模拟CMOS集成电路设计 09 运算放大器
- 格式:ppt
- 大小:980.00 KB
- 文档页数:58
CMOS高性能运算放大器研究与设计摘要:本文针对CMOS高性能运算放大器进行了研究与设计。
首先介绍了运算放大器的基本原理和特性,然后详细讨论了CMOS运算放大器的设计方法。
接着通过数值模拟和优化方法,设计了一个高性能的CMOS运算放大器电路。
最后通过实验验证了设计的性能指标,并进行了评估和分析。
1. 引言CMOS运算放大器是现代集成电路中广泛应用的基础电路之一。
它具有高增益、宽带宽、低功耗和低噪声等优点,广泛应用于模拟信号处理、滤波器、高速数据转换等领域。
本文旨在研究和设计一种高性能的CMOS运算放大器电路,以提高放大器在各种应用场景下的性能和可靠性。
2. 运算放大器的基本原理和特性运算放大器是一种具有差分放大和反馈控制功能的电路。
它有一个非常高的开环增益,同时还具有输入阻抗高、输出阻抗低、带宽宽、线性度好等特点。
运算放大器一般由差分输入级、放大输出级和反馈网络组成。
差分输入级负责将输入信号进行差分放大,放大输出级则将差分放大后的信号进行进一步放大并输出。
反馈网络则用于控制放大器的增益和频率特性,以达到设计要求。
3. CMOS运算放大器的设计方法CMOS运算放大器的设计方法通常包括电流镜布置、共模反馈、差动对称、功率效率等方面。
其中电流镜布置是CMOS运算放大器设计的关键。
通过合理设计电流镜,可以提高运算放大器的增益和频率响应。
共模反馈则可以降低共模噪声,提高放大器的共模抑制比。
差动对称设计可有效减小非线性失真,提高放大器的线性度。
功率效率则可以实现低功耗设计,提高放大器的效能。
4. 高性能CMOS运算放大器电路的设计在本研究中,通过使用Advanced Design System (ADS)进行大规模电路仿真和优化,设计了一种高性能的CMOS运算放大器电路。
采用双折叠式差动对称电路结构,增强了电路的共模抑制能力和线性度。
引入共模反馈电路,降低了共模噪声,并改善了电路的稳定性和可靠性。
通过优化电流镜和差分输入级结构,提高了电路的增益和带宽。
集成电路设计实验报告CMOS运算放大器设计班级11电子A班姓名葛坤学号1115102016教师程梦璋华侨大学电子工程系目录一、运算放大器 (1)二、电路结构分析 (2)2.1、小信号等效电路 (2)2.2、直流开环电压增益 (2)2.3、输入输出电压传输方程 (3)2.4、电路的零极点 (4)2.5、小信号带宽 (4)2.6、共模抑制比 (5)三、电路参数设计 (5)3.1、运算放大器的手工计算 (5)3.2、验证手工计算的运放主要参数 (7)四、仿真结果与分析 (8)1、运放的输入失调电压仿真 (9)2、运放的共模输入范围 (10)3、运放的输出电压摆幅特性 (10)4、运放的小信号相频和幅频特性 (11)5、运放的静态功耗 (13)6、运放的转换速率分析 (13)7、运放的共模抑制比分析 (14)8、运放的电源电压抑制比分析 (14)9、运放各器件仿真结果和手算结果对比 (15)一、运算放大器运算放大器是模拟集成电路设计中的基本电路模块,图1.1所示的是一个电容性负载的两级CMOS 基本差分运算放大器,其中,Part1为运算放大器的电流镜偏置电路;Part2为运算放大器的第一级放大器;Part3为运算放大器的第二级放大器。
第一级放大器为标准基本差分运算放大器,第二级放大器为PMOS 管作为负载的NMOS 共源放大器。
为了运算放大器的工作稳定性,在第一级放大器和第二级放大器之间采用补偿网络来消除第二个极点对低频放大倍数、单位增益带宽和相位裕度的影响。
在运算放大器的电路结构图中,M 1,M 2,M 3,M 4,M 5构成PMOS 对管作为差分输入对,NMOS 电流镜作为输入对管负载,尾电流控制差分输入对的标准基本差分运算放大器;M 6,M 7构成以PMOS 管作为负载的NMOS 共源放大器;M 14(工作在线性区)和电容C C 构成运算放大器的第一级和第二级放大器之间的补偿网络;M 9~M 13以及R 1组成运算放大器的偏置电路。
CMOS高性能运算放大器研究与设计CMOS高性能运算放大器研究与设计引言:随着科技的不断进步和应用的广泛推广,运算放大器(Operational Amplifier,简称Op-Amp)作为一种重要的模拟电路器件,得到了广泛的关注和应用。
CMOS (Complementary Metal-Oxide-Semiconductor)技术由于其功耗低、集成度高等优势,被广泛应用于运算放大器的研究和设计中。
本文将介绍CMOS高性能运算放大器的研究与设计,主要包括运算放大器的基本原理、运算放大器的基本电路结构、CMOS技术的特点和优势、CMOS高性能运算放大器的设计方法和优化技术等方面。
一、运算放大器的基本原理运算放大器是一种特殊的差动放大器,它能够实现电压放大、电流放大、功率放大等功能。
运算放大器有两个输入端,一个非反相输入端和一个反相输入端;有一个输出端和一个电源端,电源端一般有正电源和负电源两个。
在理想情况下,运算放大器具有无限的增益、无限的输入阻抗和零的输出阻抗。
但实际情况下,由于运算放大器的内部结构等因素的限制,无法完全满足理想的条件。
因此,在运算放大器的设计中,需要考虑如何提高增益、输入阻抗和输出阻抗等性能指标。
二、运算放大器的基本电路结构运算放大器的基本电路结构由差动放大器、电压放大器和输出级组成。
差动放大器用于实现输入信号的差分放大,电压放大器用于实现信号的放大,输出级用于驱动负载电阻。
差动放大器由两个晶体管组成,一个晶体管作为非反相输入端,另一个晶体管作为反相输入端。
通过调节两个晶体管的尺寸比例,可以实现不同的放大倍数。
电压放大器由级联的共源放大器组成,通过逐级放大,实现信号的放大。
输出级由差分放大器和输出级筛选电路组成,通过差分放大器将信号转化为可驱动负载电阻的电流信号,再经过输出级筛选电路,将电流信号转化为电压信号。
三、CMOS技术的特点和优势CMOS技术是一种基于金属-氧化物-半导体(MOS)结构的半导体制造技术。
C M O S二年级运算放大器设计Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998CMOS二级运算放大器设计(东南大学集成电路学院)一.运算放大器概述运算放大器是一个能将两个输入电压之差放大并输出的集成电路。
运算放大器是模拟电子技术中最常见的电路,在某种程度上,可以把它看成一个类似于BJT 或FET 的电子器件。
它是许多模拟系统和混合信号系统中的重要组成部分。
它的主要参数包括:开环增益、单位增益带宽、相位阈度、输入阻抗、输入偏流、失调电压、漂移、噪声、输入共模与差模范围、输出驱动能力、建立时间与压摆率、CMRR、PSRR以及功耗等。
二.设计目标1.电路结构最基本的COMS二级密勒补偿运算跨导放大器的结构如图所示。
主要包括四部分:第一级输入级放大电路、第二级放大电路、偏置电路和相位补偿电路。
图两级运放电路图2.电路描述电路由两级放大器组成,M1~M4构成有源负载的差分放大器,M5提供该放大器的工作电流。
M6、M7管构成共源放大电路,作为运放的输出级。
M6 提供给M7 的工作电流。
M8~M13组成的偏置电路,提供整个放大器的工作电流。
相位补偿电路由M14和Cc构成。
M14工作在线性区,可等效为一个电阻,与电容Cc一起跨接在第二级输入输出之间,构成RC密勒补偿。
3.设计指标两级运放的相关设计指标如表1。
表1 两级运放设计指标三.电路设计第一级的电压增益:)||(422111o o m m r r g R G A ==第二级电压增益:)||(766222o o m m r r g R G A =-= 所以直流开环电压增益:)||)(||(76426221o o o o m m o r r r r g g A A A -==单位增益带宽:cm O C g A GBW π2f 1d == 偏置电流:213122121)/()/()/(2⎪⎪⎭⎫ ⎝⎛-=L W L W R L W KP I B n B 根据系统失调电压:756463)/()/(21)/()/()/()/(L W L W L W L W L W L W ==转换速率:⎭⎬⎫⎩⎨⎧-=L DS DS C DS C I I C I SR 575,min相位补偿:12.1)/()/()/()/(1613111466+==m m m C g g L W L W L W L W g R以上公式推导过程简略,具体过程可参考相关专业书籍。
模拟CMOS集成电路设计课程设计报告--------二级运算放大器的设计信息科学技术学院电子与科学技术系一、概述:运算放大器是一个能将两个输入电压之差放大并输出的集成电路。
运算放大器是模拟电子技术中最常见的电路,在某种程度上,可以把它看成一个类似于BJT 或FET 的电子器件。
它是许多模拟系统和混合信号系统中的重要组成部分。
它的主要参数包括:开环增益、单位增益带宽、相位阈度、输入阻抗、输入偏流、失调电压、漂移、噪声、输入共模与差模范围、输出驱动能力、建立时间与压摆率、CMRR、PSRR以及功耗等。
二、设计任务:设计一个二级运算放大器,使其满足下列设计指标:工艺Smic40nm电源电压 1.1v负载100fF电容增益20dB 至少40dB3dB带宽20MHz输入小信号幅度5uV 共模电平自己选取输出共模电平自己选取电路结构两级放大器相位裕度60~70度功耗无要求三、电路分析:1.电路结构:最基本的二级运算放大器如下图所示,主要包括四部分:第一级放大电路、第二级放大电路、偏置电路和相位补偿电路。
2.电路描述:输入级放大电路由PM2、PM0、PM1和NM0、NM1组成。
PM0和PM1构成差分输入对,使用差分对可以有效地抑制共模信号干扰;NM0和NM1构成电流镜作为有源负载;PM2作为恒流源为放大器第一级提供恒定的偏置电流。
第二级放大电路由NM2和PM3构成。
NM2为共源放大器;PM3为恒流源作负载。
相位补偿电路由电阻R0和电容C0构成,跨接在第二级输入输出之间,构成RC米勒补偿。
此外从电流电压转换角度来看,PM0和PM1为第一级差分跨导级,将差分输入电压转换为差分电流。
NM0和NM1为第一级负载,将差模电流恢复为差模电压。
NM2为第二级跨导级,将差分电压信号转换为电流,而PM3再次将电流信号转换成电压信号输出。
偏置电压由V0和V2给出。
3.静态特性对第一级放大电路:构成差分对的PM0和PM1完全对称,故有G m1=g mp0=g mp1 (1)第一级输出电阻R out1=r op1||r on1 (2)则第一级电压增益A1=G m1Rout1=g mp0,1(r op1||r on1) (3) 对第二级放大电路:电压增益A2=G m2R out2= -g mn2(r on2||r op3) (4) 故总的直流开环电压增益A0=A1A2= -g mp0,1g mn2(r op1||r on1)(r on2||r op3) (5)由于所有的管子都工作在饱和区,所以对于gm 我们可以用公式 g m =D I L W )/(Cox 2μ (6) 进行计算;而电阻r o 可由下式计算 r o =DI 1λ (7)其中λ为沟道长度调制系数且λ∝1/L 。
摘要集成电路掩膜版图设计是实现电路制造所必不可少的设计环节,它不仅关系到集成电路的功能是否正确,而且也会极大程度地影响集成电路的性能、成本与功耗。
本文依据基本CMOS集成运算放大电路的设计指标及电路特点,绘制了基本电路图,通过Spectre进行仿真分析,得出性能指标与格元器件参数之间的关系,据此设计出各元件的版图几何尺寸以及工艺参数,建立出从性能指标到版图设计的优化路径。
运算放大器的版图设计,是模拟集成电路版图设计的典型,利用Spectre对设计初稿加以模拟,然后对不符合设计目标的参数加以修改,重复这一过程,最终得到优化设计方案。
最后根据参数尺寸等完成了放大器的版图设计以及版图的DRC、LVS验证。
关键词:集成电路,运算放大器,版图设计,仿真ABSTRACTIntegrated circuit layout design is an essential design part to realize circuit mask manufacturing, it is not only related to the integrated circuit to function correctly, but also can greatly affect the performance of the integrated circuit, the cost and the power consumption.Based on the basic CMOS integrated operational amplifier circuit characteristicand design target, we have rendered the basic circuit diagram, and simulation by Spectre, the simulated results are derived parameters and their relationship between determining factors, thereby defining a line with the design target domain size and processing parameters, finally we builded an optimization from the performance index to layout design .Operational amplifier IC layout design, is the design model of analog integrated circuit layoutHere we used Spectre to design draft which should be simulated, then modified which do not comply with the design goals of the parameters , repeat the process, and finally get the optimization design scheme. Finally, according to the parameters such as size finished the amplifier layout design and the DRC, LVS verification.KET WORDS: Integrated circuit, Operational amplifier, layout design, Simulation毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
2012/5/201第九章模拟运算放大器低频差模增益混合信号系统中的一个完整部分。
大量的具有单位增益带宽运放的性能参数(1)1.差模开环增益Ad:运放工作于线性区时,其输出电压与差模输入电压之比,常用分贝dB表示。
2.开环带宽BW(小信号带宽):开环增益下降3dB(或直流增益的0.707倍)时所对应的信号频率。
也称f3dB 带宽。
3.全功率带宽BWP(大信号带宽):运放跟随器连接时,当输入正弦大信号后,在额定负载、一定的失真条件下,运放输出电压幅度达到最大时所对应信号频率。
2012/5/2032012/5/204运放的性能参数(3)4.输出峰-峰电压V opp (输出摆幅):指在特定负载条件下, 运放能输出的最大电压幅度, 即输出摆幅。
5.线性:运放开环有很大的非线性,全差动运放可以减小非线性,负反馈也可以减小非线性,开环增益越大,负反馈后带来的非线性就越小。
6.等效输入噪声电压:屏蔽良好、无信号输入的集成运放,在其输出端产生的任何交流无规则的干扰电压。
普通运放该值约为10~20uV运放的性能参数(7.输入失调电压V:在运放零输入时为使输出为零需在输入os端所加的直流电压。
通常以2012/5/206单级运算放大器第四章中的差分对就是单级运算放大器,图(a)、(b)分别是单端和双端输出形式,从前面学过的知识可知,两种结构的小信号增益相同,但因(a)比(b)多一个“镜像”极点,故带宽比对称输出结构要窄,由于(b)的静态工作点不能“目测”,故还需共模反馈电路才能正常工作。
这种接法也称为跟随器连接方式+V≤V≤V-|V|+V S1o n I S S i n C M D D G S3T H1A=g(r//r)V0N0Pm1(2)2012/5/208“套筒式”共源共栅(Cascode)运放+o u t X T H 2b G S 4T H 2V ≤V +V =V -V V M 2饱和要求:o u t b T H 4V ≥V -V M 4饱和要求:输出电压范围注意:因V b 的限制,共模输入电压范围也很窄2012/5/2010利用自举电路扩展共模和输出电压范围b p 虚框内电路构成自举电路:当V incM -®V P -,因M 9流过的电流恒定,故V b =V GS9+V R +V P -,即V b 跟随输入共模电压的升高而“自举”提高,从而扩展了共模输入电压范围,同时也扩展了该电路接成跟随器时的输出电压范围。
摘要随着集成电路工艺的发展,CMOS电路由于其低成本、低功耗以及速度的不断提高,在集成电路中获得越来越广泛的应用。
CMOS运算放大器也因其独特的性能优势常被用于模拟集成系统或子系统中,它的性能的好坏直接决定了整个模拟集成系统性能的好坏。
因此,有必要对用CMOS运算放大器进行深入的学习和研究。
CMOS运算放大器作为模拟集成电路最重要的功能模块,其设计一般包括以下几个步骤:确定设计要求;设计或综合;仿真;几何版图设计;版图后仿真;流片;测试。
本论文主要对两级CMOS运算放大器进行了前端设计及仿真。
论文在确定了两级CMOS 运放设计规范要求的基础上,设计了两级CMOS运算放大器的基本电路结构,分析了各组成模块的电路功能,,通过分析性能参数与MOS管几何参数的关系,得到了电路中各MOS管的宽长比。
论文在介绍仿真环境OrCAD的结构特点及其工作性能的基础上,对所设计的电路进行了PSpice软件仿真,得到了设计电路的直流工作点、瞬态以及频率特性的仿真结果。
仿真结果分析表明所设计的电路符合预期的设计要求和设计指标,也验证了设计的两级CMOS运算放大器的可靠性和可行性。
关键词:CMOS;运算放大器;PSpice仿真;小信号放大;频率响应AbstractWith the development of CMOS technique, CMOS integrated circuits have become the mainstream of integrated circuits techniques, due to its low cost, low power consumption and continuously improved speed. As the CMOS process has good performance merits, therefore the operational amplifier combined with CMOS technique has been widely used because of its unique performance.As the most important functional module in analog integrated circuits, the design of CMOS operational amplifier includes several steps as follows: determination design requirements, design or synthesis, simulation, design geometric layout, post-layout simulation, tape-out and test. The formal steps of the design of the two-stage CMOS operational amplifiers was provided in this paper, and the basic circuit structures of the two-stage CMOS operational amplifier was introduced. Based on determining the op-amp design specifications, the relationship between performance parameters and transistor geometry parameters was analyzed and the ratio of the transistors width to length was calculated. As a kind of simulation tool, the structural characteristics and work performance of OrCAD was described in detail. The feasibility of the design was determined by using PSpice simulation. Analysis of bias point, transient and the frequency characteristics of the circuit have been completed in this paper, and the simulation results showed that the designed circuit meets the design requirements and targets, also design the reliability and feasibility of the two-stage CMOS operational amplifier has been comfired.Key words: CMOS;Operational amplifier;Pspice simulation;Small signal amplification;Frequency response毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
目录摘要 ................................................... 错误!未定义书签。
Abstract ............................................... 错误!未定义书签。
0 文献综述 ............................................ 错误!未定义书签。
集成电路概述 ..................................... 错误!未定义书签。
集成电路的发展 ................................... 错误!未定义书签。
集成电路应用领域 .............................. 错误!未定义书签。
,CMOS集成电路.................................... 错误!未定义书签。
运算放大器 ....................................... 错误!未定义书签。
CMOS运算放大器.................................. 错误!未定义书签。
1 引言 ................................................ 错误!未定义书签。
运算放大器简介 ................................... 错误!未定义书签。
本文研究内容 ..................................... 错误!未定义书签。
2 CMOS运算放大器...................................... 错误!未定义书签。
CMOS运算放大器简介............................... 错误!未定义书签。
[CMOS运算放大器的设计流程......................... 错误!未定义书签。