大学物理复习资料
- 格式:pdf
- 大小:812.75 KB
- 文档页数:10
一、填空题1.杨氏双缝的间距为0.3mm ,双缝距离屏幕1500mm ,若第四到第七明纹距离为7.5mm ,则入射光波长为500 nm ;若入射光的波长为600nm ,则相邻两明纹的间距 3 mm 。
2. 单色光在折射率为n=1.4的介质中传播的几何路程长度为30m ,则相当于该光在真空中传播的路程长度为_42 m _____。
4. 已知玻璃的折射率为1.5 ,在其上面镀一层氟化镁(MgF 2)薄膜(n =1.38),放在空气中,白光垂直照射到膜的表面,欲使反射光中波长为550nm 的光相消,此膜的最小厚度为42 m 。
6. 波长为λ的单色光照在双缝上,在屏上产生明暗相间的干涉条纹。
从两缝S 1和S 2到屏上第二级明纹中心点P 的两条光线S 2P 和S 1P 的光程差为42 m ,位相差Δφ=42 m 。
2. 单色平行光垂直入射于单缝上,观察夫琅禾费衍射,若屏上P 点处为第5级暗纹,则单缝处波面相应地可划分为 10 个半波带。
3. 单色平行光垂直入射于单缝上,观察夫琅禾费衍射,若屏上P 点处为第3级明纹,则单缝处波面相应地可划分为 ___7__个半波带。
1. 一束强度为I 0的自然光垂直穿过两个叠合在一起、偏振化方向成45゜角的理想偏振片,则透射光强为__1/4___I 02.光的 干涉 和 衍射 现象反映了光的波动性质.光 偏振 现象说明光波是横波. 1、两个大小完全相同的带电金属小球,电量分别为2q 和-1q ,已知它们相距为r 时作用力为F ,则将它们放在相距3r 位置同时其电量均减半,相互作用力大小为____1/36________F 。
2、电场强度可以叙述为电场中某一点上单位正电荷所受的_____电场力___________;电场中某一点的电势可以叙述为:单位正电荷在该点所具有的__电势能_________。
13、导体在__电场_______作用下产生电荷重新分布的现象叫做__静电感应___________;而电介质在外电场作用下产生极化面电荷的现象叫做__电介质的极化_________。
《大学物理》复习题及答案《大学物理》复习题及答案一:填空题1: 水平转台可绕通过中心的竖直轴匀速转动.角速度为?,台上放一质量为m的物体,它与平台之间的摩擦系数为?,m在距轴R处不滑动,则?满足的条件是??; 2: 质量为m的物体沿x轴正方向运动,在坐标x处的速度大小为kx,则此时物体所受力的大小为F?。
3: 质点在xoy平面内运动,任意时刻的位置矢量为r?3sin?ti?4cos?tj,其中?是正常数。
速度v?,速率v?,运动轨迹方程;物体从x?x1运动到x?x2所需的时间为4: 在合外力F?3?4x(式中F以牛顿,x以米计)的作用下,质量为6kg的物体沿x 轴运动。
如果t?0时物体的状态为,速度为x0?0,v0?0,那么物体运动了3米时,其加速度为。
25:一质点沿半径为米的圆周运动,其转动方程为??2?t。
质点在第1s 末的速度为,切向加速度为6: 一质量为m?2kg的质点在力F?4ti?(2?3t)j(N)作用下以速度v0?1j(m?s?1)运动,若此力作用在质点上的时间为2s,则此力在这2s内的冲量I?在第2s末的动量P? ;质点7:一小艇原以速度v0行驶,在某时刻关闭发动机,其加速度大小与速率v成正比,但方向相反,即a??kv,k为正常数,则小艇从关闭发动机到静止这段时间内,它所经过的路程?s?,在这段时间内其速率v与时间t的关系为v? 8:两个半径分别为R1和R2的导体球,带电量都为Q,相距很远,今用一细长导线将它们相连,则两球上的带电量Q1?则球心O处的电势UO?,Q2?9:有一内外半径分别为R及2R金属球壳,在距离球心O为R处放一电量为q的点电荷,2.在离球心O为3R处的电场强度大小为E?,电势U? 2210: 空间某一区域的电势分布为U?Ax?By,其中A,B为常数,则场强分布为Ex?为,Ey? ;电势11: 两点电荷等量同号相距为a,电量为q,两电荷连线中点o处场强为;将电量为?q0的点电荷连线中点移到无穷远处电场力做功为12: 在空间有三根同样的长直导线,相互间距相等,各通以同强度同方向的电流,设除了磁相互作用外,其他影响可忽略,则三根导线将13: 一半径为R的圆中通有电流I,则圆心处的磁感应强度为第1页。
j i r )()(t y t x +=大学物理期末复习题力学局部一、填空题:,则质点的速度为,加速度为。
2.一质点作直线运动,其运动方程为221)s m 1()s m 2(m 2t t x --⋅-⋅+=,则从0=t 到s 4=t 时间间隔内质点的位移大小质点的路程。
3.设质点沿x 轴作直线运动,加速度t a )s m 2(3-⋅=,在0=t 时刻,质点的位置坐标0=x 且00=v ,则在时刻t ,质点的速度,和位置。
4.一物体在外力作用下由静止沿直线开场运动。
第一阶段中速度从零增至v,第二阶段中速度从v 增至2v ,在这两个阶段中外力做功之比为。
5.一质点作斜上抛运动〔忽略空气阻力〕。
质点在运动过程中,切向加速度是,法向加速度是 ,合加速度是。
〔填变化的或不变的〕6.质量m =40 kg 的箱子放在卡车的车厢底板上,箱子与底板之间的静摩擦系数为s =,滑动摩擦系数为k =,试分别写出在以下情况下,作用在箱子上的摩擦力的大小和方向.(1)卡车以a = 2 m/s 2的加速度行驶,f =_________,方向_________.(2)卡车以a = -5 m/s 2的加速度急刹车,f =________,方向________.7.有一单摆,在小球摆动过程中,小球的动量;小球与地球组成的系统机械能;小球对细绳悬点的角动量〔不计空气阻力〕.〔填守恒或不守恒〕二、单项选择题:1.以下说法中哪一个是正确的〔〕〔A 〕加速度恒定不变时,质点运动方向也不变 〔B 〕平均速率等于平均速度的大小 〔C 〕当物体的速度为零时,其加速度必为零 〔D 〕质点作曲线运动时,质点速度大小的变化产生切向加速度,速度方向的变化产生法向加速度。
2.质点沿Ox 轴运动方程是m 5)s m 4()s m 1(122+⋅-⋅=--t t x ,则前s 3内它的〔〕 〔A 〕位移和路程都是m 3 〔B 〕位移和路程都是-m 3 〔C 〕位移为-m 3,路程为m 3〔D 〕位移为-m 3,路程为m 53. 以下哪一种说法是正确的〔〕〔A 〕运动物体加速度越大,速度越快〔B 〕作直线运动的物体,加速度越来越小,速度也越来越小〔C 〕切向加速度为正值时,质点运动加快〔D 〕法向加速度越大,质点运动的法向速度变化越快4.一质点在平面上运动,质点的位置矢量的表示式为j i r 22bt at +=〔其中a 、b 为常量〕,则该质点作〔〕〔A 〕匀速直线运动 〔B 〕变速直线运动〔C 〕抛物线运动〔D 〕一般曲线运动5. 用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时,它〔 〕 〔A 〕将受到重力,绳的拉力和向心力的作用〔B 〕将受到重力,绳的拉力和离心力的作用〔C 〕绳子的拉力可能为零〔D 〕小球可能处于受力平衡状态6.功的概念有以下几种说法〔1〕保守力作功时,系统内相应的势能增加〔2〕质点运动经一闭合路径,保守力对质点作的功为零〔3〕作用力和反作用力大小相等,方向相反,所以两者作功的代数和必为零以上论述中,哪些是正确的〔〕〔A 〕〔1〕〔2〕〔B 〕〔2〕〔3〕〔C 〕只有〔2〕〔D 〕只有〔3〕7.质量为m 的宇宙飞船返回地球时,将发动机关闭,可以认为它仅在地球引力场中运动,当它从与地球中心距离为1R 下降到距离地球中心2R 时,它的动能的增量为〔〕〔A 〕2E R mm G ⋅〔B 〕2121E R R R R m Gm -〔C 〕2121E R R R m Gm -〔D 〕222121E R R R R m Gm --8.以下说法中哪个或哪些是正确的〔〕〔1〕作用在定轴转动刚体上的力越大,刚体转动的角加速度应越大。
大学物理实验复习测量误差与数据处理p51.绝对误差表达式(自我感觉就是全微分)例如的绝对误差表达式为2.相对误差:相对误差=绝对误差被测量。
例如:3.算术平均偏差:对一固定量进行多次测量所得各偏差绝对值的算术平均值称为算术平均偏差,公式略,在p10页4.分光镜的调整和折射率的测定1.测量三棱镜顶角的方法:自准法和劈尖干涉法。
自准直法测三棱镜顶角α原理:平行光线分别垂直入射到三棱镜的AB,AC两个反射面,由原路返回的两反射线的方位为T1,T2则:ф=|T2-T1| 或ф=360°-|T2-T1|顶角α=180°-ф对劈尖干涉法存在疑问!!刚体转动惯量的研究1.扭摆的垂直轴上装上载物圆盘,,测出它的转动周期为,将圆柱体放在载物圆盘上,测出此系统的转动周期为,则圆柱体自身转动周期T为导热系数实验p811.改变样品形状,采取一些措施,能否利用本实验装置测量良导体的导热系数?为什么?2.测A,B的厚度使用游标卡尺,只有三位有效数字,为何不用千分尺?3.试根据计算式中各实验测得值的有效数字的位数,指出产生误差的主要因素是什么?4.室温不同测得的值相同吗?为什么?哪个大?5.在测量不良导体的导热系数时,若上下表面热电偶电动势接近稳定但均在缓慢上升,为了缩短系统达到稳定温度的时间,若用红外灯加热,则红外灯的电压应微微降低。
反之应微微升高。
惠斯通电桥测电阻1.比率选择:千欧级选“1”,百欧级选“0.1”,以此类推。
2.电桥的组成部分是哪些?什么是电桥的平衡条件?密立根油滴实验p2161.本书采用统计方法或统计直方图和最大公约数法两种数据处理方法来得出电荷的量子性和电子电荷的。
2.在实验过程中,平行极板加上某一电压值,有些油滴向上运动,有些油滴向下运动,且运动越来越快,还有些油滴运动状况与未加电压时一样,这是什么原因?3.密立根油滴实验平衡测量法要求油滴做匀速运动。
识别是否满足这一条件的简单办法是测油滴通过中央水平刻线上、下两等间距刻线所需的时间是否相等。
第1章质点的运动及牛顿定律一、选择题易1、对于匀速圆周运动下面说法不正确的是()(A)速率不变;(B)速度不变;(C)角速度不变;(D)周期不变。
易:2、对一质点施以恒力,则;()(A)质点沿着力的方向运动;( B)质点的速率变得越来越大;(C)质点一定做匀变速直线运动;(D)质点速度变化的方向及力的方向相同。
易:3、对于一个运动的质点,下面哪种情形是不可能的()(A)具有恒定速率,但有变化的速度;(B)加速度为零,而速度不为零;(C)加速度不为零,而速度为零。
(D) 加速度恒定(不为零)而速度不变。
中:4、试指出当曲率半径≠0时,下列说法中哪一种是正确的()(A) 在圆周运动中,加速度的方向一定指向圆心;(B) 匀速率圆周运动的速度和加速度都恒定不变;(C)物体作曲线运动时,速度方向一定在运动轨道的切线方向,法线分速度恒等于零,因此法问加速度也一定等于零;(D) 物体作曲线运动时,一定有加速度,加速度的法向分量一定不等于零。
难:5、质点沿x方向运动,其加速度随位置的变化关系为:.如在x = 0处,速度,那么x=3m处的速度大小为(A); (B) ; (C) ; (D)。
易:6、一作直线运动的物体的运动规律是,从时刻到间的平 均速度是 (A); (B);(C); (D)。
中7、一质量为m 的物体沿X 轴运动,其运动方程为t x x ωsin 0=,式中0x 、ω均为正的常量,t 为时间变量,则该物体所受到的合力为:( ) (A )、x f 2ω=; (B )、mx f 2ω=; (C )、mx f ω-=; (D )、mx f 2ω-=。
中:8、质点由静止开始以匀角加速度沿半径为R 的圆周运动.如果在某一时刻此质点的总加速度及切向加速度成角,则此时刻质点已转过的角度为 (A); (B) ; (C) ; (D)。
难9、一质量为本10kg 的物体在力f=(120t+40)i (SI )作用下沿一直线运动,在t=0时,其速度v 0=6i 1-⋅s m ,则t=3s 时,它的速度为:(A )10i 1-⋅s m ; (B )66i 1-⋅s m ; (C )72i 1-⋅s m ; (D )4i 1-⋅s m 。
1、矢量的方向,如速度,做曲线运动的加速度,平均加速度等。
2、第一章学过的矢量符号。
如rr∆=∆,rd ds =,n t a a a +=,αr a n =是否正确?3、电场强度和磁感应强度的方向分别是如何规定的?4、所学到的物理量有哪些是状态量,有哪些是过程量。
5、刚体的转动惯量与哪些因素有关?6、同号的点电荷相距L,要使它们的电势能增加一倍,或者要使它们的电势能减少一倍,两电荷之间的距离应该怎么变化?7、对于静电场的高斯定理的描述进行判断:高斯面上的场强与哪些电荷有关,通过高斯面的电场强度通量与哪些电荷有关?8、两个点电荷相距一定的距离,若在这两个点电荷连线的中垂线上电势为零,或者两个点电荷连线的中点的场强为零这两个电荷所带的电荷或者符号应该满足什么关系。
9、下列说法正确的是( )。
A 检验电荷在静电场中某点的电势能越大,则该点的电势就越高;B 静电场中任意两点间的电势差的值,与检验电荷有关;C 静电场中任一点电势的正负与电势零点的选择有关;D 静电场中任意两点间的电势差与电势零点的选择有关。
10、在一条直线上A 、B 、C 三点的电势关系为V A >V B >V C ,若将一负电荷或一正电荷放在B 点,则此电荷将怎样运动?如11、下列哪一种说法对( )。
A 在圆周运动中,加速度的方向一定指向圆心;B 匀速率圆周运动中运动的速度和加速度都恒定不变;C 物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒等于零, 因此其法向加速度也一定等于零;D 物体做曲线运动时,必定有加速度,加速度的法向分量一定不等于零。
12、会计算变力作功,如一质点受力i x F23=(SI),沿着x 轴正向运动,在x=0到x=2m 的过程中,力F 做功为多少?13、质量为m 的质点,以恒速率v 沿图示正三角形ABCA 的方向转动一周,或者沿图示正方形ABCDA 的方向转动一周,作用于A 处质点的冲量大小和方向如何?14、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始下落,在棒摆动到竖直位置的过程中,角速度和角加速度怎样变化? 15、质点组总动量的改变与内力有无关系;(2)质点组总动能的改变与内力有无关系;(3)质点组机械能的改变与保守内力有无关系。
大学物理1 复习资料一、选择题1.电量为q 的粒子在均匀磁场中运动,下列说法正确的是( B )。
(A )只要速度大小相同,所受的洛伦兹力就一定相同;(B )速度相同,带电量符号相反的两个粒子,它们受磁场力的方向相反,大小相等;(C )质量为m ,电量为q 的粒子受洛伦兹力作用,其动能和动量都不变;(D )洛伦兹力总与速度方向垂直,所以带电粒子的运动轨迹必定是圆。
2.载电流为I ,磁矩为P m 的线圈,置于磁感应强度为B 的均匀磁场中, 若P m 与B 方向相同则通过线圈的磁通Φ与线圈所受的磁力矩M 的大小为( B )。
(A )0,==ΦM IBP m ; (B );0,==ΦM IBP m (C )m m BP M IBP ==Φ, ; (D )m m BP M IBP ==Φ, 3.已知空间某区域为匀强电场区,下面说法中正确的是( C )。
(A )该区域内,电势差相等的各等势面距离不等。
(B )该区域内,电势差相等的各等势面距离不一定相等。
(C )该区域内,电势差相等的各等势面距离一定相等。
(D )该区域内,电势差相等的各等势面一定相交。
4.关于高斯定律得出的下述结论正确的是( D )。
(A )闭合面内的电荷代数和为零,则闭合面上任意点的电场强度必为零。
(B )闭合面上各点的电场强度为零,则闭合面内一定没有电荷。
(C )闭合面上各点的电场强度仅有闭合面内的电荷决定。
(D )通过闭合曲面的电通量仅有闭合面内的电荷决定。
5.一带有电荷Q 的肥皂泡在静电力的作用下半径逐渐变大,设在变大的过程中其球心位置不变,其形状保持为球面,电荷沿球面均匀分布,则在肥皂泡逐渐变大的过程中( B )。
(A )始终在泡内的点的场强变小;(B )始终在泡外的点的场强不变;(C )被泡面掠过的点的场强变大; (D )以上说法都不对。
6.电荷线密度分别为21,λλ 的两条均匀带电的平行长直导线,相距为d ,则每条导线上单位长度所受的静电力大小为 (D )。
总加速度:1 .牛顿第一定律:当豆外=0时, V =怛矢量O2 .牛顿第二定律:F = ma =m— dtdPdt期末考试说明第1章质点运动学9分,重点:求导法和积分法,圆周运动切向加速度和法向加速度;第2章质点动力学3分,重点:动量定理、动能定理、变力做功;第3章刚体6分,重点:转动定律、角动量守恒定律、机械能守恒定律;第5章振动17分,重点:旋转矢量法、振动方程、速度方程、加速度方程、振动能量、振动合成。
第6章波动14分,重点:波动方程以及波动方程的三层物理意义、相位差与波程差的关系;大学物理1期末复习提纲第一•章质点运动学主要公式:1.质点运动方程(位矢方程):r(t) = x(t)i + y(t)j + z(t)k(x = x(t)参数方程:y = y(f) T消去f得轨迹方程。
Z — Z(02.速度:v =K,加速度:a = ^dt dt3.平均速度—Ar:V =——,平均加速度:5 =—4.角速度:口 =岑,5.线速度与角速度关系:v 角加速度:/3(a)=—dt =0)r6.切向加速度:a T = — = r(3 ,dt ra =』a;第二章质点动力学主要公式:3.牛顿第三定律(作用力和反作用力定律):F = -F^4.动量定理:I = \ 2 F dt = mAv = m(v2~v{) = AP5.动量守恒定律:当合外力理外力=O,AP = Ocx口16 动能定理:W= -dx = \E k =-m(v22-vf)J*】口 27.机械能守恒定律:当只有保守内力做功时,AE =08.力矩:M = rxF大小:M = Fr sin 0方向:右手螺旋,沿了x产的方向。
9.角动量:L = rxP大小:L = mvr sin 3方向:右手螺旋,沿rxP的方向。
淤质点间发生碰撞:完全弹性碰撞:动量守恒,机械能守恒。
完全非弹性碰撞:动量守恒,机械能不守恒,且具有共同末速度。
一般的非弹性碰撞:动量守恒,机械能不守恒。
大学物理实验复习资料大学物理实验复习资料大学物理实验是物理学专业学生必修的一门课程,通过实验的方式来加深对物理理论的理解和应用。
在这门课程中,学生们将亲自动手操作实验仪器,进行各种实验,从而提高实验技能和科学素养。
为了帮助大家更好地复习这门课程,本文将提供一些有关大学物理实验的复习资料。
1. 实验基础知识在进行大学物理实验之前,我们需要掌握一些实验基础知识。
首先是实验室安全常识,包括实验室的安全规定、常见实验室事故的预防和应急处理等。
其次是实验仪器的基本原理和使用方法,比如万用表、示波器、电源等。
此外,还需要了解一些常用的实验技术,如测量、数据处理和误差分析等。
2. 实验内容回顾大学物理实验通常包括力学、电磁学、光学、热学等方面的内容。
在复习时,我们可以按照这些方面对各个实验进行回顾。
例如,在力学实验中,我们可以回顾弹簧振子、简谐振动、牛顿定律等实验。
在电磁学实验中,可以回顾电磁感应、电路分析、电磁波等实验。
在光学实验中,可以回顾干涉、衍射、透镜成像等实验。
在热学实验中,可以回顾热传导、理想气体定律、热力学循环等实验。
3. 实验技巧总结在进行大学物理实验时,掌握一些实验技巧是非常重要的。
首先是实验记录的技巧,包括实验数据的记录、图表的绘制和实验结果的分析。
其次是实验操作的技巧,如如何准确地测量、如何调节仪器等。
此外,还需要注意实验中的一些常见问题和解决方法,如仪器故障、数据异常等。
4. 实验设计思路在大学物理实验中,我们有时会遇到一些需要自己设计实验步骤和方法的情况。
因此,掌握一些实验设计的思路是非常重要的。
首先要明确实验的目的和所要研究的物理现象,然后根据实验目的确定实验步骤和所需仪器。
在实验过程中,要注意实验条件的控制和实验数据的准确性。
5. 实验报告写作大学物理实验通常需要撰写实验报告,对实验过程和结果进行总结和分析。
在撰写实验报告时,要注意结构的合理性和语言的准确性。
报告的结构一般包括引言、实验目的、实验原理、实验步骤、实验结果和分析、结论等部分。
内容提要位矢:k t z j t y i t x t r r )()()()(++==位移:k z j y i x t r t t r r ∆+∆+∆=-∆+=∆)()(一般情况,r r ∆≠∆速度:k z j y i x k dt dz j dtdy i dt dx dt r d t r t∙∙∙→∆++=++==∆∆=0lim υ 加速度:k z j y i x k dtz d j dt y d i dt x d dt r d dt d t a t ∙∙∙∙∙∙→∆++=++===∆∆=222222220lim υυ圆周运动 角速度:∙==θθωdtd 角加速度:∙∙===θθωα22dtd dt d (或用β表示角加速度) 线加速度:t n a a a += 法向加速度:22ωυR R a n ==指向圆心 切向加速度:αυR dt d a t ==沿切线方向 线速率:ωυR =弧长:θR s =解题参考大学物理是对中学物理的加深和拓展。
本章对质点运动的描述相对于中学时更强调其瞬时性、相对性和矢量性,特别是处理问题时微积分的引入,使问题的讨论在空间和时间上更具普遍性。
对于本章习题的解答应注意对基本概念和数学方法的掌握。
矢量的引入使得对物理量的表述更科学和简洁。
注意位矢、位移、速度和加速度定义式的矢量性,清楚圆周运动角位移、角速度和角加速度方向的规定。
微积分的应用是难点,应掌握运用微积分解题。
这种题型分为两大类,一种是从运动方程出发,通过微分求出质点在任意时刻的位矢、速度或加速度;另一种是已知加速度或速度与时间的关系及初始条件,通过积分求出任意时刻质点的速度、位矢或相互间的关系,注意式子变换过程中合理的运用已知公式进行变量的转换,掌握先分离变量后积分的数学方法。
内容提要动量:υm p =冲量:⎰=21t t dt F I动量定理:⎰=21t t dt F p d⎰=-210t t dt F p p 动量守恒定律:若0==∑i i F F ,则常矢量==∑ii p p力矩:F r M ⨯=质点的角动量(动量矩):υ⨯=⨯=r m p r L 角动量定理:dtL d M =外力 角动量守恒定律:若0==∑外力外力M M ,则常矢量==∑ii L L功:r d F dW ∙= ⎰∙=B A AB r d F W 一般地 ⎰⎰⎰++=B AB A B A z z z y y y x x x AB dz F dy F dx F W 动能:221υm E k = 动能定理:质点, 222121A B AB m m W υυ-=质点系,0k k E E W W -=+内力外力保守力:做功与路程无关的力。
⼤学物理相对论复习资料狭义相对论基本内容⼀、狭义相对论的基本原理1. 迈克⽿逊实验迈克⽿逊莫雷实验的⽬的是测定地球相对以太的速度,实验结果:地球相对以太的速度为零,当时的物理理论不能解释该实验结果。
2. 爱因斯坦狭义相对论的基本假设相对性原理:物理学定律在所有的惯性系中形势都是相同的,即⼀切惯性系都是等价的。
光速不变原理:在所有的惯性系中,真空中(⾃由空间)光速具有相同的量值c 。
⼆、狭义相对论时空观1. 洛仑兹变换⼀个事件在惯性系S 中的时空坐标为(x, y, z, t),在沿x 轴以速度v 匀速运动的另⼀惯性系S '中的时空坐标为()x ,y ,z ,t ''''(0t t '==时刻两惯性系原点重合且相应轴重合),则该事件的时空坐标的变换关系称为洛仑兹变换:=-===-2'('''(x x vt y y z z v t t x c或?=+=??==+??2('''('x x vt y y z z v t t x c2. 同时是相对的两个事件在⼀个惯性系中同时同地发⽣,在⼀切惯性系中该两事件必同时同地发⽣;两个事件在⼀个惯性系中不同地点同时发⽣,在其它惯性系中该两事件不⼀定同时发⽣。
3. 时钟变慢(时间变缓)在⼀个惯性系中同⼀地点先后发⽣的两事件,在该惯性系静⽌的时钟测得的时间间隔为固有时间0τ,在另⼀相对该惯性系以速度v 匀速运动的时钟测得的时间间隔为t ?,两者的关系为?γττ==0t 。
4. 尺缩短(长度收缩)观测者与尺相对静⽌时测得尺长称固有长度0L ,观测者沿尺长⽅向以速度v 匀速运动时测得尺长为L ,两者关系为=L L 观察者垂直于尺长⽅向以速度v 匀速运动时测得尺长为L ',0L L '=。
5. 狭义相对论时空观与经典时空观的⽐较当v c 时在x ≯ct 的时空范围内洛仑兹变换转化为伽利略变换,经典时空观是上述条件下狭义相对论时空观的极限。
《大学物理》复习题库大学物理习题 班级: 姓名: 学号: 成绩:刚体定轴转动(Ⅰ)一、选择题1.如图所示,A 、B 为两个相同的绕着轻绳的定滑轮。
A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg 。
设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有 (A) βA =βB ; (B) βA >βB ;(C) βA <βB ; (D) 开始时βA =βB ,以后βA <β B 。
[ ]2.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小; (B) 角速度从小到大,角加速度从小到大; (C) 角速度从大到小,角加速度从大到小; (D) 角速度从大到小,角加速度从小到大。
[ ]3.关于刚体对轴的转动惯量,下列说法中正确的是 (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关; (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关; (C) 取决于刚体的质量、质量的空间分布和轴的位置;(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
[ ] 二、填空题4.质量为m 的质点以速度v沿一直线运动,则它对直线外垂直距离为d 的一点的角动量大小是____ __ __。
5.一飞轮以600 rev/min 的转速旋转,转动惯量为2.5 kg ·m 2,现加一恒定的制动力矩使飞轮在1 s 内停止转动,则该恒定制动力矩的大小M =_________。
6.如图所示,P 、Q 、R 和S 是附于刚性轻质细杆上的质量分别为4m 、3m 、2m 和m 的四个质点,PQ =QR =RS =l ,则系统对O O 轴的转动惯量为__________。
S ′三、计算题7.一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动。
《大学物理(一)》综合复习资料一.选择题1.某人骑自行车以速率V 向西行驶,今有风以相同速率从北偏东300方向吹来,试问人感到风从哪个方向吹来?(A )北偏东300. (B )南偏东300. (C )北偏西300. (D )西偏南300. [ ]2.质点系的内力可以改变(A )系统的总质量.(B )系统的总动量.(C )系统的总动能.(D )系统的总角动量. [ ] 3.一轻绳绕在有水平轮的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A )不变. (B )变小. C )变大. ( D )无法判断. [ ]4.一质点作匀速率圆周运动时,则(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断不变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ]5.关于刚体对轴的转动惯量,下列说法中正确的是(A) 只取决于刚体的质量,与质量的分布和轴的位置无关.(B )取决于刚体的质量和质量分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ ]6.一小球沿斜面向上运动,其运动方程为245t t S -+=(SI ),则小球运动到最高点的时刻是(A )s 4=t .(B )s 2=t .(C )s 8=t .(D )s 5=t . [ ]7.对功的概念有以下几种说法:(l )保守力作正功时,系统内相应的势能增加.(2)质点运动经一闭合路径,保守力对质点作的功为零.(3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零.在上述说法中:(A )(l )、(2)是正确的. (B )(2)、(3)是正确的.(C )只有(2)是正确的. (D )只有(3)是正确的. [ ]8.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A )角速度从小到大,角加速度从大到小.(B )角速度从小到大,角加速度从小到大.(C )角速度从大到小,角加速度从大到小.(D )角速度从大到小,角加速度从小到大.[ ]9.一弹簧振子作简谐振动,总能量为1E ,如果简谐振动振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量1E 变为(A )4/1E . (B)2/1E . (C)12E . (D)14E . [ ]10.下列说法哪一条正确?(A )加速度恒定不变时,物体运动方向也不变.(B )平均速率等于平均速度的大小.(C )不管加速度如何,平均速率表达式总可以写成:2/)(21v v v +=.(D )运动物体速率不变时,速度可以变化. [ ]11.站在电梯内的一个人,看到用细线连结的质量不同的两个物体跨过固定在电梯内顶棚上得的一个无摩擦的定滑轮而处于“平衡”状态.由此,他断定电梯作加速运动,其加速度为(A )大小为1g ,方向向上. (B )大小为1g ,方向向下.(C )大小为g 21,方向向上. (D )大小为g 21,方向向下. [ ] 12.质量为M 光滑的圆弧形槽于光滑水平面上,一滑块m 自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析是对的:(A )由m 和M 组成的系统动量守恒. (B )由m 和M 组成的系统机械能守恒.(C )由m 、M 和地球组成的系统机械能守恒.(D )M 对m 的正压力恒不作功.[ ]13. 一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A )不变. (B )变小. (C )变大. (D )无法判断. [ ]14.一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间2/T t =(T 为周期)时,质点的速度为(A )φωsin A -.(B )φωsin A .(C )φωcos A -.(D )φωcos A . [ ]15.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 22+=(其中a 、b 为常量)则该质点作(A )匀速直线运动. (B )变速直线运动.(C )抛物线运动. (D )一般曲线运动. [ ]16.在高台上分别沿45º仰角方向和水平方向,以同样速率投出两颗小石子,忽略空气阻力,则它们落地时速度(A )大小不同,方向不同.(B )大小相同,方向不同.(C )大小相同,方向相同.(D )大小不同,方向相同. [ ]17.质量为m 的木块沿与水平面成θ角的固定光滑斜面下滑,当木块下降高度为h 时,重力的瞬时功率是(A )2/1)2(gh mg . (B )2/1)2(cos gh mg θ. (C )2/1)21(sin gh mg θ. (D)2/1)2(sin gh mg θ. [ ]18.一轻弹簧竖直固定于水平桌面上.如图所示,小球从距离桌面高为h 处以初速度0v 落下,撞击弹簧后跳回到高为h 处时速度仍为0v ,以小球为系统,则在这一整个过程中小球的(A )动能不守恒,动量不守恒. (B )动能守恒,动量不守恒.(C )机械能不守恒,动量守恒. (D )机械能守恒,动量守恒.[ ]二.填空题1.一质点的运动方程为26t t x -=(SI ),则在t 由0至4s 的时间间隔内,质点的位移大小为 ,在t 由0到4s 的时间间用内质点走过的路程为 .2.一质点作半径为0.1m 圆周运动,其运动方程为:2/4/2t +π=θ,则其切向加速度为t a = .3.一质量为m 的物体,原来以速率v 向北运动,它突然受到外力打击,变为向西运动,速率仍为v ,则外力的冲量大小为 ,方向为 .4.若作用于一力学系统上外力的合力为零,则外力的合力矩.(填一定或不一定) 为零;这种情况下力学系统的动量、角动量、机械能三个量中一定守恒的量是_ .5.动量矩定理的内容是 .其数学表达式可写成 .动量矩守恒的条件是 .6.一质点沿半径为0.10m 的圆周运动,其角位移θ可用下式表示)(423SI t +=θ.(1)当t=2s 时,切向加速度t a = ;(2)当t a 的大小恰为总加速度a 大小的一半时,=θ .7.质量为M 的物体A 静止于水平面上,它与平面之间的滑动摩擦系数为μ ,另一质量为m 的小球B 以沿水平方向向右的速度v与物体A 发生完全非弹性碰撞.则碰后物体A 在水平方向滑过的距离L = .8.图中所示的装置中,略去一切摩擦力以及滑轮和绳的质量,且绳不可伸长,则质量为1m 的物体的加速度=1a .9.绕定轴转动的飞轮均匀地减速,0=t 时角速度s rad /5=ω,s t 20=时角速度08.0ωω=,则飞轮的角加速度β= ,从0=t 到s t 100=时间内飞轮所转过的角度θ= .10. 如图所示,Ox 轴沿水平方向,Oy 轴竖直向下,在0=t 时刻将质量为m 的质点由a 处静止释放,让它自由下落,则在任意时刻t ,质点所受的对点O 的力矩M = ;在任意时刻t ,质点对原点O 的角动量L = .11.二质点的质量分别为1m 、2m . 当它们之间的距离由a 缩短到b 时,万有引力所做的功为 .12.动量定理的内容是 ,其数学表达式可写 .动量守恒的条件是 .13.已知质点运动方程为j t t i t t r )314()2125(32++-+=(SI ),当t =2s 时,a = .14.一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ωl =20πrad /s ,再转60转后角速度为ω2=30πrad /s ,则角加速度β= ,转过上述60转所需的时间是t = .15.质量分别为m 和2m 的两物体(都可视为质点),用一长为l 的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O 转动,已知O 轴离质量为2m 的质点的距离为l 31,质量为m 的质点的线速度为v 且与杆垂直,则该系统对转轴的角动量(动量矩)大小为 .16.质量为m 的质点以速度v 沿一直线运动,则它对直线外垂直距离为d 的一点的角动量大小是 .17.若作用于一力学系统上外力的合力为零,则外力的合力矩 (填一定或不一定)为零;这种情况下力学系统的动量、角动量、机械能三个量中一定守恒的量是 .三.计算题1.顶角为2θ的直圆锥体,底面固定在水平面上,如图所示.质量为m 的小球系在绳的一端,绳的另一端系在圆锥的顶点.绳长为l ,且不能伸长,质量不计,圆锥面是光滑的.今使小球在圆锥面上以角速度ω绕OH 轴匀速转动,求(1)锥面对小球的支持力N 和细绳的张力T ;(2)当ω增大到某一值c ω时小球将离开锥面,这时c ω及T 又各是多少?2.一弹簧振子沿x 轴作简谐振动.已知振动物体最大位移为m x =0.4m 最大恢复力为N 8.0=m F ,最大速度为m/s 8.0π=m v ,又知t =0的初位移为+0.2m ,且初速度与所选x 轴方向相反.(1)求振动能量;(2)求此振动的表达式.3.一物体与斜面间的摩擦系数μ=0.20,斜面固定,倾角45=αº.现给予物体以初速率m /s 100=v ,使它沿斜面向上滑,如图所示.求:(l )物体能够上升的最大高度h ;(2)该物体达到最高点后,沿斜面返回到原出发点时的速率v .4.一质量为A m =0.1kg 的物体A 与一轻弹簧相连放在光滑水平桌面上,弹簧的另一端固定在墙上,弹簧的倔强系数k =90N /m .现在用力推A ,从而弹簧被压缩了0x =0.1m .在弹簧的原长处放有质量B m =0.2kg 的物体B ,如图所示,由静止释放物体A 后,A 将与静止的物体B发生弹性碰撞.求碰撞后A 物体还能把弹簧压缩多大距离.5.质量为M =1.5kg 的物体,用一根长为 l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10g 的子弹以0v =500m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小m/s 300 v ,设穿透时间极短.求:(l )子弹刚穿出时绳中张力的大小;(2)子弹在穿透过程中所受的冲量.6.某弹簧不遵守胡克定律,若施力F ,则相应伸长为x ,力与伸长的关系为F =52.8 x 十38.4x 2(SI )求:(1)将弹簧从定长1x =0.5m 拉伸到定长2x =1.00m 外力所需做的功.(2)将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17kg 的物体,然后将弹簧拉伸到一定长2x = 1.00m ,再将物体有静止释放,求当弹簧回到1x =0.5m 时,物体的速率.(3)此弹簧的弹力是保守力吗?7.三个物体A 、B 、C 每个质量都是M . B 、C 靠在一起,放在光滑水平桌面上,两者间连有一段长为0.4m 的细绳,原先放松着.B 的另一侧用一跨过桌边的定滑轮的细绳与A 相连(如图).滑轮和绳子的质量及轮轴上的摩擦不计,绳子不可伸长.问:(l ) A 、 B 起动后,经多长时间C 也开始运动?(2)C 开始运动时速度的大小是多少?(取g =10m/s 2)8.有一轻弹簧,当下端挂一个质量1m =10g 的物体而平衡时,伸长量为4.9cm .用这个弹簧和质量2m =16g 的物体连成一弹簧振子.若取平衡位置为原点,向上为x 轴的正方向.将2m 从平衡位置向下拉 2cm 后,给予向上的初速度0v =5c m/s 并开始计时,试求2m 的振动周期和振动的数值表达式.参考答案一.选择题1.(C ) 2.(C ) 4.(C ) 4.(C ) 5.(C )6.(B ) 7.(C ) 8.(A ) 9.(D )10.(D )11.(B ) 12.(C ) 13.(C )14.(B )15.(B )16.(B )17.(D ) 18.(A )二.填空题l . 8m 10m2. 0.1m/s 23. mv 2 指向正西南或南偏西4504. 不一定 动量5.转动物体所受合外力矩的冲量矩等于在合外力矩作用时间内转动物体动量矩的增量. 112221ω-ω=⎰ J J dt M t t物体所受合外力矩等于零.6. 48m/s 23.15 r a d7. 22)(2)(m M g mv +μ 8. 21242m m g m + 9. -0.05rad/s 250rad10. k mbg k mbgt11. )11(21ba m Gm -- 12. 质点系所受合外力的冲量等于质点系(系统)动量的增量.i i i i t t v m v m dt F 2121 ∑∑⎰-=系统所受合外力等于零.13.)/(4s m j i +-14. 6.54 rad/s 2s 8.4 15. mvl16. mvd17. 不一定; 动量三.计算题1. 解:以r 表示小球所在处圆锥体的水平截面半径.对小球写出牛顿定律方程为r m ma N T 2cos sin ω==θ-θ0cos cos =-θ+θmg N T其中:θ=sin l r联立求解得:(1)θθω-θ=cos sin sin 2l m mg Nθω+θ=22sin cos l m mg T(2)0,=ω=ωN c θ=ωcos /l g cθ=cos /mg T2.解;(l )由题意./,,m m m m x F k x A kA F ===J x F kx E m m m 16.021212=== (2)m m m m x v A v A v //,==ωω=Hz s rad 22/,/2=πω=νπ=ω2.0cos ,00=φ==A x tπ=φ<φω-=31,0sin 0A v 振动方程为)3/2cos(4.0π+π=t y (SI )3.解:(l )根据功能原理,有 mgh mv fs -=2021 mgh mv mghctg mgh Nh fs -=αμ=ααμ=αμ=2021sin cos sin m ctg g v h 25.4)1(220=αμ+=(2)根据功能原理有221mv mgh fs -= αμ-=mghctg mgh mv 221s m ctg gh v /16.8)1(2[2/1=αμ-=4.解:释放物体A 到A 与B 碰撞前,以A 与弹簧为系统,机械能守恒: 2202121v m kx A = A 与B 碰撞过程中以A 、B 为系统,动量守恒,机械能守恒。
[1]. 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( c ) (A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( b )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v[2]. 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x .下述判断正确的是( a )(A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确[3]. 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t. 下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的 [4]. 一个质点在做圆周运动时,则有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变[5]. 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 的位移的大小; (2) 质点在该时间所通过的路程; (3) t =4 s 时质点的速度和加速度.[6]. 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求: (1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s质点的位移Δr 和径向增量Δr[7]. 质点的运动方程为23010t t x +-= 22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向[8]. 质点沿直线运动,加速度a =4 -t 2,式中a 的单位为m·s-2,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1,求质点的运动方程.[9]. 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a=A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.[10].一质点具有恒定加速度a =6i+4j,式中a的单位为m·s-2.在t=0时,其速度为零,位置矢量r0=10 m i.求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图[11].质点在Oxy 平面运动,其运动方程为r=2.0t i+(19.0 -2.0t2 )j,式中r的单位为m,t的单位为s.求:(1)质点的轨迹方程;(2) 在t1=1.0s 到t2=2.0s 时间的平均速度;(3) t1=1.0s时的速度及切向和法向加速度;(4) t=1.0s 时质点所在处轨道的曲率半径ρ.[12].如图(a)所示,质量为m的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( )(A) g sin θ(B) g cos θ(C) g tan θ(D) g cot θ[13].用水平力F N把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N逐渐增大时,物体所受的静摩擦力F f的大小( )(A) 不为零,但保持不变 (B) 随F N 成正比地增大(C) 开始随F N 增大,达到某一最大值后,就保持不变 (D) 无法确定 [14].一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率( ) (A) 不得小于gR μ (B) 必须等于gR μ (C) 不得大于gR μ (D) 还应由汽车的质量m 决定 [15].一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( )(A) 它的加速度方向永远指向圆心,其速率保持不变 (B) 它受到的轨道的作用力的大小不断增加 (C) 它受到的合外力大小变化,方向永远指向圆心 (D) 它受到的合外力大小不变,其速率不断增加[16].图示一斜面,倾角为α,底边AB 长为l =2.1 m,质量为m 的物体从题2 -6 图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短? 其数值为多少?[17].工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m1=2.00×102 kg,乙块质量为m2=1.00 ×102 kg.设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的力以及乙块对甲块的作用力:(1) 两物块以10.0 m·s-2的加速度上升;(2) 两物块以1.0 m·s-2的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?[18].如图(a)所示,已知两物体A、B 的质量均为m=3.0kg ,物体A 以加速度a =1.0m·s-2运动,求物体B 与桌面间的摩擦力.(滑轮与连接绳的质量不计)[19].如图(a)所示,在一只半径为R 的半球形碗,有一粒质量为m的小钢球,当小球以角速度ω在水平面沿碗壁作匀速圆周运动时,它距碗底有多高?[20].一质量为50 g的物体挂在一弹簧末端后伸长一段距离后静止,经扰动后物体作上下振动,若以物体静平衡位置为原点,向下为y轴正向.测得其运动规律按余弦形式即+.0πy,式中t以s计,y以m计,试求:(1)作用于该物体上的合外力=t)2/205cos(的大小;(2)证明作用在物体上的合外力大小与物体离开平衡位置的y距离成正比.[21].轻型飞机连同驾驶员总质量为1.0 ×103 kg.飞机以55.0 m·s-1的速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数α=5.0 ×102N·s-1 ,空气对飞机升力不计,求:(1) 10s后飞机的速率;(2) 飞机着陆后10s滑行的距离.[22].一质量为m的小球最初位于如图(a)所示的A 点,然后沿半径为r的光滑圆轨道ADCB下滑.试求小球到达点C时的角速度和对圆轨道的作用力.[23].光滑的水平桌面上放置一半径为R的固定圆环,物体紧贴环的侧作圆周运动,其摩擦因数为μ,开始时物体的速率为v0 ,求:(1) t 时刻物体的速率;(2) 当物体速率从v0减少2/0v时,物体所经历的时间及经过的路程.[24].一物体自地球表面以速率v0 竖直上抛.假定空气对物体阻力的值为F r=kmv2 ,其中m 为物体的质量,k 为常量.试求:(1) 该物体能上升的高度;(2)物体返回地面时速度的值.(设重力加速度为常量.)[25].对质点组有以下几种说法:(1) 质点组总动量的改变与力无关;(2) 质点组总动能的改变与力无关;(3) 质点组机械能的改变与保守力无关.下列对上述说法判断正确的是( )(A) 只有(1)是正确的(B) (1)、(2)是正确的(C) (1)、(3)是正确的 (D) (2)、(3)是正确的[26].有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则( )(A) 物块到达斜面底端时的动量相等(B) 物块到达斜面底端时动能相等(C) 物块和斜面(以及地球)组成的系统,机械能不守恒(D) 物块和斜面组成的系统水平方向上动量守恒[27].对功的概念有以下几种说法:(1) 保守力作正功时,系统相应的势能增加;(2) 质点运动经一闭合路径,保守力对质点作的功为零;(3) 作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零.下列上述说法中判断正确的是( )(A) (1)、(2)是正确的(B) (2)、(3)是正确的(C) 只有(2)是正确的(D) 只有(3)是正确的[28].如图所示,质量分别为m1和m2的物体A和B,置于光滑桌面上,A和B之间连有一轻弹簧.另有质量为m1和m2的物体C和D分别置于物体A与B 之上,且物体A和C、B和D 之间的摩擦因数均不为零.首先用外力沿水平方向相向推压A和B,使弹簧被压缩,然后撤掉外力,则在A和B弹开的过程中,对A、B、C、D 以及弹簧组成的系统,有( ) (A) 动量守恒,机械能守恒(B) 动量不守恒,机械能守恒(C) 动量不守恒,机械能不守恒 (D) 动量守恒,机械能不一定守恒[29].如图所示,子弹射入放在水平光滑地面上静止的木块后而穿出.以地面为参考系,下列说法中正确的说法是( )(A) 子弹减少的动能转变为木块的动能(B) 子弹-木块系统的机械能守恒(C) 子弹动能的减少等于子弹克服木块阻力所作的功(D) 子弹克服木块阻力所作的功等于这一过程中产生的热[30].一架以3.0 ×102m·s-1的速率水平飞行的飞机,与一只身长为0.20 m、质量为0.50 kg 的飞鸟相碰.设碰撞后飞鸟的尸体与飞机具有同样的速度,而原来飞鸟对于地面的速率甚小,可以忽略不计.试估计飞鸟对飞机的冲击力(碰撞时间可用飞鸟身长被飞机速率相除来估算).根据本题的计算结果,你对于高速运动的物体(如飞机、汽车)与通常情况下不足以引起危害的物体(如飞鸟、小石子)相碰后会产生什么后果的问题有些什么体会?[31].如图所示,质量为m的物体,由水平面上点O以初速为v0抛出,v0与水平面成仰角α.若不计空气阻力,求:(1) 物体从发射点O到最高点的过程中,重力的冲量;(2) 物体从发射点到落回至同一水平面的过程中,重力的冲量.[32].如图所示,一质量为m的木块静止在光滑水平面上,一质量为m/2的子弹沿水平方v射入木块一段距离L(此时木块滑行距离恰为s)后留在木块,求:(1)木块向以速率与子弹的共同速度v,此过程中木块和子弹的动能各变化了多少?(2)子弹与木块间的摩擦阻力对木块和子弹各作了多少功?(3)证明这一对摩擦阻力的所作功的代数和就等于其中一个摩擦阻力沿相对位移L所作的功.(4)证明这一对摩擦阻力所作功的代数和就等于子弹-木块系统总机械能的减少量(亦即转化为热的那部分能量).[33].用铁锤把钉子敲入墙面木板.设木板对钉子的阻力与钉子进入木板的深度成正比.若第一次敲击,能把钉子钉入木板1.00 ×10 -2 m.第二次敲击时,保持第一次敲击钉子的速度,那么第二次能把钉子钉入多深?[34].如图(a)所示,天文观测台有一半径为R的半球形屋面,有一冰块从光滑屋面的最高点由静止沿屋面滑下,若摩擦力略去不计.求此冰块离开屋面的位置以及在该位置的速度.[35].有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.对上述说法下述判断正确的是( )(A) 只有(1)是正确的(B)(1)、(2)正确,(3)、(4)错误(C) (1)、(2)、(3)都正确,(4)错误 (D)(1)、(2)、(3)、(4)都正确[36].关于力矩有以下几种说法:(1) 对某个定轴转动刚体而言,力矩不会改变刚体的角加速度;(2) 一对作用力和反作用力对同一轴的力矩之和必为零;(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同.对上述说法下述判断正确的是( )(A) 只有(2)是正确的 (B) (1)、(2)是正确的(C)(2)、(3)是正确的 (D) (1)、(2)、(3)都是正确的[37].均匀细棒OA可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说确的是( )(A) 角速度从小到大,角加速度不变(B) 角速度从小到大,角加速度从小到大(C) 角速度从小到大,角加速度从大到小(D) 角速度不变,角加速度为零[38].一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计.如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘,则子弹射入后的瞬间,圆盘和子弹系统的角动量L以及圆盘的角速度ω的变化情况为( )(A) L 不变,ω增大 (B) 两者均不变(C) L不变,ω减小 (D) 两者均不确定[39].假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的( )(A) 角动量守恒,动能守恒 (B) 角动量守恒,机械能守恒(C) 角动量不守恒,机械能守恒 (D) 角动量不守恒,动量也不守恒(E) 角动量守恒,动量也守恒[40].一汽车发动机曲轴的转速在12 s 由1.2×103 r·min-1均匀的增加到 2.7×103r·min-1.(1) 求曲轴转动的角加速度;(2) 在此时间,曲轴转了多少转?[41].水分子的形状如图所示,从光谱分析知水分子对AA′轴的转动惯量J AA′=1.93×10-47 kg·m2,对BB′轴转动惯量J BB′=1.14 ×10-47 kg·m2,试由此数据和各原子质量求出氢和氧原子的距离D 和夹角θ.假设各原子都可当质点处理.[42].一飞轮由一直径为30㎝,厚度为2.0㎝的圆盘和两个直径为10㎝,长为8.0㎝的共轴圆柱体组成,设飞轮的密度为7.8×103 kg·m-3,求飞轮对轴的转动惯量.[43]. 用落体观察法测定飞轮的转动惯量,是将半径为R 的飞轮支承在O 点上,然后在绕过飞轮的绳子的一端挂一质量为m 的重物,令重物以初速度为零下落,带动飞轮转动(如图).记下重物下落的距离和时间,就可算出飞轮的转动惯量.试写出它的计算式.(假设轴承间无摩擦).[44]. 一燃气轮机在试车时,燃气作用在涡轮上的力矩为2.03×103N ·m ,涡轮的转动惯量为25.0kg ·m 2 .当轮的转速由2.80×103 r ·min -1 增大到1.12×104 r ·min -1时,所经历的时间t 为多少?[45]. 一质量为20.0 kg 的小孩,站在一半径为3.00 m 、转动惯量为450 kg · m 2的静止水平转台的边缘上,此转台可绕通过转台中心的竖直轴转动,转台与轴间的摩擦不计.如果此小孩相对转台以1.00 m · s -1 的速率沿转台边缘行走,问转台的角速率有多大?[46]. 一转台绕其中心的竖直轴以角速度ω0 =π1s rad -⋅转动,转台对转轴的转动惯量为J 0 =4.0×10-3 kg · m 2 .今有砂粒以Q =2t (Q 在单位为 g · s -1 ,t 的单位为s )的流量竖直落至转台,并粘附于台面形成一圆环,若环的半径为r =0.10 m ,求砂粒下落t =10 s 时,转台的角速度.[47]. 一位溜冰者伸开双臂来以1.01s r -⋅绕身体中心轴转动,此时的转动惯量为1.332m kg ⋅,她收起双臂来增加转速,如收起双臂后的转动惯量变为0.48 2m kg ⋅.求(1)她收起双臂后的转速;(2)她收起双臂前后绕身体中心轴的转动动能各为多少?[48]. 一质量为m ′、半径为R 的转台,以角速度ωa 转动,转轴的摩擦略去不计.(1) 有一质量为m 的蜘蛛垂直地落在转台边缘上.此时,转台的角速度ωb 为多少? (2) 若蜘蛛随后慢慢地爬向转台中心,当它离转台中心的距离为r 时,转台的角速度ωc 为多少? 设蜘蛛下落前距离转台很近.[49]. 一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为2A -,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( )[50]. 一简谐运动曲线如图(a )所示,则运动周期是( )(A) 2.62 s (B) 2.40 s (C) 2.20 s (D )2.00 s[51]. 两个同周期简谐运动曲线如图(a ) 所示, x 1 的相位比x 2 的相位( )(A ) 落后2π (B )超前2π (C )落后π (D )超前π[52]. 两个同振动方向、同频率、振幅均为A 的简谐运动合成后,振幅仍为A ,则这两个简谐运动的相位差为( )(A ) 60 (B )90 (C )120 (D )180[53]. 若简谐运动方程为⎪⎭⎫ ⎝⎛+=4ππ20cos 10.0t x ,式中x 的单位为m ,t 的单位为s.求:(1) 振幅、频率、角频率、周期和初相;(2)s 2=t 时的位移、速度和加速度[54]. 一远洋货轮,质量为m ,浮在水面时其水平截面积为S .设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力,证明货轮在水中作振幅较小的竖直自由运动是简谐运动,并求振动周期[55]. 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2m ,周期T =0.50s.当t =0 时,(1) 物体在正方向端点;(2) 物体在平衡位置、向负方向运动;(3) 物体在x =-1.0×10-2m 处, 向负方向运动; (4) 物体在x =-1.0×10-2 m 处,向正方向运动.求以上各种情况的运动方程.[56]. 有一弹簧, 当其下端挂一质量为m 的物体时, 伸长量为9.8 ×10-2 m .若使物体上、下振动,且规定向下为正方向.(1) 当t =0 时,物体在平衡位置上方8.0 ×10-2m 处,由静止开始向下运动,求运动方程.(2) 当t =0 时,物体在平衡位置并以0.6m·s -1的速度向上运动,求运动方程.[57]. 质量为10 g 的物体沿x 的轴作简谐运动,振幅A =10 cm ,周期T =4.0 s ,t =0 时物体的位移为,cm 0.50-=x 且物体朝x 轴负方向运动,求(1)t =1.0 s 时物体的位移;(2)t =1.0 s 时物体受的力;(3)t =0之后何时物体第一次到达 x =5.0 cm 处;(4)第二次和第一次经过x =5.0 cm 处的时间间隔.[58]. 图(a )为一简谐运动质点的速度与时间的关系曲线,且振幅为2cm ,求(1) 振动周期;(2) 加速度的最大值;(3) 运动方程.[59]. 有一单摆,长为1.0m ,最大摆角为5°,如图所示.(1) 求摆的角频率和周期;(2) 设开始时摆角最大,试写出此单摆的运动方程;(3) 摆角为3°时的角速度和摆球的线速度各为多少?[60]. 质量为0.10kg 的物体,以振幅1.0×10-2 m 作简谐运动,其最大加速度为 4.0m·s -1求:(1) 振动的周期;(2) 物体通过平衡位置时的总能量与动能;(3) 物体在何处其动能和势能相等? (4) 当物体的位移大小为振幅的一半时,动能、势能各占总能量的多少?[61].图(a)表示t =0 时的简谐波的波形图,波沿x轴正方向传播,图(b)为一质点的振动曲线.则图(a)中所表示的x=0 处振动的初相位与图(b)所表示的振动的初相位分别为()(A)均为零(B)均为2π(C)均为2π-(D)2π与2π-(E)2π-与2π[62].一横波以速度u沿x轴负方向传播,t时刻波形曲线如图(a)所示,则该时刻()(A)A点相位为π(B)B点静止不动(C)C点相位为2π3(D)D点向上运动[63].如图所示,两列波长为λ的相干波在点P相遇.波在点S1振动的初相是φ1,点S1到点P的距离是r1.波在点S2的初相是φ2,点S2到点P的距离是r2,以k代表零或正、负整数,则点P是干涉极大的条件为()()()()()()()212121212112AπB2πC2π/2πD2π/2πr r kkr r kr r kϕϕϕϕλϕϕλ-=-=-+-=-+-=[64]. 在波长为λ的驻波中,两个相邻波腹之间的距离为( )(A ) 4λ (B ) 2λ (C ) 43λ (D ) λ[65]. 一横波在沿绳子传播时的波动方程为()x y ππ5.2cos 20.0-=,式中y 的单位为m ,t 的单位为s .(1) 求波的振幅、波速、频率及波长;(2) 求绳上质点振动时的最大速度;(3) 分别画出t =1s 和t =2 s 时的波形,并指出波峰和波谷.画出x =1.0 m处质点的振动曲线并讨论其与波形图的不同.[66]. 波源作简谐运动,其运动方程为()m tπcos240100.43-⨯=y ,它所形成的波形以30m·s-1 的速度沿一直线传播.(1) 求波的周期及波长;(2) 写出波动方程[67]. 波源作简谐运动,周期为0.02s,若该振动以100m·s-1的速度沿直线传播,设t =0时,波源处的质点经平衡位置向正方向运动,求:(1) 距波源15.0m 和5.0 m 两处质点的运动方程和初相;(2) 距波源为16.0 m 和17.0m 的两质点间的相位差.[68]. 图示为平面简谐波在t =0 时的波形图,设此简谐波的频率为250Hz ,且此时图中质点P 的运动方向向上.求:(1) 该波的波动方程;(2) 在距原点O 为7.5 m 处质点的运动方程与t =0 时该点的振动速度.[69]. 一平面简谐波以速度1s m 08.0-⋅=u 沿Ox 轴正向传播,图示为其在t =0 时刻的波形图,求(1)该波的波动方程;(2)P 处质点的运动方程.[70]. 平面简谐波的波动方程为()x t y π2π4cos 08.0-=,式中y 和x 的单位为m ,t的单位为s,求:(1) t=2.1 s 时波源及距波源0.10m 两处的相位;(2)离波源0.80 m及0.30 m 两处的相位差.[71].为了保持波源的振动不变,需要消耗4.0 W 的功率.若波源发出的是球面波(设介质不吸收波的能量).求距离波源5.0 m和10.0 m处的能流密度[72].两相干波波源位于同一介质中的A、B两点,如图(a)所示.其振幅相等、频率皆为100 Hz,B比A的相位超前π.若A、B相距30.0 m,波速为u=400 m·s-1,试求AB连线上因干涉而静止的各点的位置.[73].图(a)是干涉型消声器结构的原理图,利用这一结构可以消除噪声.当发动机排气噪声声波经管道到达点A时,分成两路而在点B相遇,声波因干涉而相消.如果要消除频率为300 Hz 的发动机排气噪声,则图中弯管与直管的长度差Δr=r2-r1至少应为多少?(设声波速度为340 m·s-1)[74].处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们( )(A) 温度,压强均不相同(B) 温度相同,但氦气压强大于氮气的压强(C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强[75].三个容器A、B、C 中装有同种理想气体,其分子数密度n相同,方均根速率之比()()()4:2:1::2/12C2/12B2/12A=vvv,则其压强之比CBA::ppp为( )(A) 1∶2∶4(B) 1∶4∶8(C) 1∶4∶16(D) 4∶2∶1[76].图示两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线.如果2OP)(v和2HP)(v分别表示氧气和氢气的最概然速率,则( )(A) 图中a表示氧气分子的速率分布曲线且4)()(22HPOP=vv(B) 图中a表示氧气分子的速率分布曲线且41)()(22HPOP=vv(C) 图中b表示氧气分子的速率分布曲线且41)()(22HPOP=vv(D) 图中b 表示氧气分子的速率分布曲线且4)()(22HP O P =v v[77].一容器储有氧气,其压强为Pa 100115⨯.,温度为27 ℃,求:(1)气体分子的数密度;(2) 氧气的密度;(3) 分子的平均平动动能 [78].2.0×10-2kg 氢气装在4.0×10-3m 3的容器,当容器的压强为3.90×105Pa 时,氢气分子的平均平动动能为多大? [79].某些恒星的温度可达到约1.0 ×108K ,这是发生聚变反应(也称热核反应)所需的温度.通常在此温度下恒星可视为由质子组成.求:(1) 质子的平均动能是多少? (2) 质子的方均根速率为多大? [80].日冕的温度为2.0 ×106K ,所喷出的电子气可视为理想气体.试求其中电子的方均根速率和热运动平均动能. [81].在容积为2.0 ×10-3 m 3的容器中,有能为6.75 ×102J 的刚性双原子分子某理想气体.(1) 求气体的压强;(2) 设分子总数为5.4×1022个,求分子的平均平动动能及气体的温度 [82].当温度为0C时,可将气体分子视为刚性分子,求在此温度下:(1)氧分子的平均动能和平均转动动能;(2)kg 100.43-⨯氧气的能;(3)kg 100.43-⨯氦气的能. [83].容积为1 m 3的容器储有1 mol 氧气,以v =10-1s m ⋅的速度运动,设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能.试求气体的温度及压强各升高了多少. [84].有N 个质量均为m 的同种气体分子,它们的速率分布如图所示.(1) 说明曲线与横坐标所包围的面积的含义;(2) 由N 和0v 求a 值;(3) 求在速率0v /2到30v /2 间隔的分子数;(4) 求分子的平均平动动能.[85].如图,一定量的理想气体经历acb过程时吸热700 J,则经历acbda过程时,吸热为 ( )(A) – 700 J (B) 500 J(C)- 500 J (D) -1 200 J[86].如图,一定量的理想气体,由平衡态A 变到平衡态B,且它们的压强相等,即p A=p B,请问在状态A和状态B之间,气体无论经过的是什么过程,气体必然( )(A) 对外作正功(B) 能增加(C) 从外界吸热(D) 向外界放热[87].两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体).开始时它们的压强和温度都相同,现将3J 热量传给氦气,使之升高到一定的温度.若使氢气也升高同样的温度,则应向氢气传递热量为( ) (A) 6J (B) 3 J (C) 5 J (D) 10 J [88].一定量理想气体分别经过等压,等温和绝热过程从体积1V 膨胀到体积2V ,如图所示,则下述正确的是 ( )(A ) C A →吸热最多,能增加 (B ) D A →能增加,作功最少 (C ) B A →吸热最多,能不变 (D ) C A →对外作功,能不变 [89].一台工作于温度分别为327 ℃和27 ℃的高温热源与低温源之间的卡诺热机,每经历一个循环吸热2 000 J ,则对外作功( ) (A) 2 000J (B) 1 000J (C) 4 000J (D) 500J [90].如图所示,1 mol 氦气,由状态),(11V p A 沿直线变到状态),(22V p B ,求这过程中能的变化、对外作的功、吸收的热量.[91].一定量的空气,吸收了1.71×103J的热量,并保持在1.0 ×105Pa下膨胀,体积从1.0×10-2m3增加到1.5×10-2m3,问空气对外作了多少功?它的能改变了多少?[92].如图所示,在绝热壁的汽缸盛有1 mol 的氮气,活塞外为大气,氮气的压强为1.51 ×105 Pa,活塞面积为0.02 m2 .从汽缸底部加热,使活塞缓慢上升了0.5 m.问(1) 气体经历了什么过程? (2) 汽缸中的气体吸收了多少热量? (根据实验测定,已知氮气的摩尔定压热容C p,m=29.12 J·mol-1·K-1,摩尔定容热容C V,m=20.80 J·mol-1·K-1 )[93].一压强为1.0 ×105Pa,体积为1.0×10-3m3的氧气自0℃加热到100 ℃.问:(1) 当压强不变时,需要多少热量?当体积不变时,需要多少热量?(2) 在等压或等体过程中各作了多少功?[94].如图所示,系统从状态A沿ABC变化到状态C的过程中,外界有326 J的热量传递给系统,同时系统对外作功126 J.当系统从状态C沿另一曲线CA返回到状态A时,外界对系统作功为52 J,则此过程中系统是吸热还是放热?传递热量是多少?[95].如图所示,使1 mol 氧气(1) 由A等温地变到B;(2) 由A等体地变到C,再由C等压地变到B.试分别计算氧气所作的功和吸收的热量.[96].0.32 kg的氧气作如图所示的ABCDA循环,V2=2V1 ,T1=300K,T2=200K,求循环效率.[97].图(a)是某单原子理想气体循环过程的V-T图,图中V C=2V A.试问:(1) 图中所示循环是代表制冷机还是热机? (2) 如是正循环(热机循环),求出其循环效率.[98].一卡诺热机的低温热源温度为7℃,效率为40%,若要将其效率提高到50%,问高温热源的温度需提高多少? [99].一小型热电厂,一台利用地热发电的热机工作于温度为227℃的地下热源和温度为27 ℃的地表之间.假定该热机每小时能从地下热源获取1.8 ×1011J的热量.试从理论上计算其最大功率为多少? [100].有一以理想气体为工作物质的热机,其循环如图所示,试证明热机效率为()()1/1/12121---=p p V V γη。
山东大学物理竞赛复习资料山东大学物理竞赛复习资料随着科技的不断发展,物理竞赛在高校中越来越受到重视。
山东大学作为中国著名的高水平大学之一,其物理竞赛备战资料备受关注。
本文将为大家介绍一些山东大学物理竞赛复习资料,希望对准备参加物理竞赛的同学们有所帮助。
一、经典教材推荐在物理竞赛备战过程中,熟悉经典教材是非常重要的一步。
对于山东大学物理竞赛来说,以下几本教材是必不可少的:1.《大学物理》:这是一本经典的物理教材,内容详实,涵盖了物理竞赛的各个方面。
建议同学们进行系统性的学习和复习。
2.《物理竞赛题解》:这是一本整理了山东大学物理竞赛历年真题的书籍,对于了解竞赛考点和题型非常有帮助。
同学们可以通过做题来提高自己的解题能力。
3.《物理竞赛辅导教材》:这是一本由山东大学物理竞赛团队编写的辅导教材,内容全面,涵盖了竞赛的各个知识点。
同学们可以通过这本书来进行针对性的复习。
二、参考资料推荐除了经典教材外,参考资料也是物理竞赛备战中不可或缺的一部分。
以下是一些推荐的参考资料:1.《物理竞赛论文选读》:这本书整理了一些物理竞赛中的经典论文,对于拓宽视野和提升物理思维非常有帮助。
同学们可以通过阅读这些论文来提高自己的物理素养。
2.《物理竞赛实验指导书》:这本书详细介绍了一些物理竞赛中常见的实验,对于实验环节的备战非常有帮助。
同学们可以通过实践来加深对物理实验的理解。
3.《物理竞赛辅导资料》:这是一本由山东大学物理竞赛团队编写的辅导资料,内容丰富,包括了一些解题技巧和策略。
同学们可以通过这本书来提高自己的解题速度和准确性。
三、实践与交流在备战物理竞赛的过程中,实践和交流是非常重要的环节。
以下是一些建议:1.参加实验室实践:山东大学物理竞赛注重实验环节,同学们可以积极参加实验室实践,加深对物理实验的理解和掌握。
2.参加竞赛培训班:可以参加一些物理竞赛培训班,通过与他人的交流和学习,提高自己的竞赛水平。
3.参加竞赛交流会:可以参加一些物理竞赛交流会,与其他竞赛选手交流经验和技巧,互相学习和进步。
1.将一点电荷q放在球形高斯面的中心处,试问在下列哪一种
情况下,通过高斯面的电场强度通量会发生变化( B )
A、将另一带电体Q从远处移到高斯面外;
B、将另一带电体Q从远处移到高斯面内;
C、将高斯面内的点电荷q移离球心处,但仍在高斯面内;
D、改边高斯面的大小形状,但依然只有点电荷q留在高斯面
内;
B. 高斯定理的理解就是:高斯面上电场强度的积分 等于 高
斯面内电荷的电量除以介电常数
这里可以理解介电常数不变,那么有 高斯面上电场强度积分
正比于 高斯面内电荷的电量
要使电通量改变,则必须改变高斯面内的电
2.根据高斯定理的数学表达式可知下述各种说法中,正确的是
(C G)。
A闭合高斯面内的电荷代数和为零时,闭合面上的各点电场强
度一定为零
B闭合高斯面内的电荷代数和不为零时,闭合面上的各点电场
强度一定处处不为零;
C闭合高斯面内的电荷代数和为零时,闭合面上的各点电场强
度不一定处处为零;
D闭合高斯面上各点电场强度均为零时,闭合面内一定处处无
电荷。
E如果闭合高斯面内无电荷分布,闭合面上的各点电场强度处
处为零;
F如果闭合高斯面上的电场强度处处不为零,则闭合面内必有
电荷分布;
G如果闭合高斯面内有净电荷,则通过闭合面的电通量必不为
零;
H高斯定理仅适用于具有高度对称性的电场。
3.一半径为R的“无线长”均匀带电圆柱面,其单位长度带电荷λ。该圆柱
面内、外电场强度分布为(r【矢量】表示垂直与圆柱面的平面上。从
轴线处引出的矢径)E(r)【矢量】=????(r
外部电场方向沿半径方向
4
5.
把一个均匀带有电荷+Q的球形肥皂泡由半径r1吹胀到r2,则半径为
R(r1<R<r2=的球面上任一点的场强大小E由______________变为
______________;电势U由 __________________________变为
________________(选无穷远处为电势零点).
做个半径为R的球面做为高斯面嘛,一开始里面包裹总电荷量为Q,后
来为0,所以由高斯公式就可以得到E由Q/(4πε0R²)变为0。
电势,一开始在球壳外部,用φ=∫Edr对无穷远到R定积分的
φ=Q/(4πε0R),后来在球壳内部电势=球壳电势=Q/(4πε0r₂)
6.
两个同心球面的半径分别为R1 和R2 ,各自带有电荷Q1 和Q2 .
求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为
多少?
题 9-20 图
分析 通常可采用两种方法.
方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,
因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯
面,借助高斯定理可求得各区域的电场强度分布,再由可求得电势分
布.(2) 利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生
的电势为
在球面内电场强度为零,电势处处相等,等于球面的电势
其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面
在各区域产生的电势叠加,可求得电势的分布.
解1 (1) 由高斯定理可求得电场分布
由电势 可求得各区域的电势分布.
当r≤R1 时,有
当R1 ≤r≤R2 时,有
当r≥R2 时,有
(2) 两个球面间的电势差
解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,
即r≤R1 ,则
若该点位于两个球面之间,即R1≤r≤R2 ,则
若该点位于两个球面之外,即r≥R2 ,则
(2) 两个球面间的电势差
7.
一带正电荷的物体M,靠近一原不带电的金属导体N,N的左端感生
出负电荷,右端感
生出正电荷.若将N的左端接地,如图所示,则
(A) N上有负电荷入地.
(B) N上有正电荷入地.
(C) N上的电荷不动.
(D) N上所有电荷都入地. [ B ]
答:接地后,金属导体N与地球构成一个新的导体。达到静电感应
时,在正电荷M存在的情况下,靠近M的导体N应带负电,N上原有的
正电荷会进入地球。故选(B)
8.
取无穷远处为参考零电势点,半径为R的导体球带电后其电势产U,
则球外离球心距离为r处的电场强度的大小为?
设导体球所带电荷量为Q,由题意:
U=kQ/R............................1
又由于,在r处的电场强度:
E=kQ/r^2..........................2
联立1,2得:
E=RU/r^2
9.
A,B为两导体大平板,面积均为S,平行放置,A板带电+Q1,B板带电
+Q2,如果B板接地,求AB的电场强度E?请写出详细过程
设A板左面带电为QA1,右边为QA2; B板左面带电为QB1,右边为QB2.
则有QA1+QA2=Q1....方程1 (A板电荷守恒)
且 QA2+QB1=0......方程2 (两板构成电容器,左右板内壁带电量相等,符
号相反)
现计算A板内场强,按照已经设定的电荷分布,场强应该是:
E`=QA1/(2*介电常数*S)-QA2/(2*介电常数*S)-QB1/(2*介电常数*S)-
QB2/(2*介电常数*S)=0 (导体内场强为零)
化简得到: QA1-QA2-QB1-QB2=0......方程3
且有: QB2=0.......方程4 (B接地,B板右侧不能有电场,以保证B板
电势为零)
解四个方程得到 QA1=QB2=0 QA2=Q1 QB1=-Q1
E=Q1/(介电常数*S) 答案与Q2无关
10.
11.
12
ε r,ε
r
12.
一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为
W0.若断开电源,使其上所带电荷保持不变,并把它从浸没在相对介电
常量为εr的无限大的各向同性均匀液态电介质中取出,问这时电场总能
量有多大?
解:依照孤立导体球电容的能量求系统的静电能
若断开电源导体所带电荷保持不变,浸没在相对电容率为εr的无限大
电介质中电容增大为ε rC,系统的静电能
13.
如图所示,电流从A点分两路通过对称的半圆支路汇合于B点,在圆
环中心O处的磁感应强度为( )
A.最大,垂直纸面向外B.最大,垂直纸而向里
C.零D.无法确定
将圆环分成上下两半研究,根据安培定则,上半圆电流在O点产生的磁
场方向向里,下半圆电流在O点产生的磁场方向向外,由于电流大小相
等,两个产生的磁感应强度大小相等,则O点的磁感应强度为零.
故选C.
利用“微元法”把圆周上电流看成是由无数段直导线电流的集合,由安培定则可知在一条直径上
的两个微元所产生的磁感强度等大反向,由矢量叠加原理可知中心O处的磁感强度为零
14. 如图所示两根相距为 a平行的无限长直载流导线A和B电流强度均为I电流方向垂直纸面向外
则(1)AB中点(P点)的磁感应强度Bp=( 0 );(2)磁感应强度B沿圆环L的线积分
15.设氢原子基态的电子以均匀速率v沿半径为a的轨道运动(如图所示),求:(1)电子沿轨
道运动时原子核处产生的磁感应强度;(2)电子的轨道磁矩。
解:(1)电子沿轨道运动时等效一圆电流,电流强度为
原子核 (圆心) 处的磁感应强度: 方向:垂直纸面向外
(2)轨道磁矩: 方向:垂直纸面向外
16.
磁介质有三种,用相对磁导率μr表征他们的特性时,下
面说法正确的是
A 顺磁质μr>0,抗磁质μr<0,铁磁质μr>>1
B 顺磁质μr>1,抗磁质μr=1,铁磁质μr>>1
C 顺磁质μr>1,抗磁质μr<1,铁磁质μr>>1
D 顺磁质μr>0,抗磁质μr<0,铁磁质μr<<1
选C 顺磁质μr>1,抗磁质μr<1,铁磁质μr>>1
有外磁场作用时:
顺磁质磁性增强,μr>1
抗磁质磁性减弱,μr<1
抗磁质磁性增强很多,μr>>1
17.
18
19.
20. 如图,长度为l 的直导线ab 在均匀磁场B中以速度v移动,
直导线ab中的电动势为( D )
(A) Blv. (B) Blv sinα.
(C) Blv cosα. (D) 0.
21.
半径为a的无限长密绕螺线管,单位长度上的匝数为n,通以交变电
流i =Imsinwt,则围在管外的同轴圆形回路(半径为r)上的感生电动势为
_____________________________.
B=μnI=μn Imsinwt
磁通量=B*πa^2
感应电动势=πa^2* dB/dt=μnπa^2Im*wcoswt
22.
23.