泥颗粒表面的面积,水泥比表面积用m2 /kg表示。
随着颗粒粒径的减小,比表面积迅速增大。
测定水泥比表面积的方法也有好几种,目前多数使用透气法比表面积仪来测定。
此法是以一定量的空气,通过一定空隙和固定厚度的水泥体来进行的。
由于所受阻力不同,因此引起流速的变化,水泥的比表面积根据测得的空气流速计算而得。
水泥混凝土的力学性能及其在建筑中的应用水泥混凝土是建筑行业的基础材料之一,具有非常优异的力学性能,可应用于各种类型的建筑工程中。
本文将从抗压强度、抗拉强度、抗弯强度、渗透性等方面探讨水泥混凝土的力学性能及其在建筑中的应用。
一、抗压强度抗压强度是衡量水泥混凝土强度的最基本指标之一。
水泥混凝土的抗压强度与配合比、水灰比、龄期等因素密切相关。
一般情况下,水泥混凝土的28天抗压强度为标准强度,常见的标准强度有C15、C20、C25、C30、C35、C40等等。
其中,C15代表28天抗压强度为15MPa,C40代表28天抗压强度为40MPa。
在建筑中,水泥混凝土的抗压强度要求不同。
例如,普通住宅的混凝土强度一般不高于C30,而高层建筑、桥梁等工程则需要高强度水泥混凝土。
此外,抗压强度还决定着水泥混凝土的耐久性,一般情况下,抗压强度越高,水泥混凝土的耐久性越好。
二、抗拉强度水泥混凝土的抗拉强度相比抗压强度要低很多,因此在实际工程中,一般采用钢筋来提高水泥混凝土的抗拉性能。
钢筋与混凝土共同形成钢筋混凝土结构,既充分发挥了混凝土的抗压性能,又发挥了钢筋的抗拉性能。
这种结构在建筑中非常常见,具有承受重载、耐久性好等优点。
三、抗弯强度抗弯强度是水泥混凝土的一项重要力学性能指标,是衡量水泥混凝土的弯曲承载能力的指标。
一般情况下,水泥混凝土的抗弯强度与抗压强度成正比,但并不完全一致。
在实际工程中,为了提高混凝土的抗弯强度,可以采用加固方式、增加受力面积等措施,例如在梁上方加设钢筋、增加梁的截面面积等。
四、渗透性水泥混凝土的渗透性是指其抵抗水流、水分渗透的能力。
水泥混凝土通常被认为是难以透水的材料,但实际上,不良施工和质量问题会导致水泥混凝土出现渗透问题。
为了防止渗透,可以采用防水层等措施。
在一些特殊场合,例如水池、地下室等,需要采用更加严格的防水措施来保证水泥混凝土的耐久性和安全性。
五、应用水泥混凝土在建筑中应用广泛,可以用于水泥制品、路面修建、房屋建造等各个方面。
水泥混凝土的材料力学性能及测试方法水泥混凝土是一种常见的建筑材料,广泛应用于房屋、桥梁、道路等工程中。
在工程设计和施工过程中,对水泥混凝土的材料力学性能及测试方法的了解十分重要。
本文将探讨水泥混凝土的力学性能,包括抗压强度、抗拉强度、抗折强度以及其它相关测试方法。
首先,抗压强度是评价水泥混凝土强度的重要指标之一。
抗压强度是指水泥混凝土在受到外力作用下,能够承受的最大压应力。
通常以单位面积上所能承受的最大力值来表示。
测试水泥混凝土的抗压强度可以通过压力试验机进行。
这种试验方法是将标准的水泥混凝土试块放入试验机中,逐渐施加加载,直到试块破坏为止,通过读取试验机上的载荷和变形数据,计算出抗压强度。
其次,抗拉强度是另一个重要的力学性能指标。
与抗压强度不同,抗拉强度是指水泥混凝土在拉伸力作用下的强度。
测试水泥混凝土的抗拉强度可以采用拉力试验机。
试件通常为圆柱形或矩形,被拉伸时力作用方向与试件轴心平行。
通过对试件施加拉力,记录试验过程中的载荷和变形数据,计算出抗拉强度。
除了抗拉强度和抗压强度,抗折强度也是评价水泥混凝土力学性能的重要指标之一。
抗折强度是指水泥混凝土在弯曲作用下的抵抗能力。
测试水泥混凝土的抗折强度常采用梁挠试验方法。
在试验中,将水泥混凝土试件放在两个支座之间,施加力矩使其产生弯曲应变,通过测量试件挠度和载荷来计算抗折强度。
除了以上三个常见的力学性能指标,水泥混凝土还有一些其它相关的测试方法。
例如,水泥混凝土的疲劳性能测试可以用来评估其长期使用中的耐久性。
疲劳性能是指水泥混凝土在反复加载或应变下的抗疲劳能力。
测试方法包括轴向压疲劳试验、弯曲疲劳试验等。
此外,水泥混凝土的蠕变性能也是一个重要的测试指标。
蠕变是指材料在长时间内持续受力下产生的变形。
水泥混凝土在长期受气候环境影响和负载作用下,会产生一定的蠕变变形。
通过蠕变试验,可以评估水泥混凝土的长期变形能力。
综上所述,水泥混凝土的材料力学性能及测试方法对于工程设计和施工至关重要。