2019年5月苏州市张家港市中考数学模拟试卷含答案解析+【精选五套中考模拟卷】
- 格式:doc
- 大小:3.42 MB
- 文档页数:68
江苏省苏州市张家港市中考数学模拟试卷一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在答题卷相应的空格内)1.(3分)﹣4的绝对值等于()A .﹣B .﹣C.﹣4D.42.(3分)计算(﹣xy3)2的结果是()A.x2y6B.﹣x2y6C.x2y9D.﹣x2y93.(3分)如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD的度数是()A.70°B.60°C.50°D.40°4.(3分)下列式子为最简二次根式的是()A .B .C .D .5.(3分)把多项式2x2﹣8分解因式,结果正确的是()A.2(x2﹣8)B.2(x﹣2)2C.2(x+2)(x﹣2)D.2x(x ﹣)6.(3分)“天虹商场”一天售出某品牌运动鞋12双,其中各种尺码的鞋的销售量如表所示:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25B.24.5,25C.24.5,24.5D.25,24.75 7.(3分)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()A.54﹣x=20%×108B.54﹣x=20%(108+x)C.54+x=20%×162D.108﹣x=20%(54+x)8.(3分)在边长为1的小正方形组成的网格中,有如图所示的A、B两点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率为()A.B.C.D.9.(3分)如图,在正方形ABCD中,AB=2,点E是DC中点,AF平分∠EAB,FH⊥AD 交AE于点G,则GH的长为()A.B.C.D.10.(3分)已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A.(1,)B.(,)C.(,)D.(,)二、填空题:(本大题共8小题,每小题3分,共24分,把你的答案填在答题卷相应的横线上)11.(3分)计算:(x+1)(2x﹣3)的结果为.12.(3分)过度包装既浪费资源又污染环境.据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量.把数据3120000用科学记数法表示为.13.(3分)抛物线y=x2﹣4x+1的顶点坐标为.14.(3分)分式方程=1﹣的解是.15.(3分)如图,在△ABC中,AC>AB,点D在BC上,且BD=BA,∠ABC的平分线BE交AD于点E,点F是AC的中点,连结EF.若四边形DCFE和△BDE的面积都为3,则△ABC的面积为.16.(3分)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,弧AC的长为π,则∠ADC的大小是.17.(3分)如图,在平行四边形ABCD中,对角线AC、BD交于点O、AC⊥AB、∠ABC=30°,过点A作AE⊥BC于点E,交BD于点F,则=.18.(3分)如图,一次函数与反比例函数的图象交于A(1,12)和B(6,2)两点.点P 是线段AB上一动点(不与点A和B重合),过P点分别作x、y轴的垂线PC、PD交反比例函数图象于点M、N,则四边形PMON面积的最大值是.三、解答题:(本大题共10小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(5分)计算:20170﹣|﹣2|+﹣()﹣1.20.(5分)解不等式组:,并把它的解集在数轴上表示出来.21.(6分)先化简,再求值:÷(1+),其中x=+2.22.(6分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)请你补全条形统计图;(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是度;(3)若全校九年级共有学生700人,估计九年级一周课外阅读时间为6小时的学生有多少人?23.(8分)4件同型号的产品中,有l件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,不放回,再随机抽取1件进行检测.请用列表法或画树状图的方法,求两次抽到的都是合格品的概率;(解答时可用A表示l件不合格品,用B、C、D分别表示3件合格品)(2)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检侧,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?24.(8分)如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:△AEF≌△DEC;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.25.(8分)货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4h 后休息,直至与货车相遇后,以原速度继续行驶.设货车出发xh后,货车、轿车分别到达离甲地y1km和y2km的地方,图中的线段OA、折线BCDE分别表示y1、y2与x之间的函数关系.(1)求点D的坐标,并解释点D的实际意义;(2)求线段DE所在直线的函数表达式;(3)当货车出发h时,两车相距50km.26.(10分)如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC.延长AD 到E,使得∠EBD=∠CAB.(1)如图1,若BD=2,AC=6.①求证:BE是⊙O的切线;②求DE的长;(2)如图2,连结CD,交AB于点F,若BD=2,CF=3,求⊙O的半径.27.(10分)如图1,在直角坐标系xOy中,直线l:y=kx+b交x轴、y轴于点E、F,点B 的坐标是(2,2),过点B分别作x轴、y轴的垂线,垂足为A、C,点D是线段CO上的动点,连结BD,将△BCD沿直线BD折叠后得到△BC′D.(1)当图1中的直线l经过点A,且k=﹣时(如图2).①b=,点C′的坐标为(,)②求点D由C到O的运动过程中,线段BC′扫过的图形与△OAF重叠部分的面积.(2)当图1中的直线l经过点D,C′时(如图3),将△DOE沿直线DE折叠后得到△DO′E,连结O′C,O′O,若△DO′E与△CO′O相似,求k、b的值.28.(10分)如图,抛物线y=﹣x2+bx+c的图象与x轴交于A(﹣4,0)、B(1,0)两点,与y轴交于点C,连结AC.(1)求该抛物线的函数表达式;(2)动点M从点A出发,沿AC方向以个单位/秒的速度向终点C匀速运动,动点N 从点O出发,沿着OA方向以个单位/秒的速度向终点A匀速运动,设点M、N同时出发,运动时间为t(0<t≤2);①连结MN、NC,当t为何值时,△CMN为直角三角形;②在两个动点运动的过程中,该抛物线上是否存在点P,使得以点O、P、M、N为顶点的四边形是平行四边形?若存在,求出点P的坐;若不存在,请说明理由.江苏省苏州市张家港市中考数学模拟试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在答题卷相应的空格内)1.(3分)﹣4的绝对值等于()A.﹣B.﹣C.﹣4D.4【分析】根据绝对值的性质:一个负数的绝对值是它的相反数解答即可.【解答】解:根据绝对值的性质,|﹣4|=4.故选:D.【点评】本题考查了绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,属于基础题,比较容易解答.2.(3分)计算(﹣xy3)2的结果是()A.x2y6B.﹣x2y6C.x2y9D.﹣x2y9【分析】根据幂的乘方和积的乘方的运算方法:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数);求出计算(﹣xy3)2的结果是多少即可.【解答】解:(﹣xy3)2=(﹣x)2•(y3)2=x2y6,即计算(﹣xy3)2的结果是x2y6.故选:A.【点评】此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).3.(3分)如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD的度数是()A.70°B.60°C.50°D.40°【分析】由BC与AE垂直,得到三角形ABC为直角三角形,利用直角三角形两锐角互余,求出∠A的度数,再利用两直线平行同位角相等即可求出∠ECD的度数.【解答】解:∵BC⊥AE,∴∠ACB=90°,在Rt△ABC中,∠B=40°,∴∠A=90°﹣∠B=50°,∵CD∥AB,∴∠ECD=∠A=50°,故选:C.【点评】此题考查了平行线的性质,以及垂线,熟练掌握平行线的性质是解本题的关键.4.(3分)下列式子为最简二次根式的是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、符合最简二次根式的定义,故本选项正确;B、被开方数4=22,即被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;C、被开方数8=2×22,即被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、被开方数含有分母,不是最简二次根式,故本选项错误;故选:A.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.5.(3分)把多项式2x2﹣8分解因式,结果正确的是()A.2(x2﹣8)B.2(x﹣2)2C.2(x+2)(x﹣2)D.2x(x﹣)【分析】首先提取公因式2,进而利用平方差公式分解因式得出即可.【解答】解:2x2﹣8=2(x2﹣4)=2(x﹣2)(x+2).故选:C.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式分解因式是解题关键.6.(3分)“天虹商场”一天售出某品牌运动鞋12双,其中各种尺码的鞋的销售量如表所示:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25B.24.5,25C.24.5,24.5D.25,24.75【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.【解答】解:从小到大排列此数据为:23.5、24、24、24.5、24.5、24.5、25、25、25、25、26、26,中间两个数是24.5和25,则中位数是24.75;数据25出现了五次,出现的次数最多,则众数是25.故选:D.【点评】此题考查了中位数和众数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.注意众数可以不止一个.7.(3分)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()A.54﹣x=20%×108B.54﹣x=20%(108+x)C.54+x=20%×162D.108﹣x=20%(54+x)【分析】设把x公顷旱地改为林地,根据旱地面积占林地面积的20%列出方程即可.【解答】解:设把x公顷旱地改为林地,根据题意可得方程:54﹣x=20%(108+x).故选:B.【点评】本题考查一元一次方程的应用,关键是设出未知数以以改造后的旱地与林地的关系为等量关系列出方程.8.(3分)在边长为1的小正方形组成的网格中,有如图所示的A、B两点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率为()A.B.C.D.【分析】按照题意分别找出点C所在的位置:当点C与点A在同一条直线上时,AC边上的高为1,AC=2,符合条件的点C有4个;当点C与点B在同一条直线上时,BC边上的高为1,BC=2,符合条件的点C有2个,再根据概率公式求出概率即可.【解答】解:可以找到6个恰好能使△ABC的面积为1的点,∴概率为:,故选:D.【点评】此题主要考查了概率公式,解决此题的关键是正确找出恰好能使△ABC的面积为1的点.9.(3分)如图,在正方形ABCD中,AB=2,点E是DC中点,AF平分∠EAB,FH⊥AD 交AE于点G,则GH的长为()A.B.C.D.【分析】在Rt△ADE中,根据勾股定理可求AE,设AG=x,可得GF=x,HG=2﹣x,根据相似三角形的性质列出方程求出x,进一步得到GH的长即可求解.【解答】解:∵在正方形ABCD中,AB=2,点E是DC中点,∴DE=1,在Rt△ADE中,AE==,∵AF平分∠EAB,∴∠GAF=∠BAF,∵FH⊥AD,∴AB∥HF∥CD,AB=HF,∴∠GF A=∠BAF,∴AG=GF,设AG=x,则GF=x,GH=2﹣x,则=,即=,解得x=,GH═2﹣x=2﹣=.故选:B.【点评】考查了勾股定理,相似三角形的性质,角平分线的性质,条件多而复杂,注意知识的综合运用与转化.10.(3分)已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A.(1,)B.(,)C.(,)D.(,)【分析】如图,连接AC交OB于K,作KH⊥OA于H.由四边形ABCD是菱形,推出AC⊥OB,A、C关于对角线OB对称,推出PC=PC,推出PC+PD=P A+PD,所以当D、P、A共线时,PC+PD的值最小,求出直线OB与直线AD的交点即可解决问题.【解答】解:如图,连接AC交OB于K,作KH⊥OA于H.∵四边形ABCD是菱形,∴AC⊥OB,A、C关于对角线OB对称,∴PC=PC,∴PC+PD=P A+PD,∴当D、P、A共线时,PC+PD的值最小,在Rt△OAK中,∵OK=2,OA=5,∴AK==,∵KH⊥OA,∴KH==2,OH==4,∴K(4,2),∴直线OK的解析式为y=x,直线AD的解析式为y=﹣x+1,由,解得,∴OB与AD的交点P′(,),∴当点P与P′重合时,CP+DP最短时,点P的坐标为(,),、故选:D.【点评】本题考查轴对称﹣最短问题、坐标与图形的性质、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,学会构建一次函数解决交点问题,所以中考常考题型.二、填空题:(本大题共8小题,每小题3分,共24分,把你的答案填在答题卷相应的横线上)11.(3分)计算:(x+1)(2x﹣3)的结果为2x2﹣x﹣3.【分析】多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.依此计算即可求解.【解答】解:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3.故答案为:2x2﹣x﹣3.【点评】考查了多项式乘多项式,运用法则时应注意以下两点:①相乘时,按一定的顺序进行,必须做到不重不漏;②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.12.(3分)过度包装既浪费资源又污染环境.据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量.把数据3120000用科学记数法表示为 3.12×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将3120000用科学记数法表示为3.12×106.故答案为:3.12×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(3分)抛物线y=x2﹣4x+1的顶点坐标为(2,﹣3).【分析】用配方法将抛物线的一般式转化为顶点式,可求顶点坐标.【解答】解:∵y=x2﹣4x+1=(x﹣2)2﹣3,∴抛物线顶点坐标为(2,﹣3).【点评】将解析式化为顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.14.(3分)分式方程=1﹣的解是x=﹣1.【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x=2x﹣1+2,解得:x=﹣1,经检验x=﹣1是分式方程的解.故答案为:x=﹣1.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.(3分)如图,在△ABC中,AC>AB,点D在BC上,且BD=BA,∠ABC的平分线BE交AD于点E,点F是AC的中点,连结EF.若四边形DCFE和△BDE的面积都为3,则△ABC的面积为10.【分析】依据BD=AB,BE是∠ABC的平分线,即可得到AE=DE,进而得出△BDE的面积与△ABE的面积均为3,再根据EF是△ACD的中位线,即可得出△ACD的面积为4,即可得到△ABC的面积为3+3+4=10.【解答】解:∵BD=AB,BE是∠ABC的平分线,∴AE=DE,∴△BDE的面积与△ABE的面积均为3,又∵点F是AC的中点,∴EF是△ACD的中位线,∴2EF=CD,EF∥DC,∴△AEF∽△ADC,∴S△ACD=4S△AEF,∵四边形CDEF的面积为3,∴△ACD的面积为4,∴△ABC的面积为3+3+4=10.故答案为:10.【点评】本题主要考查了三角形中位线定理以及相似三角形的判定与性质,相似三角形的面积的比等于相似比的平方.16.(3分)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,弧AC的长为π,则∠ADC的大小是135°.【分析】连接OC、OA,根据弧长公式求出∠AOC,根据圆周角定理求出∠ABC,根据圆内接四边形的性质计算即可.【解答】解:连接OC、OA,设∠AOC=n°,则=π,解得,n=90,∴∠AOC=90°,由圆周角定理得,∠ABC=45°,∴∠ADC=180°﹣∠ABC=135°,故答案为:135°.【点评】本题考查的是圆内接四边形的性质、圆周角定理以及弧长公式的应用,掌握圆内接四边形的对角互补是解题的关键.17.(3分)如图,在平行四边形ABCD中,对角线AC、BD交于点O、AC⊥AB、∠ABC=30°,过点A作AE⊥BC于点E,交BD于点F,则=.【分析】由直角三角形的性质和勾股定理得出AB=2AE,BE=AE,AC=2CE,AE=CE,设CE=a,则a,AB=2,BE=3a,由平行四边形的性质得出AD∥BC,AD=BC=4a,AO=AC=a,证明ADF∽△EBF,得出=,求出AF=AE=a,即可得出结论.【解答】解:∵AE⊥BC,∠ABC=30°,∴∠AEB=∠AEC=90°,AB=2AE,∠BAE=90°﹣30°=60°,∴BE=AE,∵AC⊥AB,∴∠CAE=30°,∴AC=2CE,AE=CE,设CE=a,则a,AB=2,BE=3a,∴BC=4a,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=4a,AO=AC=a,∴△ADF∽△EBF,∴=,∴AF=AE=a,∴==,故答案为:.【点评】本题考查了相似三角形的判定与性质、平行四边形的性质、含30°角的直角三角形的性质、勾股定理等知识;熟练掌握平行四边形的性质和直角三角形的性质,证明三角形相似是解决问题的关键.18.(3分)如图,一次函数与反比例函数的图象交于A(1,12)和B(6,2)两点.点P 是线段AB上一动点(不与点A和B重合),过P点分别作x、y轴的垂线PC、PD交反比例函数图象于点M、N,则四边形PMON面积的最大值是.【分析】由点A、B的坐标利用待定系数法即可求出一次函数与反比例函数的解析式,设出点P的坐标为(n,﹣2n+14)(1<n<6).由反比例的函数解析式表示出来M、N点的坐标,分割矩形OCPD,结合矩形的面积及反比例函数k的几何意义即可得出结论.【解答】解:设反比例函数解析式为y=,一次函数解析式为y=kx+b,由已知得:12=和,解得:m=12和.∴一次函数解析式为y=﹣2x+14,反比例函数解析式为y=.∵点P在线段AB上,∴设点P的坐标为(n,﹣2n+14)(1<n<6).∴S四边形PMON=S矩形OCPD﹣S△ODN﹣S△OCM=n(﹣2n+14)﹣×12﹣×12=﹣2n2+14n ﹣12=﹣2+.∴当n=时,四边形PMON面积最大,最大面积为.故答案为:.【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及反比例函数k的几何意义,解题的关键是利用分割法求出四边形PMON面积关于点P横坐标的函数关系式.本题属于基础题,难度不大,解决该题型题目时,根据分割法找出面积的函数关系式,再结合函数的性质(单调性、二次函数的顶点之类)来解决最值问题.三、解答题:(本大题共10小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(5分)计算:20170﹣|﹣2|+﹣()﹣1.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:20170﹣|﹣2|+﹣()﹣1=1﹣2+3﹣4=﹣2【点评】此题主要考查了实数的运算,零指数幂、负整数指数幂的求法,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.(5分)解不等式组:,并把它的解集在数轴上表示出来.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为﹣2<x≤1,在数轴上表示为:.【点评】本题考查了解一元一次不等式组的应用,能根据不等式的解集找出不等式组的解集是解此题的关键.21.(6分)先化简,再求值:÷(1+),其中x=+2.【分析】先将分式化简,然后将x的值代入即可求出答案.【解答】解:原式=÷=×=当x=+2时,∴原式==1+【点评】本题考查分式的化简求值,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.(6分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)请你补全条形统计图;(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是144度;(3)若全校九年级共有学生700人,估计九年级一周课外阅读时间为6小时的学生有多少人?【分析】(1)根据统计图可知,课外阅读达3小时的共10人,占总人数的20%,由此可得出总人数;求出课外阅读时间4小时与6小时男生的人数,再求出的人数补全条形统计图即可;(2)求出课外阅读时间为5小时的人数,再求出其人数与总人数的比值即可得出扇形的圆心角度数;(3)求出总人数与课外阅读时间为6小时的学生人数的百分比的积即可.【解答】解:(1)∵课外阅读达3小时的共10人,占总人数的20%,∴=50(人).∵课外阅读4小时的人数是32%,∴50×32%=16(人),∴男生人数=16﹣8=8(人);∴课外阅读6小时的人数=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),如图所示.(2)∵课外阅读5小时的人数是20人,×360°=144°.故答案为:144°;(3)∵课外阅读5小时的人数是4人,∴700×=56(人).答:九年级一周课外阅读时间为6小时的学生大约有56人.【点评】本题考查的是条形统计图,熟知条形统计图与扇形统计图的特点是解答此题的关键.23.(8分)4件同型号的产品中,有l件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,不放回,再随机抽取1件进行检测.请用列表法或画树状图的方法,求两次抽到的都是合格品的概率;(解答时可用A表示l件不合格品,用B、C、D分别表示3件合格品)(2)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检侧,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?【分析】(1)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;(2)根据频率估计出概率,利用概率公式列式计算即可求得x的值;【解答】解:(1)共有12种情况,抽到的都是合格品的情况有6种,P(抽到的都是合格品)==;(2)∵大量重复试验后发现,抽到合格品的频率稳定在0.95,∴抽到合格品的概率等于0.95,∴=0.95,解得:x=16.【点评】本题考查了概率的公式、列表法与树状图法及用频率估计概率的知识,解题的关键是了解大量重复试验中事件发生的频率可以估计概率.24.(8分)如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:△AEF≌△DEC;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.【分析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,∠F AE=∠CDE,然后利用“角角边”证明△AEF和△DEC全等;(2)由(1)知AF平行等于BD,易证四边形AFBD是平行四边形,而AB=AC,AD是中线,利用等腰三角形三线合一定理,可证AD⊥BC,即∠ADB=90°,那么可证四边形AFBD是矩形.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DCE,∠F AE=∠CDE,∵点E为AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS);(2)解:若AB=AC,则四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵△AEF≌△DEC,∴AF=CD,∵AF=BD,∴CD=BD;∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四边形AFBD是矩形.【点评】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.25.(8分)货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4h 后休息,直至与货车相遇后,以原速度继续行驶.设货车出发xh后,货车、轿车分别到达离甲地y1km和y2km的地方,图中的线段OA、折线BCDE分别表示y1、y2与x之间的函数关系.(1)求点D的坐标,并解释点D的实际意义;(2)求线段DE所在直线的函数表达式;(3)当货车出发或4.25h时,两车相距50km.【分析】(1)待定系数求出OA解析式,继而根据点D的纵坐标为300求得其横坐标,即可得答案;(2)根据休息前2.4小时行驶300km可得行驶后行驶300km也需要2.4h,即可得点E 坐标,待定系数法即可求得DE所在直线解析式;(3)先求出BC所在直线解析式,再根据①轿车休息前与货车相距200km,②轿车休息后与货车相距200km,分别列出方程求解可得.【解答】解:(1)设OA所在直线解析式为y=mx,将x=8、y=600代入,求得m=75,∴OA所在直线解析式为y=75x,令y=300得:75x=300,解得:x=4,∴点D坐标为(4,300 ),其实际意义为:点D是指货车出发4h后,与轿车在距离甲地300 km处相遇.(2)由图象知,轿车在休息前2.4小时行驶300km,∴根据题意,行驶后300km需2.4h,故点E坐标(6.4,0 ).设DE所在直线的函数表达式为y=kx+b,将点D(4,300 ),E( 6.4,0)代入y=kx+b得:,得,∴DE所在直线的函数表达式为y=﹣125x+800.(3)设BC段函数解析式为:y=px+q,将点B(0,600)、C(2.4,300)代入,得:,解得:,y=﹣125x+600,①当轿车休息前与货车相距50km时,有:﹣125x+600﹣75x=50或300﹣75x=50,解得:x=2.75(不合题意舍弃)或x=;②当轿车休息后与货车相距50km时,有:75x﹣(﹣125x+800)=50,解得:x=4.25;故答案为:或4.25.【点评】本题考查了一次函数的应用,待定系数法是求函数解析式的关键,注意分类讨论思想的渗透.26.(10分)如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC.延长AD 到E,使得∠EBD=∠CAB.(1)如图1,若BD=2,AC=6.①求证:BE是⊙O的切线;②求DE的长;(2)如图2,连结CD,交AB于点F,若BD=2,CF=3,求⊙O的半径.【分析】(1)①连接OB,由条件可求得∠EBD=∠ABO,再利用圆周角定理可求得∠EBD+∠OBD=90°,可证明BE是⊙O的切线;②利用圆内接四边形的性质可求得∠BDE=∠ACB,可证明△ACB∽△BDE,利用相似三角形的性质可求得DE的长;(2)延长DB、AC交于点H,可证得△ABD≌△ABH,可求得HB,再利用△DCH∽△DBF,可求得DF的长,设⊙O的半径为r,则AD=AH=2r,在Rt△DCH中可求得CH =4,在Rt△ADC中,AD=2r,CD=8,AC=2r﹣4,由勾股定理可得到关于r的方程,可求得圆的半径.【解答】解:(1)①如图1,连接OB,∵BD=BC,∴∠CAB=∠BAD,∵∠EBD=∠CAB,∴∠BAD=∠EBD,∵AD是⊙O的直径,∴∠ABD=90°,OA=BO,∴∠BAD=∠ABO,∴∠EBD=∠ABO,∴∠OBE=∠EBD+∠OBD=∠ABD+∠OBD=∠ABD=90°,∵点B在⊙O上,∴BE是⊙O的切线;②∵四边形ACBD是圆的内接四边形,∴∠ACB=∠BDE,且∠EBD=∠CAB,∴△ACB∽△BDE,∴=,即=,解得DE=;(2)如图2,延长DB、AC交于点H,∵AD为⊙O的直径,∴∠ABD=∠ABH=90°,∵BD=BC,∴∠DAB=∠HAB,在△ABD和△ABH中∴△ABD≌△ABH(ASA),∴BD=HB=2,∵∠DCH=∠FBD=90°,∴△DCH∽△DBF,∴=,即=,解得DF=5,设⊙O的半径为r,则AD=AH=2r,在Rt△DCH中,CH===4,∴AC=2r﹣4,在Rt△ACD中,由勾股定理可得AD2=AC2+CD2,∴(2r)2=(2r﹣4)2+82,解得r=5,即⊙O的半径为5.。
2019年张家港市初三数学上期中模拟试卷附答案一、选择题1.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130°2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( ) A . B . C .D .3.在平面直角坐标系中,二次函数y=x 2+2x ﹣3的图象如图所示,点A (x 1,y 1),B (x 2,y 2)是该二次函数图象上的两点,其中﹣3≤x 1<x 2≤0,则下列结论正确的是( )A .y 1<y 2B .y 1>y 2C .y 的最小值是﹣3D .y 的最小值是﹣44.用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14-=xC .2(6)44x -=D .2(3)1x -=5.若点()1,5P m -与点()3,2Q n -关于原点成中心对称,则m n +的值是( ) A .1 B .3 C .5 D .76.如图所示的暗礁区,两灯塔A ,B 之间的距离恰好等于圆的半径,为了使航船(S )不进入暗礁区,那么S 对两灯塔A ,B 的视角∠ASB 必须( )A .大于60°B .小于60°C .大于30°D .小于30° 7.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( ) A .k<4B .k≤4C .k<4且k≠3D .k≤4且k≠3 8.在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则( )A .m =3,n =2B .m =﹣3,n =2C .m =2,n =3D .m =﹣2,n =﹣3 9.如图,从一张腰长为90cm ,顶角为120︒的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为( )A .15cmB .12cmC .10cmD .20cm10.如图,图案由三个叶片组成,且其绕点O 旋转120°后可以和自身重合,若三个叶片的总面积为12平方厘米,∠AOB=120°,则图中阴影部分的面积之和为()平方厘米.A .2B .4C .6D .811.如图,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP′,已知∠AP′B =135°,P′A ∶P′C =1∶3,则P′A ∶PB =( )A .12B .1∶2C 32D .1312.山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是( )A .B .C .D .二、填空题13.已知方程x 2﹣3x+k=0有两个相等的实数根,则k=_____.14.新园小区计划在一块长为20米,宽12米的矩形场地上修建三条互相垂直的长方形甬路(一条橫向、两条纵向,且横向、纵向的宽度比为3:2),其余部分种花草.若要使种花草的面积达到144米2.则横向的甬路宽为_____米.15.我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.”如果设矩形田地的长为x 步,那么根据题意列出的方程为_____.16.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,若∠D =20°,则∠CBA 的度数是__.17.已知圆锥的底面半径是2cm ,母线长是3cm ,则圆锥侧面积是_________.18.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.19.如图,O e 的半径为2,切线AB 的长为23,点P 是O e 上的动点,则AP 的长的取值范围是_________.20.如图,在△ABC 中,∠ACB=90°,AC=BC=2,将△ABC 绕AC 的中点D 逆时针旋转90°得到△A'B′C',其中点B 的运动路径为¼BB,则图中阴影部分的面积为_____.三、解答题21.(2016内蒙古包头市)一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2.(1)求y与x之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.22.如图,已知AB为⊙O的直径,点E在⊙O上,∠EAB的平分线交⊙O于点C,过点C作AE的垂线,垂足为D,直线DC与AB的延长线交于点P.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若tan∠P=34,AD=6,求线段AE的长.23.小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)24.关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.(1)求m的取值范围;(2)若m为正整数,求此方程的根.25.甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.B解析:B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.3.D解析:D【解析】试题分析:抛物线y=x2+2x﹣3与x轴的两交点横坐标分别是﹣3、1;抛物线的顶点坐标是(﹣1,﹣4),对称轴为x=﹣1.选项A,无法确定点A、B离对称轴x=﹣1的远近,无法判断y1与y2的大小,该选项错误;选项B,无法确定点A、B离对称轴x=﹣1的远近,无法判断y1与y2的大小,该选项错误;选项C,y的最小值是﹣4,该选项错误;选项D,y 的最小值是﹣4,该选项正确.故答案选D.考点:二次函数图象上点的坐标特征;二次函数的最值.4.A解析:A【解析】【分析】利用配方法把方程2680x x --=变形即可.【详解】用配方法解方程x 2﹣6x ﹣8=0时,配方结果为(x ﹣3)2=17,故选A .【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.5.C解析:C【解析】【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:∵点()1,5P m -与点()3,2Q n -关于原点对称,∴13m -=-,25n -=-,解得:2m =-,7n =,则275m n +=-+=故选C .【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.6.D解析:D【解析】试题解析:连接OA ,OB ,AB ,BC ,如图:∵AB=OA=OB ,即△AOB 为等边三角形,∴∠AOB=60°,∵∠ACB 与∠AOB 所对的弧都为»AB ,∴∠ACB=12∠AOB=30°, 又∠ACB 为△SCB 的外角,∴∠ACB >∠ASB ,即∠ASB <30°.故选D7.B解析:B【解析】试题分析:若此函数与x 轴有交点,则2(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x 轴交点的特点. 8.B解析:B【解析】【分析】根据“关于y 轴对称的点,横坐标互为相反数,纵坐标相同”解答.【详解】∵点A (m ,2)与点B (3,n )关于y 轴对称,∴m =﹣3,n =2.故选:B .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.9.A解析:A【解析】【分析】根据等腰三角形的性质得到OE 的长,再利用弧长公式计算出弧CD 的长,设圆锥的底面圆半径为r ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长可得到r .【详解】过O 作OE AB ⊥于E ,90120OA OB cm AOB ︒∠Q ==,=,30A B ︒∴∠∠==,1452OE OA cm ∴==, ∴弧CD 的长1204530180ππ⨯==, 设圆锥的底面圆的半径为r ,则230r ππ=,解得15r =.故选:A .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.10.B解析:B【解析】【分析】根据旋转的性质和图形的特点解答.【详解】∵图案绕点O 旋转120°后可以和自身重合,∠AOB 为120° ∴图形中阴影部分的面积是图形的面积的13, ∵图形的面积是12cm 2,∴图中阴影部分的面积之和为4cm 2;故答案为B .【点睛】本题考查了图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键. 11.B解析:B【解析】【分析】【详解】解:如图,连接AP ,∵BP 绕点B 顺时针旋转90°到BP ′,∴BP =BP ′,∠ABP +∠ABP ′=90°,又∵△ABC 是等腰直角三角形,∴AB =BC ,∠CBP ′+∠ABP ′=90°,∴∠ABP =∠CBP ′,在△ABP 和△CBP ′中,∵BP =BP ′,∠ABP =∠CBP ′,AB =BC ,∴△ABP ≌△CBP ′(SAS ),∴AP =P ′C ,∵P ′A :P ′C =1:3,∴AP =3P ′A ,连接PP ′,则△PBP ′是等腰直角三角形,∴∠BP ′P =45°,PP 2PB ,∵∠AP ′B =135°,∴∠AP ′P =135°﹣45°=90°,∴△APP ′是直角三角形,设P ′A =x ,则AP =3x ,根据勾股定理,PP 22'AP P A -22(3)x x -22, ∴PP 2PB =22,解得PB =2x ,∴P ′A :PB =x :2x =1:2.故选B .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理的应用,作辅助线构造出全等三角形以及直角三角形,把P ′A 、P ′C 以及P ′B 2倍转化到同一个直角三角形中是解题的关键.12.B解析:B【解析】【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A 、不是中心对称图形,故本选项不符合题意;B 、是中心对称图形,故本选项符合题意;C 、不是中心对称图形,故本选项不符合题意;D 、不是中心对称图形,故本选项不符合题意.故选B .【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题13.【解析】∵x2﹣3x+k=0有两个相等的实数根∴△=∴9﹣4k=0∴k=故答案为 解析:94【解析】 ∵x 2﹣3x +k=0有两个相等的实数根,∴△=2(3)410k --⨯⨯=,∴9﹣4k=0,∴k=94. 故答案为94. 14.3【解析】【分析】设横向的甬路宽为3x 米则纵向的甬路宽为2x 米由剩余部分的面积为144米2即可得出关于x 的一元二次方程解之取其较小值即可得出结论【详解】设横向的甬路宽为3x米则纵向的甬路宽为2x米根解析:3【解析】【分析】设横向的甬路宽为3x米,则纵向的甬路宽为2x米,由剩余部分的面积为144米2,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】设横向的甬路宽为3x米,则纵向的甬路宽为2x米,根据题意得:(20﹣2×2x)(12﹣3x)=144整理得:x2﹣9x+8=0,解得:x1=1,x2=8.∵当x=8时,12﹣3x=﹣12,∴x=8不合题意,舍去,∴x=1,∴3x=3.故答案为3.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15.x(x﹣12)=864【解析】【分析】如果设矩形田地的长为x步那么宽就应该是(x﹣12)步根据面积为864即可得出方程【详解】解:设矩形田地的长为x 步那么宽就应该是(x﹣12)步根据矩形面积=长×宽解析:x(x﹣12)=864【解析】【分析】如果设矩形田地的长为x步,那么宽就应该是(x﹣12)步,根据面积为864,即可得出方程.【详解】解:设矩形田地的长为x步,那么宽就应该是(x﹣12)步.根据矩形面积=长×宽,得:x(x﹣12)=864.故答案为:x(x﹣12)=864.【点睛】本题考查一元二次方程的实际应用,读懂题意根据面积公式列出方程是解题的关键.16.70°【解析】【分析】根据圆周角定理可得:∠ACB=90°∠A=∠D=20°根据三角形内角和定理可求解【详解】因为AB为⊙O的直径所以∠ACB=90°因为∠D=20°所以∠A=∠D=20°所以∠CB解析:70°【解析】【分析】根据圆周角定理可得:∠ACB=90°,∠A=∠D=20°,根据三角形内角和定理可求解.【详解】因为AB为⊙O的直径,所以∠ACB=90°因为∠D=20°所以∠A=∠D =20°所以∠CBA=90°-20°=70°故答案为:70°【点睛】考核知识点:圆周角定理.熟记圆周角定理是关键.17.【解析】【分析】圆锥的侧面积=底面周长×母线长÷2=【详解】根据圆锥的侧面积公式:底面半径是2cm 母线长是3cm 的圆锥侧面积为故答案是:【点睛】本题考查圆锥的侧面积解题的关键是记住圆锥是侧面积公式 解析:26cm π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2=RL π.【详解】根据圆锥的侧面积公式:RL π底面半径是2cm ,母线长是3cm 的圆锥侧面积为 236ππ⨯⨯=故答案是:26cm π【点睛】本题考查圆锥的侧面积,解题的关键是记住圆锥是侧面积公式.18.【解析】【分析】设此抛物线的解析式为:y=a (x-h )2+k 由已知条件可得h=2k=9再由条件:它在x 轴上截得的线段长为6求出a 的值即可【详解】解:由题意设此抛物线的解析式为:y=a (x-2)2+9解析:2(2)9y x =--+【解析】【分析】设此抛物线的解析式为:y=a (x-h )2+k ,由已知条件可得h=2,k=9,再由条件:它在x 轴上截得的线段长为6,求出a 的值即可.【详解】解:由题意,设此抛物线的解析式为: y=a (x-2)2+9,∵且它在x 轴上截得的线段长为6,令y=0得,方程0=a (x-2)2+9,即:ax 2-4ax+4a+9=0,∵抛物线ya (x-2)2+9在x 轴上的交点的横坐标为方程的根,设为x 1,x 2,∴x 1+x 2=4,x 1•x 2=49a a+ ,∴|x 1-x 26=即16-4×49a a+=36解得:a=-1,y=-(x-2)2+9,故答案为:y=-(x-2)2+9.【点睛】此题主要考查了用顶点式求二次函数的解析式和一元二次方程与二次函数的关系,函数与x 轴的交点的横坐标就是方程的根.19.【解析】【分析】连接OB 根据切线的性质得到∠OBA=90°根据勾股定理求出OA 根据题意计算即可【详解】连接OB ∵AB 是⊙O 的切线∴∠OBA=90°∴OA==4当点P 在线段AO 上时AP 最小为2当点P 在解析:26AP ≤≤【解析】【分析】连接OB ,根据切线的性质得到∠OBA=90°,根据勾股定理求出OA ,根据题意计算即可.【详解】连接OB ,∵AB 是⊙O 的切线,∴∠OBA=90°,∴22AB OB +=4,当点P 在线段AO 上时,AP 最小为2,当点P 在线段AO 的延长线上时,AP 最大为6,∴AP 的长的取值范围是2≤AP≤6,故答案为:2≤AP≤6.【点睛】本题考查的是切线的性质、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.20.【解析】分析:连接DBDB′先利用勾股定理求出DB′=A′B′=再根据S 阴=S 扇形BDB′-S△DBC -S△DB′C 计算即可详解:△ABC 绕AC 的中点D 逆时针旋转90°得到△AB′C 此时点A′在斜边 解析:32π 【解析】 分析:连接DB 、DB′,先利用勾股定理求出2212=5+,A 2222=22+,再根据S 阴=S 扇形BDB′-S △DBC -S △DB ′C ,计算即可.详解:△ABC 绕AC 的中点D 逆时针旋转90°得到△A'B ′C',此时点A′在斜边AB 上,CA′⊥AB ,连接DB 、DB′,则2212=5+,2222=22+∴S 阴=9052531222222=360242()ππ⨯-⨯÷-⨯÷-. 故答案为5342π-. 点睛:本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题21.(1)2354y x x =-+;(2)横彩条的宽度为3cm ,竖彩条的宽度为2cm .【解析】【分析】(1)由横、竖彩条的宽度比为3:2知横彩条的宽度为32xcm ,根据“三条彩条面积=横彩条面积+2条竖彩条面积﹣横竖彩条重叠矩形的面积”,列出函数关系式化简即可;(2)根据“三条彩条所占面积是图案面积的25”,可列出关于x 的一元二次方程,整理后求解即可.【详解】(1)根据题意可知,横彩条的宽度为32xcm , ∴y=20×32x+2×12•x ﹣2×32x•x=﹣3x 2+54x ,即y 与x 之间的函数关系式为y=﹣3x 2+54x ;(2)根据题意,得:﹣3x 2+54x=25×20×12, 整理,得:x 2﹣18x+32=0,解得:x 1=2,x 2=16(舍), ∴32x=3,答:横彩条的宽度为3cm ,竖彩条的宽度为2cm .考点:根据实际问题列二次函数关系式;一元二次方程的应用.22.(1)PC 是⊙O 的切线;(2)92 【解析】 试题分析:(1)结论:PC 是⊙O 的切线.只要证明OC ∥AD ,推出∠OCP =∠D =90°,即可. (2)由OC ∥AD ,推出OC OP AD AP =,即10610r r -=,解得r =154,由BE ∥PD ,AE =AB •sin ∠ABE =AB •sin ∠P ,由此计算即可.试题解析:解:(1)结论:PC 是⊙O 的切线.理由如下: 连接OC .∵AC 平分∠EAB ,∴∠EAC =∠CAB .又∵∠CAB =∠ACO ,∴∠EAC =∠OCA ,∴OC ∥AD .∵AD ⊥PD ,∴∠OCP =∠D =90°,∴PC 是⊙O 的切线.(2)连接BE .在Rt △ADP 中,∠ADP =90°,AD =6,tan ∠P =34,∴PD =8,AP =10,设半径为r .∵OC ∥AD ,∴OC OP AD AP =,即10610r r -=,解得r =154.∵AB 是直径,∴∠AEB =∠D =90°,∴BE ∥PD ,∴AE =AB •sin ∠ABE =AB •sin ∠P =152×35=92.点睛:本题考查了直线与圆的位置关系.解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.23.(1)21070010000w x x =-+-(20≤x≤32);(2)当销售单价定为32元时,每月可获得最大利润,最大利润是2160元;(3)3600.【解析】【分析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价﹣进价)×销售量,从而列出关系式;(2)首先确定二次函数的对称轴,然后根据其增减性确定最大利润即可;(3)根据抛物线的性质和图象,求出每月的成本.【详解】解:(1)由题意,得:w=(x ﹣20)•y=(x ﹣20)•(﹣10x+500)=21070010000x x -+-,即21070010000w x x =-+-(20≤x≤32);(2)对于函数21070010000w x x =-+-的图象的对称轴是直线x=7002(10)-⨯-=35. 又∵a=﹣10<0,抛物线开口向下.∴当20≤x≤32时,W 随着X 的增大而增大,∴当x=32时,W=2160答:当销售单价定为32元时,每月可获得最大利润,最大利润是2160元.(3)取W=2000得,210700100002000x x -+-=解这个方程得:1x =30,2x =40.∵a=﹣10<0,抛物线开口向下,∴当30≤x≤40时,w≥2000.∵20≤x≤32,∴当30≤x≤32时,w≥2000.设每月的成本为P (元),由题意,得:P=20(﹣10x+500)=﹣200x+10000∵k=﹣200<0,∴P 随x 的增大而减小,∴当x=32时,P 的值最小,P 最小值=3600.答:想要每月获得的利润不低于2000元,小明每月的成本最少为3600元.考点:1.二次函数的应用;2.最值问题;3.二次函数的最值.24.(1)98m £且0m ≠;(2)10x =,21x =-. 【解析】【分析】(1)根据一元二次方程的定义和判别式的意义得到m≠0且()()22341m m m =----⎡⎤⎣⎦V ≥0,然后求出两个不等式的公共部分即可;(2)利用m 的范围可确定m=1,则原方程化为x 2+x=0,然后利用因式分解法解方程.【详解】(1)∵2=[(23)]4(1)m m m ∆---- =89m -+. 解得98m ≤且0m ≠. (2)∵m 为正整数,∴1m =.∴原方程为20x x +=.解得10x =,21x =-.【点睛】考查一元二次方程()200ax bx c a ++=≠根的判别式24b ac ∆=-,当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.25.(1)12;(2)13【解析】【分析】(1)根据甲、乙两所医院分别有一男一女,列出树状图,得出所有情况,再根据概率公式即可得出答案; (2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【详解】解:(1)根据题意画图如下:共有4种情况,其中所选的2名教师性别相同的有2种,则所选的2名教师性别相同的概率是:2142=; 故答案为:12. (2)将甲、乙两医院的医生分别记为男1、女1、男2、女2,画树形图得:所以共有12种等可能的结果,满足要求的有4种.∴P(2名医生来自同一所医院的概率) =41123=. 【点睛】本题考查列表法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.。
2019年张家港市初三数学下期中模拟试卷附答案一、选择题1.有一块直角边AB=3cm ,BC=4cm 的Rt △ABC 的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为( )A .67B .3037C .127D .60372.已知4A 纸的宽度为21cm ,如图对折后所得的两个矩形都和原来的矩形相似,则4A 纸的高度约为( )A .29.7cmB .26.7cmC .24.8cmD .无法确定3.已知线段a 、b ,求作线段x ,使22b x a=,正确的作法是( ) A .B .C .D .4.如图,河坝横断面迎水坡AB 的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),坝高3m BC =,则坡面AB 的长度是( ).A.9m B.6m C.63m D.33m5.如图,在△ABC中,DE∥BC ,12ADDB=,DE=4,则BC的长是()A.8 B.10 C.11 D.126.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=512-BC D.BC=512-AC7.如图,在同一平面直角坐标系中,反比例函数y=kx与一次函数y=kx﹣1(k为常数,且k>0)的图象可能是()A.B.C.D.8.在△ABC中,若=0,则∠C的度数是()A.45°B.60°C.75°D.105°9.如图,在正方形ABCD中,N为边AD上一点,连接BN.过点A作AP⊥BN于点P,连接CP,M为边AB上一点,连接PM,∠PMA=∠PCB,连接CM,有以下结论:①△PAM∽△PBC;②PM⊥PC;③M、P、C、B四点共圆;④AN=AM.其中正确的个数为()A.4B.3C.2D.110.图(1)所示矩形ABCD 中,BC x =,CD y =,y 与x 满足的反比例函数关系如图(2)所示,等腰直角三角形AEF 的斜边EF 过点C ,M 为EF 的中点,则下列结论正确的是( )A .当3x =时,EC EM <B .当9y =时,EC EM <C .当x 增大时,EC CF ⋅的值增大D .当x 增大时,BE DF ⋅的值不变11.若270x y -=. 则下列式子正确的是( )A .72x y =B .27x y =C .27x y =D .27x y = 12.下列四个几何体中,主视图与左视图相同的几何体有( )A .1个B .2个C .3个D .4个二、填空题13.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD ,东边城墙AB 长9里,南边城墙AD 长7里,东门点E 、南门点F 分别是AB ,AD 的中点,EG ⊥AB ,FE ⊥AD ,EG =15里,HG 经过A 点,则FH =__里.14.如图,CAB BCD ∠=∠,2AD =,4BD =,则BC =______.15.如图,在平行四边形ABCD 中,AB =12,AD =8,∠ABC 的平分线交CD 于点F ,交AD 的延长线于点E ,CG ⊥BE ,垂足为G ,若EF =2,则线段CG 的长为_____.16.已知AB ∥CD ,AD 与BC 相交于点O.若BO OC =23,AD =10,则AO =____.17.学校校园内有块如图所示的三角形空地,计划将这块空地建成一个花园,以美化环境,预计花园每平方米造价为30元,学校建这个花园至少需要投资________元.18.已知反比例函数y=2m x-,当x >0时,y 随x 增大而减小,则m 的取值范围是_____.19.如图所示的网格是正方形网格,点P 到射线OA 的距离为m ,点P 到射线OB 的距离为n ,则m __________ n .(填“>”,“=”或“<”)20.已知线段a =2厘米,c =8厘米,则线段a 和c 的比例中项b 是______厘米.三、解答题21.(1)计算:tan 609tan308sin 602cos 45︒︒︒︒+-+(2)在ABC V 中,90,2,6C AC BC ︒∠===A ∠的度数22.已知:△ABC 中,∠A =36°,AB =AC ,用尺规求作一条过点B 的直线,使得截出的一个三角形与△ABC 相似.(保留作图痕迹,不写作法)23.已知如图,AD BE CF P P ,它们依次交直线a ,b 于点A 、B 、C 和点D 、E 、F.(1)如果6AB =,8BC =,21DF =,求DE 的长.(2)如果:2:5DE DF =,9AD =,14CF =,求BE 的长.24.如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC=14,AD=12,tan ∠BAD=,求sinC 的值.25.如图,平面直角坐标系xOy 中,A (2,1),B (3,﹣1),C (﹣2,1),D (0,2).已知线段AB 绕着点P 逆时针旋转得到线段CD ,其中C 是点A 的对应点.(1)用尺规作图的方法确定旋转中心P ,并直接写出点P 的坐标;(要求保留作图痕迹,不写作法)(2)若以P 为圆心的圆与直线CD 相切,求⊙P 的半径【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题解析:如图,过点B 作BP ⊥AC ,垂足为P ,BP 交DE 于Q .∵S △ABC =12AB•BC=12AC•BP , ∴BP=·341255AB BC AC ⨯==. ∵DE ∥AC ,∴∠BDE=∠A ,∠BED=∠C ,∴△BDE ∽△BAC , ∴DE BQ AC BP =. 设DE=x ,则有:1251255x x -=, 解得x=6037, 故选D .2.A解析:A【解析】【分析】设A4纸的高度为xcm ,对折后的矩形高度为2x cm ,然后根据相似多边形的对应边成比例列方程求解.【详解】 设A4纸的高度为xcm ,则对折后的矩形高度为2x cm , ∵对折后所得的两个矩形都和原来的矩形相似,∴21=212x x解得29.7=≈x故选A.【点睛】本题考查相似多边形的性质,熟记相似多边形对应边成比例,找到对应边列出方程是关键. 3.C解析:C【解析】【分析】对题中给出的等式进行变形,先作出已知线段a 、b 和2b ,再根据平行线分线段成比例定理作出平行线,被截得的线段即为所求线段x .【详解】 解:由题意,22b x a= ∴2a b b x=, ∵线段x 没法先作出,根据平行线分线段成比例定理,只有C 符合.故选C .4.B解析:B【解析】由图可知,:BC AC =tan BAC ∠=, ∴30BAC ∠=︒, ∴36m 1sin 302BC AB ===︒. 故选B . 5.D解析:D【解析】【分析】 根据AD DB =12,可得AD AB =13,再根据DE ∥BC ,可得DE BC =AD AB ; 接下来根据DE=4,结合上步分析即可求出BC 的长.【详解】∵ADDB=12,∴ADAB=13,∵在△ABC中,DE∥BC,∴DEBC=ADAB=13.∵DE=4,∴BC=3DE=12.故答案选D.【点睛】本题考查了平行线分线段成比例的知识,解题的关键是熟练的掌握平行线分线段成比例定理.6.D解析:D【解析】【分析】根据黄金分割的定义得出12BC ACAC AB==,从而判断各选项.【详解】∵点C是线段AB的黄金分割点且AC>BC,∴12BC ACAC AB==,即AC2=BC•AB,故A、B错误;AB,故C错误;AC,故D正确;故选D.【点睛】本题考查了黄金分割,掌握黄金分割的定义和性质是解题的关键.7.B解析:B【解析】当k>0时,直线从左往右上升,双曲线分别在第一、三象限,故A、C选项错误;∵一次函数y=kx-1与y轴交于负半轴,∴D选项错误,B选项正确,故选B.8.C解析:C【解析】【分析】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.【详解】由题意,得 cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.9.A解析:A【解析】【分析】根据互余角性质得∠PAM=∠PBC,进而得△PAM∽△PBC,可以判断①;由相似三角形得∠APM=∠BPC,进而得∠CPM=∠APB,从而判断②;根据对角互补,进而判断③;由△APB∽△NAB得AP ANBP AB,再结合△PAM∽△PBC便可判断④.【详解】解:∵AP⊥BN,∴∠PAM+∠PBA=90°,∵∠PBA+∠PBC=90°,∴∠PAM=∠PBC,∵∠PMA=∠PCB,∴△PAM∽△PBC,故①正确;∵△PAM∽△PBC,∴∠APM=∠BPC,∴∠CPM=∠APB=90°,即PM⊥PC,故②正确;∵∠MPC+∠MBC=90°+90°=180°,∴B、C、P、M四点共圆,∴∠MPB=∠MCB,故③正确;∵AP⊥BN,∴∠APN=∠APB=90°,∴∠PAN+∠ANB=90°,∵∠ANB+∠ABN=90°,∴∠PAN=∠ABN,∵∠APN=∠BPA=90°,∴△PAN∽△PBA,∴AN PA BA PB=,∵△PAM∽△PBC,∴Al AP BC BP=,∴AN AM AB BC=,∵AB=BC,∴AM=AN,故④正确;故选:A.【点睛】本题考查了相似三角形的判定和性质,正方形的性质、四点共圆,同角的余角相等,判断出PM⊥PC是解题的关键.10.D解析:D【解析】【分析】由于等腰直角三角形AEF的斜边EF过C点,则△BEC和△DCF都是直角三角形;观察反比例函数图像得出反比例函数解析式为y=9x;当x=3时,y=3,即BC=CD=3,根据等腰直角三角形的性质得2,CF=32,则C点与M点重合;当y=9时,根据反比例函数的解析式得x=1,即BC=1,CD=9,所以2,而2;利用等腰直角三角形的性质BE•DF=BC•CD=xy,然后再根据反比例函数的性质得BE•DF=9,其值为定值;由于2x×2=2xy,其值为定值.【详解】解:因为等腰直角三角形AEF的斜边EF过C点,M为EF的中点,所以△BEC和△DCF都是直角三角形;观察反比例函数图像得x=3,y=3,则反比例解析式为y=9x.A 、当x =3时,y =3,即BC=CD=3,所以,,C 点与M 点重合,则EC=EM ,所以A 选项错误;B 、当y =9时,x =1,即BC=1,CD=9,所以,,,所以B 选项错误;C 、因为x y =2×xy =18,所以,EC•CF 为定值,所以C 选项错误;D 、因为BE•DF=BC•CD=xy =9,即BE•DF 的值不变,所以D 选项正确.故选:D .【点睛】本题考查了动点问题的函数图像:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图像,注意自变量的取值范围.11.A解析:A【解析】【分析】直接利用比例的性质分别判断即可得出答案.【详解】∵2x -7y =0,∴2x =7y .A .72x y =,则2x =7y ,故此选项正确; B .27x y =,则xy =14,故此选项错误; C .27x y =,则2y =7x ,故此选项错误; D .27x y =,则7x =2y ,故此选项错误. 故选A .【点睛】本题考查了比例的性质,正确将比例式变形是解题的关键.12.D解析:D【解析】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选D .二、填空题13.05【解析】∵EG⊥ABFH⊥ADHG经过A点∴FA∥EGEA∥FH∴∠HFA=∠AEG =90°∠FHA=∠EAG∴△GEA∽△AFH∴∵AB=9里DA=7里EG=15里∴FA=35里EA=45里∴解析:05【解析】∵EG⊥AB,FH⊥AD,HG经过A点,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴EG EA AF FH=.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴15 4.5 3.5FH=,解得FH=1.05里.故答案为1.05.14.【解析】【分析】角对应相等的两个三角形相似可证得△ABC∽△CBD再根据相似三角形的性质可解【详解】解:∵∠B=∠B∠CAB=∠BCD∴△ABC∽△CBD∴BC:BD=AB:BC∴BC:BD=(AD解析:【解析】【分析】角对应相等的两个三角形相似可证得△ABC∽△CBD,再根据相似三角形的性质可解.【详解】解:∵∠B=∠B,∠CAB=∠BCD,∴△ABC∽△CBD,∴BC:BD=AB:BC,∴BC:BD=(AD+BD):BC,即BC:4=(2+4):BC,∴.故答案为:.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.15.2【解析】【分析】首先证明CF=BC=12利用相似三角形的性质求出BF再利用勾股定理即可解决问题【详解】解:∵四边形ABCD是平行四边形∴AB=CD=12 AE∥BCAB∥CD∴∠CFB=∠FBA∵B解析:【解析】【分析】首先证明CF=BC=12,利用相似三角形的性质求出BF ,再利用勾股定理即可解决问题.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD =12,AE ∥BC ,AB ∥CD ,∴∠CFB =∠FBA ,∵BE 平分∠ABC ,∴∠ABF =∠CBF ,∴∠CFB =∠CBF ,∴CB =CF =8,∴DF =12﹣8=4,∵DE ∥CB ,∴△DEF ∽△CBF , ∴EF BF =DF CF , ∴2BF =48, ∴BF =4,∵CF =CB ,CG ⊥BF ,∴BG =FG =2,在Rt △BCG 中,CG =故答案为【点睛】本题考查平行四边形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.16.【解析】∵AB∥CD 解得AO=4故答案是:4【点睛】运用了平行线分线段成比例定理灵活运用定理找准对应关系是解题的关键解析:【解析】∵AB ∥CD ,223103AO BO AO OD OC AO ∴===-,即, 解得,AO=4,故答案是:4.【点睛】运用了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.17.【解析】【分析】如图所示作BD⊥CA 于D 则在直角△ABD 中可以求出BD 然后求出△ABC 面积;根据单价可以求出总造价【详解】如图所示AB=10AC=30∠BAC=120°作BD⊥CA 于D 则在直角△AB解析:6750【解析】【分析】如图所示,作BD⊥CA于D,则在直角△ABD中可以求出BD,然后求出△ABC面积;根据单价可以求出总造价.【详解】如图所示,AB=103,AC=30,∠BAC=120°,作BD⊥CA于D,则在直角△ABD中,∠BAD=60°,∴BD=ABsin60°=15,∴△ABC面积=12×AC×BD=225.又因为每平方米造价为30元,∴总造价为30×225=6750(元).【点睛】此题主要考查了运用三角函数定义解直角三角形,关键是通过作辅助线把实际问题转化为数学问题,抽象到解直角三角形中解题.18.m>2【解析】分析:根据反比例函数y=当x>0时y随x增大而减小可得出m﹣2>0解之即可得出m的取值范围详解:∵反比例函数y=当x>0时y随x 增大而减小∴m﹣2>0解得:m>2故答案为m>2点睛:本解析:m>2.【解析】分析:根据反比例函数y=2mx-,当x>0时,y随x增大而减小,可得出m﹣2>0,解之即可得出m的取值范围.详解:∵反比例函数y=2mx-,当x>0时,y随x增大而减小,∴m﹣2>0,解得:m>2.故答案为m>2.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣2>0是解题的关键.19.>【解析】【分析】由图像可知在射线上有一个特殊点点到射线的距离点到射线的距离于是可知利用锐角三角函数即可判断出【详解】由题意可知:找到特殊点如图所示:设点到射线的距离点到射线的距离由图可知【点睛】本解析:>【解析】【分析】由图像可知在射线OP 上有一个特殊点Q ,点Q 到射线OA 的距离2QD =,点Q 到射线OB 的距离1QC =,于是可知AOP BOP ∠>∠ ,利用锐角三角函数sin sin AOP BOP ∠>∠ ,即可判断出m n >【详解】 由题意可知:找到特殊点Q ,如图所示:设点Q 到射线OA 的距离QD ,点Q 到射线OB 的距离QC由图可知2QD =1QC =∴ 2sin QD AOP OP OP∠== ,1sin QC BOP OP OP ∠== ∴sin sin AOP BOP ∠>∠,∴m n OP OP> ∴m n >【点睛】本题考查了点到线的距离,熟知在直角三角形中利用三角函数来解角和边的关系是解题关键.20.4【解析】∵线段b 是ac 的比例中项∴解得b =±4又∵线段是正数∴b =4点睛:本题考查了比例中项的概念利用比例的基本性质求两条线段的比例中项的时候负数应舍去解析:4【解析】∵线段b 是a 、c 的比例中项,∴216b ac ==,解得b =±4,又∵线段是正数,∴b =4. 点睛:本题考查了比例中项的概念,利用比例的基本性质求两条线段的比例中项的时候,负数应舍去.三、解答题21.(12;(2)∠A =60°【解析】【分析】(1)原式利用特殊角的三角函数值计算即可得到结果;(2)由锐角三角函数定义求出∠A 度数即可.【详解】(1)原式=3323+9-8+2=3+33-43+2=2322⨯⨯⨯; (2)∵90,2,6C AC BC ︒∠===, ∴tanA =632BC AC ==, ∴∠A =60°【点睛】此题考查了实数的运算以及解直角三角形,熟练掌握运算法则是解本题的关键.22.答案见解析.【解析】【分析】根据三角形相似的作图解答即可.【详解】解:如图,直线BD 即为所求.【点睛】此题主要考查相似图形的作法,关键是根据三角形相似的作图.23.(1)DE 的长为9;(2)BE 的长为11;【解析】【分析】(1)由果6AB =,8BC =,可得AC=14,然后根据平行线等分线段定理得到6=14DE AB DF AC =,然后将已知条件代入即可求解; (2)过D 作DH∥AC,分别交BE,CF 于H ,说明四边形ABGD 和四边形BCHG 是平行四边形,然后根据平行四边形的性质得CH=BG=AD=9;进一步说明FH=CF-DH=5,然后再按照平行线等分线段定理得到:2:5DE DF =,最后代入已知条件求解即可.【详解】(1)∵6AB =,8BC =,∴AC=AB+BC=14∵AD BE CF P P∴6=14 DE ABDF AC=∴66219 1414DE DF==⨯=(2)过D作DH∥AC,分别交BE,CF于H.∵AD BE CFP P∴四边形ABGD和四边形BCHG是平行四边形,∴CH=BG=AD=9∴FH=CF-DH=5∵:2:5DE DF=∴:2:5GE HF=∴225255GE HF==⨯=∴BE=BG+GE=9+2=11.【点睛】本题主要考查平行线分线段成比例的知识,关键是掌握三条平行线截两条直线,所得的对应线段成比例.24..【解析】【分析】首先根据Rt△ABD的三角函数求出BD的长度,然后得出CD的长度,根据勾股定理求出AC的长度,从而得出∠C的正弦值.【详解】∵在直角△ABD中,tan∠BAD=,∴BD=AD•tan∠BAD=12×=9,∴CD=BC-BD=14-9=5,∴AC==13,∴sinC=.【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.25.(1)如图点P即为所求.见解析;(2)以P为圆心的圆与直线CD相切,⊙P的半径为65.【解析】【分析】(1)作相对AC,BD的垂直平分线,两条垂直平分线的交点P即为所求.(2)作PE⊥CD于E,求出点E的坐标,利用相似三角形的性质求出PE即可.【详解】(1)如图点P即为所求.(2)作PE⊥CD于E,设AC交PD于K.∵∠CDO=∠PDE,∠CKD=∠PED=90°,∴△COD∽△PED,∴COPE=CDPD,∴2PE5∴PE=55,∵以P为圆心的圆与直线CD相切,∴⊙P 65.【点睛】本题考查作图,相似三角形的判定和性质,切线的性质等知识,解题的关键是熟练掌握基本知识.。
2019年中考上阅卷适应性考试试卷数 学注意事项:1.本试卷共8页,全卷共三大题29小题,满分130分,考试时间120分钟;2.答题前,考生先将自己的学校、班级、姓名、考试号填写在答题卷密封线内相应的位置上;3.选择题、填空题、解答题必须用黑色签字笔答题,答案填在答题卷相应的位置上;4.在草稿纸、试卷上答题无效;5.各题必须答在黑色答题框内,不得超出答题框,一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在答题卷相应的空格内)1.下列各式计算正确的是A .()101132-⎛⎫--=- ⎪⎝⎭B= C .2a 2+4a 2=6a 4 D .(a 2)3=a 62.函数y =x 的取值范围是 A .x ≥1 B .x ≥1且x ≠2 C .x>1 D .x>1且x ≠23.下列图标中,属于中心对称的是4.样本数据3、6、10、4、2的平均数和极差分别是A .5和8B .5和1C .3和8D .3和55.如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m(即小颖的眼睛距地面的距离),那么这棵树高是 A.332m ⎛⎫+ ⎪ ⎪⎝⎭B.32m ⎛⎫ ⎪⎝⎭ CD .4m6.如图,AB 为⊙O 的直甲径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO =CD ,则∠PCA =A .60°B .65°C .67.5°D .75°7.若不等式组22214x x a x -<⎧⎪⎨+<⎪⎩的所有整数解的和为5,则实数a 的取值范围是A .-4≤a ≤-2B .-4<a ≤-2C .-4≤a<-2D .-4<a<-28.如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为A .9B .9-C .(-34,54) D .(-34,53) 9.如图,在直角坐标系中,矩形ABCO 的边OA 在x 轴上,边OC 在y 轴上,点B 的坐标为(1,2),将矩形沿对角线AC 翻折,点B 落在点D 的位置,且AD 交y 轴于点E .那么点D 的坐标为A .(-45,65)B .(-35,65)C .(-34,54)D .(-34,53) 10.如图,已知A 、B 是反比例函数了k y x(k>0,x>0)图象上的两点, BC ∥x 轴,交y 轴于点C .动点P 从坐标原点O 出发,沿O →A →B→C 匀速运动,终点为C .过点P 作PM ⊥x 轴,PN ⊥y 轴,垂足分别为M 、N .设四边形OMPN 的面积为S ,点P 运动的时间为t ,则S 关于t 的函数图象大致为二、填空题:(本大题共8小题,每小题3分,共24分,把你的答案填在答题卷相应的横线上)11.-23的相反数是 ▲ . 12.据第六次全国人口普查统计,我国人口总数约有l 371 000 000人,用科学记数法表示为 ▲ 人.(结果保留三个有效数字)13.分解因式:12x 2-y 2= ▲ . 14.规定一种新的运算:a*b =ab +a -b .例如3*(-1)=3×(-1)+3-(-1)=1.试比较大小:4*3 ▲ (-4)*(-3).(填“>”、“<”或“=”)15.如图,AB ∥EF ∥CD ,∠ABC =46°,∠CEF =154°,则∠BCE = ▲ °.16.如图,以矩形OABC 的顶点O 为坐标原点,OA 所在的直线为x 轴,OC 所在的直线为y轴,建立直角坐标系,已知OA =3,OC =2,点E 是AB 的中点,点F 在BC 上,CF =1,点M 、N 分别是x 轴、y 轴上的动点,则四边形MEFN 周长的最小值为 ▲ .17.如图,在菱形ABCD 中,已知E 、F 分别是边AB 、BC 的中点,CE 、DF 交于点G ,若△CGF的面积为2,则菱形ABCD 的面积为 ▲ .18.已知a<b<0,且6a b b a +=,则a b a b+=- ▲ . 三、解答题:(本大题共11小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(本题满分5分)先化简,再求值:21221x x x ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭,其中1x =. 20.(本题满分5分)某市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为四个等级:不合格、合格、良好、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整;(2)若“良好”和“优秀”均被视为“优良”成绩,则该校被抽取的学生中有 ▲ 人的成绩达到“优良”;(3)若该校学生有1200人,请你估计此次测试中,全校达到“优良”成绩的学生有多少人?21.(本题满分5分)如图,线段AB 的端点在边长为1的小正方形格的格点上,现将线段AB 绕点A 按逆时针方向旋转90°得到线段AC .(1)请你在所给的格中画出线段AC 及点B 经过的路径;(2)若将此格放在一平面直角坐标系中,已知点A 的坐标为(1,3),点B 的坐标为(-2,-1),则点C 的坐标为▲ ;(3)在线段AB 旋转到线段AC 的过程中,线段AB 扫过的区域的面积为 ▲ ;(4)若有一张与(3)中所说的区域形状相同的纸片,将它围成一个圆锥的侧面,则该圆锥的高为 ▲ .22.(本题满分6分)如图,均匀的正四面体的各面依次标有1,2,3,4四个数字,小明做了60次投掷试验,结果统计如下:(1)计算上述试验中“4朝下”的频率是 ▲ ;(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是13.”的说法正确吗?为什么?(3)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于4的概率.23.(本题满分6分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元,若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?24.(本题满分6分)若关于x 的方程x 2+4x -a +3=0有实数根.(1)求a 的取值范围;(2)当a =2018时,设方程的两根为x 1、x 2,求x 12+3x 1-x 2的值.25.(本题满分8分)如图,矩形ABCD 中,AB =1,BC =2,BC 在x 轴上,一次函数y =kx -2的图象经过点A 、C ,并与y 轴交于点E .反比例函数y =k x的图象经过点A ,并且与一次函数y =kx -2的图象交于另一点F .(1)点C 的坐标是 ▲ ;(2)求一次函数和反比例函数的解析式;(3)求出点F 的坐标,并根据图象写出一次函数的值大于反比例函数的值的x 的取值范围.26.(本题满分8分)已知方程组137x y a x y a -=+⎧⎨+=--⎩的解x 是非正数,y 为负数. (1)求a 的取值范围;(2)化简:12a a ++-;(3)若实数a 满足方程12a a ++-=4,则a = ▲ .27.(本题满分8分)已知:如图,AB 是⊙O 的直径,AC 是弦,OD ⊥AC 于点E ,交⊙O 于点F ,连接BF ,CF ,∠D =∠BFC .(1)求证:AD 是⊙O 的切线;(2)若AC =8,tanB =12,求AD 的长.28.(本题满分9分)在平行四边形ABCD 中,AB =10,AD =6,AD ⊥BD ,点M 是AB 边上的一个动点,ME 平分∠DMB ,与BD 、CD 分别交于点E 、F .(1)当AM =DM 时,证明四边形AMFD 是平行四边形;(如图1)(2)当DM ⊥AB 时,则ME :EF 的值为 ▲ ;(如图2)(3)当AM 为何值时,△DME ∽△DBM?(如图3)29.(本题满分10分)如图,在平面直角坐标系中,四边形ABCD 是梯形,BC ∥AD ,∠BAD +∠CDA =90°,AD 在x 轴上,点A 的坐标(-1,0),点B 的坐标(0,2),BC =OB .(1)求过点A 、B 、C 的抛物线的解析式;(2)动点E 从点B (不包括点B )出发,沿BC 运动到点C 停止,在运动过程中,过点E 作EF ⊥AD 于点F ,将四边形ABEF 沿直线EF 折叠,得到四边形A 1B 1EF ,点A 、B 的对应点分别是点A 1、B 1,设四边形A 1B 1EF 与梯形ABCD 重合部分的面积为S ,F 点的坐标是(x ,0). ①连接CF ,当△CDF 是直角三角形时,点F 的坐标为 ▲ ;(直接写出答案) ②求S 与x 的函数关系式;③在点E 运动过程中,S 的值是否能超过梯形ABCD 面积的一半,若能,求出相应的x 的取值范围;若不能,请说明理由.。
2019年江苏省苏州市张家港市中考数学模拟试卷(5月份)一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题日要求的.)1.(3分)下列四个数中,是正整数的是()A.﹣2B.πC.D.102.(3分)下列运算正确的是()A.a2×a3=a6B.a2+a2=2a4C.a8÷a4=a4D.(a2)3=a5 3.(3分)已知某新型感冒病毒的直轻约为0.000000823米,将0.000000823用科学记数法表示()A.8.23×10﹣5B.8.23×10﹣6C.8.23×10﹣7D.8.23×10﹣8 4.(3分)AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C;连接BC,若∠P=40°,则∠B等于()A.20°B.25°C.30°D.40°5.(3分)某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A.24.5,24.5B.24.5,24C.24,24D.23.5,246.(3分)化简(x﹣2)÷()•x的结果是()A.﹣x2B.x2C.﹣1D.17.(3分)如图,在Rt△ABC中,CD是斜边AB上的中线.已知AC=3,CD=2,则tan A 的值为()A.B.C.D.8.(3分)一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3D.有两个正根,且有一根大于39.(3分)如图,平行四边形ABCD绕点D逆时针旋转40°,得到平行四边形A'B'C'D(点A'是A点的对应点,点B’是B点的对应点,点C'是C点的对应点),并且A'点恰好落在AB边上,则∠B的度数为()A..100°B.105°C..110°D..115°10.(3分)如图,Rt△ABC中.∠BAC=90°,AB=1,AC=2.点D,E分别是边BC,AC上的动点,则DA+DE的最小值为()A.B.C.D.二、填空题:(本大题共8小题,毎小题3分,共24分,把你的答案填在答题卷相应的横线上)11.(3分)计算×=.12.(3分)分式方程=的解是 .13.(3分)若x +2y =4,则4+x +y = .14.(3分)已知直线a ∥b ,将一块含45°角的直角三角板(∠C =90°),按如图所示的位置摆放,若∠1=55°,则∠2的度数为 .15.(3分)如图,正六边形内接于⊙O ,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是 .16.(3分)如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏东60°方向行驶12千米至B 地,再沿北偏西45°方向行驶一段距离到达古镇C ,小明发现古镇C 恰好在A 地的正北方向,则B ,C 两地的距离为 千米.(结果保留根号)17.(3分)如图,正方形ABCD 中,AB =6,E 是CD 的中点,将△ADE 沿AE 翻折至△AFE ,连接CF ,则CF 的长度是 .18.(3分)甲、乙两车从A地出发,匀速驶向B地,甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.给出下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有.(把你认为正确结论的序号都填上)三、解答题:(本大题共10小题,共76分,把解答过程写在答题卷相相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(5分)计算:|1﹣|+2﹣2﹣2sin60°20.(5分)解不等式组:21.(6分)一只不透明的口袋里装有1个红球、1个黄球和若干个白球,这些球除颜色外其余都相同,搅匀后从中任意摸出一个是白球的概率为(1)试求袋中白球的个数;(2)搅匀后从中任意摸出1个球(不放回),再从余下的球中任意摸出1个球,试用画树状图或列表格的方法,求两次摸出的2个球恰好是1个白球、1个红球的概率,22.(6分)在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE,垂足为F.(1)证明:△ABE≌△DFA;(2)若∠CDF=30°,且AB=3,求AE的长.23.(8分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.24.(8分)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?25.(8分)如图,反比例函数y=(x>0,k是常数)的图象经过A(1,3),B(m,n),其中m>1.过点B作y轴的垂线,垂足为C.连接AB,AC,△ABC的面积为.(1)求k的值和直线AB的函数表达式:(2)过线段AB上的一点P作PD⊥x轴于点D,与反比例函数y=(x>0,k是常数)的图象交于点E,连接OP,OE,若△POE的面积为1,求点P的坐标.26.(10分)如图,以△ABC的BC边上一点O为圆心的圆,经过A、C两点,与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F.AB=BF,CF=4,DF=.(1)求证:AB是⊙O的切线;(2)求⊙O的半径r;(3)设点P是BA延长线上的一个动点,连接DP交CF于点M,交弧AC于点N(N与A、C不重合).试问DM•DN是否为定值?如果是,求出该定值;如果不是.请说明理由.27.(10分)如图,在四边形ABCD中,AB∥DC,CB⊥AB.AB=16cm,BC=6cm,CD =8cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2cm/s.点P和点Q同时出发,设运动的时间为t(s),0<t<5.(1)用含t的代数式表示AP;(2)当以点A.P,Q为顶点的三角形与△ABD相似时,求t的值;(3)当QP⊥BD时,求t的值.28.(10分)如图1,抛物线C1:y=x2﹣ax与C2=﹣x2+bx相交于点O、C,C1与C2分别交x轴于点B、A,且B为线段AO的中点.(1)点A的坐标为(,),点B的坐标为(,),的值为;(2)若OC⊥AC,求△OAC的面积;(3)在(2)的条件下,设抛物线C2的对称轴为l,顶点为M(如图2),点E在抛物线C2上点O与点M之间运动,四边形OBCE的面积是否存在最大值?若存在,求出面积的最大值和点E的坐标;若不存在,请说明理由.2019年江苏省苏州市张家港市中考数学模拟试卷(5月份)参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题日要求的.)1.(3分)下列四个数中,是正整数的是()A.﹣2B.πC.D.10【分析】根据正整数的定义直接判断即可.【解答】解:∵大于零的整数即为正整数.故选:D.【点评】本题考查正整数的定义,要理解大于零的整数即为正整数.2.(3分)下列运算正确的是()A.a2×a3=a6B.a2+a2=2a4C.a8÷a4=a4D.(a2)3=a5【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;同底数幂的除法法则:底数不变,指数相减;幂的乘方法则:底数不变,指数相乘,合并同类项,只把系数相加,字母部分不变进行分析即可.【解答】解:A、a2×a3=a5,故原题计算错误;B、a2+a2=2a2,故原题计算错误;C、a8÷a4=a4,故原题计算正确;D、a2)3=a6,故原题计算错误;故选:C.【点评】此题主要考查了同底数幂的乘法、除法、幂的乘方,以及合并同类项,关键是掌握各计算法则.3.(3分)已知某新型感冒病毒的直轻约为0.000000823米,将0.000000823用科学记数法表示()A.8.23×10﹣5B.8.23×10﹣6C.8.23×10﹣7D.8.23×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000823=8.23×10﹣7,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(3分)AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C;连接BC,若∠P=40°,则∠B等于()A.20°B.25°C.30°D.40°【分析】由切线的性质得:∠PAB=90°,根据直角三角形的两锐角互余计算∠POA=50°,最后利用同圆的半径相等得结论.【解答】解:∵PA切⊙O于点A,∴∠PAB=90°,∵∠P=40°,∴∠POA=90°﹣40°=50°,∵OC=OB,∴∠B=∠BCO=25°,故选:B.【点评】本题考查了切线的性质、等腰三角形的性质,属于常考题型,熟练掌握圆的切线垂直于过切点的半径是关键.5.(3分)某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A.24.5,24.5B.24.5,24C.24,24D.23.5,24【分析】利用众数和中位数的定义求解.【解答】解:这组数据中,众数为24.5,中位数为24.5. 故选:A .【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.6.(3分)化简(x ﹣2)÷()•x 的结果是( )A .﹣x 2B .x 2C .﹣1D .1【分析】根据分式的除法和乘法可以解答本题.【解答】解:(x ﹣2)÷()•x=(x ﹣2)÷=(x ﹣2)•x=﹣x 2, 故选:A .【点评】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法. 7.(3分)如图,在Rt △ABC 中,CD 是斜边AB 上的中线.已知AC =3,CD =2,则tan A 的值为( )A .B .C .D .【分析】利用直角三角形的斜边中线与斜边的关系,先求出CD ,再通过勾股定理求出BC ,最后利用直角三角形的边角关系计算tan A . 【解答】解:∵CD 是Rt △ABC 斜边AB 上的中线, ∴AB =2CD =4,∴BC ===∴tan A ==故选:C .【点评】本题考查了直角三角形斜边的中线与斜边的关系、勾股定理及锐角三角函数.掌握直角三角形斜边的中线与斜边的关系是解决本题的关键.在直角三角形中,斜边的中线等于斜边的一半.8.(3分)一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3D.有两个正根,且有一根大于3【分析】直接整理原方程,进而解方程得出x的值.【解答】解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选:D.【点评】此题主要考查了一元二次方程的解法,正确解方程是解题关键.9.(3分)如图,平行四边形ABCD绕点D逆时针旋转40°,得到平行四边形A'B'C'D(点A'是A点的对应点,点B’是B点的对应点,点C'是C点的对应点),并且A'点恰好落在AB边上,则∠B的度数为()A..100°B.105°C..110°D..115°【分析】根据旋转不变性可知:DA=DA′,∠ADA′=40°,求出∠A即可解决问题.【解答】解:由题意,DA=DA′,∠ADA′=40°,∴∠A=∠DA′A=(180°﹣40°)=70°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠B+∠A=180°,∴∠B=110°,故选:C.【点评】本题考查旋转变换,平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.(3分)如图,Rt△ABC中.∠BAC=90°,AB=1,AC=2.点D,E分别是边BC,AC上的动点,则DA+DE的最小值为()A.B.C.D.【分析】如图,作A关于BC的对称点A',连接AA',交BC于F,过A'作AE⊥AC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长,根据相似三角形对应边的比可得结论.【解答】解:作A关于BC的对称点A',连接AA',交BC于F,过A'作A'E⊥AC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长;Rt△ABC中,∠BAC=90°,AB=1,AC=2,∴BC=,S=AB•AC=BC•AF,△ABC∴1×2=3AF,AF=,∴AA'=2AF=,∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE,∴∠A'=∠C,∵∠AEA'=∠BAC=90°,∴△AEA'∽△BAC,∴,∴,∴A'E=,即AD+DE的最小值是;故选:B.【点评】本题考查轴对称﹣最短问题、三角形相似的性质和判定、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题,属于中考填空题中的压轴题.二、填空题:(本大题共8小题,毎小题3分,共24分,把你的答案填在答题卷相应的横线上)11.(3分)计算×=2.【分析】根据二次根式的乘法法则计算可得.【解答】解:原式===2,故答案为:2.【点评】本题主要考查二次根式的乘除法,解题的关键是掌握二次根式的乘法法则:•=(a≥0,b≥0).12.(3分)分式方程=的解是x=6.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3x﹣6,解得:x=6,经检验x=6是分式方程的解,故答案为:x=6【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.(3分)若x+2y=4,则4+x+y=6.【分析】把代数式4+x+y变形为4+(x+2y),然后利用整体代入的方法计算.【解答】解:∵x+2y=4,∴4+x+y=4+(x+2y)=4+×4=4+2=6.故答案为6.【点评】本题考查了代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.14.(3分)已知直线a∥b,将一块含45°角的直角三角板(∠C=90°),按如图所示的位置摆放,若∠1=55°,则∠2的度数为80°.【分析】给图中各角标上序号,由三角形外角的性质及对顶角相等可求出∠5的度数,由∠5的度数结合邻补角互补可求出∠3的度数,由直线a∥b利用“两直线平行,同位角相等”可得出∠2=∠3=80°,此题得解.【解答】解:给图中各角标上序号,如图所示.∵∠5=∠4+∠B,∠4=∠1=55°,∠B=45°,∴∠5=45°+55°=100°.∵∠3+∠5=180°,∴∠3=80°.∵直线a∥b,∴∠2=∠3=80°.故答案为:80°.【点评】本题考查了等腰直角三角形、平行线的性质三角形外角的性质,利用三角形外角的性质以及邻补角互补,求出∠3的度数是解题的关键.15.(3分)如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是.【分析】根据图形分析可得求图中阴影部分面积实为求扇形部分面积,而扇形面积是圆面积的,可得结论.【解答】解:如图所示:连接OA,∵正六边形内接于⊙O,∴△OAB,△OBC都是等边三角形,∴∠AOB=∠OBC=60°,∴OC∥AB,∴S△ABC =S△OBC,∴S阴=S扇形OBC,则飞镖落在阴影部分的概率是;故答案为:.【点评】此题主要考查了正多边形和圆、几何概率以及扇形面积求法,得出阴影部分面积=S是解题关键.扇形OBC16.(3分)如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏东60°方向行驶12千米至B地,再沿北偏西45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,则B,C两地的距离为6千米.(结果保留根号)【分析】作BD⊥AC于D,根据正弦的定义求出BD,根据余弦的定义求出BC.【解答】解:作BD⊥AC于D,在Rt△ABD中,sin∠DAB=,∴BD=AB•sin∠DAB=6,在Rt△CBD中,cos∠CBD=,∴BC==6(千米),故答案为:6.【点评】本题考查的是解直角三角形的应用﹣方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.17.(3分)如图,正方形ABCD中,AB=6,E是CD的中点,将△ADE沿AE翻折至△AFE,连接CF,则CF的长度是.【分析】连接DF交AE于G,依据轴对称的性质以及三角形内角和定理,即可得到∠AGD=∠DFC=90°,再根据面积法即可得出DG==,最后判定△ADG≌△DCF,即可得到CF=DG=.【解答】解:如图,连接DF交AE于G,由折叠可得,DE=EF,又∵E是CD的中点,∴DE=CE=EF,∴∠EDF=∠EFD,∠ECF=∠EFC,又∵∠EDF+∠EFD+∠EFC+∠ECF=180°,∴∠EFD+∠EFC=90°,即∠DFC=90°,由折叠可得AE⊥DF,∴∠AGD=∠DFC=90°,又∵ED=3,AD=6,∴Rt△ADE中,AE=3,又∵×AD×DE=×AE×DG,∴DG==,∵∠DAG+∠ADG=∠CDF+∠ADG=90°,∴∠DAG=∠CDF,又∵AD=CD,∠AGD=∠DFC=90°,∴△ADG≌△DCF(AAS),∴CF=DG=,故答案为:.【点评】本题主要考查了正方形的性质,折叠的性质以及全等三角形的判定与性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.(3分)甲、乙两车从A地出发,匀速驶向B地,甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.给出下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有①②③.(把你认为正确结论的序号都填上)【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故答案为:①②③.【点评】本题考查一次函数的应用,主要是以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.三、解答题:(本大题共10小题,共76分,把解答过程写在答题卷相相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(5分)计算:|1﹣|+2﹣2﹣2sin60°【分析】本题涉及绝对值、负指数幂、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣1+﹣2×,=﹣1+﹣,=﹣.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角的三角函数值等考点的运算.20.(5分)解不等式组:【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x﹣1≥x+1,得:x≥2,解不等式x﹣1<,得:x<4.5,则不等式组的解集为2≤x<4.5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(6分)一只不透明的口袋里装有1个红球、1个黄球和若干个白球,这些球除颜色外其余都相同,搅匀后从中任意摸出一个是白球的概率为(1)试求袋中白球的个数;(2)搅匀后从中任意摸出1个球(不放回),再从余下的球中任意摸出1个球,试用画树状图或列表格的方法,求两次摸出的2个球恰好是1个白球、1个红球的概率,【分析】(1)设袋中白球的个数有x个,根据概率公式列出算式,再求解即可;(2)根据题意先画出树状图得出所有等情况数和两次摸出的2个球恰好是1个白球、1个红球的情况数,然后根据概率公式求解即可.【解答】解:(1)设袋中白球的个数有x个,根据题意得:=,解得:x=2,答:袋中白球的有2个;(2)根据题意画图如下:共有12种等可能的结果,其中摸出两个球恰好是1个白球、1个红球占4种,所以两次摸出的2个球恰好是1个白球、1个红球的概率是=.【点评】本题考查了利用列表与树状图求概率的方法:先通过列表或树状图展示所有等可能的结果数n,再找出其中某事件所占有的结果数m,然后根据概率的概念求出这个事件的概率P=.22.(6分)在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE,垂足为F.(1)证明:△ABE≌△DFA;(2)若∠CDF=30°,且AB=3,求AE的长.【分析】(1)根据矩形性质得出∠B=90°,AD=BC,AD∥BC,求出∠DAF=∠AEB,AD=AE,∠AFD=∠B=90°,根据AAS证出三角形全等即可.(2)根据全等三角形性质得出AB=DF=3,AE=AD,进而解答即可.【解答】证明:(1)∵四边形ABCD是矩形,∴∠B=90°,AD=BC,AD∥BC,∴∠DAF=∠AEB,∵AE=BC,∴AD=AE,∵DF⊥AE,∴∠AFD=∠B=90°,在△ABE和△DFA中,∴△ABE≌△DFA(AAS).(2):∵△ABE≌△DFA,∠CDF=30°,AB=3,∴AB=DF=3,AE=AD,∴AE=2AB=6【点评】本题考查了矩形的性质,全等三角形的性质和判定,勾股定理,解直角三角形的应用,主要考查学生的推理能力和计算能力.23.(8分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有50人,a+b=28,m=8;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【分析】(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.24.(8分)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?【分析】(1)设每个篮球和每个足球的售价分别为x元,y元,根据题意列出方程组,求出方程组的解即可;(2)设篮球购买a个,则足球购买(50﹣a)个,根据题意列出不等式,求出不等式的解集即可确定出最多购买的足球.【解答】解:(1)设每个篮球和每个足球的售价分别为x元,y元,根据题意得:,解得:,则每个篮球和每个足球的售价分别为100元,120元;(2)设足球购买a个,则篮球购买(50﹣a)个,根据题意得:120a+100(50﹣a)≤5500,整理得:20a≤500,解得:a≤25,则最多可购买25个足球.【点评】此题考查了一元一次不等式的应用,以及二元一次方程组的应用,弄清题中的等量关系及不等关系是解本题的关键.25.(8分)如图,反比例函数y=(x>0,k是常数)的图象经过A(1,3),B(m,n),其中m>1.过点B作y轴的垂线,垂足为C.连接AB,AC,△ABC的面积为.(1)求k的值和直线AB的函数表达式:(2)过线段AB上的一点P作PD⊥x轴于点D,与反比例函数y=(x>0,k是常数)的图象交于点E,连接OP,OE,若△POE的面积为1,求点P的坐标.【分析】(1)根据待定系数法即可求得k的值,得到反比例函数的解析式,把B点代入得到n=,根据三角形ABC的面积即可求得B点的坐标,然后根据待定系数法求得直线AB的解析式;(2)设P点的坐标为(x,﹣x+),则E(x,),根据△POE的面积为1得出x•(﹣x+﹣)=1,解方程即可求得.【解答】解:(1)∵反比例函数y=(x>0,k是常数)的图象经过A(1,3),∴k=1×3=3,∴反比例函数为y=,∵反比例函数y=(x>0,k是常数)的图象经过B(m,n),∴n=,∵△ABC的面积为.∴m•(3﹣)=,解得m=6,∴n==,∴B(6,),设直线AB的解析式为y=ax+b,∴,解得,∴直线AB的解析式为y=﹣x+;(2)设P点的坐标为(x,﹣x+),则E(x,),∵△POE的面积为1,∴x•(﹣x+﹣)=1,解得x=2或5,∴P(2,)或(5,1).【点评】本题考查反比例函数与一次函数的交点问题,待定系数法以及三角形面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.26.(10分)如图,以△ABC的BC边上一点O为圆心的圆,经过A、C两点,与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F.AB=BF,CF=4,DF=.(1)求证:AB是⊙O的切线;(2)求⊙O的半径r;(3)设点P是BA延长线上的一个动点,连接DP交CF于点M,交弧AC于点N(N与A、C不重合).试问DM•DN是否为定值?如果是,求出该定值;如果不是.请说明理由.【分析】(1)连接OA,OD,由点D为CE的下半圆弧的中点,证得∠EOD=90°,再证∠BAF=∠BFA=∠DFO,由∠OAD=∠ODA可证得∠BAO=90°,可推出结论;(2)设⊙O的半径为r,在Rt△OFD中,利用勾股定理可求出半径r;(3)连接CN,CD,求出DC的长度,证△DCM∽△DNC,利用相似三角形对应边的比相等,可证得DM•DN=DC2,因为DC的长度已知,所以可知DM•DN为定值,并可求出其值.【解答】(1)证明:如图1,连接OA,OD,∵D为为CE的下半圆弧的中点,EC为⊙O直径,∴=,∴∠EOD=∠COD=×180°=90°,∵OA=OD,∴∠OAD=∠ODA,又∵BA=BF,∴∠BAF=∠BFA=∠DFO,∴∠BAF+∠OAD=∠DFO+∠ODA=90°,∴OA⊥AB,∴AB是⊙O的切线;(2)设⊙O的半径为r,由(1)知,∠EOD=90°,在Rt△OFD中,OD=r,OF=4﹣r,DF=,∴r2+(4﹣r)2=()2,解得,r1=1(舍去),r2=3,∴⊙O半径为3;(3)如图2,连接CN,CD,在Rt△OCD中,OC=OD=r=3,DC==3,∵=,∴∠ECD=∠DNC,又∵∠CDN=∠CDN,∴△DCM∽△DNC,∴=,∴DM•DN=DC2,∵DC=(3)2=18,∴DM•DN为定值,该定值为18.【点评】本题考查了切线的判定定理,圆的有关性质,勾股定理,相似三角形的判定与性质等,解题的关键是第(3)问能够由结论进行猜想,通过作辅助线构造相似,并加以证明.27.(10分)如图,在四边形ABCD中,AB∥DC,CB⊥AB.AB=16cm,BC=6cm,CD =8cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2cm/s.点P和点Q同时出发,设运动的时间为t(s),0<t<5.(1)用含t的代数式表示AP;(2)当以点A.P,Q为顶点的三角形与△ABD相似时,求t的值;(3)当QP⊥BD时,求t的值.【分析】(1)如图作DH⊥AB于H则四边形DHBC是矩形,利用勾股定理求出AD的长即可解决问题;(2)根据相似三角形的性质列方程即可得到结论;(3)当PQ⊥BD时,∠PQN+∠DBA=90°,∠QPN+∠PQN=90°,推出∠QPN=∠DBA,推出tan∠QPN==,由此构建方程即可解决问题.【解答】解:(1)如图作DH⊥AB于H,则四边形DHBC是矩形,∴CD=BH=8,DH=BC=6,∴AH=AB﹣BH=8,AD==10,BD==10,由题意AP=AD﹣DP=10﹣2t.(2)当以点A.P,Q为顶点的三角形与△ABD相似时,∴或,∴=或,解得:t=或t=,∴当t=或t=时,当以点A.P,Q为顶点的三角形与△ABD相似;(3)当PQ⊥BD时,∠PQN+∠DBA=90°,∵∠QPN+∠PQN=90°,∴∠QPN=∠DBA,∴tan∠QPN==,∴=,解得t=,经检验:t=是分式方程的解,∴当t=s时,PQ⊥BD.【点评】本题考查了相似三角形的性质,矩形的判定和性质,解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形.28.(10分)如图1,抛物线C1:y=x2﹣ax与C2=﹣x2+bx相交于点O、C,C1与C2分别交x轴于点B、A,且B为线段AO的中点.(1)点A的坐标为(a,0),点B的坐标为(b,0),的值为;(2)若OC⊥AC,求△OAC的面积;(3)在(2)的条件下,设抛物线C2的对称轴为l,顶点为M(如图2),点E在抛物线C2上点O与点M之间运动,四边形OBCE的面积是否存在最大值?若存在,求出面积的最大值和点E的坐标;若不存在,请说明理由.【分析】(1)由两抛物线解析式可分别用a和b表示出A、B两点的坐标,利用B为OA的中点可得到a和b之间的关系式;(2)由抛物线解析式可先求得C点坐标,过C作CD⊥x轴于点D,可证得△OCD∽△CAD,由相似三角形的性质可得到关于a的方程,可求得OA和CD的长,可求得△OAC 的面积;(3)设出E点坐标,则可表示出△EOB的面积,过点E作x轴的平行线交直线BC于点N,可先求得BC的解析式,则可表示出EN的长,进一步可表示出△EBC的面积,则可表示出四边形OBCE的面积,利用二次函数的性质可求得其最大值,及E点的坐标.【解答】解:(1)在y=x2﹣ax中,当y=0时,x2﹣ax=0,x1=0,x2=a,∴B(a,0),在y=﹣x2+bx中,当y=0时,﹣x2+bx=0,x1=0,x2=b,∴A(b,0),∵B为OA的中点,∴b=2a,∴,故答案为:a,0,b,0;(2)联立两抛物线解析式可得,消去y整理可得2x2﹣3ax=0,解得x1=0,x2=,。
2019年江苏省张家港市中考适应性考试数学试题(一)一.选择题(共10小题,满分30分)1.|﹣2|等于()A.﹣2 B.﹣C.2 D.2.350,440,530的大小关系为()A.350<440<530B.530<350<440C.530<440<350D.440<530<3503.如图,AB∥CD,EF⊥AB于E,EF交CD于F,已知∠1=60°,则∠2=()A.20°B.60°C.30°D.45°4.下列式子为最简二次根式的是()A.B.C.D.5.下列因式分解正确的是()A.6x+9y+3=3(2x+3y)B.x2+2x+1=(x+1)2C.x2﹣2xy﹣y2=(x﹣y)2D.x2+4=(x+2)26.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是()A.5,5 B.5,6 C.6,6 D.6,57.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.8.如图,A、B是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是()A.B.C.D.9.若点C是线段AB的黄金分割点,且AB=2(AC>BC),则AC等于()A.﹣1 B.3﹣C.D.﹣1或3﹣10.如图,在平面直角坐标系中,菱形OABC的顶点A的坐标为(4,3),点D是边OC上的一点,点E在直线OB上,连接DE、CE,则DE+CE的最小值为()A.5 B.C.D.二.填空题(共8小题,满分24分)11.多项式(mx+8)(2﹣3x)展开后不含x项,则m=.12.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.13.二次函数y=2(x+1)2﹣3的顶点坐标是.14.分式方程=的解是.15.如图,O为Rt△ABC斜边中点,AB=10,BC=6,M,N在AC边上,∠MON=∠B,若△OMN 与△OBC相似,则CM=.16.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠D=45°,则劣弧AC的长为.17.如图,在▱ABCD中,点F在CD上,且CF:DF=1:2,则S△CEF :S▱ABCD=.18.如图,一次函数与反比例函数的图象交于A(1,12)和B(6,2)两点.点P是线段AB上一动点(不与点A和B重合),过P点分别作x、y轴的垂线PC、PD交反比例函数图象于点M、N,则四边形PMON面积的最大值是.三.解答题(共10小题,满分76分)19.(5分)计算:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1.20.(5分)解不等式组,并把不等式组的解集在数轴上表示出来.21.(6分)先化简代数式1﹣÷,并从﹣1,0,1,3中选取一个合适的代入求值.22.(6分)为了解某校九年级男生的体能情况,体育老师从中随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成尚不完整的扇形图和条形图,根据图形信息回答下列问题:(1)本次抽测的男生有人,抽测成绩的众数是;(2)请将条形图补充完整;(3)若规定引体向上6次以上(含6次)为体能达标,则该校125名九年级男生中估计有多少人体能达标?23.(8分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.24.(8分)如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.25.(8分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?26.(10分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线;(3)在(2)的条件下,求证:四边形ABCD是菱形.27.(10分)如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点N(0,4),动点M从A点以每秒1个单位的速度匀速沿x轴向左移动.(1)点A的坐标:;点B的坐标:;(2)求△NOM的面积S与M的移动时间t之间的函数关系式;(3)在y轴右边,当t为何值时,△NOM≌△AOB,求出此时点M的坐标;(4)在(3)的条件下,若点G是线段ON上一点,连结MG,△MGN沿MG折叠,点N恰好落在x轴上的点H处,求点G的坐标.28.(10分)如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线上在x轴下方的动点,过M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.参考答案一.选择题1.解:由于|﹣2|=2,故选C.2.解:∵350=(35)10=24310,440=(44)10=25610,530=(53)10=12510,∴530<350<440,故选:B.3.解:∵AB∥CD,∴∠3=∠1=60°(两直线平行,同位角相等),∵EF⊥AB于E,∴∠2=90°﹣60°=30°,故选:C.4.解:A、=,不是最简二次根式;B、=2,不是最简二次根式;C、,是最简二次根式;D、=不是最简二次根式;故选:C.5.解:(A)原式=3(2x+3y+1),故A错误;(C)x2﹣2xy﹣y2不是完全平方式,不能因式分解,故C错误;(D)x2+4不能因式分解,故D错误;故选:B.6.解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.7.解:设A港和B港相距x千米,可得方程:.故选:A.8.解:在4×4的网格中共有25个格点,而使得三角形面积为1的格点有6个,故使得三角形面积为1的概率为.故选:A.9.解:根据黄金分割点的概念得:AC=AB=(﹣1)cm.故选:A.10.解:如图,连接AC交OB于K,连接AE,作AH⊥OC于H.∵四边形ABCO是菱形,∴AC⊥OB,AK=3,OK=4,∴OA=OC=5,∵A、C关于OB对称,∴AE=EC,∴EC+ED=AE+ED,根据垂线段最短可知:当A、E、D共线,且与AH重合时,EC+ED的值最小,最小值为AH 的长,∵•AC•OK=•OC•AH,∴AH=∴EC+ED的最小值为,故选:D.二.填空题11.解:(mx+8)(2﹣3x)=2mx﹣3mx2+16﹣24x=﹣3mx2+(2m﹣24)x+16,∵多项式(mx+8)(2﹣3x)展开后不含x项,∴2m﹣24=0,解得:m=12,故答案为:12.12.解:5 400 000=5.4×106万元.故答案为5.4×106.13.解:∵二次函数y=2(x+1)2﹣3,∴二次函数y=2(x+1)2﹣3的顶点坐标是:(﹣1,﹣3).故答案为:(﹣1,﹣3).14.解:方程的两边同乘x(x﹣3),得3x﹣9=2x,解得x=9.检验:把x=9代入x(x﹣3)=54≠0.∴原方程的解为:x=9.故答案为:x=9.15.解:∵∠ACB=90°,AO=OB,∴OC=OA=OB,∴∠B=∠OCB,∵∠MON=∠B,若△OMN与△OBC相似,∴有两种情形:①如图1中,当∠MON=∠OMN时,∵∠OMN =∠B ,∠OMC +∠OMN =180°, ∴∠OMC +∠B =180°, ∴∠MOB +∠BCM =90°, ∴∠MOB =90°,∵∠AOM =∠ACB ,∠A =∠A , ∴△AOM ∽△ACB ,∴=,∴=,∴AM =,∴CM =AC ﹣AM =8﹣=.②如图2中,当∠MON =∠ONM 时,∵∠BOC =∠OMN ,∴∠A +∠ACO =∠ACO +∠MOC , ∴∠MOC =∠A , ∵∠MCO =∠ACO , ∴△OCM ∽△ACO ,∴OC 2=CM •CA , ∴25=CM •8,∴CM =,故答案为或.16.解:连接OA 、OC , ∵∠D =45°, ∴∠AOC =2∠D =90°,则劣弧AC 的长为:=π.故答案为π.17.解:设CF =a ,DF =2a ,S △CEF =S ,则CD =3a . ∵四边形ABCD 是平行四边形, ∴AB =CD =3a ,AB ∥CF , ∴△CFE ∽△ABE ,∴==,∴=,∴S △ABE =9S , ∴S △BCE =3S ,∴S 平行四边形ABCD =2•S △ABC =24S , ∴S △CEF :S ▱ABCD =1:24, 故答案为1:24.18.解:设反比例函数解析式为y =,一次函数解析式为y =kx +b ,由已知得:12=和,解得:m =12和.∴一次函数解析式为y =﹣2x +14,反比例函数解析式为y =.∵点P 在线段AB 上,∴设点P 的坐标为(n ,﹣2n +14)(1<n <6).∴S 四边形PMON=S 矩形OCPD﹣S △ODN ﹣S △OCM =n (﹣2n +14)﹣×12﹣×12=﹣2n 2+14n ﹣12=﹣2+.∴当n =时,四边形PMON 面积最大,最大面积为.故答案为:.三.解答题(共10小题,满分76分)19.解:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1=1﹣3+(﹣1)+2 =﹣1.20.解:,解不等式①,得:x ≥﹣1, 解不等式②,得:x <3, 则不等式组的解集为﹣1≤x <3, 将不等式组的解集表示在数轴上如下:21.解:原式=1﹣×=1﹣=﹣=﹣, 由题意得,x ≠﹣1,0,1,当x=3时,原式=﹣22.解:(1)观察统计图知达到7次的有7人,占28%,∴7÷28%=25人,达到6次的有25﹣2﹣5﹣7﹣3=8人,故众数为6次;…(4分)(2)(3)(人).答:该校125名九年级男生约有90人体能达标.…23.解:(1)“3点朝上”出现的频率是,“5点朝上”出现的频率是;(2)小颖的说法是错误的.这是因为:“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大.只有当实验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近;小红的判断是错误的,因为事件发生具有随机性,故“6点朝上”的次数不一定是100次;(3)列表如下:∵点数之和为3的倍数的一共有12种情况,总数有36种情况,∴P(点数之和为3的倍数)=.24.解:(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,在△BGD与△CFD中,∵∴△BGD≌△CFD(ASA).∴BG=C F.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD,BG=CF.又∵DE⊥FG,∴EG=EF(垂直平分线到线段端点的距离相等).∴在△EBG中,BE+BG>EG,即BE+CF>EF.25.解:(1)设日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=kx+b,,解得,,即日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=﹣x+40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35﹣10)(﹣35+40)=25×5=125(元),即当每件产品的销售价定为35元时,此时每日的销售利润是125元.26.解:(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴∠BOC=∠DOC=60°,在△CDO与△CBO中,,∴△CDO≌△CBO(SAS),∴∠CBO=∠CDO=90°,∴OB⊥BC,∴BC是⊙O的切线;(3)∵OA=OB=OE,OE=DE=EC,∴OA=OB=DE=EC,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA=30°,∴△ABO≌△CDE(AAS),∴AB=CD,∴四边形ABCD是平行四边形,∴∠DAE=∠DOE=30°,∴∠1=∠DAE,∴CD=AD,∴▱ABCD是菱形.27.解:(1)在y=﹣x+2中,令y=0可求得x=4,令x=0可求得y=2,∴A(4,0),B(0,2),故答案为:(4,0);(0,2);(2)由题题意可知AM=t,①当点M在y轴右边时,OM=OA﹣AM=4﹣t,∵N(0,4),∴ON=4,∴S=OM•ON=×4×(4﹣t)=8﹣2t;②当点M在y轴左边时,则OM=AM﹣OA=t﹣4,∴S=×4×(t﹣4)=2t﹣8;(3)∵△NOM≌△AOB,∴MO=OB=2,∴M(2,0);(4)∵OM=2,ON=4,∴MN==2,∵△MGN沿MG折叠,∴∠NMG=∠OMG,∴=,且NG=ON﹣OG,∴=,解得OG=﹣1,∴G(0,﹣1).28.解:(1)将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中,得:,解得:.故抛物线的解析式为y=x2﹣4x+3.(2)设点M的坐标为(m,m2﹣4m+3),设直线BC的解析式为y=kx+3,把点B(3,0)代入y=kx+3中,得:0=3k+3,解得:k=﹣1,∴直线BC的解析式为y=﹣x+3.∵MN∥y轴,∴点N的坐标为(m,﹣m+3).∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为x=2,∴点(1,0)在抛物线的图象上,∴1<m<3.∵线段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣(m﹣)2+,∴当m=时,线段MN取最大值,最大值为.(3)存在.点F的坐标为(2,﹣1)或(0,3)或(4,3).当以AB为对角线,如图1,∵四边形AFBE为平行四边形,EA=EB,∴四边形AFBE为菱形,∴点F也在对称轴上,即F点为抛物线的顶点,∴F点坐标为(2,﹣1);当以AB为边时,如图2,∵四边形AFBE为平行四边形,∴EF=AB=2,即F2E=2,F1E=2,∴F1的横坐标为0,F2的横坐标为4,对于y=x2﹣4x+3,当x=0时,y=3;当x=4时,y=16﹣16+3=3,∴F点坐标为(0,3)或(4,3).综上所述,F点坐标为(2,﹣1)或(0,3)或(4,3).。
2019年中考网上阅卷适应性考试测试卷数 学 2019. 5注意事项:1.本试卷共8页,全卷共三大题28小题,满分130分,考试时间120分钟;2.答题前,考生先将自己的学校、班级、姓名、考试号填写在答题卷密封线内相应的位置上;3.选择题、填空题、解答题必须用黑色签字笔答题,答案填在答题卷相应的位置上;4.在草稿纸、试卷上答题无效;5.各题必须答在黑色答题框内,不得超出答题框.一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在答题卷相应的空格........内) 1. 14-的相反数是 A. 14- B. 14C. 4-D. 42. 下列图形中,既是中心对称图形又是轴对称图形的是A B C D 3. 下列运算中,正确的是A. 23325a a a +=B. 44a a a ⋅=C. 632a a a ÷= D. 326(3)9x x -=4. 2019年1月份,我市某周的日最低气温统计如下表,则这七天中日最低气温的众数和中位数分别是A. 4,4B. 5,4C. 4,3D. 4,4. 55. 如图,直线//a b ,点C 在直线b 上,90DCB ∠=︒,若170∠=︒,则2∠的度数为A. 20°B. 25°C. 30°D. 40°6. 菱形OACB 在平面直角坐标系中的位置如图所示,点C 的坐标是(6,0),点A 的纵坐标是1,则点B 的坐标是A. (3,1)B. (1,-3)C. (3,-1)D. (1,3) 7. 若3a >,化简3a a --的结果为A. 3B.-3C. 23a -D. 23a +8. 已知一个圆锥的侧面积是l0πcm 2,它的侧面展开图是一个圆心为144°的扇形,则这个圆锥的底面半径为A.45cm B. cm C. 2 cm D. 9. 已知一次函数y kx b =+的图象如图所示,则关于x 的不等式(4)20k x b --≥的解集为A. 2x ≥-B. 2x ≤-C. 3x ≤D. 3x ≥10. 如图,ABC ∆中, AD BC ⊥,垂足为,3,2D AD BD CD ===,点P 从点B 出发沿线段BC 的方向移动到点C 停止,过点P 作PQ BC ⊥,交折线BA AC -于点Q ,连接DQ 、CQ ,若ADQ ∆与CDQ ∆的面积相等,则线段BP 的长度是 A.95或4 B. 65或4 C. 95或135 D. 65或135二、填空题:(本大题共8小题,每小题3分,共24分,把你的答案填在答题卷相应的横线上) 11. 因式分解:241x -= .12. 国家体育场“鸟巢”工程总占地面积21公顷,建筑面积258000 m 2.那么,258000用科学计数法表示为 .13. 如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中时某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为 .14. 如图,A 、B 、C 、D 是⊙O 上的四点,D 是弧AB 的中点,CD 交OB 于点,E 100,55AOB CBO ∠=︒∠=︒,那么CEO ∠= °. 15. 在一次数学实验活动中,老师带领学生去测一条南北流向的河的宽度.如图,某同学在河东岸点A 处观测河对岸水边有点C ,测得C 在A 北偏西31°的方向上,沿河岸向北前行20米到达B 处,测得C 在B 北偏西45°的方向上,则这条河的宽度 米. (参考数据:31tan 31,sin 3152︒=︒≈)16. 如图,将矩形ABCD 绕点A 旋转至矩形AB C D '''位置,此时AC 的中点恰好与D 点重合,AB '交CD 于点E .若DE =1,则矩形ABCD 的面积为 . 17. 如图,直线y x b =-+与双曲线1(0)y x x=>交于、A 、B 两点,与x 轴、y 轴分别交干E 、F 两点,AC x ⊥轴于点,C BD y ⊥轴于点D ,当b = 时,ACE ∆、BDF ∆与ABO ∆面积的和等于EFO ∆面积的34.18. 对于二次函数223(0)y x mx m =-+>,有下列说法: ①如果m =2,则y 有最小值-1;②如果当1x ≤时y 随x 的增大而减小,则m =1;③如果将它的图象向左平移3个单位后的函数的最小值是-9,则m =④如果当x =1时的函数值与x =2019时的函数值相等,则当x =2019时的函数值为3.其中正确的说法是 .(把你认为正确的结论的序号都填上)三、解答题:(本大题共10小题,共76分,把解答过程写在答题卷相....应的位置上.....,解答时应写出必要的计算过程、推演步骤或文字说明) 19. (本题满分7分)计算: 1013()(1)3π--+--+.20. (本题满分5分)解不等式组:13x +≥3(2)x x -<+4 .21. (本题满分6分)先化简,再求值: 2221(1)21x x x x x-⋅--+,其中x =22. (本题满分6分)已知,如图, ,12AC BD =∠=∠. (1)求证: ABC ∆≌BAD ∆;(2)若2325∠=∠=︒,则D ∠= °.23. (本题满分8分)为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A :实心球;B :立定跳远;C:跳绳;D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②所示的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.24. (本题满分8分)如图1,线段AB=12厘米,动点P从点A出发向点B运动,动点Q从点B出发向点A 运动,两点同时出发,到达各自的终点后停止运动.已知动点Q运动的速度是动点P运动的速度的2倍.设两点之间的距离为s(厘米),动点P的运动时间为t(秒),图2表示s与t之间的函数关系.(1)求动点P、Q运动的速度;(2)图2中,a= ,b= ,c= ;≤≤时,求s与t之间的函数关系式(即线段MN对应的函数关系式).(3)当a t c如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为BC 边上的点,AB BD =,反比例函数(0)ky k x=≠在第一象限内的图象经过点(,2)D m 和AB 边上的点2(,)3E n .(1)求m 、n 的值和反比例函数的表达式.(2)将矩形OABC 的一角折叠,使点O 与点D 重合,折痕分别与x 轴,y 轴正半轴交于点,F G ,求线段FG 的长.26. (本题满分10分)如图,四边形ABCD 是⊙O 的内接四边形,AB 为直径,过C 作⊙O 的切线交AB 的延长线于,E DB CE ⊥,垂足为F .(1)若65ABC ∠=︒,则CAD ∠= °.(2)若⊙O 的半径为52cm,弦BD 的长为3 cm. ①求CE 的长;②连结CD ,求cos ADC ∠的值.如图,在矩形OABC 中,2OA OC ,顶点O 在坐标原点,顶点A 的坐标为(8,6). (1)顶点C 的坐标为( , ),顶点B 的坐标为( , );(2)现有动点P 、Q 分别从C 、A 同时出发,点P 沿线段CB 向终点B 运动,速度为每秒2个单位,点Q 沿折线A →O →C 向终点C 运动,速度为每秒k 个单位.当运动时间为2秒时,以点P 、Q 、C 顶点的三角形是等腰三角形,求k 的值.(3)若矩形OABC 以每秒53个单位的速度沿射线AO 下滑,直至顶点A 到达坐标原点时停止下滑.设矩形OABC 在x 轴下方部分的面积为S ,求S 关于滑行时间t 的函数关系式,并写出相应自变量t 的取值范围.如图,已知抛物线(1)(3)(3ay x x a =+-为常数,且0a >)与x 轴交于点A 、B (点A 位于点B 的左侧),与y 轴交于点C (0,).点P 是线段BC 上一个动点,点P 横坐标为m . (1)a 的值为 ;(2)判断ABC ∆的形状,并求出它的面积;(3)如图1,过点P 作y 的平行线,交抛物线于点D .①请你探究:是否存在实数m ,使四边形OCDP 是平行四边形?若存在,求出m 的值;若不存在,请说明理由;②过点D 作DE BC ⊥于点E ,设PDE ∆的面积为S ,求S 的最大值.(4)如图2,F 为AB 中点,连接FP .一动点Q 从F 出发,沿线段FP 以每秒1个单位的速度运动到P ,再沿着线段PC 以每秒2个单位的速度运动到C 后停止.若点Q 在整个运动过程中的时间为t 秒,请直接写出t 的最小值及此时点P 的坐标.。
2019-2020年张家港市初三中考模拟试卷(数学)一、选择题 (本大题共16个小题,共42分,1-10小题各3分:11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求) 1.下列各对数中,相等的是 ( )A. 32与23B. -32与(-3)2C. (3×2)3与3×23D. -23与(-2)32.以下四个标志中,是轴对称图形的是…( )3.小时候我们用肥皂水吹泡泡,其泡沫的厚度是约0000326毫米,数字0.000326用科学记数法表示为 …( )A. 3.26×10-4B. 0.326×10-3C. 3.26x104D. 32.6×10-34.如图,AB∥CD,AD 和BC 相交于点O,∠A=35°,∠AOB=75°,则∠C 等于……( ) A. 35° B. 75° C. 70° D. 80°5.已知二次函数y=ax 2+bx+c 的图象如图所示,当y<0时,x 的取值范围是……( ) A. x<-1 B. x>3 C.-1<x<3 D. x>3 或x<-16.如图,在□ABCD 中,E 为CD 上一点,连接AE 、BD,且AE 、BD 交于点F,DE :EC=2:3,则EF :AF 等于 ( ) A. 2:3 B. 3:5 C. 2:5 D. 3:27.已知反比例函数y=k+3x 的图象位于第二、四象限,则k 的取值范围为………( )A.k>-3B. k ≥-3C. k<-3D. k≤-3 8.一只小花猫在如图的方砖上走来走去,最终停留在阴影方砖上的概率是 ( )A. 13B. 15C. 215D. 4159.如图,点A 、B 、C 、O 在数轴上表示的数分别为a 、b 、c 、0,且OA+OB=OC,则下列结论中:①abc>0.②a(b+c)=0③a -c=b.④∣a ∣a +∣b∣b +∣c ∣c =-1,其中正确的有( )A. ①③④B. ①②④C. ②③④D. ①②③④10.关于x 的一元二次方程x 2-2x+k+2=0有实数根,则k 的取值范围在数轴上表示正确的是( )11.如图,粮仓的顶部是圆锥形状,这个圆锥底面的半径长为3m,母线长为6m,为防止雨水,需在粮仓顶部铺上油毡,如果油毡的市场价是每平方米10元钱,那么购买油毡所需要的费用是( )A. 540π元B. 360π元C. 180π元D. 90π元12.如图,A,D 是⊙O 上的两个点,BC 是直径,若∠D=34,则∠OAC 等于……( )B.58° D.56° A. 68° B. 58° C. 72° D. 56°13.如图,在△ABC 中,AB=AC,∠BAC=45°,将△ABC 绕点A 逆时针方向旋转得△AEF, 其中,E,F 是点B,C 旋转后的对应点,BE,CF 相交于点D,若四边形ABDF 为菱形,则∠CAE 的大小是 ( ) A. 45° B. 60° C. 75° D. 90°14.如图,在边长为2的正方形ABCD 中,点M 为对角线BD 上一动点,ME⊥BC 于点E,MF⊥CD 于点F,连接EF,则EF 的最小值为( )A.1B.2 2C. 3D.215.如图,在反比例函数y=32x 的图象上有一动点A,连接AO 并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A 运动时,点C 始终在函数 y=kx 的图象上运动,若tan∠CAB=2,则k 的值为 ( )B. C. D. A.-3 B. -6C. -9D. -1216.将二次函数y=x 2-5x-6在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新图象,若直线y=2x+b 与这个新图象有3个公共点, 则b 的值为( )A. -734 或-12B. -734 或2C. -12或2D. -694或-12二、填空题(本大题共3个小题,共12分,17-18小题各3分,19 小题有2个空,每空3分,把答案写在题中横线上)17.若关于x,y 的方程组⎩⎪⎨⎪⎧2x +y =1-mx+2y =2的解满足x+y>0, 则m 的取值范围是__________18.如图,点I 为△ABC 的内心,AB=4,AC=3,BC=2,将∠ACB 平移使其顶点与I 重合,则图中阴影部分的周长为_________________19.如图,矩形ABCD 的两边AD 、AB 的长分别为3、8, E 是DC 的中点,反比例函数y=mx 的图象经过点E,与AB 交于点F.若点B 坐标为(-6,0),求图象经过A 、E 两点的一次函数的表达式是_________, 若AF-AE=2,则反比例函数的表达式是___________三、解答题(本大题共8个小题,共76分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)(1)已知实数a 满足a 2-6a+9=0,求1a+1 +a+2a+1 ÷ (a+1)(a+2) a 2-2a+1 的值.(2)先化筒,再求值:(2a-1 -2a+1 a 2-1 )÷1a-1其中a=2sin60°-tan45°21.(本小题满分8分) 在Rt△ABC 中,∠ACB=90°,利用直尺和圆规作图. (1)作出AB 边上的中线CD (2)作出△ABC 的角平分线BE(3)若BC=5,AC=12,求出斜边AB 上的高的长度22.(本小题满分8分) 如图,一次函数y=kx+b 的图象与反比例函数y=mx 的图象交于A(-2,-1)、B(1,n)两点(1)利用图中条件求反比例函数和一次函数的解析式(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范图23.(本小题满分9分) 如图,在平行四边形ABCD中,CE是∠DCB的角平分线,且交AB于点E,DB与CE相交于点O,(1)求证:△EBC是等腰三角形(2)已知:AB=7,BC=5,求OBDB的值.24.(本小题满分10分) 某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号) 根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小(4)求该班学生所穿校服型号的众数和中位数25.(本小题满分10分) 如图,二次函效y=x2+bx+c的图像与x轴交于A,B两点,B点坐标为(4,0),与y轴交于点C(0,4)点D为抛物线上一点(1)求抛物线的解析式及A点坐标(2)若△BCD是以BC为直角边的直角三角形时,求点D的坐标(3)若△BCD是锐角三角形,请写出点D的横坐标m的取值范围26.(本小题满分11分) 如图,在平面直角坐标系中,点A(-5,0),以OA为半径作半圆,点C是第一象限内圆周上一动点,连结AC、BC,并延长BC至点D,使CD=BC,过点D作x轴垂线,分别交x轴、直线AC于点E、F,点E为垂足,连结OF(1)当∠BAC=30时,求△ABC的面积(2)当DE=8时,求线段EF的长(3)在点C运动过程中,是否存在以点E、O、F为顶点的三角形与△ABC相似,若存在,请求出点E的坐标; 若不存在,请说明理由.27.(本小题满分12分)如图,△ABC中,∠ACB=90°,AC=CB=2,以BC为边向外作正方形BCDE,动点M从A点出发,以每秒1个单位的速度沿着A→C→D的路线向D点匀速运动(M不与A、D重合). 过点M作直线I⊥AD, I与路线A→B→D相交于N,设运动时间为t秒.(1)填空:当点M在AC上时,BN=_______ (用含t的代数式表示)(2)当点M在CD上时(含点C),是否存在点M,使△DEN为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由(3)过点N作NF⊥ED,垂足为F,矩形MDFN与△ABD重叠部分的面积为S,求S的最大值27.(1)如图(1)。
2019年江苏省苏州市张家港市中考数学模拟练习试卷(5月)一、选择题(共10小题,每小题3分,满分30分)1.下列计算中,正确的是()A.x3•x2=x6B.x3﹣x2=xC.(﹣x)2•(﹣x)=﹣x3D.x6÷x2=x32.现给出下列四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于60°.其中不正确的命题的个数是()A.1个B.2个C.3个D.4个3.下面四个图形每个都是由六个相同的正方形组成,将其折叠后能围成正方体的是()A.B.C.D.4.将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①②两部分,将①展开后得到的平面图形是()A.矩形B.三角形C.梯形D.菱形5.某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为甲=82分,乙=82分,S甲2=245,S乙2=190,那么成绩较为整齐的是()A.甲班B.乙班C.两班一样整齐D.无法确定6.某商场的营业额2016年比2015年上升10%,2017年比2019年上升10%,而2019年和2018年连续两年平均每年比上一年降低10%,那么2019年的营业额比2015年的营业额()A.降低了2%B.没有变化C.上升了2%D.降低了1.99%7.下列各图中,每个正方形网格都是由四个边长为1的小正方形组成,其中阴影部分面积为的是()A.B.C.D.8.某村办工厂今年前5个月生产某种产品的总量c(件)关于时间t(月)的函数图象如图所示,则该厂对这种产品来说()A.1月至3月每月生产总量逐月增加,4,5两月每月生产总量逐月减少B.1月至3月每月生产总量逐月增加,4,5两月每月生产总量与3月份持平C.1月至3月每月生产总量逐月增加,4,5两月均停止生产D.1月至3月每月生产总量不变,4,5两月均停止生产9.某游泳池分为深水区和浅水区,每次消毒后要重新将水注满泳池,假定进水管的水速是均匀的,那么泳池内水的高度h随时间t变化的图象是()A.B.C.D.10.长沙地区七、八月份天气较为炎热,小华对其中连续十天每天的最高气温进行统计,依次得到以下一组数据:34,35,36,34,36,37,37,36,37,37(单位℃).则这组数据的中位数和众数分别是()A.36,37B.37,36C.36.5,37D.37,36.5二、填空题(共6小题,每小题3分,满分18分)11.分解因式:ax2+2ax+a=.12.在函数中,自变量的取值范围是.13.从甲、乙、丙三个厂家生产的同一种产品中,各抽出8种产品,对其使用寿命进行跟踪调查,结果如下(单位:年):甲:3,4,5,6,8,8,8,10乙:4,6,6,6,8,9,12,13丙:3,3,4,7,9,10,11,12三个厂家在广告中都称该产品使用寿命为8年,根据调查结果判断厂家在广告中分别运用了平均数、众数、中位数中哪一个集中趋势的特征数甲:,乙:,丙:.14.二次函数y=﹣x2+2x,当x时y<0;且y随x的增大而减小.15.两个长、宽各为a米、b米的矩形花圃,都修建了形状不同的一条宽为c米的小路,问:这两条小路的面积是否相等(填“相等”或“不相等”),若相等,面积是m2.16.(3分)五个正整数从小到大排列,若这组数据的中位数是4,唯一众数是5,则这五个正整数的和为.三、解答题(共9小题,满分72分)17.(6分)计算:.18.(6分)先化简再求值:,其中a满足a2﹣a=0.19.(5分)如图,在10×10的正方形网格中,每个小正方形的边长均为1个单位.(1)作△ABC关于点P的对称图形△A′B′C′;(2)再把△A′B′C′,绕着C'逆时针旋转90°,得到△A″B″C′,请你画出△A′B′C′和△A″B″C′.(不要求写画法)20.(6分)某中学团委会为研究该校学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图1,图2),请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)“其它”在扇形图中所占的圆心角是多少度?(3)补全频数分布折线图.21.(6分)将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P(偶数);(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数恰好为“68”的概率是多少?22.(10分)如图每个正方形是由边长为1的小正方形组成.(1)观察图形,请填与下列表格:(2)在边长为n(n≥1)的正方形中,设红色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.23.(12分)近期,海峡两岸关系的气氛大为改善.大陆相关部门于2005年8月1日起对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售.某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:设当单价从38元/千克下调了x元时,销售量为y千克;(1)写出y与x间的函数关系式;(2)如果凤梨的进价是20元/千克,某天的销售价定为30元/千克,问这天的销售利润是多少?(3)目前两岸还未直接通航,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若每天售价不低于30元/千克,问一次进货最多只能是多少千克?24.(9分)某射击运动员在一次比赛中,前6次射击已经得到52环,该项目的记录是89环(10次射击,每次射击环数只取1~10中的正整数).(1)如果他要打破记录,第7次射击不能少于多少环?(2)如果他第7次射击成绩为8环,那么最后3次射击中要有几次命中10环才能打破记录?(3)如果他第7次射击成绩为10环,那么最后3次射击中是否必须至少有一次命中10环才有可能打破记录?25.(12分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:请你根据上述内容,解答下列问题:(1)该公司“高级技工”有名;(2)所有员工月工资的平均数x为2500元,中位数为元,众数为元;(3)小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平.参考答案一、选择题(共10小题,每小题3分,满分30分)1.【解答】解:A、应为x3•x2=x3+2=x5,故本选项错误;B、x3与x2没有同类项,不能合并,故本选项错误;C、(﹣x)2•(﹣x)=(﹣x)2+1=﹣x3,正确;D、应为x6÷x2=x4,故本选项错误.故选:C.3.【解答】解:①根据等边三角形的性质知,等边三角形是轴对称图形,不是中心对称图形,错误;②由相似三角形的性质知相似三角形的面积比等于它们的相似比的平方,错误;③根据菱形的面积公式,错误;④根据三角形内角和定理可知,三角形的三个内角中至少有一内角不小于60°,正确.综合以上分析,不正确的命题包括①②③.故选:C.5.【解答】解:选项A,B,D折叠后都有一行两个面无法折起来,而且缺少一个面,所以不能折成正方体.故选:C.7.【解答】解:由折叠过程可得,该四边形的对角线互相垂直平分,则将①展开后得到的平面图形是菱形.故选:D.9.【解答】解:由于乙的方差小于甲的方差,故成绩较为整齐的是乙班.故选:B.11.【解答】解:2002年的营业额为(1+10%)2(1﹣10%)2=0.9801,0.9801﹣1=﹣0.0199.即2002年的营业额比1998年的营业额降低了1.99%.故选:D.13.【解答】解:A中的阴影部分面积等于2,B中的阴影部分面积等于2,C中的阴影部分面积等于2,D中的阴影部分面积等于1++1=,故选:D.15.【解答】解:表示的总产量.前三个月的总产量直线上升,则1月至3月每月生产总量不变,而4、5两个月的产量不变,即停止生产.故选:D.17.【解答】解:此函数不可能是减函数,因为h在增大,可排除C,由于游泳池分为深水区和浅水区,所以当水由深水区注到浅水区的﹣瞬间,水的高度h增大速度将减小,但仍然在增大,可排除A、D.所以选B.19.【解答】解:根据中位数和众数的定义,原数据从小到大排列为34,34,35,36,36,36,37,37,37,37,所以中位数为第五、六两数的平均数36;在数据中出现最多的是37,因而众数是37.故选:A.二、填空题(共6小题,每小题3分,满分18分)20.【解答】解:ax2+2ax+a,=a(x2+2x+1)﹣﹣(提取公因式)=a(x+1)2.﹣﹣(完全平方公式)21.【解答】解:由题意得:,解得:x≥2且x≠3,故答案为:x≥2且x≠3.22.【解答】解:对甲分析:8出现的次数最多,故运用了众数;对乙分析:8既不是众数,也不是中位数,求数据的平均数可得,平均数=(4+6+6+6+8+9+12+13)÷8=8,故运用了平均数;对丙分析:共8个数据,最中间的是7与9,故其中位数是8,即运用了中位数.故填众数;平均数;中位数.23.【解答】解:∵二次函数y=﹣x2+2x的对称轴为x=2,与x轴的交点为(0,0),(4,0),∴当x<0或x>4时,y<0;当x>2时,y随x的增大而减小;综上可知,当x>4时,y<0,y随x的增大而减小.24.【解答】解:左图的小路可看作矩形,根据矩形面积计算方法,得小路面积为bcm2.右图小路可看作由几个平行四边形组成,底为c,几个平行四边形高的和为b,根据平行四边形面积计算方法,得小路面积为bcm2.故相等.故答案为相等、bc.25.【解答】解:将五个正整数从小到大重新排列后,最中间的那个数是这组数据的中位数,即4;唯一的众数是5,最多出现两次,即第四、五两个数都是5.第一二两个数不能相等,可以为1与2或1与3或2与3;则这五个正整数的和为17或18或19.三、解答题(共9小题,满分72分)2.【解答】解:原式=3﹣2+1=2.故答案为2.4.【解答】解:原式=(2分)=(a﹣2)(a+1)=a2﹣a﹣2,(4分)∵a2﹣a=0,∴原式=﹣2.6.【解答】解:(1)△A′B′C′如图所示.(2)△A″B″C′如图所示.8.【解答】解:(1)运动的人数为20人,占的比例为20%,则全部调查人数:20÷20%=100人;(2)阅读的人数为30人,则阅读占的比例:30÷100=30%,其它占的比例=1﹣20%﹣40%﹣30%=10%,则表示其它的扇形的圆心角:360°×10%=36°;(3)其它的人数:100×10%=10人,娱乐的人数=100×40%=40人,如图.10.【解答】解:(1)根据题意分析可得:三张卡片,有2张是偶数,故有:P(偶数)=;(2分)(2)能组成的两位数为:86,76,87,67,68,78,(4分)恰好为“68”的概率为.(6分)12.【解答】解:(1)1,5,9,13,…,则(奇数)2n﹣1;4,8,12,16,…,则(偶数)2n.(2)由(1)可知n为偶数时P1=2n,白色与红色的总数为n2,∴P2=n2﹣2n,根据题意假设存在,则n2﹣2n=5×2n,n2﹣12n=0,解得n=12,n=0(不合题意舍去).存在偶数n=12使得P2=5P1.14.【解答】解:(1)根据题意得y=50+2x;(2)销售价定位30元/千克时,x=38﹣30=8,y=50+2×8=66,66×(30﹣20)=660.∴这天销售利润是660元.(3)由题意可得,售价越低,销量越大,即能最多的进货,设一次进货最多m千克,则≤30﹣7,解得:m≤1518,∴一次进货最多只能是1518千克.16.【解答】解:设第7,8,9,10次射击分别为x7,x8,x9,x10环.(1)根据题意,得52+x7+30>89,∴x7>7.∴如果他要打破纪录,第7次射击不能少于8环.(2)根据题意得52+8+x8+x9+x10>89,x8+x9+x10>29,又x8,x9,x10只取1~10中的正整数,∴x8=x9=x10=10.即:要有3次命中10环才能打破纪录.(3)根据题意得52+10+x8+x9+x10>89x8+x9+x10>27,又x8,x9,x10只取1~10中的正整数,∴x8,x9,x10中至少有一个为10,即:最后三次射击中必须至少有一次命中10环才可能打破纪录.18.【解答】解:(1)该公司“高级技工”的人数=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;在这些数中1600元出现的次数最多,因而众数是1600元;(3)这个经理的介绍不能反映该公司员工的月工资实际水平.用1700元或1600元来介绍更合理些.(4)≈1713(元).能反映该公司员工的月工资实际水平.。
2019年江苏省苏州市中考数学一模试卷姓名:得分:日期:一、选择题(本大题共 10 小题,共 30 分)1、(3分) -2的相反数是()A.2B.-2C.−12D.122、(3分) 苏州奥体中心体育场可容纳45000名观众,数据45000用科学记数法表示为()A.4.5×103B.4.5×104C.4.5×105D.4.5×1063、(3分) 下列运算结果等于x6的是()A.x2•x3B.x6÷xC.x2+x4D.(x3)24、(3分) 关于x的一元二次方程x2+(2m+1)x+m2=0有两个不相等的实数根,则实数m的取值范围是()A.m<−12B.m>−12C.m>−14D.m<−145、(3分) 如图,△ABC是一把直角三角尺,∠ACB=90°,∠B=30°.把三角尺的直角顶点放在一把直尺的一边上,AC与直尺的另一边交于点D,AB与直尺的两条边分别交于点E,F.若∠AFD=58°,则∠BCE的度数为()A.20°B.28°C.32°D.88°6、(3分) 如图,四边形ABCD内接于⊙O,AB是直径,BC∥OD,若∠C=130°,则∠B的度数为()A.50°B.60°C.70°D.80°7、(3分) 某校为了了解学生到校的方式,随机抽取了部分学生进行问卷调查,并将调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,则扇形统计图中“步行”对应的圆心角的度数为()A.54°B.60°C.72°D.108°8、(3分) 如图,一架无人机航拍过程中在C处测得地面上A,B两个目标点的俯角分别为30°和60°.若A,B两个目标点之间的距离是120米,则此时无人机与目标点A之间的距离(即AC的长)为()A.120米B.120√3米C.60米D.60√3米9、(3分) 已知,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC的中点,延长AC到F,使得CF=12AC,连接EF.若EF=4,则AB的长为()A.8B.4√2C.4D.2√310、(3分) 如图,在平面直角坐标系中,点A坐标为(10,12),点B在x轴上,AO=AB,点C在线段OB上,且OC=3BC,在线段AB的垂直平分线MN上有一动点D,则△BCD周长的最小值为()A.2√11B.13C.6√5D.18二、填空题(本大题共 8 小题,共 24 分)11、(3分) 若√x+33在实数范围内有意义,则x的取值范围是______.12、(3分)分解因式2x2﹣4x+2=____.13、(3分) 分式方程xx−2+1=12−x的解是______.14、(3分) 某校随机调查了八年级20名男生引体向上的个数,统计数据如表所示,则这些男生引体向上个数的中位数与众数之和为______.15、(3分) 若一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(1,3)和点(-1,2),则k2-b2的值为______.16、(3分) 在2019年春节期间,某商场开展迎春大酬宾活动,对一次性购物不超过200元和超过200元分别设置了两种不同的优惠办法,顾客一次性购物实际付款y(元)是所购物品的原价x(元)的函数,其图象如图所示.已知小明一次性购物实际付款236元,则他所购物品的原价为______元.17、(3分) 如图,一张扇形纸片OAB中,半径OA为2,点C是的中点,现将这张扇形纸片沿着弦AB折叠,点C恰好与圆心O重合,则图中阴影部分的面积为______ .18、(3分) 如图,正方形ABCD的边长为5√2,点E是正方形ABCD内一点,将△BCE绕着点C 顺时针旋转90°,点E的对应点F和点B,E三点在一条直线上,BF与对角线AC相交于点G,若DF=6,则GF的长为______.三、解答题(本大题共 10 小题,共 76 分)19、(5分) 计算:(π−√3)0−|√3−2|+tan60∘.20、(5分) 解不等式组:{3x −2<xx−42≤2x +1.21、(6分) 先化简,再求值:(1-1x+2)÷x 2+2x+1x+2,其中x=√2-1.22、(6分) 如图,点B ,F ,C ,E 在一条直线上,AB=DE ,∠B=∠E ,BF=CE . 求证:CG=FG .23、(8分) 有三张正面分别写有数字-1,2,3的卡片,它们背面完全相同.(1)将这三张卡片背面朝上洗匀后随机抽取一张,则抽到的卡片为正面写有正数的卡片的概率为______.(2)小明将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为平面直角坐标系内点P的横坐标,然后将此卡片放回、洗匀,再由小丽从三张卡片中随机抽取一张,以其正面数字作为平面直角坐标系内点P的纵坐标,请用树状图或表格列出点P所有可能的坐标,并求出点P在第一象限内的概率.24、(8分) 我市某中学为推进书香校园建设,在全校范围开展图书漂流活动,现需要购进一批甲、乙两种规格的漂流书屋放置图书.已知一个甲种规格的漂流书屋的价格比一个乙种规格的漂流书屋的价格高80元;如果购买2个甲种规格的漂流书屋和3个乙种规格的漂流书屋,一共需要花费960元.(1)求每个甲种规格的漂流书屋和每个乙种规格的漂流书屋的价格分别是多少元?(2)如果学校计划购进这两种规格的漂流书屋共15个,并且购买这两种规格的漂流书屋的总费用不超过3040元,那么该学校至多能购买多少个甲种规格的漂流书屋?25、(8分) 如图,四边形ABCD是菱形,对角线AC⊥x轴,垂足为A.反比例函数y=k(x>0)x的图象经过点B,交AC于点E.已知菱形的边长为5,AC=4.2(1)若OA=4,求k的值;(2)连接OD,若AE=AB,求OD的长.26、(10分) 如图,AB是⊙O的直径,点P在BA的延长线上,过点P作⊙O的切线,切点为D,BC垂直于PD,垂足为C,BC与⊙O相交于点E,连接OE,交BD于点F.(1)求证:BD平分∠ABC;,(2)若BC=6,tanP=34①求线段BD的长;②求线段BF的长.27、(10分) 如图1,在平面直角坐标系中,一次函数y=-4x+8的图象与y轴交于点A,与x轴3交于点B,点C是x轴正半轴上的一点,以OA,OC为边作矩形AOCD,直线AB交OD于点E,交直线DC于点F.(1)如图2,若四边形AOCD是正方形.①求证:△AOE≌△COE;②过点C作CG⊥CE,交直线AB于点G.求证:CG=FG.(2)是否存在点C,使得△CEF是等腰三角形?若存在,求该三角形的腰长;若不存在,请说明理由.28、(10分) 如图,在平面直角坐标系中,一次函数y=x-3的图象与x轴交于点A,与y轴交于点B,点B关于x轴的对称点是C,二次函数y=-x2+bx+c的图象经过点A和点C.(1)求二次函数的表达式;(2)如图1,平移线段AC,点A的对应点D落在二次函数在第四象限的图象上,点C的对应点E落在直线AB上,求此时点D的坐标;(3)如图2,在(2)的条件下,连接CD,交CD轴于点M,点P为直线AC上方抛物线上一动点,过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使得以点P,C,F为顶点的三角形与△COM相似?若存在,求点P的横坐标;若不存在,请说明理由.2019年江苏省苏州市中考数学一模试卷【第 1 题】【答案】A【解析】解:-2的相反数是:-(-2)=2,故选:A.根据一个数的相反数就是在这个数前面添上“-”号,求解即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.【第 2 题】【答案】B【解析】解:45000=4.5×104,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.【第 3 题】【答案】D【解析】解:A、x2•x3=x5,故此选项错误;B、x6÷x=x5,故此选项错误;C、x2与x4=不是同类项,不能合并,故此选项错误;D、(x3)2=x6,故此选项正确.故选:D.直接利用合并同类项法则以及同底数幂的乘除法运算法则分别化简得出答案.此题主要考查了合并同类项以及同底数幂的乘除法运算,正确化简各式是解题关键.【第 4 题】【答案】C【解析】解:∵关于x的一元二次方程x2+(2m+1)x+m2=0有两个不相等的实数根,∴△=(2m+1)2-4m2=4m2+4m+1-4m2=4m+1>0,解得m>-1.4故选:C.根据根的判别式,可知△>0,据此即可求出m的取值范围.此题考查了根的判别式,解题时要注意一元二次方程成立的条件:二次项系数不为0.【第 5 题】【答案】B【解析】解:∵CE∥DF,∴∠AEC=∠AFD=58°,∵∠AEC=∠B+∠BCE,∴∠BCE=∠AEC-∠B=58°-30°=28°;故选:B.由平行线的性质得出∠AEC=∠AFD=58°,再由三角形的外角性质即可得出∠BCE的度数.本题主要考查了平行线的性质以及三角形的外角性质,解题时注意:两直线平行,同位角相等.【第 6 题】【答案】D【解析】解:∵四边形ABCD内接于⊙O,∠C=130°,∴∠A=50°,∵DO=AO,∴∠ADO=∠A=50°,∴∠AOD=80°,∵BC∥OD,∴∠AOD=∠B=80°.故选:D.直接利用圆内接四边形的性质得出∠A=50°,进而利用等腰三角形的性质和平行线的性质分析得出答案.此题主要考查了圆内接四边形的性质以及等腰三角形的性质和平行线的性质,正确得出∠A的度数是解题关键.【第 7 题】【答案】C【解析】解:由图可得,本次抽查的学生有:15÷30%=50(人),扇形统计图中“步行”对应的圆心角的度数为:360°×50−25−15=72°,50故选:C.根据统计图中的数据可以求得本次调查的学生数,进而求得扇形统计图中“步行”对应的圆心角的度数.本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.【第 8 题】【答案】B【解析】解:设CE=x米,,在Rt△ACE中,tan∠CAE=CEAE=√3x,则AE=CEtan∠CAE,在Rt△BCE中,tan∠CBE=CEBE则BE=CEtan∠CBE =√33x,由题意得,√3x-√33x=120,解得,x=60√3,即CE=60√3,则AC=2CE=120√3(米)故选:B.设CE=x米,根据正切的定义用x分别表示出AE、BE,根据题意列方程,解方程得到答案.本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.【第 9 题】【答案】A【解析】解:连接CD,∵点D,E分别是AB,BC的中点,∴DE∥AC,DE=12AC.∵延长AC到F,使得CF=12AC,∴DE∥CF且DE=CF,∴四边形CDEF是平行四边形.∴CD=EF=4.∵∠ACB=90°,CD为斜边AB中线,∴AB=2CD=8.故选:A.连接CD,证明四边形CDEF是平行四边形,则CD=EF=4,再利用直角三角形斜边上的中线性质可求AB长.本题主要考查了平行四边形的判定和性质、直角三角形斜边上的中线性质,解题的关键是利用平行四边形的性质进行线段的转化.【第 10 题】【答案】D【解析】解:如图,过A作AH⊥OB于H,连接AD,∵点A坐标为(10,12),AO=AB,∴OH=BH=10,AH=12,又∵OC=3BC,∴BC=5,CO=15,∴CH=15-10=5,∵MN垂直平分AB,∴AD=BD,∴BD+CD=AD+CD,∴当A,D,C在同一直线上时,△BCD周长的最小值为AC+BC的长,此时,Rt△ACH中,AC=√AH2+CH2=√122+52=13,∴△BCD周长的最小值=13+5=18,故选:D.过A作AH⊥OB于H,连接AD,根据MN垂直平分AB,即可得到AD=BD,当A,D,C在同一直线上时,△BCD周长的最小值为AC+BC的长,根据勾股定理求得AC的长,即可得到△BCD周长的最小值为13+5=18.本题主要考查了最短距离问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.【第 11 题】【答案】x≥-3【解析】解:由题意得:x+3≥0,解得:x≥-3,故答案为:x≥-3.根据二次根式有意义的条件可得x+3≥0,再解即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.【第 12 题】【答案】2(x-1)2【解析】【分析】本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式.先提取公因数2,再利用完全平方公式进行二次分解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:2x2-4x+2,=2(x2-2x+1),=2(x-1)2.【第 13 题】【答案】x=12【解析】解:去分母得:x+x-2=-1,,解得:x=12经检验x=1是分式方程的解,2故答案为:x=12分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.【第 14 题】【答案】18【解析】解:数据9出现了6次,最多,故众数为:9,=9,中位数为:9+92所以二者的和为9+9=18.故答案18.根据众数和中位数的概念求解.本题考查了众数和中位数的知识,解答本题的关键是熟练掌握众数和中位数的定义.【第 15 题】【答案】-6【解析】解:根据题意得:{3=k +b2=−k +b解得:{k =12b =52∴k 2-b 2=14-254=-6 故答案为:-6将点(1,3)和点(-1,2)代入解析式可求k ,b 的值,即可求k 2-b 2的值.本题考查了一次函数图象上点的坐标特征,熟练掌握图象上点的坐标满足图象解析式是本题的关键.【 第 16 题 】 【 答 案 】 270 【 解析 】解:由图象可得(200,180)和(300,260),设解析式为:y=kx+b ,可得:{200k +b =180300k +b =260,可得:{k =0.8b =20,所以解析式为:y=0.8x+20, 把y=236代入y=0.8x+20, 解得:x=270, 故答案为:270.根据图象得出(200,180)和(300,260)两点,利用待定系数法得出解析式,进而代入解答即可.此题考查函数图象,关键是根据图象得出(200,180)和(300,260)两点,利用待定系数法得出解析式.【 第 17 题 】 【 答 案 】43π-2√3【 解析 】解:连接OC 交AB 于点P ,由题意知,OC ⊥AB ,且OP=PC=12×2=1, 在Rt △AOP 中,∵OA=2,OP=1, ∴cos ∠POA=OPOA =12, ∴∠POA=60°, 同理∠BOP=60°, ∴∠AOB=120°,AP=√OA 2−OP 2=√22−12=√3, 由垂径定理得:AB=2PM=2√3, ∴阴影部分的面积=S 扇形AOB -2S △AOB =120π×22360-2×12×2√3×1=43π-2√3,故答案为:43π-2√3.连接OC 交AB 于点P ,根据折叠的性质求出OP=PC=1,根据勾股定理求出AP ,根据垂径定理求出AB ,根据扇形的面积公式和三角形的面积求出即可.本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.【 第 18 题 】 【 答 案 】 7 【 解析 】解:作CH ⊥BF 于H ,GK ⊥BC 于K .∵四边形ABCD 是正方形, ∴CB=CD ,∠BCD=90°, ∵∠ECF=90°, ∴∠BCD=∠ECF ,∴∠BCE=∠DCF ,∵CE=CF , ∴△BCE ≌△DCF (SAS ), ∴BE=DF=6,∵CE=CF ,∠ECF=90°,CH ⊥EF , ∴EH=HF ,∴CH=HE=HF ,设CH=HE=HF=a , 在Rt △BCH 中,∵BC 2=BH 2+CH 2, ∴50=(6+a )2+a 2, 解得a=1或-7(舍弃), ∴CH=HE=HF=1,BF=8,∵tan ∠CBH=CHBH =GKBK =17,设GK=k ,BK=7k ,则GK=CK=k , ∴8k=5√2,∴k=5√28, ∴BG=√k 2+(7k)2=5√2k=254,∴FG=BF-BG=8-254=74, 故答案为74.作CH ⊥BF 于H ,GK ⊥BC 于K .证明△BCE ≌△DCF (SAS ),推出BE=DF=6,易知CH=HE=HF ,设CH=HE=HF=a ,在Rt △BCH 中,根据BC 2=BH 2+CH 2,构建方程求出a ,再由tan ∠CBH=CHBH =GKBK =17,设GK=k ,BK=7k ,则GK=CK=k ,构建方程求出k ,求出BG 即可解决问题.本题考查正方形的性质,旋转变换,勾股定理,全等三角形的判定和性质,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.【第 19 题】【答案】解:原式=1-(2-√3)+√3=1-2+√3+√3=-1+2√3.【解析】本题涉及零指数幂、绝对值、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.【第 20 题】【答案】解:解不等式3x-2<x,得:x<1,解不等式x−4≤2x+1,得:x≥-2,2则不等式组的解集为-2≤x<1.【解析】分别求出各不等式的解集,再求出其公共解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【第 21 题】【答案】解:原式=x+1x+2•x+2(x+1)2 =1x+1, 当x=√2-1时,原式=√22【 解析 】先根据分式混合元算的法则把原式进行化简,再代入进行计算即可. 本题考查了分式的化简求值.解题的关键是对分式的分子分母要因式分解.【 第 22 题 】 【 答 案 】 证明:∵BF=CE ∴BF+CF=CE+CF ∴BC=EF在△ABC 和△DEF 中 {AB =DE ∠B =∠E BC =EF∴△ABC ≌△DEF (SAS ) ∴∠ACB=∠DFE ∴CG=FG 【 解析 】由“SAS ”可证△ABC ≌△DEF ,可得∠ACB=∠DFE ,可得结论.本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定和性质是本题关键.【 第 23 题 】 【 答 案 】解:(1)抽到的卡片为正面写有正数的卡片的概率为23, 故答案为:23;(2)列表如下:由表知,共有9种等可能结果,其中点P在第一象限内的有4种结果,所以点P在第一象限内的概率为4.9【解析】(1)直接根据概率公式计算可得.(2)列表得出有放回的所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得本题考查了列表法与树状图法:列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.【第 24 题】【答案】解:(1)设每个甲种规格的漂流书屋的价格为x元,每个乙种规格的漂流书屋的价格为y元,,依题意,得:{x−y=802x+3y=960.解得:{x=240y=160答:每个甲种规格的漂流书屋的价格为240元,每个乙种规格的漂流书屋的价格为160元.(2)设该学校购买m个甲种规格的漂流书屋,则购买(15-m)个乙种规格的漂流书屋,依题意,得:240m+160(15-m)≤3040,解得:m≤8.答:该学校至多能购买8个甲种规格的漂流书屋.(1)设每个甲种规格的漂流书屋的价格为x 元,每个乙种规格的漂流书屋的价格为y 元,根据“一个甲种规格的漂流书屋的价格比一个乙种规格的漂流书屋的价格高80元;如果购买2个甲种规格的漂流书屋和3个乙种规格的漂流书屋,一共需要花费960元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设该学校购买m 个甲种规格的漂流书屋,则购买(15-m )个乙种规格的漂流书屋,根据总价=单价×数量结合总价不超过3040元,即可得出关于m 的一元一次不等式,解之取其最大值即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.【 第 25 题 】 【 答 案 】解:(1)连接BD 交AC 于点H , ∵四边形ABCD 是菱形,AC=4, ∴BD ⊥AC ,AH=2, ∵对角线AC ⊥x 轴, ∴BD ∥x 轴,∴B 、D 的纵坐标均为2, 在Rt △ABH 中,AH=2,AB=52, ∴BH=32, ∵OA=4,∴B 点的坐标为:(112,2),∵点B 在反比例函数y=kx (x >0)的图象上, ∴k=11;(2)设A 点的坐标为(m ,0), ∵AE=AB=52,CE=32,∴B ,E 两点的坐标分别为:(m+32,2),(m ,52). ∵点B ,E 都在反比例函数y=kx (x >0)的图象上, ∴(m+32)×2=52m ,作DF⊥x轴,垂足为F,∴OF=9,DF=2,2,2),D点的坐标为(92在Rt△OFD中,OD2=OF2+DF2,.∴OD=√972【解析】(1)利用菱形的性质得出AH的长,再利用勾股定理得出BH的长,得出B点坐标即可得出答案;(2)首先表示出B,E两点坐标进而利用反比例函数图象上的性质求出D点坐标,再利用勾股定理得出DO的长.此题主要考查了菱形的性质以及勾股定理和反比例函数图象上的性质,正确得出D点坐标是解题关键.【第 26 题】【答案】解:(1)证明:连接OD,如图1,∵PD是⊙O的切线,∴OD⊥PC,∵BC⊥PC,∴OD∥BC,∴∠ODB=∠CBD,∵OB=OD,∴∠ODB=∠OBD,∴∠CBD=∠OBD,即BD平分∠ABC;(2)①∵∠PCB=90°,BC=6,tanP=34,∴PC=BCtanP=8,∴PB=√PC2+BC2=10,设⊙O的半径为x,则OA=OB=OD=x,PB=10-x,∵OD∥BC,∴△POD∽△PBC,∴OD BC =POPB,即x6=10−x10,解得,x=154,∴PD=ODtanP =15434=5,∴CD=PC-PD=8-5=3,∴BD=√CD2+BC2=3√5;②过点O作OM⊥BE于点M,如图2,则四边形ODCM为矩形,∴CM=OD=154,∴BM=BC-CM=94,∵OB=OE,∴BE=2BM=92,∵OD∥BE,∴△ODF∽△EBF,∴OD BE =DFBF,即15492=3√5−BFBF,解得BF=18√511.【解析】(1)连接OD,证明OD∥BC,再由OB=OD证明∠OBD=∠ODB,进而得结论;(2)①解Rt△PBC得PC与PB,设⊙O的半径为x,由相似三角形列出x的方程求得x,进而求得CD,便可用勾股定理求得BD;②过点O作OM⊥BE于点M,得四边形ODCM为矩形,得到BM的长度,再得BE,由△ODF ∽△EBF便可求得结果.本题是圆的综合题,主要考查了圆周角定理,圆的切线的性质,平行线的判定与性质,等腰三角形的性质,解直角三角形,勾股定理,相似三角形的性质与判定,矩形的性质与判定,有一定难度,第(1)题关键是过切点连半径,第(2)题的突破口是构造矩形与相似三角形.【第 27 题】【答案】解:(1)①∵四边形AOCD是正方形.∴AO=CO,∠AOD=∠EOC,∴△AOE≌△COE(SAS);②∴△AOE≌△COE,∴∠OAB=∠ECB,∵∠OAB+∠OBA=∠OAB+∠CBG=90°,∴∠ECB+∠CBG=90°,∵CG⊥CE,∴∠CBG=∠BCG,∴BG=CG,在Rt△BCF中,∠BCG+∠FCG=90°,∠CBG+∠CFB=90°,∴∠GCF=∠CFG , ∴CG=GF ;(2)设C (m ,0),F (m ,-43m+8),D (m ,8), 直线OD 的解析式为y=8m x ,两直线y=8m x 与y=-43x+8的交点为E , 8mx=-43x+8, ∴x=6m 6+m ,∴E (6m 6+m ,486+m ),∴EC 2=m 4+482(6+m)2,CF 2=16(6−m)29,EF 2=25m 49(6+m)2,当EC=EF 时,m 4+482(6+m)2=25m 49(6+m)2, ∴m=247√14; 当CF=EF 时,16(6−m)29=25m 49(6+m)2,∴m=4;当EC=EF 时,m 4+482(6+m)2=25m 49(6+m)2, ∴m=6;此时C 与F 重合,不合题意;综上所述:m=4或m=247√14时△CEF 是等腰三角形; 【 解析 】(1)①由四边形AOCD 是正方形知AO=CO ,∠AOD=∠EOC ,据此依据“SAS ”可证得△AOE ≌△COE ;②∠ECB+∠CBG=90°,∠CBG=∠BCG ,在Rt △BCF 中,∠BCG+∠FCG=90°,∠CBG+∠CFB=90°,利用角的代换得到∠GCF=∠CFG ,即可解题;(2)设C (m ,0),则可表示出F (m ,-43m+8),D (m ,8),E (6m6+m ,486+m ),利用勾股定理分别求出EC 2=m 4+482(6+m),CF 2=16(6−m)29,EF 2=25m 49(6+m);然后分三种情况进行讨论:①当EC=EF 时,m 4+482(6+m)=25m 49(6+m);②当CF=EF 时,16(6−m)29=25m 49(6+m);③当EC=EF 时,m 4+482(6+m)2=25m 49(6+m)2;本题考查一次函数图象与性质;等腰三角形的性质;三角形全等;动点问题;能够熟练用三角形的判定方法证明三角形全等,利用勾股定理结合等腰三角形的性质求点的坐标,计算准确是解题的关键.【 第 28 题 】 【 答 案 】解:∵一次函数y=x-3的图象与x 轴、y 轴分别交于点A 、B 两点, ∴A (3,0),B (0,-3), ∵点B 关于x 轴的对称点是C , ∴C (0,3),∵二次函数y=-x2+bx+c 的图象经过点A 、点C , ∴{9a +3b +c =0c =3∴b=2,c=3,∴二次函数的解析式为:y=-x2+2x+3.(2)∵A (3,0),C (0,3),平移线段AC ,点A 的对应为点D ,点C 的对应点为E , 设E (m ,m-3),则D (m+3,m-6), ∵D 落在二次函数在第四象限的图象上, ∴-(m+3)2+2(m+3)+3=m-6, m1=1,m2=-6(舍去), ∴D (4,-5),(3)∵C (0,3),D (4,-5), ∴{4k +b =−5b =3解得{k =−2b =3,∴直线CD 的解析式为y=-2x+3, 令y=0,则x=32, ∴M (32,0),∵一次函数y=x-3的图象与x 轴交于A (3,0),C (0,3), ∴AO=3,OC=3, ∴∠OAC=45°,过点P 作PF ⊥AC ,点P 作PN ⊥OA 交AC 于点E ,连PC , ∴△PEF 和△AEN 都是等腰直角三角形, 设P (m ,-m2+2m+3),E (m ,-m+3), ∴PE=PN-EN=-m2+2m+3-(-m+3)=-m2+3m , ∴EN=-m+3,AE=√2(−m +3),FE=√22(−m 2+3m), ∴CF=AC-AE-EF=√22m 2−√22m ,①当△COM ∽△PFC ,PF CF=OM OC=323=12,∴√22(−m 2+3m)√22(m =12,解得m1=0,舍去,m 2=73, ②当△COM ∽△CFP 时,PFCF =OCOM =21,∴√22(−m 2+3m)√22(m =21,解得m1=0(舍去),m 2=53, 综合可得P 点的横坐标为53或73. 【 解析 】(1)由一次函数的解析式求出A 、B 两点坐标,再根据A 、C 两点坐标求出b 、c 即可确定二次函数解析式;(2)由平移的性质设E (m ,m-3),则D (m+3,m-6),代入抛物线的解析式则可求出点D 的坐标;(3)分两种情况讨论:①△COM ∽△PFC ,②△COM ∽△CFP ,可求得点P 的横坐标.本题是二次函数综合题,主要考查了一次函数与坐标轴的交点坐标、待定系数法求二次函数解析式,相似三角形的判定与性质,难度中等.分类讨论思想的应用是解答(3)问的关键.。
2019年张家港市初三数学上期末模拟试卷附答案一、选择题1.如图,AB 是圆O 的直径,CD 是圆O 的弦,若35C ∠=︒,则ABD ∠=( )A .55︒B .45︒C .35︒D .65︒2.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足等式( )A .16(1+2x)=25B .25(1-2x)=16C .25(1-x)²=16D .16(1+x)²=253.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表: x … -1 0 2 4 5 … y 1 … 0 1 3 5 6 … y 2…-159…当y 2>y 1时,自变量x 的取值范围是 A .-1<x <2 B .4<x <5C .x <-1或x >5D .x <-1或x >44.将抛物线y=2x 2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为( )A .y=2(x ﹣3)2﹣5B .y=2(x+3)2+5C .y=2(x ﹣3)2+5D .y=2(x+3)2﹣55.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x ,则可列方程是( ) A .400(1)640x +=B .2400(1)640x +=C .2400(1)400(1)640x x +++=D .2400400(1)400(1)640x x ++++=6.抛物线2y ax bx c =++经过点(1,0),且对称轴为直线1x =-,其部分图象如图所示.对于此抛物线有如下四个结论:①abc <0; ②20a b +=;③9a-3b+c=0;④若0m n >>,则1x m =-时的函数值小于1x n =-时的函数值.其中正确结论的序号是( )A.①③B.②④C.②③D.③④7.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A.15B.25C.35D.458.下列函数中是二次函数的为()A.y=3x-1B.y=3x2-1C.y=(x+1)2-x2D.y=x3+2x-39.方程x2=4x的解是()A.x=0B.x1=4,x2=0C.x=4D.x=210.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根11.如图,AB为⊙O的直径,四边形ABCD为⊙O的内接四边形,点P在BA的延长线上,PD与⊙O相切,D为切点,若∠BCD=125°,则∠ADP的大小为()A.25°B.40°C.35°D.30°12.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点P,若CD=AP=8,则⊙O的直径为( )A.10B.8C.5D.3二、填空题13.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.14.已知二次函数y=3x2+2x,当﹣1≤x≤0时,函数值y的取值范围是_____.15.函数y=x2﹣4x+3的图象与y轴交点的坐标为_____.16.一个等边三角形边长的数值是方程x2﹣3x﹣10=0的根,那么这个三角形的周长为_____.17.一个扇形的半径为6,弧长为3π,则此扇形的圆心角为___度.18.请你写出一个有一根为0的一元二次方程:______.19.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.20.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_________.三、解答题21.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?22.已知关于x 的方程x 2-2(k -1)x +k 2 =0有两个实数根x 1.x 2. (1)求实 数k 的取值范围; (2)若(x 1+1)(x 2+1)=2,试求k 的值.23.如图,已知AB 是⊙O 上的点,C 是⊙O 上的点,点D 在AB 的延长线上,∠BCD=∠BAC .(1)求证:CD 是⊙O 的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.24.如图,⊙O 是△ABC 的外接圆,AB 是直径,OD ⊥AC ,垂足为D 点,直线OD 与⊙O 相交于E ,F 两点,P 是⊙O 外一点,P 在直线OD 上,连接P A ,PB ,PC ,且满足∠PCA =∠ABC(1)求证:P A =PC ; (2)求证:P A 是⊙O 的切线; (3)若BC =8,32AB DF =,求DE 的长.25.汽车产业的发展,有效促进我国现代建设.某汽车销售公司2007年盈利3000万元,到2009年盈利4320万元,且从2007年到2009年,每年盈利的年增长率相同,该公司2008年盈利多少万元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据同弧所对的圆周角相等可得35BAD C =∠=︒∠,再根据圆直径所对的圆周角是直角,可得90ADB ∠=︒,再根据三角形内角和定理即可求出ABD ∠的度数. 【详解】 ∵35C ∠=︒∴35BAD C =∠=︒∠ ∵AB 是圆O 的直径 ∴90ADB ∠=︒∴18055ABD ADB BAD =︒--=︒∠∠∠ 故答案为:A . 【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.2.C解析:C【解析】解:第一次降价后的价格为:25×(1﹣x ),第二次降价后的价格为:25×(1﹣x )2.∵两次降价后的价格为16元,∴25(1﹣x )2=16.故选C .3.D解析:D 【解析】 【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x <4时,y 1>y 2,从而得到当y 2>y 1时,自变量x 的取值范围. 【详解】∵当x=0时,y 1=y 2=0;当x=4时,y 1=y 2=5; ∴直线与抛物线的交点为(-1,0)和(4,5), 而-1<x <4时,y 1>y 2,∴当y 2>y 1时,自变量x 的取值范围是x <-1或x >4. 故选D . 【点睛】本题考查了二次函数与不等式:对于二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.4.A解析:A 【解析】把22y x =向右平移3个单位长度变为:223()y x =-,再向下平移5个单位长度变为:22(3)5y x =--.故选A .5.B解析:B 【解析】 【分析】根据平均年增长率即可解题. 【详解】解:设这两年的年净利润平均增长率为x ,依题意得:()24001640x +=故选B. 【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键.6.D解析:D 【解析】 【分析】①根据抛物线开口方向、对称轴、与y 轴的交点即可判断; ②根据抛物线的对称轴方程即可判断;③根据抛物线y =ax 2+bx +c 经过点(1,0),且对称轴为直线x =﹣1可得抛物线与x 轴的另一个交点坐标为(﹣3,0),即可判断;④根据m >n >0,得出m ﹣1和n ﹣1的大小及其与﹣1的关系,利用二次函数的性质即可判断. 【详解】解:①观察图象可知: a <0,b <0,c >0,∴abc >0, 所以①错误;②∵对称轴为直线x =﹣1, 即﹣2ba=﹣1,解得b =2a ,即2a ﹣b =0, 所以②错误;③∵抛物线y =ax 2+bx +c 经过点(1,0),且对称轴为直线x =﹣1, ∴抛物线与x 轴的另一个交点为(﹣3,0), 当a =﹣3时,y =0,即9a ﹣3b +c =0, 所以③正确; ∵m >n >0, ∴m ﹣1>n ﹣1>﹣1,由x >﹣1时,y 随x 的增大而减小知x =m ﹣1时的函数值小于x =n ﹣1时的函数值,故④正确; 故选:D . 【点睛】本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数的图象和性质及点的坐标特征.7.C解析:C【解析】【分析】【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3 355÷=故选C8.B解析:B【解析】A. y=3x−1是一次函数,故A错误;B. y=3x2−1是二次函数,故B正确;C. y=(x+1)2−x2不含二次项,故C错误;D. y=x3+2x−3是三次函数,故D错误;故选B.9.B解析:B【解析】【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x2=4x,x2﹣4x=0,x(x﹣4)=0,x﹣4=0,x=0,x1=4,x2=0,故选B.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.10.A解析:A【解析】【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.【详解】∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有两个不相等的实数根,故选A.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.C解析:C【解析】【分析】连接AC,OD,根据直径所对的圆周角是直角得到∠ACB是直角,求出∠ACD的度数,根据圆周角定理求出∠AOD的度数,再利用切线的性质即可得到∠ADP的度数.【详解】连接AC,OD.∵AB是直径,∴∠ACB=90°,∴∠ACD=125°﹣90°=35°,∴∠AOD=2∠ACD=70°.∵OA=OD,∴∠OAD=∠ADO,∴∠ADO=55°.∵PD与⊙O相切,∴OD⊥PD,∴∠ADP=90°﹣∠ADO=90°﹣55°=35°.故选:C.【点睛】本题考查了切线的性质、圆周角定理及推论,正确作出辅助线是解答本题的关键.12.A解析:A【解析】【分析】连接OC,先根据垂径定理求出PC的长,再根据勾股定理即可得出OC的长.【详解】连接OC,∵CD⊥AB,CD=8,∴PC=12CD=12×8=4,在Rt△OCP中,设OC=x,则OA=x,∵PC=4,OP=AP-OA=8-x,∴OC2=PC2+OP2,即x2=42+(8-x)2,解得x=5,∴⊙O的直径为10.故选A.【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题13.5【解析】试题解析:∵在△AOB中∠AOB=90°AO=3cmBO=4cm∴AB==5cm∵点D为AB的中点∴OD=AB=25cm∵将△AOB绕顶点O按顺时针方向旋转到△A1OB1处∴OB1=OB=解析:5【解析】试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB22OA OBcm,∵点D为AB的中点,∴OD=12AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.5cm.故答案为1.5.14.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴根据二次函数的性质即可求解【详解】∵y=3x2+2x=3(x+)2﹣∴函数的对称轴为x=﹣∴当﹣1≤x≤0时函数有最小值﹣当x=﹣1时有最大解析:﹣13≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+13)2﹣13,∴函数的对称轴为x=﹣13,∴当﹣1≤x≤0时,函数有最小值﹣13,当x=﹣1时,有最大值1,∴y的取值范围是﹣13≤y≤1,故答案为﹣13≤y≤1.【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.15.(03)【解析】【分析】令x=0求出y的值然后写出与y轴的交点坐标即可【详解】解:x=0时y=3所以图象与y轴交点的坐标是(03)故答案为(03)【点睛】本题考查了求抛物线与坐标轴交点的坐标掌握二次解析:(0,3).【解析】【分析】令x=0,求出y的值,然后写出与y轴的交点坐标即可.【详解】解:x=0时,y=3,所以.图象与y轴交点的坐标是(0,3).故答案为(0,3).【点睛】本题考查了求抛物线与坐标轴交点的坐标,掌握二次函数与一元二次方程的联系是解答本题的关键.16.15【解析】【分析】先解方程求出方程的根再确定等边三角形的边长然后求等边三角形的周长【详解】解:x2﹣3x﹣10=0(x﹣5)(x+2)=0即x﹣5=0或x+2=0∴x1=5x2=﹣2因为方程x2﹣解析:15【解析】【分析】先解方程求出方程的根,再确定等边三角形的边长,然后求等边三角形的周长.【详解】解:x2﹣3x﹣10=0,(x﹣5)(x+2)=0,即x﹣5=0或x+2=0,∴x 1=5,x 2=﹣2.因为方程x 2﹣3x ﹣10=0的根是等边三角形的边长, 所以等边三角形的边长为5. 所以该三角形的周长为:5×3=15. 故答案为:15. 【点睛】本题考查了一元二次方程的解法、等边三角形的周长等知识点.求出方程的解是解决本题的关键.17.90【解析】【分析】根据弧长公式列式计算得到答案【详解】设这个扇形的圆心角为n°则=3π解得n =90故答案为:90【点睛】考核知识点:弧长的计算熟记公式是关键解析:90 【解析】 【分析】根据弧长公式列式计算,得到答案. 【详解】设这个扇形的圆心角为n °, 则6180n π⋅=3π, 解得,n =90, 故答案为:90. 【点睛】考核知识点: 弧长的计算.熟记公式是关键.18.【解析】【分析】根据一元二次方程定义只要是一元二次方程且有一根为0即可【详解】可以是=0等故答案为:【点睛】本题考核知识点:一元二次方程的根解题关键点:理解一元二次方程的意义 解析:240x x -=【解析】 【分析】根据一元二次方程定义,只要是一元二次方程,且有一根为0即可. 【详解】可以是240x x -=,22x x -=0等. 故答案为:240x x -= 【点睛】本题考核知识点:一元二次方程的根. 解题关键点:理解一元二次方程的意义.19.【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得【详解】解:所有可能的结果如下表: 男1 男2 女1 女2 男1 (男1男2) (男1女1解析:2 3【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.【详解】解:所有可能的结果如下表:的结果有8种,所以其概率为挑选的两位教师恰好是一男一女的概率为812=23,故答案为23.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.【解析】【分析】【详解】解:从袋子中随机取出1个球总共有6种等可能结果这个球为红球的结果有5中所以从袋子中随机取出1个球则它是红球的概率是故答案为:解析:5 6【解析】【分析】【详解】解:从袋子中随机取出1个球,总共有6种等可能结果,这个球为红球的结果有5中,所以从袋子中随机取出1个球,则它是红球的概率是5 6故答案为:56.三、解答题21.(1)0.24R m =;(2)50x =时,w 最大1200=;(3)70x =时,每天的销售量为20件. 【解析】 【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解; (2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解; (3)由题意得(x-30)(-2x+160)≥800,解不等式即可得到结论. 【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b , 将点(30,100)、(45,70)代入一次函数表达式得:100307045k bk b +⎧⎨+⎩==, 解得:2160k b -⎧⎨⎩==,故函数的表达式为:y=-2x+160;(2)由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250, ∵-2<0,故当x <55时,w 随x 的增大而增大,而30≤x≤50, ∴当x=50时,w 由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元; (3)由题意得:(x-30)(-2x+160)≥800, 解得:x≤70,∴每天的销售量y=-2x+160≥20, ∴每天的销售量最少应为20件. 【点睛】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键. 22.(1) 12k … ;(2)k =-3. 【解析】 【分析】(1)根据一元二次方程的系数结合根的判别式△≥0,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围;(2)根据根与系数可得出x 1+x 2=2(k-1),x 1x 2=k 2,结合(x 1+1)(x 2+1)=2,即可得出关于k 的一元二次方程,解之即可得出k 值,结合(1)的结论即可得出结论. 【详解】解:(1)∵关于x 的方程x 2-2(k-1)x+k 2=0有两个实数根, ∴△=[-2(k-1)]2-4×1×k 2≥0,∴k≤12, ∴实数k 的取值范围为k≤12. (2)∵方程x 2-2(k-1)x+k 2=0的两根为x 1和x 2, ∴x 1+x 2=2(k-1),x 1x 2=k 2.∵(x 1+1)(x 2+1)=2,即x 1x 2+(x 1+x 2)+1=2, ∴k 2+2(k-1)+1=2, 解得:k 1=-3,k 2=1.∵k≤12, ∴k=-3. 【点睛】本题考查了根的判别式以及根与系数关系,解题的关键是:(1)牢记“当△≥0时,方程有实数根”;(2)根据根与系数关系结合(x 1+1)(x 2+1)=2,找出关于k 的一元二次方程.23.(1)证明见解析;(2)阴影部分面积为43π-【解析】【分析】(1)连接OC ,易证∠BCD=∠OCA ,由于AB 是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD 是⊙O 的切线;(2)设⊙O 的半径为r ,AB=2r ,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:OAC 的面积以及扇形OAC 的面积即可求出阴影部分面积. 【详解】(1)如图,连接OC , ∵OA=OC , ∴∠BAC=∠OCA , ∵∠BCD=∠BAC , ∴∠BCD=∠OCA , ∵AB 是直径, ∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90° ∴∠OCD=90° ∵OC 是半径, ∴CD 是⊙O 的切线 (2)设⊙O 的半径为r , ∴AB=2r ,∵∠D=30°,∠OCD=90°, ∴OD=2r ,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=23,易求S△AOC=12×23×1=3S扇形OAC=12044 3603ππ⨯=,∴阴影部分面积为43 3π-.【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.24.(1)详见解析;(2)详见解析;(3)DE=8.【解析】【分析】(1)根据垂径定理可得AD=CD,得PD是AC的垂直平分线,可判断出P A=PC;(2)由PC=P A得出∠P AC=∠PCA,再判断出∠ACB=90°,得出∠CAB+∠CBA=90°,再判断出∠PCA+∠CAB=90°,得出∠CAB+∠P AC=90°,即可得出结论;(2)根据AB和DF的比设AB=3a,DF=2a,先根据三角形中位线可得OD=4,从而得结论.【详解】(1)证明∵OD⊥AC,∴AD=CD,∴PD是AC的垂直平分线,∴P A=PC,(2)证明:由(1)知:P A=PC,∴∠P AC=∠PCA.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°.又∵∠PCA=∠ABC,∴∠PCA+∠CAB=90°,∴∠CAB+∠P AC=90°,即AB⊥P A,∴P A是⊙O的切线;(3)解:∵AD =CD ,OA =OB , ∴OD ∥BC ,OD =12BC =182⨯=4, ∵32AB DF =, 设AB =3a ,DF =2a , ∵AB =EF , ∴DE =3a ﹣2a =a , ∴OD =4=32a﹣a , a =8, ∴DE =8. 【点睛】本题考查的是圆的综合,难度适中,需要熟练掌握线段中垂线的性质、圆的切线的求法以及三角形中位线的相关性质. 25.2008年盈利3600万元. 【解析】 【分析】设该公司从2007年到2009年,每年盈利的年增长率是x ,根据题意列出方程进行求解即可求出年增长率;然后根据2007年的盈利,即可算出2008年的盈利. 【详解】解:设每年盈利的年增长率为x ,由题意得: 3000(1+x )2=4320,解得:10.2x =,2 2.2x =-(不合题意,舍去), ∴年增长率20%, ∴3000×(1+20%)=3600,答:该公司2008年盈利3600万元. 【点睛】本题考查了一元二次方程的应用,解题的关键是求出从2007年到2009年,每年盈利的年增长率.。
张家港市常阴沙学校2019年中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|2.(x2y)2的结果是()A.x6y B.x4y2C.x5y D.x5y23.如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD的度数是()A.70°B.60°C.50°D.40°4.下列二次根式中是最简二次根式的是()A.B.C.D.5.下列因式分解正确的是()A.x2﹣xy+x=x(x﹣y)B.a3+2a2b+ab2=a(a+b)2C.x2﹣2x+4=(x﹣1)2+3D.ax2﹣9=a(x+3)(x﹣3)6.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分7.设有x个人共种m棵树苗,如果每人种8棵,则剩下2棵树苗未种,如果每人种10棵,则缺6棵树苗.根据题意,列方程正确的是()A.﹣2=+6B.+2=﹣6C.=D.=8.在边长为1的小正方形组成的网格中,有如图所示的A,B两点,在格点上任意放置点C,恰好能使得△ABC的面积为1的概率为()A.B.C.D.9.下列说法正确的是()A.每一条线段有且只有一个黄金分割点B.黄金分割点分一条线段为两段,其中较短的一段是这条线段的0.618倍C.若点C把线段AB黄金分割,则AC是AB和BC的比例中项D.黄金分割点分一条线段为两段,其中较短的一段与较长的一段的比值约为0.61810.如图,在平面直角坐标系中,点A的坐标为(5,0),点D的坐标为(0,1),以OA为边在第一象限内作菱形OABC,且对角线OB=4,OB上有一动点P,当△CPD的周长最小时,点P的坐标为()A.(0,0)B.(1,)C.(,)D.(,)二.填空题(共8小题,满分24分,每小题3分)11.已知ab=a+b+1,则(a﹣1)(b﹣1)=.12.日地最近距离:147 100 000千米,用科学记数法表示为.13.抛物线y=2x2﹣4x+1的对称轴为直线.14.分式方程=1﹣的解是.15.如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F为DE中点,若点D在直线BC上运动,连接CF,则在点D运动过程中,线段CF的最小值是.16.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则的长为.17.如图,在▱ABCD中,E是边BC上的点,分别连结AE、BD相交于点O,若AD=10,=,则EC=.18.如图,一次函数与反比例函数的图象交于A(1,12)和B(6,2)两点.点P是线段AB上一动点(不与点A和B重合),过P点分别作x、y轴的垂线PC、PD交反比例函数图象于点M、N,则四边形PMON面积的最大值是.三.解答题(共10小题,满分76分)19.(5分)计算:﹣12018+37×3﹣5+2﹣2+(π﹣2018)020.(5分)解不等式组,并在数轴上表示其解集.21.(6分)先化简,再求值(1﹣)÷,其中x=4.22.(6分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?23.(8分)王强与李刚两位同学在学习“概率”时.做抛骰子(均匀正方体形状)实验,他们共抛了54次,出现向上点数的次数如下表:向上点数123456出现次数69581610(1)请计算出现向上点数为3的频率及出现向上点数为5的频率;(2)王强说:“根据实验,一次试验中出现向上点数为5的概率最大.”李刚说:“如果抛540次,那么出现向上点数为6的次数正好是100次.”请判断王强和李刚说法的对错;(3)如果王强与李刚各抛一枚骰子.求出现向上点数之和为3的倍数的概率.24.(8分)探究:如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于点D,CE⊥m于点E,求证:△ABD≌△CAE.应用:如图②,在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC,求证:DE=BD+CE.25.(8分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x(x>5)个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?26.(10分)如图,在平面直角坐标系中,直线y=﹣2x+4与坐标轴交于A,B两点,动点C在x 轴正半轴上,⊙D为△AOC的外接圆,射线OD与直线AB交于点E.(1)如图①,若OE=DE,求=;(2)如图②,当∠ABC=2∠ACB时,求OC的长;(3)点C由原点向x轴正半轴运动过程中,设OC的长为a,①用含a的代数式表示点E的横坐标x E;②若x E=BC,求a的值.27.(10分)已知一次函数y=kx+b的图象与x轴、y轴分别交于点A(﹣2,0)、B(0,4),直线l经过点B,并且与直线AB垂直.点P在直线l上,且△ABP是等腰直角三角形.(1)求直线AB的解析式;(2)求点P的坐标;(3)点Q(a,b)在第二象限,且S△QAB =S△PAB.①用含a的代数式表示b;②若QA=QB,求点Q的坐标.28.(10分)在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据绝对值的定义进行分析即可得出正确结论.【解答】解:选项A、B、C中,a与b的关系还有可能互为相反数.故选D.【点评】绝对值相等的两个数的关系是相等或互为相反数.2.【分析】直接利用积的乘方运算法则计算得出答案.【解答】解:(x2y)2=x4y2.故选:B.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.3.【分析】由BC与AE垂直,得到三角形ABC为直角三角形,利用直角三角形两锐角互余,求出∠A的度数,再利用两直线平行同位角相等即可求出∠ECD的度数.【解答】解:∵BC⊥AE,∴∠ACB=90°,在Rt△ABC中,∠B=40°,∴∠A=90°﹣∠B=50°,∵CD∥AB,∴∠ECD=∠A=50°,故选:C.【点评】此题考查了平行线的性质,以及垂线,熟练掌握平行线的性质是解本题的关键.4.【分析】根据最简二次根式的定义选择即可.【解答】解:A、是最简二次公式,故本选项正确;B、=3不是最简二次根式,故本选项错误;C、=3不是最简二次根式,故本选项错误;D、=2不是最简二次根式,故本选项错误;故选:A.【点评】本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.5.【分析】直接利用提取公因式法以及公式法分解因式,进而分析即可.【解答】解:A、x2﹣xy+x=x(x﹣y+1),故此选项错误;B、a3+2a2b+ab2=a(a+b)2,正确;C、x2﹣2x+4=(x﹣1)2+3,不是因式分解,故此选项错误;D、ax2﹣9,无法分解因式,故此选项错误;故选:B.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.6.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.7.【分析】根据题意可得人数=或,根据人数不变可得方程.【解答】解:由题意得:=,故选:C.【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系列出方程.8.【分析】按照题意分别找出点C所在的位置:当点C与点A在同一条直线上时,AC边上的高为1,AC=2,符合条件的点C有2个;当点C与点B在同一条直线上时,BC边上的高为1,BC =2,符合条件的点C有2个,再根据概率公式求出概率即可.【解答】解:可以找到4个恰好能使△ABC的面积为1的点,则概率为:4÷16=.故选:C.【点评】此题主要考查了概率公式,解决此题的关键是正确找出恰好能使△ABC的面积为1的点.9.【分析】根据比例中项和黄金分割的概念分析各个说法.【解答】解:A、每一条线段有两个黄金分割点,错误;B、黄金分割点分一条线段为两段,其中较长的一段是这条线段的0.618倍,错误;C、若点C把线段AB黄金分割,则AC是AB和BC的比例中项,正确;D、黄金分割点分一条线段为两段,其中较长的一段与这条线段的比值约为0.618,错误;故选:C.【点评】此题考查黄金分割问题,理解比例中项、黄金分割的概念,是解题的关键.10.【分析】如图作BH⊥x轴于H.设AH=x,BH=y.因为四边形ABCD是菱形,所以A、C关于OB对称,连接AD交OB于P,此时△PDC的周长最小.求出直线OB、AD的解析式,利用方程组求出点P坐标即可;【解答】解:如图作BH⊥x轴于H.设AH=x,BH=y.∵四边形ABCD是菱形,∴A、C关于OB对称,连接AD交OB于P,此时△PDC的周长最小.由题意可得:,解得,∴B(8,4),∴直线OB的解析式为y=x,∵A(5,0),D(0,1),∴直线AD的解析式为y=﹣x+1,由,解得,∴P(,),故选:D.【点评】本题考查轴对称﹣最短问题、坐标与图形的性质、菱形的性质、二元二次方程组、一次函数的应用等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用轴对称解决最短问题,学会构建一次函数,利用方程组解决交点问题,属于中考选择题中的压轴题.二.填空题(共8小题,满分24分,每小题3分)11.【分析】将ab=a+b+1代入原式=ab﹣a﹣b+1合并即可得.【解答】解:当ab=a+b+1时,原式=ab﹣a﹣b+1=a+b+1﹣a﹣b+1=2,故答案为:2.【点评】本题主要考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用.12.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:147 100 000=1.471×108.【点评】本题考查学生对科学记数法的掌握.科学记数法要求前面的部分的绝对值是大于或等于1,而小于10,小数点向左移动8位,应该为1.471×108.13.【分析】把抛物线解析式化为顶点式可求得答案.【解答】解:∵y=2x2﹣4x+1=2(x﹣1)2﹣1,∴对称轴为直线x=1,故答案为:x=1.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).14.【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x=2x﹣1+2,解得:x=﹣1,经检验x=﹣1是分式方程的解.故答案为:x=﹣1.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.【分析】连接CE,根据∠DCE=90°,F是DE的中点,可得CF=DE,再根据当AD⊥BC 时,AD最短,此时DE最短,根据直角三角形的面积以及相似三角形的性质,求得DE的最小值,即可得出CF的最小值.【解答】解:如图,连接CE,∵△ABC∽△ADE,∴∠ACD=∠AEG,又∵∠AGE=∠DGC,∴△AGE∽△DGC,∴=,又∵∠AGD=∠EGC,∴△AGD∽△EGC,∴∠ADG=∠ECG,又∵Rt△ADE中,∠ADG+∠AEG=90°,∴∠ECG+∠ACD=90°,即∠DCE=90°,∵F是DE的中点,∴CF=DE,∵△ABC∽△ADE,∴当AD⊥BC时,AD最短,此时DE最短,当AD⊥BC时,AD==4.8,∵=,即=,∴DE=8,∴CF=×8=4.故答案为:4.【点评】本题主要考查了相似三角形的判定与性质,以及直角三角形斜边上中线的性质的应用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半.解决问题的关键是利用垂线段最短得到线段的最小值.16.【分析】连接OA、OC,根据圆内接四边形的性质求出∠D,根据圆周角定理求出∠AOC,利用弧长公式计算即可.【解答】解:连接OA、OC,∵四边形ABCD是⊙O的内接四边形,∴∠D=180°﹣∠B=45°,∴∠AOC=90°,∴的长==2π,故答案为:2π.【点评】本题考查的是圆内接四边形的性质、弧长的计算,掌握圆内接四边形的对角互补是解题的关键.17.【分析】根据平行四边形的性质得到AD∥BC,AD=BC,推出△BEO∽△DAO,根据相似三角形的性质得到,求得BE=6,即可得到结论.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BEO∽△DAO,∴,∵AD =10,∴BE =6, ∴CE =10﹣6=4,故答案为:4.【点评】此题考查了平行四边形的性质以及相似三角形的判定与性质.熟练掌握相似三角形的判定和性质是解题的关键.18.【分析】由点A 、B 的坐标利用待定系数法即可求出一次函数与反比例函数的解析式,设出点P 的坐标为(n ,﹣2n +14)(1<n <6).由反比例的函数解析式表示出来M 、N 点的坐标,分割矩形OCPD ,结合矩形的面积及反比例函数k 的几何意义即可得出结论.【解答】解:设反比例函数解析式为y =,一次函数解析式为y =kx +b ,由已知得:12=和, 解得:m =12和.∴一次函数解析式为y =﹣2x +14,反比例函数解析式为y =. ∵点P 在线段AB 上,∴设点P 的坐标为(n ,﹣2n +14)(1<n <6).∴S四边形PMON =S 矩形OCPD ﹣S △ODN ﹣S △OCM =n (﹣2n +14)﹣×12﹣×12=﹣2n 2+14n ﹣12=﹣2+.∴当n =时,四边形PMON 面积最大,最大面积为. 故答案为:.【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及反比例函数k 的几何意义,解题的关键是利用分割法求出四边形PMON 面积关于点P 横坐标的函数关系式.本题属于基础题,难度不大,解决该题型题目时,根据分割法找出面积的函数关系式,再结合函数的性质(单调性、二次函数的顶点之类)来解决最值问题.三.解答题(共10小题,满分76分)19.【分析】原式利用零指数幂、负整数指数幂法则,以及乘方的意义计算即可求出值.【解答】解:原式=﹣1+9++1=9.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.【分析】分别解两个不等式,找出其解集的公共部分即不等式组的解集,再把不等式组的解集在数轴上表示出来即可.【解答】解:解不等式①,得:x<3,解不等式②,得:x>﹣1,则不等式组的解集为﹣1<x<3,将不等式的解集表示在数轴上如下:【点评】本题考查解一元一次不等式组和在数轴上表示不等式的解集,正确掌握解不等式组的方法是解决本题的关键.21.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=(﹣)÷=•=,当x=4时,原式==.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.【分析】(1)用C品牌的数量除以所占的百分比,计算机求出鸡蛋的总量,再用A品牌的百分比乘以360°计算即可求出圆心角的度数;(2)求出B品牌鸡蛋的数量,然后条形补全统计图即可;(3)用B品牌所占的百分比乘以1500,计算即可得解.【解答】解:(1)共销售绿色鸡蛋:1200÷50%=2400个,A品牌所占的圆心角:×360°=60°;故答案为:2400,60;(2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,补全统计图如图;(3)分店销售的B种品牌的绿色鸡蛋为:×1500=500个.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.【分析】(1)利用频数除以总数即可得到频率;(2)由于骰子是均匀的,每一面向上的概率均为;(3)列举出所有情况,让向上点数之和为3的倍数的情况数除以总情况数即为所求的概率.【解答】解:(1)向上点数为3的频率=;向上点数为5的频率=;(2)王强的说法不对;李刚的说法不对.点数为5向上的概率为,如果抛540次,那么出现向上点数为6的次数正大约是540×=90次;(3)由表可知共有36种可能结果,其中和为3的倍数的有12种,∴P(点数之和为3的倍数)=.【点评】本题考查了概率公式和概率的意义,由于骰子是均匀的,与试验次数无关.24.【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA.(2)设∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,得出∠CAE=∠ABD,进而得出△ADB≌△CEA即可得出答案.【解答】证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS);(2)设∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE =AE +AD =BD +CE .【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS ”、“SAS ”、“ASA ”、“AAS ”;得出∠CAE =∠ABD 是解题关键.25.【分析】(1)根据题意列出二元一次方程组,解方程组即可得到答案;(2)根据题意用含x 的代数式表示出y 1、y 2即可;(3)把x =50代入两个函数关系式进行计算,比较得到答案.【解答】解:(1)设A 、B 两种品牌的计算器的单价分别为x 、y 元,由题意得,,解得.答:A 、B 两种品牌的计算器的单价分别为30元、32元;(2)y 1=24x ,y 2=160+(x ﹣5)×32×0.7=22.4x +48;(3)当x =50时,y 1=24x =1200,y 2=22.4x +48=1168,∵1168<1200,∴买B 品牌的计算器更合算.【点评】本题考查的是二元一次方程组的应用和一次函数的应用,正确找出等量关系列出方程组并正确解出方程组、掌握一次函数的性质是解题的关键.26.【分析】(1)根据三角形的面积公式计算;(2)作OF ⊥AC 于点F ,根据一次函数的性质求出OA 、OB ,根据正切的定义得到tan ∠ODC =2,设DF =m ,根据勾股定理用m 表示出OD ,计算即可;(3)①作EH ⊥AO 于点H ,根据相似三角形的性质列式计算,得到答案;②分C 在点B 右侧、C 在点B 左侧两种情况,分别列出方程,解方程即可.【解答】解:(1)∵OE =DE ,∴S △AOE =S △ADE ,∵AD =CD ,∴S △CDE =S △ADE ,∴=,故答案为:;(2)作OF⊥AC于点F,对于直线y=﹣2x+4,当y=0时,x=2,当x=0时,y=4,则A的坐标为(0,4),点B的坐标为(2,0),即OA=4,OB=2,∵∠ABC=2∠ACB,∴∠ADO=∠ABC,∴∠ODC=∠ABO,∴tan∠ODC=tan∠ABO=2,设DF=m,则OF=2m,由勾股定理得,OD==m,∴CF=(﹣1)m,∴tan∠OCD=,∴=,即=,解得,OC=2﹣2;(3)①设直线OD交⊙D另一点为G,连结AG,作EH⊥AO于点H,则EH∥AG,∴=,=,∴+=+=1,即+=1,解得,x E=;②当C在点B右侧时,BC=x E,即a﹣2=x E,∴a﹣2=,解得,a1=1+,a2=1﹣(舍去),当C在点B左侧时,BC=x E,即2﹣a=x E,∴2﹣a=,解得,a1=﹣1+,a2=﹣1﹣(舍去),所以a的值为±1.【点评】本题考查的是一次函数图象上点的坐标特征、圆周角定理、相似三角形的判定和性质,掌握圆周角定理、灵活运用分情况讨论思想是解题的关键.27.【分析】(1)把A(﹣2,0),B(0,4)代入y=kx+b,根据待定系数法即可求得;(2)作PC⊥y轴于C,证得△ABO≌△BPC,从而得出AO=BC=2,BO=PC=4,根据图象即可求得点P的坐标;(3)①由题意可知Q点在经过P1点且垂直于直线l的直线上,得到点Q所在的直线平行于直线AB,设点Q所在的直线为y=2x+n,代入P1(﹣4,6),求得n的值,即可求得点Q所在的直线为y=2x+14,代入Q(a,b)即可得到b=2a+14;②由QA=QB,根据勾股定理得出(a+2)2+b2=a2+(b﹣4)2,进一步得到(a+2)2+(2a+14)2=a2+(2a+14﹣4)2,解方程即可求得a的值,从而求得Q点的坐标.【解答】解:(1)把A(﹣2,0),B(0,4)代入y=kx+b中得:,解得:,则直线AB解析式为y=2x+4;(2)如图1所示:作PC⊥y轴于C,∵直线l经过点B,并且与直线AB垂直.∴∠ABO+∠PBC=90°,∵∠ABO+∠BAO=90°,∴∠BAO=∠PBC,∵△ABP是等腰直角三角形,∴AB=PB,在△ABO和△BPC中,∴△ABO≌△BPC(AAS),∴AO=BC=2,BO=PC=4,∴点P的坐标(﹣4,6)或(4,2);(3)①∵点Q(a,b)在第二象限,且S△QAB =S△PAB.∴Q点在经过P1点且垂直于直线l的直线上,∴点Q所在的直线平行于直线AB,∵直线AB解析式为y=2x+4,∴设点Q所在的直线为y=2x+n,∵P1(﹣4,6),∴6=2×(﹣4)+n,解得n=14,∴点Q所在的直线为y=2x+14,∵点Q(a,b),∴b=2a+14;A(﹣2,0),B(0,4)②∵QA=QB,∴(a+2)2+b2=a2+(b﹣4)2,∵b=2a+14,∴(a+2)2+(2a+14)2=a2+(2a+14﹣4)2,整理得,10a=﹣50,解得a=﹣5,b=4,∴Q的坐标(﹣5,4).【点评】本题是一次函数的综合题,考查了待定系数法求一次函数的解析式,等腰三角形的性质,三角形全等的判定和性质,两直线平行的性质等.28.【分析】(1)由y =﹣x 2+bx +c 经过点A 、B 、C ,A (﹣1,0),C (0,3),利用待定系数法即可求得此抛物线的解析式;(2)首先令﹣x 2+2x +3=0,求得点B 的坐标,然后设直线BC 的解析式为y =kx +b ′,由待定系数法即可求得直线BC 的解析式,再设P (a ,3﹣a ),即可得D (a ,﹣a 2+2a +3),即可求得PD 的长,由S △BDC =S △PDC +S △PDB ,即可得S △BDC =﹣(a ﹣)2+,利用二次函数的性质,即可求得当△BDC 的面积最大时,求点P 的坐标;(3)直角三角形斜边上的中线等于斜边的一半列出关系式m =(n ﹣)2﹣,然后根据n 的取值得到最小值.【解答】解:(1)由题意得:, 解得:, ∴抛物线解析式为y =﹣x 2+2x +3;(2)令﹣x 2+2x +3=0,∴x 1=﹣1,x 2=3,即B (3,0),设直线BC 的解析式为y =kx +b ′,∴, 解得:,∴直线BC 的解析式为y =﹣x +3,设P (a ,3﹣a ),则D (a ,﹣a 2+2a +3),∴PD =(﹣a 2+2a +3)﹣(3﹣a )=﹣a 2+3a ,∴S △BDC =S △PDC +S △PDB=PD •a +PD •(3﹣a )=PD •3=(﹣a 2+3a )=﹣(a ﹣)2+,∴当a =时,△BDC 的面积最大,此时P (,);(3)由(1),y=﹣x2+2x+3=﹣(x﹣1)2+4,∴E(1,4),设N(1,n),则0≤n≤4,取CM的中点Q(,),∵∠MNC=90°,∴NQ=CM,∴4NQ2=CM2,∵NQ2=(1﹣)2+(n﹣)2,∴4[=(1﹣)2+(n﹣)2]=m2+9,整理得,m=n2﹣3n+1,即m=(n﹣)2﹣,∵0≤n≤4,当n=上,M最小值=﹣,n=4时,M最小值=5,综上,m的取值范围为:﹣≤m≤5.【点评】此题考查了待定系数法求函数的解析式、相似三角形的判定与性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.。
2019年张家港市初三数学下期中模拟试卷附答案一、选择题1.有一块直角边AB=3cm ,BC=4cm 的Rt △ABC 的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为( )A .67B .3037C .127D .60372.已知4A 纸的宽度为21cm ,如图对折后所得的两个矩形都和原来的矩形相似,则4A 纸的高度约为( )A .29.7cmB .26.7cmC .24.8cmD .无法确定3.已知线段a 、b ,求作线段x ,使22b x a=,正确的作法是( ) A .B .C .D .4.如图,河坝横断面迎水坡AB 的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),坝高3m BC =,则坡面AB 的长度是( ).A.9m B.6m C.63m D.33m5.如图,在△ABC中,DE∥BC ,12ADDB=,DE=4,则BC的长是()A.8 B.10 C.11 D.126.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=512-BC D.BC=512-AC7.如图,在同一平面直角坐标系中,反比例函数y=kx与一次函数y=kx﹣1(k为常数,且k>0)的图象可能是()A.B.C.D.8.在△ABC中,若=0,则∠C的度数是()A.45°B.60°C.75°D.105°9.如图,在正方形ABCD中,N为边AD上一点,连接BN.过点A作AP⊥BN于点P,连接CP,M为边AB上一点,连接PM,∠PMA=∠PCB,连接CM,有以下结论:①△PAM∽△PBC;②PM⊥PC;③M、P、C、B四点共圆;④AN=AM.其中正确的个数为()A.4B.3C.2D.110.图(1)所示矩形ABCD 中,BC x =,CD y =,y 与x 满足的反比例函数关系如图(2)所示,等腰直角三角形AEF 的斜边EF 过点C ,M 为EF 的中点,则下列结论正确的是( )A .当3x =时,EC EM <B .当9y =时,EC EM <C .当x 增大时,EC CF ⋅的值增大D .当x 增大时,BE DF ⋅的值不变11.若270x y -=. 则下列式子正确的是( )A .72x y =B .27x y =C .27x y =D .27x y = 12.下列四个几何体中,主视图与左视图相同的几何体有( )A .1个B .2个C .3个D .4个二、填空题13.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD ,东边城墙AB 长9里,南边城墙AD 长7里,东门点E 、南门点F 分别是AB ,AD 的中点,EG ⊥AB ,FE ⊥AD ,EG =15里,HG 经过A 点,则FH =__里.14.如图,CAB BCD ∠=∠,2AD =,4BD =,则BC =______.15.如图,在平行四边形ABCD 中,AB =12,AD =8,∠ABC 的平分线交CD 于点F ,交AD 的延长线于点E ,CG ⊥BE ,垂足为G ,若EF =2,则线段CG 的长为_____.16.已知AB ∥CD ,AD 与BC 相交于点O.若BO OC =23,AD =10,则AO =____.17.学校校园内有块如图所示的三角形空地,计划将这块空地建成一个花园,以美化环境,预计花园每平方米造价为30元,学校建这个花园至少需要投资________元.18.已知反比例函数y=2m x-,当x >0时,y 随x 增大而减小,则m 的取值范围是_____.19.如图所示的网格是正方形网格,点P 到射线OA 的距离为m ,点P 到射线OB 的距离为n ,则m __________ n .(填“>”,“=”或“<”)20.已知线段a =2厘米,c =8厘米,则线段a 和c 的比例中项b 是______厘米.三、解答题21.(1)计算:tan 609tan308sin 602cos 45︒︒︒︒+-+(2)在ABC V 中,90,2,6C AC BC ︒∠===A ∠的度数22.已知:△ABC 中,∠A =36°,AB =AC ,用尺规求作一条过点B 的直线,使得截出的一个三角形与△ABC 相似.(保留作图痕迹,不写作法)23.已知如图,AD BE CF P P ,它们依次交直线a ,b 于点A 、B 、C 和点D 、E 、F.(1)如果6AB =,8BC =,21DF =,求DE 的长.(2)如果:2:5DE DF =,9AD =,14CF =,求BE 的长.24.如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC=14,AD=12,tan ∠BAD=,求sinC 的值.25.如图,平面直角坐标系xOy 中,A (2,1),B (3,﹣1),C (﹣2,1),D (0,2).已知线段AB 绕着点P 逆时针旋转得到线段CD ,其中C 是点A 的对应点.(1)用尺规作图的方法确定旋转中心P ,并直接写出点P 的坐标;(要求保留作图痕迹,不写作法)(2)若以P 为圆心的圆与直线CD 相切,求⊙P 的半径【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题解析:如图,过点B 作BP ⊥AC ,垂足为P ,BP 交DE 于Q .∵S △ABC =12AB•BC=12AC•BP , ∴BP=·341255AB BC AC ⨯==. ∵DE ∥AC ,∴∠BDE=∠A ,∠BED=∠C ,∴△BDE ∽△BAC , ∴DE BQ AC BP =. 设DE=x ,则有:1251255x x -=, 解得x=6037, 故选D .2.A解析:A【解析】【分析】设A4纸的高度为xcm ,对折后的矩形高度为2x cm ,然后根据相似多边形的对应边成比例列方程求解.【详解】 设A4纸的高度为xcm ,则对折后的矩形高度为2x cm , ∵对折后所得的两个矩形都和原来的矩形相似,∴21=212x x解得29.7=≈x故选A.【点睛】本题考查相似多边形的性质,熟记相似多边形对应边成比例,找到对应边列出方程是关键. 3.C解析:C【解析】【分析】对题中给出的等式进行变形,先作出已知线段a 、b 和2b ,再根据平行线分线段成比例定理作出平行线,被截得的线段即为所求线段x .【详解】 解:由题意,22b x a= ∴2a b b x=, ∵线段x 没法先作出,根据平行线分线段成比例定理,只有C 符合.故选C .4.B解析:B【解析】由图可知,:BC AC =tan BAC ∠=, ∴30BAC ∠=︒, ∴36m 1sin 302BC AB ===︒. 故选B . 5.D解析:D【解析】【分析】 根据AD DB =12,可得AD AB =13,再根据DE ∥BC ,可得DE BC =AD AB ; 接下来根据DE=4,结合上步分析即可求出BC 的长.【详解】∵ADDB=12,∴ADAB=13,∵在△ABC中,DE∥BC,∴DEBC=ADAB=13.∵DE=4,∴BC=3DE=12.故答案选D.【点睛】本题考查了平行线分线段成比例的知识,解题的关键是熟练的掌握平行线分线段成比例定理.6.D解析:D【解析】【分析】根据黄金分割的定义得出12BC ACAC AB==,从而判断各选项.【详解】∵点C是线段AB的黄金分割点且AC>BC,∴12BC ACAC AB==,即AC2=BC•AB,故A、B错误;AB,故C错误;AC,故D正确;故选D.【点睛】本题考查了黄金分割,掌握黄金分割的定义和性质是解题的关键.7.B解析:B【解析】当k>0时,直线从左往右上升,双曲线分别在第一、三象限,故A、C选项错误;∵一次函数y=kx-1与y轴交于负半轴,∴D选项错误,B选项正确,故选B.8.C解析:C【解析】【分析】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.【详解】由题意,得 cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.9.A解析:A【解析】【分析】根据互余角性质得∠PAM=∠PBC,进而得△PAM∽△PBC,可以判断①;由相似三角形得∠APM=∠BPC,进而得∠CPM=∠APB,从而判断②;根据对角互补,进而判断③;由△APB∽△NAB得AP ANBP AB,再结合△PAM∽△PBC便可判断④.【详解】解:∵AP⊥BN,∴∠PAM+∠PBA=90°,∵∠PBA+∠PBC=90°,∴∠PAM=∠PBC,∵∠PMA=∠PCB,∴△PAM∽△PBC,故①正确;∵△PAM∽△PBC,∴∠APM=∠BPC,∴∠CPM=∠APB=90°,即PM⊥PC,故②正确;∵∠MPC+∠MBC=90°+90°=180°,∴B、C、P、M四点共圆,∴∠MPB=∠MCB,故③正确;∵AP⊥BN,∴∠APN=∠APB=90°,∴∠PAN+∠ANB=90°,∵∠ANB+∠ABN=90°,∴∠PAN=∠ABN,∵∠APN=∠BPA=90°,∴△PAN∽△PBA,∴AN PA BA PB=,∵△PAM∽△PBC,∴Al AP BC BP=,∴AN AM AB BC=,∵AB=BC,∴AM=AN,故④正确;故选:A.【点睛】本题考查了相似三角形的判定和性质,正方形的性质、四点共圆,同角的余角相等,判断出PM⊥PC是解题的关键.10.D解析:D【解析】【分析】由于等腰直角三角形AEF的斜边EF过C点,则△BEC和△DCF都是直角三角形;观察反比例函数图像得出反比例函数解析式为y=9x;当x=3时,y=3,即BC=CD=3,根据等腰直角三角形的性质得2,CF=32,则C点与M点重合;当y=9时,根据反比例函数的解析式得x=1,即BC=1,CD=9,所以2,而2;利用等腰直角三角形的性质BE•DF=BC•CD=xy,然后再根据反比例函数的性质得BE•DF=9,其值为定值;由于2x×2=2xy,其值为定值.【详解】解:因为等腰直角三角形AEF的斜边EF过C点,M为EF的中点,所以△BEC和△DCF都是直角三角形;观察反比例函数图像得x=3,y=3,则反比例解析式为y=9x.A 、当x =3时,y =3,即BC=CD=3,所以,,C 点与M 点重合,则EC=EM ,所以A 选项错误;B 、当y =9时,x =1,即BC=1,CD=9,所以,,,所以B 选项错误;C 、因为x y =2×xy =18,所以,EC•CF 为定值,所以C 选项错误;D 、因为BE•DF=BC•CD=xy =9,即BE•DF 的值不变,所以D 选项正确.故选:D .【点睛】本题考查了动点问题的函数图像:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图像,注意自变量的取值范围.11.A解析:A【解析】【分析】直接利用比例的性质分别判断即可得出答案.【详解】∵2x -7y =0,∴2x =7y .A .72x y =,则2x =7y ,故此选项正确; B .27x y =,则xy =14,故此选项错误; C .27x y =,则2y =7x ,故此选项错误; D .27x y =,则7x =2y ,故此选项错误. 故选A .【点睛】本题考查了比例的性质,正确将比例式变形是解题的关键.12.D解析:D【解析】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选D .二、填空题13.05【解析】∵EG⊥ABFH⊥ADHG经过A点∴FA∥EGEA∥FH∴∠HFA=∠AEG =90°∠FHA=∠EAG∴△GEA∽△AFH∴∵AB=9里DA=7里EG=15里∴FA=35里EA=45里∴解析:05【解析】∵EG⊥AB,FH⊥AD,HG经过A点,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴EG EA AF FH=.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴15 4.5 3.5FH=,解得FH=1.05里.故答案为1.05.14.【解析】【分析】角对应相等的两个三角形相似可证得△ABC∽△CBD再根据相似三角形的性质可解【详解】解:∵∠B=∠B∠CAB=∠BCD∴△ABC∽△CBD∴BC:BD=AB:BC∴BC:BD=(AD解析:【解析】【分析】角对应相等的两个三角形相似可证得△ABC∽△CBD,再根据相似三角形的性质可解.【详解】解:∵∠B=∠B,∠CAB=∠BCD,∴△ABC∽△CBD,∴BC:BD=AB:BC,∴BC:BD=(AD+BD):BC,即BC:4=(2+4):BC,∴.故答案为:.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.15.2【解析】【分析】首先证明CF=BC=12利用相似三角形的性质求出BF再利用勾股定理即可解决问题【详解】解:∵四边形ABCD是平行四边形∴AB=CD=12 AE∥BCAB∥CD∴∠CFB=∠FBA∵B解析:【解析】【分析】首先证明CF=BC=12,利用相似三角形的性质求出BF ,再利用勾股定理即可解决问题.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD =12,AE ∥BC ,AB ∥CD ,∴∠CFB =∠FBA ,∵BE 平分∠ABC ,∴∠ABF =∠CBF ,∴∠CFB =∠CBF ,∴CB =CF =8,∴DF =12﹣8=4,∵DE ∥CB ,∴△DEF ∽△CBF , ∴EF BF =DF CF , ∴2BF =48, ∴BF =4,∵CF =CB ,CG ⊥BF ,∴BG =FG =2,在Rt △BCG 中,CG =故答案为【点睛】本题考查平行四边形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.16.【解析】∵AB∥CD 解得AO=4故答案是:4【点睛】运用了平行线分线段成比例定理灵活运用定理找准对应关系是解题的关键解析:【解析】∵AB ∥CD ,223103AO BO AO OD OC AO ∴===-,即, 解得,AO=4,故答案是:4.【点睛】运用了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.17.【解析】【分析】如图所示作BD⊥CA 于D 则在直角△ABD 中可以求出BD 然后求出△ABC 面积;根据单价可以求出总造价【详解】如图所示AB=10AC=30∠BAC=120°作BD⊥CA 于D 则在直角△AB解析:6750【解析】【分析】如图所示,作BD⊥CA于D,则在直角△ABD中可以求出BD,然后求出△ABC面积;根据单价可以求出总造价.【详解】如图所示,AB=103,AC=30,∠BAC=120°,作BD⊥CA于D,则在直角△ABD中,∠BAD=60°,∴BD=ABsin60°=15,∴△ABC面积=12×AC×BD=225.又因为每平方米造价为30元,∴总造价为30×225=6750(元).【点睛】此题主要考查了运用三角函数定义解直角三角形,关键是通过作辅助线把实际问题转化为数学问题,抽象到解直角三角形中解题.18.m>2【解析】分析:根据反比例函数y=当x>0时y随x增大而减小可得出m﹣2>0解之即可得出m的取值范围详解:∵反比例函数y=当x>0时y随x 增大而减小∴m﹣2>0解得:m>2故答案为m>2点睛:本解析:m>2.【解析】分析:根据反比例函数y=2mx-,当x>0时,y随x增大而减小,可得出m﹣2>0,解之即可得出m的取值范围.详解:∵反比例函数y=2mx-,当x>0时,y随x增大而减小,∴m﹣2>0,解得:m>2.故答案为m>2.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣2>0是解题的关键.19.>【解析】【分析】由图像可知在射线上有一个特殊点点到射线的距离点到射线的距离于是可知利用锐角三角函数即可判断出【详解】由题意可知:找到特殊点如图所示:设点到射线的距离点到射线的距离由图可知【点睛】本解析:>【解析】【分析】由图像可知在射线OP 上有一个特殊点Q ,点Q 到射线OA 的距离2QD =,点Q 到射线OB 的距离1QC =,于是可知AOP BOP ∠>∠ ,利用锐角三角函数sin sin AOP BOP ∠>∠ ,即可判断出m n >【详解】 由题意可知:找到特殊点Q ,如图所示:设点Q 到射线OA 的距离QD ,点Q 到射线OB 的距离QC由图可知2QD =1QC =∴ 2sin QD AOP OP OP∠== ,1sin QC BOP OP OP ∠== ∴sin sin AOP BOP ∠>∠,∴m n OP OP> ∴m n >【点睛】本题考查了点到线的距离,熟知在直角三角形中利用三角函数来解角和边的关系是解题关键.20.4【解析】∵线段b 是ac 的比例中项∴解得b =±4又∵线段是正数∴b =4点睛:本题考查了比例中项的概念利用比例的基本性质求两条线段的比例中项的时候负数应舍去解析:4【解析】∵线段b 是a 、c 的比例中项,∴216b ac ==,解得b =±4,又∵线段是正数,∴b =4. 点睛:本题考查了比例中项的概念,利用比例的基本性质求两条线段的比例中项的时候,负数应舍去.三、解答题21.(12;(2)∠A =60°【解析】【分析】(1)原式利用特殊角的三角函数值计算即可得到结果;(2)由锐角三角函数定义求出∠A 度数即可.【详解】(1)原式=3323+9-8+2=3+33-43+2=2322⨯⨯⨯; (2)∵90,2,6C AC BC ︒∠===, ∴tanA =632BC AC ==, ∴∠A =60°【点睛】此题考查了实数的运算以及解直角三角形,熟练掌握运算法则是解本题的关键.22.答案见解析.【解析】【分析】根据三角形相似的作图解答即可.【详解】解:如图,直线BD 即为所求.【点睛】此题主要考查相似图形的作法,关键是根据三角形相似的作图.23.(1)DE 的长为9;(2)BE 的长为11;【解析】【分析】(1)由果6AB =,8BC =,可得AC=14,然后根据平行线等分线段定理得到6=14DE AB DF AC =,然后将已知条件代入即可求解; (2)过D 作DH∥AC,分别交BE,CF 于H ,说明四边形ABGD 和四边形BCHG 是平行四边形,然后根据平行四边形的性质得CH=BG=AD=9;进一步说明FH=CF-DH=5,然后再按照平行线等分线段定理得到:2:5DE DF =,最后代入已知条件求解即可.【详解】(1)∵6AB =,8BC =,∴AC=AB+BC=14∵AD BE CF P P∴6=14 DE ABDF AC=∴66219 1414DE DF==⨯=(2)过D作DH∥AC,分别交BE,CF于H.∵AD BE CFP P∴四边形ABGD和四边形BCHG是平行四边形,∴CH=BG=AD=9∴FH=CF-DH=5∵:2:5DE DF=∴:2:5GE HF=∴225255GE HF==⨯=∴BE=BG+GE=9+2=11.【点睛】本题主要考查平行线分线段成比例的知识,关键是掌握三条平行线截两条直线,所得的对应线段成比例.24..【解析】【分析】首先根据Rt△ABD的三角函数求出BD的长度,然后得出CD的长度,根据勾股定理求出AC的长度,从而得出∠C的正弦值.【详解】∵在直角△ABD中,tan∠BAD=,∴BD=AD•tan∠BAD=12×=9,∴CD=BC-BD=14-9=5,∴AC==13,∴sinC=.【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.25.(1)如图点P即为所求.见解析;(2)以P为圆心的圆与直线CD相切,⊙P的半径为65.【解析】【分析】(1)作相对AC,BD的垂直平分线,两条垂直平分线的交点P即为所求.(2)作PE⊥CD于E,求出点E的坐标,利用相似三角形的性质求出PE即可.【详解】(1)如图点P即为所求.(2)作PE⊥CD于E,设AC交PD于K.∵∠CDO=∠PDE,∠CKD=∠PED=90°,∴△COD∽△PED,∴COPE=CDPD,∴2PE5∴PE=55,∵以P为圆心的圆与直线CD相切,∴⊙P 65.【点睛】本题考查作图,相似三角形的判定和性质,切线的性质等知识,解题的关键是熟练掌握基本知识.。
2019年张家港市初二数学下期中模拟试卷附答案一、选择题1.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a﹣b C.222a b+D.222a b-2.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF ⊥AE交AE于点F,则BF的长为()A.3102B.3105C.105D.3553.有一直角三角形纸片,∠C=90°BC=6,AC=8,现将△ABC按如图那样折叠,使点A 与点B重合,折痕为DE,则CE的长为( )A.27B.74C.72D.44.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°5.如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AB,BC边上的中点,EF ,BD=4,则菱形ABCD的周长为()连接EF.若3A.4B.46C.47D.286.如图,在菱形ABCD中,BE⊥CD于E,AD=5,DE=1,则AE=()A.4B.5C.34D.417.如图,四边形ABCD是轴对称图形,且直线AC是否对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中结论正确的序号是()A.①②③B.①②③④C.②③④D.①③④8.在矩形ABCD中,AB=2,AD=4,E为CD的中点,连接AE交BC的延长线于F点,P为BC 上一点,当∠PAE=∠DAE时,AP的长为()A.4B.C.D.59.如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是( )A .0点时气温达到最低B .最低气温是零下4℃C .0点到14点之间气温持续上升D .最高气温是8℃10.已知直角三角形中30°角所对的直角边长是23cm ,则另一条直角边的长是( ) A .4cm B .43 cm C .6cm D .63 cm11.小带和小路两个人开车从A 城出发匀速行驶至B 城.在整个行驶过程中,小带和小路两人车离开A 城的距离y (km)与行驶的时间t (h)之间的函数关系如图所示.有下列结论;①A ,B 两城相距300 km ;②小路的车比小带的车晚出发1 h ,却早到1 h ;③小路的车出发后2.5 h 追上小带的车;④当小带和小路的车相距50 km 时,t =54或t =154.其中正确的结论有( )A .①②③④B .①②④C .①②D .②③④ 12.下列各式中一定是二次根式的是( )A .23-B .2(0.3)-C .2-D .x 二、填空题13.如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P,BF 与CE 相交于点Q,若215APD S cm ∆=,225BQC S cm ∆=,则阴影部分的面积为__________2cm .14.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=_______.15.如图,平面直角坐标系中,点A 、B 分别是x 、y 轴上的动点,以AB 为边作边长为2的正方形ABCD ,则OC 的最大值为_____.16.如图,已知菱形ABCD 的周长为16,面积为83,E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为______.17.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,30ACB ∠=o ,则AOB ∠的大小为______ .18.如果最简二次根式22x-3与9-4x 是同类二次根式,那么x =______.19.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE ⊥BD ,垂足为点E ,若∠EAC =2∠CAD ,则∠BAE =__________度.20.已知一个直角三角形的两边长分别为12和5,则第三条边的长度为_______三、解答题21.如图,正方形网格中的每个小正方形边长都是l ,每个小格的顶点叫做格点.以格点为顶点分别按下列要求画图:(1)画出一个平行四边形,使其面积为6;(2)画出一个菱形,使其面积为4.(3)画出一个正方形,使其面积为5.22.在抗击新冠状病毒战斗中,有152箱公共卫生防护用品要运到A 、B 两城镇,若用大小货车共15辆,则恰好能一次性运完这批防护用品,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其中用大货车运往A 、B 两城镇的运费分别为每辆800元和900元,用小货车运往A 、B 两城镇的运费分别为每辆400元和600元.(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A 城镇,其余货车前往B 城镇,设前往A 城镇的大货车为x 辆,前往A 、B 两城镇总费用为y 元,试求出y 与x 的函数解析式.若运往A 城镇的防护用品不能少于100箱,请你写出符合要求的最少费用.23.如图1,ABC V 是等腰直角三角形,90A ∠=︒,4cm BC =,点P 在ABC V 的边上沿路径B A C →→移动,过点P 作PD BC ⊥于点D ,设cm BD x =,BDP △的面积为2cm y (当点P 与点B 或点C 重合时,y 的值为0).琪琪根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是琪琪的探究过程,请补充完整:(1)自变量x 的取值范围是______________________;(2)通过取点、画图、测量,得到了x 与y 的几组值,如下表: x /cm 0 12 1 32 2 523 724 y /2cm 0 18 m 98 2 158 32 n 0请直接写出m = ,n = ;(3)在图2所示的平面直角坐标系xoy 中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图像;并结合画出的函数图像,解决问题:当BDP △的面积为12cm 时,请直接写出BD 的长度(数值保留一位小数).(4)根据上述探究过程,试写出BDP △的面积为y 2cm 与BD 的长度x cm 之间的函数关系式,并指出自变量的取值范围.24.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A 、B 、C 是小正方形的顶点,求∠ABC 的度数.25.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有,A B 两种型号的挖掘机,已知3台A 型和5台B 型挖掘机同时施工一小时挖土165立方米;4台A 型和7台B 型挖掘机同时施工一小时挖土225立方米.每台A 型挖掘机一小时的施工费用为300元,每台B 型挖掘机一小时的施工费用为180元.(1)分别求每台A 型, B 型挖掘机一小时挖土多少立方米?(2)若不同数量的A 型和B 型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】解:设CD=x ,则DE=a-x ,求得AH=CD=AG-HG=DE-HG=a-x-b=x ,求得CD=2a b - ,得到BC=DE=22a b a b a -+-=,根据勾股定理即可得到结论. 【详解】设CD =x ,则DE =a ﹣x ,∵HG =b ,∴AH =CD =AG ﹣HG =DE ﹣HG =a ﹣x ﹣b =x ,∴x =2a b -, ∴BC =DE =a ﹣2a b -=2a b +, ∴BD 2=BC 2+CD 2=(2a b +)2+(2a b -)2=222a b +, ∴BD =222a b +, 故选:C .【点睛】本题考查了勾股定理,全等三角形的性质,正确的识别图形,用含,a b 的式子表示各个线段是解题的关键.2.B解析:B【解析】【分析】根据S △ABE =12S 矩形ABCD =3=12•AE•BF ,先求出AE ,再求出BF 即可. 【详解】如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt △ADE 中,22AD DE +2231+10, ∵S △ABE =12S 矩形ABCD =3=12•AE•BF ,∴BF=5.故选:B.【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.3.B解析:B【解析】【分析】已知,∠C=90°BC=6,AC=8,由勾股定理求AB,根据翻折不变性,可知△DAE≌△DBE,从而得到BD=AD,BE=AE,设CE=x,则AE=8-x,在Rt△CBE中,由勾股定理列方程求解.【详解】∵△CBE≌△DBE,∴BD=BC=6,DE=CE,在RT△ACB中,AC=8,BC=6,∴.∴AD=AB-BD=10-6=4.根据翻折不变性得△EDA≌△EDB∴EA=EB∴在Rt△BCE中,设CE=x,则BE=AE=8-x,∴BE2=BC2+CE2,∴(8-x)2=62+x2,解得x=74.故选B.【点睛】此题考查了翻折变换的问题,找到翻折后图形中的直角三角形,利用勾股定理来解答,解答过程中要充分利用翻折不变性.4.A解析:A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.5.C【解析】【分析】首先利用三角形的中位线定理得出AC ,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.【详解】解:∵E ,F 分别是AB ,BC 边上的中点,∴∵四边形ABCD 是菱形,∴AC ⊥BD ,OA=12OB=12BD=2,∴,∴菱形ABCD 的周长为.故选C .6.C解析:C【解析】【分析】根据菱形的性质得出CD=AD=5,进而得出CE=4,利用勾股定理得出BE ,进而利用勾股定理得出AE 即可.【详解】∵菱形ABCD ,∴CD =AD =5,CD ∥AB ,∴CE =CD ﹣DE =5﹣1=4,∵BE ⊥CD ,∴∠CEB =90°,∴∠EBA =90°,在Rt △CBE 中,BE 3==,在Rt △AEB 中,AE ==故选C .【点睛】此题考查菱形的性质,关键是根据菱形的性质得出CD=AD . 7.B解析:B【解析】【分析】根据轴对称图形的性质,结合菱形的判定方法以及全等三角形的判定方法分析得出答案.解:如图,因为l是四边形ABCD的对称轴,AB∥CD,则AD=AB,∠1=∠2,∠1=∠4,则∠2=∠4,∴AD=DC,同理可得:AB=AD=BC=DC,所以四边形ABCD是菱形.根据菱形的性质,可以得出以下结论:所以①AC⊥BD,正确;②AD∥BC,正确;③四边形ABCD是菱形,正确;④在△ABD和△CDB中∵AB BC AD DC BD BD=⎧⎪=⎨⎪=⎩,∴△ABD≌△CDB(SSS),正确.故正确的结论是:①②③④.故选B.【点睛】此题考查了轴对称以及菱形的判断与菱形的性质,注意:对称轴垂直平分对应点的连线,对应角相等,对应边相等.8.B解析:B【解析】【分析】根据矩形的性质结合等角对等边,进而得出CF的长,再利用勾股定理得出AP的长.【详解】在中,得故选:B点睛:此题主要考查了矩形的性质以及勾股定理等知识,正确得出FC的长是解题关键.9.D解析:D【解析】【分析】根据气温T如何随时间t的变化而变化图像直接可解答此题.【详解】A.根据图像4时气温最低,故A错误;B.最低气温为零下3℃,故B错误;C.0点到14点之间气温先下降后上升,故C错误;D描述正确.【点睛】本题考查了学生看图像获取信息的能力,掌握看图像得到有用信息是解决此题的关键. 10.C解析:C【解析】如图,∵∠C=90°,∠B=30°,3,∴3cm,由勾股定理得:22,AB AC故选C.11.C解析:C【解析】【分析】观察图象可判断①②,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t 的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【详解】由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,∴①②都正确;设小带车离开A城的距离y与t的关系式为y小带=kt,把(5,300)代入可求得k=60,∴y小带=60t,设小路车离开A城的距离y与t的关系式为y小路=mt+n,把(1,0)和(4,300)代入可得0 4300 m nm n+=⎧⎨+=⎩解得100100 mn=⎧⎨=-⎩∴y小路=100t-100,令y小带=y小路,可得60t=100t-100,解得t=2.5,即小带和小路两直线的交点横坐标为t=2.5,此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,∴③不正确;令|y小带-y小路|=50,可得|60t-100t+100|=50,即|100-40t|=50,当100-40t=50时,可解得t=54,当100-40t=-50时,可解得t=154,又当t=56时,y小带=50,此时小路还没出发,当t=256时,小路到达B城,y小带=250.综上可知当t的值为54或154或56或256时,两车相距50 km,∴④不正确.故选C.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.12.B解析:B【解析】二次根式要求被开方数为非负数,易得B为二次根式.故选B.二、填空题13.40【解析】【分析】作出辅助线因为△ADF与△DEF同底等高所以面积相等所以阴影图形的面积可解【详解】如图连接EF∵△ADF与△DEF同底等高∴S=S即S−S=S−S即S=S=15cm同理可得S=S解析:40【解析】【分析】作出辅助线,因为△ADF与△DEF同底等高,所以面积相等,所以阴影图形的面积可解.【详解】如图,连接EF∵△ADF与△DEF同底等高,∴SADFV =S DEFV即SADFV −S DPFV=S DEFV−S DPFV,即S APDV =S EPFV=15cm2,同理可得S BQCV =S EFQV =25cm2,∴阴影部分的面积为S EPFV +S EFQV =15+25=40cm2.故答案为40.【点睛】此题考查平行四边形的性质,解题关键在于进行等量代换.14.【解析】【分析】连接FC根据三角形中位线定理可得FC=2MN继而根据四边形ABCD四边形EFGB是正方形推导得出GBC三点共线然后再根据勾股定理可求得F C的长继而可求得答案【详解】连接FC∵MN分别解析:13 2【解析】【分析】连接FC,根据三角形中位线定理可得FC=2MN,继而根据四边形ABCD,四边形EFGB 是正方形,推导得出G、B、C三点共线,然后再根据勾股定理可求得FC的长,继而可求得答案.【详解】连接FC,∵M、N分别是DC、DF的中点,∴FC=2MN,∵四边形ABCD,四边形EFGB是正方形,∴∠FGB=90°,∠ABG=∠ABC=90°,FG=BE=5,BC=AB=7,∴∠GBC=∠ABG+∠ABC=180°,即G、B、C三点共线,∴GC=GB+BC=5+7=12,∴FC=22FG GC+=13,∴MN=132,故答案为:13 2.【点睛】本题考查了正方形的性质,三角形中位线定理,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.15.【解析】如图取AB的中点E连接OECE则BE=×2=1在Rt△BCE中由勾股定理得C E=∵∠AOB=90°点E是AB的中点∴OE=BE=1由两点之间线段最短可知点OEC三点共线时OC最大∴OC的最大5+1【解析】如图,取AB的中点E,连接OE、CE,则BE=12×2=1,在Rt△BCE中,由勾股定理得,22215+=∵∠AOB=90°,点E是AB的中点,∴OE=BE=1,由两点之间线段最短可知,点O、E、C三点共线时OC最大,∴OC的最大值5.5.【点睛】运用了正方形的性质,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记各性质并确定出OC最大时的情况是解题的关键.16.【解析】【分析】【详解】解:如图作CE′⊥AB于E′甲BD于P′连接ACAP′首先证明E′与E重合∵AC关于BD对称∴当P与P′重合时PA′+P′E的值最小∵菱形ABCD的周长为16面积为8∴AB=解析:23.【解析】【分析】【详解】解:如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.首先证明E′与E重合,∵A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,∵菱形ABCD的周长为16,面积为83,∴AB=BC=4,AB·CE′=83,∴CE′=23,由此求出CE的长=23.故答案为3考点:1、轴对称﹣最短问题,2、菱形的性质17.【解析】【分析】根据矩形的性质可得∠ABC的度数OA与OB的关系根据等边三角形的判定和性质可得答案【详解】∵ABCD是矩形∴∠ABC=90°∵∠ACB=30°∴∠BAO=90°﹣∠ACB=60°∵O解析:60o【解析】【分析】根据矩形的性质,可得∠ABC的度数,OA与OB的关系,根据等边三角形的判定和性质,可得答案.【详解】∵ABCD是矩形,∴∠ABC=90°.∵∠ACB=30°,∴∠BAO=90°﹣∠ACB=60°.∵OA=OB,∴△ABO是等边三角形,∴∠AOB=60°.故答案为:60°.【点睛】本题考查了矩形的性质,利用矩形的性质得出∠ABC的度数是解答本题的关键.18.2【解析】由题意得:2x-3=9-4x解得:x=2故答案为:2【点睛】本题考查同类二次根式的概念同类二次根式是化为最简二次根式后被开方数相同的二次根式称为同类二次根式【解析】由题意得:2x-3=9-4x,解得:x=2,故答案为:2.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.19.5°【解析】【分析】【详解】四边形ABCD是矩形AC=BDOA=OCOB=ODOA=OB═OC∠OAD=∠ODA∠OAB=∠OBA∠AOE=∠OAD+∠ODA=2∠OA D∠EAC=2∠CAD∠EAO解析:5°【解析】【分析】【详解】Q四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAD+∠ODA=2∠OAD,Q∠EAC=2∠CAD,∴∠EAO=∠AOE,Q AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA=67.5°,即∠BAE=∠OAB﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.20.13或;【解析】第三条边的长度为解析:13119【解析】第三条边的长度为2222或12+5125=119-三、解答题21.(1)见解析;(2)见解析;(3)见解析【分析】(1)平行四边形面积为6,则可以为底边长为3,高为2,具体图形如下;(2)菱形面积为4,则对角线长度为2和4,据此可画出菱形;(3)要使正方形面积为5,则正方形的边长为5.【详解】(1)图形如下:(2)图形如下:(3)图形如下:【点睛】本题考查根据条件绘制四边形,注意在绘制前,需要根据四边形的特点,适当进行分析,以辅助完成绘图.22.(1) 大货车用8辆,小货车用7辆;(2) y与x的函数解析式为y=100x+9400;当运往A城镇的防护用品不能少于100箱,最低费用为9900元.【解析】【分析】(1)设大货车用x辆,小货车用y辆,然后根据题意列出二元一次方程组并求解即可;(2)设前往A城镇的大货车为x辆,则前往B城镇的大货车为(8-x)辆,前往A城镇的小货车为(10-x)辆,前往B城镇的小货车为[7-(10-x)]辆,然后根据题意即可确定y与x 的函数关系式;再结合已知条件确定x 的取值范围,求出总费用的最小值即可.【详解】解:(1)设大货车用x 辆,小货车用y 辆,根据题意得:15128152x y x y +=⎧⎨+=⎩ 解得:87x y =⎧⎨=⎩答:大货车用8辆,小货车用7辆;(2)设前往A 城镇的大货车为x 辆,则前往B 城镇的大货车为(8-x )辆,前往A 城镇的小货车为(10-x )辆,前往B 城镇的小货车为[7-(10-x )]辆,根据题意得:y=800x+900(8-x )+400(10-x )+600[7-(10-x )]=100x+9400由运往A 城镇的防护用品不能少于100箱,则12x+ 8 (10-x)≥100,解得x≥5且x 为整数;当x=5时,费用最低,则:100×5+9400=9900元. 答:y 与x 的函数解析式为y=100x+9400;当运往A 城镇的防护用品不能少于100箱,最低费用为9900元.【点睛】本题考查了二元一次方程组和一次函数的应用,弄清题意列出二元一次方程组和一次函数解析式是解答本题的关键.23.(1)0≤x ≤4(2)12;78(3)图见解析,1.4或3.4;(4)y=()()22102212242x x x x x ⎧≤≤⎪⎪⎨⎪-+≤⎪⎩< 【解析】【分析】(1)由于点D 在线段BC 上运动,则x 范围可知;(2)根据题意得画图测量可得对应数据;(3)根据已知数据描点连线画图即可,当△BDP 的面积为1cm 2时,相对于y =1,则求两个函数图象交点即可;(4) 先根据点P 在AB 上时,得到△BDP 的面积y =12×BD ×DP =12x 2,(0≤x ≤2),再根据点P 在AC 上时,△BDP 的面积y =12×BD×DP =−12x 2+2x ,(2<x ≤4),故可求解.【详解】(1)由点D 的运动路径可知BD 的取值范围为:0≤x ≤4故答案为:0≤x ≤4;(2)通过取点、画图、测量,可得m=12,n =78; 故答案为:12,78; (3)根据已知数据画出图象如图当△BDP 的面积为1cm 2时,对应的x 相对于直线y =1与图象交点得横坐标,画图测量得到x=1.4或x=3.4,故答案为:1.4或3.4;(4)当点P 在AB 上时,△BDP 是等腰直角三角形,故BD =x =DP ,∴△BDP 的面积y =12×BD ×DP =12x 2,(0≤x ≤2) 当点P 在AC 上时,△CDP 是等腰直角三角形,BD =x ,故CD =4−x =DP , ∴△BDP 的面积y =12×BD ×DP =12x (4−x )=−12x 2+2x ,(2<x ≤4) ∴y 与x 之间的函数关系式为:y=()()22102212242x x x x x ⎧≤≤⎪⎪⎨⎪-+≤⎪⎩<. 【点睛】本题为动点问题的函数图象探究题,考查了函数图象画法以及数形结合的数学思想.解答关键是按照题意画图、取点、测量以得到准确数据.24.(1)详见解析;(2)详见解析;(3)450【解析】【分析】(1)根据勾股定理画出边长为的正方形即可;(2)根据勾股定理和已知画出符合条件的三角形即可;(3)连接AC 、CD ,求出△ACB 是等腰直角三角形即可.【详解】(1)如图1的正方形的边长是,面积是10; (2)如图2的三角形的边长分别为2,、; (3)如图3,连接AC , 因为AB 2=22+42=20,AC 2=32+12=10,BC 2=32+12=10,所以AB 2= AC 2+ BC 2,AC=BC∴三角形ABC 是等腰直角三角形,∴∠ABC=∠BAC=45°.【点睛】本题考查了勾股定理逆定理,三角形的面积,直角三角形的判定的应用,主要考查学生的计算能力和动手操作能力.25.(1)每台A 型挖掘机一小时挖土30立方米,每台B 型挖据机一小时挖土15立方米; (2)共有三种调配方案.方案一: A 型挖据机7台,B 型挖掘机5台;方案二: A 型挖掘机8台,B 型挖掘机4台;方案三: A 型挖掘机9台,B 型挖掘机3台.当A 型挖掘机7台, B 型挖掘机5台的施工费用最低,最低费用为12000元.【解析】分析:(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用. 详解:(1)设每台A 型,B 型挖掘机一小时分别挖土x 立方米和y 立方米,根据题意,得 35165,47225,x y x y +=⎧⎨+=⎩解得30,15.x y =⎧⎨=⎩所以,每台A 型挖掘机一小时挖土30立方米,每台B 型挖据机一小时挖土15立方米.(2)设A 型挖掘机有m 台,总费用为W 元,则B 型挖据机有()12m -台.根据题意,得 43004180W m =⨯+⨯ ()124808640m m -=+,因为()()430415121080430041801212960m m m m ⎧⨯+⨯-≥⎪⎨⨯+⨯-≤⎪⎩,解得69m m ≥⎧⎨≤⎩, 又因为12m m ≠-,解得6m ≠,所以79m ≤≤.所以,共有三种调配方案.方案一:当7m =时,125m -= ,即A 型挖据机7台,B 型挖掘机5台;方案二:当8m =时,124m -= ,即A 型挖掘机8台,B 型挖掘机4台;方案三:当9m =时,123m -= ,即A 型挖掘机9台,B 型挖掘机3台.4800Q >,由一次函数的性质可知,W 随m 的减小而减小,当7m =时,=4807+8640=12000W ⨯最小,此时A 型挖掘机7台, B 型挖掘机5台的施工费用最低,最低费用为12000元.点睛:本题考查了二元一次方程组和一次函数增减性,解答时先根据题意确定自变量取值范围,再应用一次函数性质解答问题.。
2019年江苏省苏州市张家港市中考数学模拟试卷(5月份)一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题日要求的.)1.下列四个数中,是正整数的是()A. ﹣2B. πC.D. 10【答案】D【解析】【分析】根据正整数的定义直接判断即可.【详解】解:∵大于零的整数即为正整数.故选:D.【点睛】本题考查正整数的定义,要理解大于零的整数即为正整数.2.下列运算正确的是()A. a2×a3=a6B. a2+a2=2a4C. a8÷a4=a4D. (a2)3=a5【答案】C【解析】【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;同底数幂的除法法则:底数不变,指数相减;幂的乘方法则:底数不变,指数相乘,合并同类项,只把系数相加,字母部分不变进行分析即可.【详解】解:A、a2×a3=a5,故原题计算错误;B、a2+a2=2a2,故原题计算错误;C、a8÷a4=a4,故原题计算正确;D、,故原题计算错误;故选:C.【点睛】此题主要考查了同底数幂的乘法、除法、幂的乘方,以及合并同类项,关键是掌握各计算法则.3.已知某新型感冒病毒的直轻约为0.000000823米,将0.000000823用科学记数法表示()A. 8.23×10﹣5B. 8.23×10﹣6C. 8.23×10﹣7D. 8.23×10﹣8【答案】C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000823=8.23×10﹣7,故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4. AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C;连接BC,若∠P=40°,则∠B等于()A. 20°B. 25°C. 30°D. 40°【答案】B【解析】试题解析:∵PA切⊙O于点A,∴∠PAB=90°,∵∠P=40°,∴∠POA=90°﹣40°=50°,∵OC=OB,∴∠B=∠BCO=25°,故选B.考点:切线的性质.5.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A. 24.5,24.5B. 24.5,24C. 24,24D. 23.5,24【答案】A【解析】【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,故选A.【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.6.化简(x﹣2)÷(-1)•x的结果是()A. ﹣x2B. x2C. ﹣1D. 1【答案】A【解析】【分析】根据分式的除法和乘法可以解答本题.【详解】解:故选:A.【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.7.如图,在Rt△ABC中,CD是斜边AB上的中线.已知AC=3,CD=2,则tanA的值为()A. B. C. D.【答案】C【解析】【分析】利用直角三角形的斜边中线与斜边的关系,先求出CD,再通过勾股定理求出BC,最后利用直角三角形的边角关系计算tanA.【详解】解:∵CD是Rt△ABC斜边AB上的中线,∴AB=2CD=4,∴∴tanA=故选:C.【点睛】本题考查了直角三角形斜边的中线与斜边的关系、勾股定理及锐角三角函数.掌握直角三角形斜边的中线与斜边的关系是解决本题的关键.在直角三角形中,斜边的中线等于斜边的一半.8.一元二次方程根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于3【答案】D【解析】分析:直接整理原方程,进而解方程得出x的值.详解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选D.点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.9.如图,平行四边形ABCD绕点D逆时针旋转40°,得到平行四边形A'B'C'D(点A'是A点的对应点,点B’是B点的对应点,点C'是C点的对应点),并且A'点恰好落在AB边上,则∠B的度数为()A. .100°B. 105°C. .110°D. .115°【答案】C【解析】【分析】根据旋转不变性可知:DA=DA′,∠ADA′=40°,求出∠A即可解决问题.【详解】解:由题意,DA=DA′,∠ADA′=40°,∴∵四边形ABCD是平行四边形,∴AD∥BC,∴∠B+∠A=180°,∴∠B=110°,故选:C.【点睛】本题考查旋转变换,平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.如图,Rt△ABC中.∠BAC=90°,AB=1,AC=2.点D,E分别是边BC,AC上的动点,则DA+DE 的最小值为()A. B. C. D.【答案】B【解析】【分析】如图,作A关于BC的对称点A',连接AA',交BC于F,过A'作AE⊥AC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长,根据相似三角形对应边的比可得结论.【详解】解:作A关于BC的对称点A',连接AA',交BC于F,过A'作A'E⊥AC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长;Rt△ABC中,∠BAC=90°,AB=1,∴∴∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE,∴∠A'=∠C,∵∠AEA'=∠BAC=90°,∴△AEA'∽△BAC,∴∴∴A'E=,即AD+DE的最小值是;故选:B.【点睛】本题考查轴对称﹣最短问题、三角形相似的性质和判定、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题,属于中考填空题中的压轴题.二、填空题:(本大题共8小题,毎小题3分,共24分,把你的答案填在答题卷相应的横线上)11.计算=_____.【答案】2【解析】【分析】根据二次根式乘法法则进行计算.【详解】=.故答案是:2.【点睛】考查了二次根式的乘法,解题关键是运用二次根式的乘法法则进行计算.12.分式方程的解是_____.【答案】x=6【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:2x=3x﹣6,解得:x=6,经检验x=6是分式方程的解,故答案为:x=6【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.若x+2y=4,则4+x+y=_____.【答案】6【解析】【分析】把代数式变形为然后利用整体代入的方法计算.【详解】解:∵x+2y=4,∴=故答案为:6.【点睛】本题考查了代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.14.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°),按如图所示的位置摆放,若∠1=55°,则∠2的度数为_____.【答案】80°【解析】【分析】给图中各角标上序号,由三角形外角的性质及对顶角相等可求出∠5的度数,由∠5的度数结合邻补角互补可求出∠3的度数,由直线a∥b利用“两直线平行,同位角相等”可得出∠2=∠3=80°,此题得解.详解】解:给图中各角标上序号,如图所示.∵∠5=∠4+∠B,∠4=∠1=55°,∠B=45°,∴∠5=45°+55°=100°.∵∠3+∠5=180°,∴∠3=80°.∵直线a∥b,∴∠2=∠3=80°.故答案为:80°.【点睛】本题考查了等腰直角三角形、平行线的性质三角形外角的性质,利用三角形外角的性质以及邻补角互补,求出∠3的度数是解题的关键.15.如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是__.【答案】【解析】分析:根据图形分析可得求图中阴影部分面积实为求扇形部分面积,而扇形面积是圆面积的,可得结论.详解:如图所示:连接OA,∵正六边形内接于⊙O,∴△OAB,△OBC都是等边三角形,∴∠AOB=∠OBC=60°,∴OC∥AB,∴S△ABC=S△OBC,∴S阴=S扇形OBC,则飞镖落在阴影部分的概率是;故答案为:.点睛:此题主要考查了正多边形和圆、几何概率以及扇形面积求法,得出阴影部分面积=S扇形OBC是解题关键.16.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏东60°方向行驶12千米至B 地,再沿北偏西45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,则B,C两地的距离为_____千米.(结果保留根号)【答案】6【解析】【分析】作BD⊥AC于D,根据正弦的定义求出BD,根据余弦的定义求出BC.【详解】解:作BD⊥AC于D,在Rt△ABD中,sin∠DAB=∴BD=AB•sin∠DAB=在Rt△CBD中,cos∠CBD=∴BC==(千米),故答案为:.【点睛】本题考查的是解直角三角形的应用﹣方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.17.如图,正方形ABCD中,AB=6,E是CD的中点,将△ADE沿AE翻折至△AFE,连接CF,则CF的长度是_____.【答案】【解析】【分析】连接DF交AE于G,依据轴对称的性质以及三角形内角和定理,即可得到∠AGD=∠DFC=90°,再根据面积法即可得出DG=,最后判定△ADG≌△DCF,即可得到CF=DG=.【详解】解:如图,连接DF交AE于G,由折叠可得,DE=EF,又∵E是CD的中点,∴DE=CE=EF,∴∠EDF=∠EFD,∠ECF=∠EFC,又∵∠EDF+∠EFD+∠EFC+∠ECF=180°,∴∠EFD+∠EFC=90°,即∠DFC=90°,由折叠可得AE⊥DF,∴∠AGD=∠DFC=90°,又∵ED=3,AD=6,∴Rt△ADE中,又∵∴DG=∵∠DAG+∠ADG=∠CDF+∠ADG=90°,∴∠DAG=∠CDF,又∵AD=CD,∠AGD=∠DFC=90°,∴△ADG≌△DCF(AAS),∴CF=DG=,故答案为:.【点睛】本题主要考查了正方形的性质,折叠的性质以及全等三角形的判定与性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.甲、乙两车从A地出发,匀速驶向B地,甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.给出下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有_____.(把你认为正确结论的序号都填上)【答案】①②③【解析】【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【详解】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故答案为:①②③.【点睛】本题考查一次函数的应用,主要是以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.三、解答题:(本大题共10小题,共76分,把解答过程写在答题卷相相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.计算:|1﹣|+2﹣2﹣2sin60°【答案】-【解析】【分析】本题涉及绝对值、负指数幂、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:原式【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角的三角函数值等考点的运算.20.解不等式组:【答案】2≤x<4.5【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式2x﹣1≥x+1,得:x≥2,解不等式x﹣1<,得:x<4.5,则不等式组的解集为2≤x<4.5.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.一只不透明的口袋里装有1个红球、1个黄球和若干个白球,这些球除颜色外其余都相同,搅匀后从中任意摸出一个是白球的概率为(1)试求袋中白球的个数;(2)搅匀后从中任意摸出1个球(不放回),再从余下的球中任意摸出1个球,试用画树状图或列表格的方法,求两次摸出的2个球恰好是1个白球、1个红球的概率,【答案】(1)2(2)【解析】【分析】(1)设袋中白球的个数有x个,根据概率公式列出算式,再求解即可;(2)根据题意先画出树状图得出所有等情况数和两次摸出的2个球恰好是1个白球、1个红球的情况数,然后根据概率公式求解即可.【详解】解:(1)设袋中白球的个数有x个,根据题意得:解得:x=2,答:袋中白球的有2个;(2)根据题意画图如下:共有12种等可能的结果,其中摸出两个球恰好是1个白球、1个红球占4种,所以两次摸出的2个球恰好是1个白球、1个红球的概率是【点睛】本题考查了利用列表与树状图求概率的方法:先通过列表或树状图展示所有等可能的结果数n,再找出其中某事件所占有的结果数m,然后根据概率的概念求出这个事件的概率P=.22.在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE,垂足为F.(1)证明:△ABE≌△DFA;(2)若∠CDF=30°,且AB=3,求AE的长.【答案】(1)证明见解析(2)6【解析】【分析】(1)根据矩形性质得出∠B=90°,AD=BC,AD∥BC,求出∠DAF=∠AEB,AD=AE,∠AFD=∠B=90°,根据AAS证出三角形全等即可.(2)根据全等三角形性质得出AB=DF=3,AE=AD,进而解答即可.【详解】证明:(1)∵四边形ABCD是矩形,∴∠B=90°,AD=BC,AD∥BC,∴∠DAF=∠AEB,∵AE=BC,∴AD=AE,∵DF⊥AE,∴∠AFD=∠B=90°,在△ABE和△DFA中∴△ABE≌△DFA(AAS).(2):∵△ABE≌△DFA,∠CDF=30°,AB=3,∴AB=DF=3,AE=AD,∴AE=2AB=6【点睛】本题考查了矩形的性质,全等三角形的性质和判定,勾股定理,解直角三角形的应用,主要考查学生的推理能力和计算能力.23.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【答案】50;28;8【解析】【分析】1)用B组的人数除以B组人数所占的百分比,即可得这次被调查的同学的人数,利用A组的人数除以这次被调查的同学的人数即可求得m的值,用总人数减去A、B、E的人数即可求得a+b的值;(2)先求得C组人数所占的百分比,乘以360°即可得扇形统计图中扇形的圆心角度数;(3)用总人数1000乘以每月零花钱的数额在范围的人数的百分比即可求得答案.【详解】解:(1)50,28,8;(2)(1-8%-32%-16%-4%)× 360°=40%× 360°=144°.即扇形统计图中扇形C的圆心角度数为144°;(3)1000×=560(人). 即每月零花钱的数额x元在60≤x<120范围的人数为560人.【点睛】本题考核知识点:统计图表. 解题关键点:从统计图表获取信息,用样本估计总体.24.某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?【答案】(1)每个篮球和的售价为100元,每个足球的售价为120元;(2)25.【解析】试题分析:(1)设每个篮球和每个足球的售价分别为x元,y元,根据题意列出方程组,求出方程组的解即可;(2)设篮球购买a个,则足球购买(50﹣a)个,根据题意列出不等式,求出不等式的解集即可确定出最多购买的足球.试题解析:(1)设每个篮球和每个足球的售价分别为x元,y元,根据题意得:,解得:,答:每个篮球和的售价为100元,每个足球的售价为120元;(2)设足球购买a个,则篮球购买(50﹣a)个,根据题意得:120a+100(50﹣a)≤5500,整理得:20a≤500,解得:a≤25.答:最多可购买25个足球.25.如图,反比例函数y=(x>0,k是常数)的图象经过A(1,3),B(m,n),其中m>1.过点B作y 轴的垂线,垂足为C.连接AB,AC,△ABC的面积为.(1)求k的值和直线AB的函数表达式:(2)过线段AB上的一点P作PD⊥x轴于点D,与反比例函数y=(x>0,k是常数)的图象交于点E,连接OP,OE,若△POE的面积为1,求点P的坐标.【答案】(1)k=3,y=﹣x+(2)(2,)或(5,1)【解析】【分析】(1)根据待定系数法即可求得k的值,得到反比例函数的解析式,把B点代入得到n=,根据三角形ABC 的面积即可求得B点的坐标,然后根据待定系数法求得直线AB的解析式;(2)设P点的坐标为,则根据△POE的面积为1得出解方程即可求得.【详解】解:(1)∵反比例函数(x>0,k是常数)的图象经过A(1,3),∴k=1×3=3,∴反比例函数为y,∵反比例函数(x>0,k是常数)的图象经过B(m,n),∴n=,∵△ABC的面积为.∴解得m=6,∴∴设直线AB的解析式为y=ax+b,∴解得∴直线AB的解析式为(2)设P点的坐标为,则∵△POE的面积为1,∴解得x=2或5,∴或(5,1).【点睛】本题考查反比例函数与一次函数的交点问题,待定系数法以及三角形面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.26.如图,以△ABC的BC边上一点O为圆心的圆,经过A、C两点,与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F.AB=BF,CF=4,DF=.(1)求证:AB是⊙O的切线;(2)求⊙O的半径r;(3)设点P是BA延长线上的一个动点,连接DP交CF于点M,交弧AC于点N(N与A、C不重合).试问DM•DN是否为定值?如果是,求出该定值;如果不是.请说明理由.【答案】(1)证明见解析(2)3(3)18【解析】【分析】(1)连接OA,OD,由点D为CE的下半圆弧的中点,证得∠EOD=90°,再证∠BAF=∠BFA=∠DFO,由∠OAD=∠ODA可证得∠BAO=90°,可推出结论;(2)设⊙O的半径为r,在Rt△OFD中,利用勾股定理可求出半径r;(3)连接CN,CD,求出DC的长度,证△DCM∽△DNC,利用相似三角形对应边的比相等,可证得DM•DN =DC2,因为DC的长度已知,所以可知DM•DN为定值,并可求出其值.【详解】(1)证明:如图1,连接OA,OD,∵D为为CE下半圆弧的中点,EC为⊙O直径,∴=,∴∵OA=OD,∴∠OAD=∠ODA,又∵BA=BF,∴∠BAF=∠BFA=∠DFO,∴∠BAF+∠OAD=∠DFO+∠ODA=90°,∴OA⊥AB,∴AB是⊙O的切线;(2)设⊙O的半径为r,由(1)知,∠EOD=90°,在Rt△OFD中,OD=r,OF=4﹣r,∴解得,r1=1(舍去),r2=3,∴⊙O半径为3;(3)如图2,连接CN,CD,在Rt△OCD中,OC=OD=r=3,∵=,∴∠ECD=∠DNC,又∵∠CDN=∠CDN,∴△DCM∽△DNC,∴∴DM•DN=DC2,∵∴DM•DN为定值,该定值为18.【点睛】本题考查了切线的判定定理,圆的有关性质,勾股定理,相似三角形的判定与性质等,解题的关键是第(3)问能够由结论进行猜想,通过作辅助线构造相似,并加以证明.27.如图,在四边形ABCD中,AB∥DC,CB⊥AB.AB=16cm,BC=6cm,CD=8cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2cm/s.点P和点Q同时出发,设运动的时间为t(s),0<t<5.(1)用含t的代数式表示AP;(2)当以点A.P,Q为顶点的三角形与△ABD相似时,求t的值;(3)当QP⊥BD时,求t的值.【答案】(1)10﹣2t(2)当t=或t=时,当以点A.P,Q为顶点的三角形与△ABD相似(3)当t=s 时,PQ⊥BD【解析】【分析】(1)如图作DH⊥AB于H则四边形DHBC是矩形,利用勾股定理求出AD的长即可解决问题;(2)根据相似三角形的性质列方程即可得到结论;(3)当PQ⊥BD时,∠PQN+∠DBA=90°,∠QPN+∠PQN=90°,推出∠QPN=∠DBA,推出tan∠QPN由此构建方程即可解决问题.【详解】解:(1)如图作DH ⊥AB 于H ,则四边形DHBC 是矩形,∴CD =BH =8,DH =BC =6,∴AH =AB ﹣BH =8,由题意AP =AD ﹣DP =10﹣2t .(2)当以点A .P ,Q 为顶点的三角形与△ABD 相似时, ∴或 ∴或 解得:t =或t =, ∴当t =或t =时,当以点A .P ,Q 为顶点的三角形与△ABD 相似; (3)当PQ ⊥BD 时,∠PQN+∠DBA =90°,∵∠QPN+∠PQN =90°,∴∠QPN =∠DBA ,∴tan ∠QPN ∴解得t =,经检验:t =是分式方程的解, ∴当t =s 时,PQ ⊥BD .【点睛】本题考查了相似三角形的性质,矩形的判定和性质,解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形.28.如图1,抛物线C 1:y =x 2﹣ax 与C 2=﹣x 2+bx 相交于点O 、C ,C 1与C 2分别交x 轴于点B 、A ,且B 为线段AO的中点.(1)点A的坐标为(,),点B的坐标为(,),的值为;(2)若OC⊥AC,求△OAC的面积;(3)在(2)的条件下,设抛物线C2的对称轴为l,顶点为M(如图2),点E在抛物线C2上点O与点M 之间运动,四边形OBCE的面积是否存在最大值?若存在,求出面积的最大值和点E的坐标;若不存在,请说明理由.【答案】(1)a,0,b,0,(2)(3)【解析】【分析】(1)由两抛物线解析式可分别用a和b表示出A、B两点的坐标,利用B为OA的中点可得到a和b之间的关系式;(2)由抛物线解析式可先求得C点坐标,过C作CD⊥x轴于点D,可证得△OCD∽△CAD,由相似三角形的性质可得到关于a的方程,可求得OA和CD的长,可求得△OAC的面积;(3)设出E点坐标,则可表示出△EOB的面积,过点E作x轴的平行线交直线BC于点N,可先求得BC的解析式,则可表示出EN的长,进一步可表示出△EBC的面积,则可表示出四边形OBCE的面积,利用二次函数的性质可求得其最大值,及E点的坐标.【详解】解:(1)在y=x2﹣ax中,当y=0时,x2﹣ax=0,x1=0,x2=a,∴B(a,0),y=﹣x2+bx中,当y=0时,﹣x2+bx=0,x1=0,x2=b,∴A(b,0),∵B为OA的中点,∴b=2a,∴故答案为:a,0,b,0,;(2)联立两抛物线解析式可得,消去y整理可得2x2﹣3ax=0,解得时,∴过C作CD⊥x轴于点D,如图1,∴,∵∠OCA=90°,∴△OCD∽△CAD,∴∴CD2=AD•OD,即解得∴a1=0(舍去),(舍去),∴OA=2a=,CD=1,∴(3)设则设直线BC的解析式为y=kx+b,∴∴直线BC的解析式为∴∴∴S四边形OBCE=S△OBE+S△EBC,∵,∴当m=时,四边形OBCE的面积有最大值,最大值是,当m=时,∴,四边形OBCE的面积有最大值,最大值是.【点睛】本题为二次函数的综合应用,涉及待定系数法、相似三角形的判定和性质、轴对称的性质、三角形的面积、二次函数的性质及方程思想等知识.在(1)中分别表示出A、B的坐标是解题的关键,在(2)中求得C点坐标,利用相似三角形的性质求得a的值是解题的关键,在(3)中用E点坐标分别表示出△OBE和△EBC的面积是解题的关键.。
2019年5月苏州市张家港市中考数学模拟试卷含答案解析一、选择题:(本大题共17小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)舌尖上的浪费让人触目惊心!据统计,中国每年浪费的粮食总量约为50000000吨,把50000000用科学记数法表示为()A.5×107B.50×106C.5×106D.0.5×1082.(3分)下列计算正确的是()A.(﹣2a)2=2a2B.a6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a•a2=a23.(3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A.B.C.D.4.(3分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人5.(3分)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12 B.15 C.18 D.216.(3分)如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=()[来源:学§科§网]A.80° B.50° C.40° D.20°7.(3分)如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70° B.44° C.34° D.24°8.(3分)对于二次函数y=(x﹣3)2﹣4的图象,给出下列结论:①开口向上;②对称轴是直线x=﹣3;③顶点坐标是(﹣3,﹣4);④与x轴有两个交点.其中正确的结论是()A.①② B.①④ C.②③ D.③④9.(3分)如图,在水平地面上有一幢房屋BC与一棵树DE,在地面观测点A处测得屋顶C与树梢D的仰角分别是45°与60°,∠CAD=60°,在屋顶C处测得∠DCA=90°.若房屋的高BC=6米,则树高DE的长度为()A.3 B.6 C.3 D.610.(3分)如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是()A.B.C.D.12.(3分)分解因式:2a2﹣8= .13.(3分)分式方程+1=的解是.14.(3分)已知关于x的一元二次方程x2+mx+1=0的一个根为2,则另一个根是.15.(3分)某公司25名员工年薪的具体情况如下表:则该公司全体员工年薪的中位数比众数多万元.16.(3分)如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O逆时针旋转120°后得到△A1B1O,则点B1的坐标为.17.(3分)如图,已知⊙C的半径为3,圆外一定点O满足OC=5,点P为⊙C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值为.18.(3分)如图,长方形纸片ABCD中,AB=4,将纸片折叠,折痕的一个端点F在边AD上,另一个端点G在边BC上,若顶点B的对应点E落在长方形内部,E到AD的距离为1,BG=5,则AF的长为.三、解答题(本大题共10小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(5分)计算:|﹣3|++()﹣2﹣()0.20.(5分)解不等式组.,其中x=.21.(6分)先化简,再求值:22.(6分)如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数y=(k >0)的图象经过BC边的中点D(3,1).(1)求这个反比例函数的表达式;(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E在这个函数的图象上.求OF的长.23.(8分)为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列问题:(1)在表中:m= ,n= ;(2)补全频数分布直方图;(3)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A、C两组学生的概率是多少?并列表或画树状图说明.24.(8分)已知:如图,在Rt△ACB中,∠ACB=90°,点D是AB的中点,点E是CD的中点,过点C作CF∥AB 交AE的延长线于点F.(1)求证:△ADE≌△FCE;(2)若∠DCF=120°,DE=2,求BC的长.25.(8分)甲、乙两台智能机器人从同一地点出发,沿着笔直的路线行走了450cm.甲比乙先出发,并且匀速走完全程,乙出发一段时间后速度提高为原来的2倍.设甲行走的时间为x(s),甲、乙行走的路程分别为y1(cm)、y2(cm),y1、y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙比甲晚出发s,乙提速前的速度是每秒cm,m= ,n= ;(2)当x为何值时,乙追上了甲?(3)在乙提速后到甲、乙都停止的这段时间内,当甲、乙之间的距离不超过20cm时,求x的取值范围.26.(10分)如图,在等腰△ABC中,AB=BC,以AB为直径的⊙O与AC相交于点D,过点D作DE⊥BC交AB延长线于点E,垂足为点F.(1)证明:DE是⊙O的切线;(2)若BE=4,∠E=30°,求由、线段BE和线段DE所围成图形(阴影部分)的面积,(3)若⊙O的半径r=5,sinA=,求线段EF的长.27.(10分)如图,四边形OABC的顶点A、C分别在x、y轴的正半抽上,点D是OA上的一点,OC=OD=4,OA=6,点B的坐标为(4,4).动点E从点C出发,以每秒个单位长度的速度沿线段CD向点D运动,过点E作BC 的垂线EF交线段BC于点F,以线段EF为斜边向右作等腰直角△EFG.设点E的运动时间为t秒(0≤t≤4).(1)点G的坐标为(,)(用含t的代数式表示)(2)连接OE、BG,当t为何值时,以O、C、E为顶点的三角形与△BFG相似?(3)设点E从点C出发时,点E、F、G都与点C重合,点E在运动过程中,当△ABG 的面积为时,求点E运动的时间t的值,并直接写出点G从出发到此时所经过的路径长(即线段AG的长).28.(10分)如图1,抛物线y=ax2+(a+2)x+2(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.(1)求a的值;(2)若PN:MN=1:3,求m的值;(3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O逆时针旋转得到OP2,旋转角为α(0°<α<90°),连接AP2、BP2,求AP2+BP2的最小值.二、填空题:(本大题共1小题,每小题3分,共24分.把你的答案填在答题卷相应的横线上)11.(3分)若代数式有意义,则x满足的条件是.参考答案与试题解析一、选择题:(本大题共17小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)舌尖上的浪费让人触目惊心!据统计,中国每年浪费的粮食总量约为50000000吨,把50000000用科学记数法表示为()A.5×107B.50×106C.5×106D.0.5×108【解答】解:把50000000用科学记数法表示为5×107,故选:A.2.(3分)下列计算正确的是()A.(﹣2a)2=2a2B.a6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a•a2=a2【解答】解:A、(﹣2a)2=4a2,选项错误;B、a6÷a3=a3,选项错误;C、正确;D、a•a2=a3,选项错误.故选:C.3.(3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A.B.C.D.【解答】解:B是轴对称图形又是中心对称图形,故选:B.4.(3分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人【解答】解:所有学生人数为 100÷20%=500(人);所以乘公共汽车的学生人数为 500×40%=200(人).故选:D.5.(3分)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12 B.15 C.18 D.21【解答】解:由题意可得,×100%=20%,解得,a=15.故选:B.6.(3分)如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=()A.80° B.50° C.40° D.20°【解答】解:∵AB∥CD,∴∠BCD=∠ABC=40°,∴∠BOD=2∠BCD=80°.故选:A.7.(3分)如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70° B.44° C.34° D.24°【解答】解:∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选:C.8.(3分)对于二次函数y=(x﹣3)2﹣4的图象,给出下列结论:①开口向上;②对称轴是直线x=﹣3;③顶点坐标是(﹣3,﹣4);④与x轴有两个交点.其中正确的结论是()A.①② B.①④ C.②③ D.③④【解答】解:∵二次函数y=(x﹣3)2﹣4=x2﹣6x+5,∴a=1>0,该抛物线开口向上,故①正确,对称轴是直线x=3,故②错误,顶点坐标是(3,﹣4),故③错误,△=62﹣4×1×5=16>0,则抛物线与x轴有两个交点,故④正确,故选:B.9.(3分)如图,在水平地面上有一幢房屋BC与一棵树DE,在地面观测点A处测得屋顶C与树梢D的仰角分别是45°与60°,∠CAD=60°,在屋顶C处测得∠DCA=90°.若房屋的高BC=6米,则树高DE的长度为()A.3 B.6 C.3 D.6【解答】解:如图,∵在Rt△ABC中,∠ABC=90°,∠CAB=45°,BC=6m,∴AC=BC=6m;∵在Rt△ACD中,∠DCA=90°,∠CAD=60°,∴∠ADC=30°,∴AD=2AC=12米;∵在Rt△DEA中,∠AED=90°,∠EAD=60°,∴DE=AD•sin60°=6米,答:树高DE的长度为6米.故选:D.10.(3分)如图,在等腰直角△ABC 中,∠C=90°,D 为BC 的中点,将△ABC 折叠,使点A 与点D 重合,EF 为折痕,则sin ∠BED 的值是( )A .B .C .D .【解答】解:∵△DEF 是△AEF 翻折而成,∴△DEF ≌△AEF ,∠A=∠EDF ,∵△ABC 是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF ,设CD=1,CF=x ,则CA=CB=2,∴DF=FA=2﹣x ,∴在Rt △CDF 中,由勾股定理得,CF 2+CD 2=DF 2,即x 2+1=(2﹣x )2,解得:x=,∴sin ∠BED=sin ∠CDF==.故选:B .12.(3分)分解因式:2a2﹣8= 2(a+2)(a﹣2).【解答】解:2a2﹣8=2(a2﹣4),=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).13.(3分)分式方程+1=的解是x=﹣1 .【解答】解:两边都乘以x﹣1,得:x+x﹣1=﹣3,解得:x=﹣1,[来源:]检验:当x=﹣1时,x﹣1=﹣2≠0,所以原分式方程的解为x=﹣1,故答案为:x=﹣1.14.(3分)已知关于x的一元二次方程x2+mx+1=0的一个根为2,则另一个根是.【解答】解:设方程的另一个根为t,根据题意得2•t=1,解得t=.故答案为:.15.(3分)某公司25名员工年薪的具体情况如下表:则该公司全体员工年薪的中位数比众数多0.5 万元.【解答】解:一共有25个数据,将这组数据从小到大的顺序排列后,处于中间位置的那个数是4万元,那么由中位数的定义可知,这组数据的中位数是4万元;众数是一组数据中出现次数最多的数,在这一组数据中3.5万元是出现次数最多的,故众数是3.5万元;所以中位数比众数多4﹣3.5=0.5万元.故答案为:0.5.16.(3分)如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O逆时针旋转120°后得到△A1B1O,则点B1的坐标为(﹣,).【解答】解:过B1作B1C⊥y轴于C,∵把△ABO绕点O逆时针旋转120°后得到△A1B1O,∴∠BOB1=120°,OB1=OB=,∵∠BOC=90°,∴∠COB1=30°,∴B1C=OB1=,OC=,∴B1(﹣,).故答案为:(﹣,).17.(3分)如图,已知⊙C的半径为3,圆外一定点O满足OC=5,点P为⊙C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值为 4 .【解答】解:如图,连接OP,PC,OC,∵OP+PC≥OC,OC=5,PC=3,∴当点O,P,C三点共线时,OP最短,如图,∵OA=OB,∠APB=90°,∴AB=2OP,当O,P,C三点共线时,∵OC=5,CP=3,∴OP=5﹣3=2,∴AB=2OP=4,故答案为:4.18.(3分)如图,长方形纸片ABCD中,AB=4,将纸片折叠,折痕的一个端点F在边AD上,另一个端点G在边BC上,若顶点B的对应点E落在长方形内部,E到AD的距离为1,BG=5,则AF的长为.【解答】解:设EH与AD相交于点K,过点E作MN∥CD分别交AD、BC于M、N,∵E到AD的距离为1,∴EM=1,EN=4﹣1=3,在R t△ENG中,GN===4,∵∠GEN+∠KEM=180°﹣∠GEH=180°﹣90°=90°,∠GEN+∠NGE=180°﹣90°=90°,∴∠KEM=∠NGE,又∵∠ENG=∠KME=90°,∴△GEN∽△EKM,∴==,即==,解得EK=,KM=,∴KH=EH﹣EK=4﹣=,∵∠FKH=∠EKM,∠H=∠EMK=90°,∴△FKH∽△EKM,∴=,即=,解得FH=,∴AF=FH=.故答案为.三、解答题(本大题共10小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(5分)计算:|﹣3|++()﹣2﹣()0.【解答】解:原式=3+3+4﹣1=9.20.(5分)解不等式组.【解答】解:解不等式2x﹣1≤5,可得:x≤3;解不等式,可得:x>﹣2,所以不等式组的解集为:﹣2<x≤3..,其中x=.21.(6分)先化简,再求值:【解答】解:原式=•=,[来源:]当x=时,原式=.22.(6分)如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数y=(k >0)的图象经过BC边的中点D(3,1).(1)求这个反比例函数的表达式;(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E在这个函数的图象上.求OF的长.【解答】解:(1)把(3,1)代入y=中,得k=3,则反比例函数解析式为y=;(2)∵点D为BC的中点,∴BC=2CD=2,∵△ABC与△EFG成中心对称,∴DF=BC=2,GE=AC=1,在y=中,当x=1时,y=3,则OF=OG﹣GF=3﹣2=1.23.(8分)为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列问题:(1)在表中:m= 120 ,n= 0.3 ;(2)补全频数分布直方图;(3)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A、C两组学生的概率是多少?并列表或画树状图说明.【解答】解:(1)∵被调查的总人数为30÷0.1=300,∴m=300×0.4=120、n=90÷300=0.3,故答案为:120、0.3;(2)补全频数分布直方图如下:(3)画树状图如下:由树状图可知,共有12种等可能结果,其中抽中A﹑C两组同学的有2种结果,∴抽中A﹑C两组同学的概率为=.24.(8分)已知:如图,在Rt△ACB中,∠ACB=90°,点D是AB的中点,点E是CD的中点,过点C作CF∥AB 交AE的延长线于点F.(1)求证:△ADE≌△FCE;(2)若∠DCF=120°,DE=2,求BC的长.【解答】(1)证明:∵点E是CD的中点,∴DE=CE.∵AB∥CF,∴∠BAF=∠AFC.在△ADE与△FCE中,∵,∴△ADE≌△FCE(AAS);(2)解:由(1)得,CD=2DE,∵DE=2,∴CD=4.∵点D为AB的中点,∠ACB=90°,∴AB=2CD=8,AD=CD=AB.∵AB∥CF,∴∠BDC=180°﹣∠DCF=180°﹣120°=60°,∴∠DAC=∠ACD=∠BDC=×60°=30°,∴BC=AB=×8=4.25.(8分)甲、乙两台智能机器人从同一地点出发,沿着笔直的路线行走了450cm.甲比乙先出发,并且匀速走完全程,乙出发一段时间后速度提高为原来的2倍.设甲行走的时间为x(s),甲、乙行走的路程分别为y1(cm)、y2(cm),y1、y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙比甲晚出发15 s,乙提速前的速度是每秒15 cm,m= 31 ,n= 45 ;(2)当x为何值时,乙追上了甲?(3)在乙提速后到甲、乙都停止的这段时间内,当甲、乙之间的距离不超过20cm时,求x的取值范围.【解答】解:(1)由题意可知,当x=15时,y=0,故乙比甲晚出发15秒;当x=15时,y=0;当x=17时,y=30;故乙提速前的速度是(cm/s);∵乙出发一段时间后速度提高为原来的2倍,∴乙提速后速度为30cm/s,故提速后乙行走所用时间为:(s),∴m=17+14=31(s)n=;故答案为:15;15;31;45;(2)设OA段对应的函数关系式为y=kx,∵A(31,310)在OA上,∴31k=310,解得k=10,∴y=10x.设BC段对应的函数关系式为y=k1x+b,∵B(17,30)、C(31,450)在BC上,∴,解得,[来源:Z§xx§]∴y=30x﹣480,由乙追上了甲,得10x=30x﹣480,解得x=24.答:当x为24秒时,乙追上了甲.(3)若y1﹣y2≤20,即10x﹣30x+480≤20,解得:23≤x≤24,若y2﹣y1≤20,即30x﹣480﹣10x≤20,解得:24≤x≤25,若450﹣y1≤20,即450﹣10x≤20,解得:43≤x≤45,综上所述,当23≤x≤25或43≤x≤45时,甲、乙之间的距离不超过20cm.26.(10分)如图,在等腰△ABC中,AB=BC,以AB为直径的⊙O与AC相交于点D,过点D作DE⊥BC交AB延长线于点E,垂足为点F.(1)证明:DE是⊙O的切线;(2)若BE=4,∠E=30°,求由、线段BE和线段DE所围成图形(阴影部分)的面积,(3)若⊙O的半径r=5,sinA=,求线段EF的长.【解答】解:(1)如图,连接BD、OD,∵AB是⊙O的直径,∴∠BDA=90°,∵BA=BC,∴AD=CD,又∵AO=OB,∴OD∥BC,∵DE⊥BC,∴OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为x,则OB=OD=x,在Rt△ODE中,OE=4+x,∠E=30°,∴=,解得:x=4,∴DE=4,S△ODE=×4×4=8,S扇形ODB==,则S阴影=S△ODE﹣S扇形ODB=8﹣;(3)在Rt△ABD中,BD=ABsinA=10×=2,∵DE⊥BC,∴Rt△DFB∽Rt△DCB,∴=,即=,∴BF=2,∵OD∥BC,∴△EFB∽△EDO,∴=,即=,∴EB=,∴EF==.27.(10分)如图,四边形OABC的顶点A、C分别在x、y轴的正半抽上,点D是OA上的一点,OC=OD=4,OA=6,点B的坐标为(4,4).动点E从点C出发,以每秒个单位长度的速度沿线段CD向点D运动,过点E作BC 的垂线EF交线段BC于点F,以线段EF为斜边向右作等腰直角△EFG.设点E的运动时间为t秒(0≤t≤4).(1)点G的坐标为(,4﹣)(用含t的代数式表示)(2)连接OE、BG,当t为何值时,以O、C、E为顶点的三角形与△BFG相似?(3)设点E从点C出发时,点E、F、G都与点C重合,点E在运动过程中,当△ABG 的面积为时,求点E运动的时间t的值,并直接写出点G从出发到此时所经过的路径长(即线段AG的长).【解答】解:(1)由题可得,△CDO和△CEF均为等腰直角三角形,∵CE=,∴CF=EF=t,∴点G的横坐标为CF+EF=t+t=,纵坐标为CO﹣EF=4﹣,∴G(,4﹣),故答案为:,4﹣;(2)∵CE=t,∴EF=CF=t,FG=t,BF=4﹣t,∵∠OCE=∠BFG=45°,①若△OCE∽△BFG,则=,即,解得t=2;②若△ECO∽△BFG,则,即,解得t=2﹣2;综上所述,当t=2或2﹣2时,以O、C、E为顶点的三角形与△BFG相似;(3)如图,过点G作GH∥x轴,交AB于H,设直线AB的解析式为y=kx+b,则,解得,∴y=﹣2x+12,∵G(,4﹣),将y=4﹣t代入y=﹣2x+12,可得x=4+,∴H(4+,4﹣t),∴GH=|4+﹣|,∴S△ABG=GH×BD=|4+﹣|×4=2|4﹣|,又∵△ABG 的面积为,∴2|4﹣|=,解得t=或t=(舍去),此时,点G的坐标为(,),CG==.故答案为:.28.(10分)如图1,抛物线y=ax2+(a+2)x+2(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.(1)求a的值;(2)若PN:MN=1:3,求m的值;(3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O逆时针旋转得到OP2,旋转角为α(0°<α<90°),连接AP2、BP2,求AP2+BP2的最小值.【解答】解:(1)∵A(4,0)在抛物线上,∴0=16a+4(a+2)+2,解得a=﹣;(2)由(1)可知抛物线解析式为y=﹣x2+x+2,令x=0可得y=2,∴OB=2,∵OP=m,∴AP=4﹣m,∵PM⊥x轴,∴△OAB∽△PAN,[来源:学科网]∴=,即=,∴PN=(4﹣m),∵M在抛物线上,∴PM=﹣m2+m+2,∵PN:MN=1:3,∴PN:PM=1:4,∴﹣m2+m+2=4×(4﹣m),解得m=3或m=4(舍去);(3)在y轴上取一点Q,使=,如图,由(2)可知P1(3,0),且OB=2,∴=,且∠P2OB=∠QOP2,∴△P2OB∽△QOP2,∴=,∴当Q(0,)时QP2=BP2,∴AP2+BP2=AP2+QP2≥AQ,∴当A、P2、Q三点在一条线上时,AP2+QP2有最小值,∵A(4,0),Q(0,),∴AQ==,即AP2+BP2的最小值为.二、填空题:(本大题共1小题,每小题3分,共24分.把你的答案填在答题卷相应的横线上)11.(3分)若代数式有意义,则x满足的条件是x≥2 .【解答】解:依题意得:x﹣2≥0,解得x≥2.故答案是:x≥2.第5题图 中考数学模拟试卷一、选择题:(本大题共有8个小题,每小题3分,共24分) 1.计算-2的相反数是 ( ▲ ) A .-2 B .2C .-12 D .12【命题意图】考查相反数的概念,让学生区别倒数、相反数、绝对值的不同,简单,注重基础。