小升初常见奥数题简便运算
- 格式:docx
- 大小:14.20 KB
- 文档页数:3
小学数学简便运算方法归类一、带符号搬家法(根据:加法交换律和乘法交换率)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带 符搬家”。
二、结合律法(一)加括号法1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
)2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。
(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
)c)(二)去括号法1.当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。
但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。
(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)2.当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。
但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。
(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)三、乘法分配律法1.分配法括号里是加或减运算,与另一个数相乘,注意分配24×(1211-83-61-31)2.提取公因式注意相同因数的提取。
0.92×1.41+0.92×8.59516×137-53×1373.注意构造,让算式满足乘法分配律的条件。
257×103-257×2-257 2.6×9.9 四、借来还去法看到名字,就知道这个方法的含义。
这一种方法在一般的小升初考试中不常见,属于小学奥数方面的知识。
有余力的孩子可以学一下。
简便运算(一)专题简析:根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
例题1。
计算4.75-9.63+(8.25-1.37)原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1计算下面各题。
1.6.73-2 817+(3.27-1917) 2. 759-(3.8+159)-115的例题,是一定会得到启发的。
分析与解在进行四则运算时,应该注意运用加法、乘法的运算定律,减法、除法的运算性质,以便使某些运算简便。
本题就是运用乘法分配律及减法性质使运算简便的。
例2 计算9999×2222+3333×3334分析与解利用乘法的结合律和分配律可以使运算简便。
9999×2222+3333×3334=3333×(3×2222)+3333×3334=3333×6666+3333×3334=3333×(6666+3334)=3333×10000=33330000分析与解将分子部分变形,再利用除法性质可以使运算简便。
分析与解在计算时,利用除法性质可以使运算简便。
分析与解这道分数乘、除法计算题中,各分数的分子、分母的数都很大,为了便于计算时进行约分,应该先将各分数的分子、分母分别分解质因数,这样计算比较简便。
分析与解通过观察发现,原算式是求七个分数相加的和,而这七个分由此得出原算式分析与解观察题中给出的数据特点,应该将小括号去掉,然后适当分组,这样可使运算简便。
分析与解观察这些分数的分母,都是连续自然数的和,我们可以先求出分母来,再进行拆项,简算。
分析与解我们知道例12 计算1×2+2×3+3×4+……+10×11分析与解将这10个等式左、右两边分别相加,可以得到例13 计算1×3+2×4+3×5+4×6+……+50×52分析与解我们知道1×3=1×3-1+1=1×(3-1)+1=1×2+12×4=2×4-2+2=2×(4-1)+2==2×3+23×5=3×5-3+3=3×(5-1)+3=3×4+34×6=4×6-4+4=4×(6-1)+4=4×5+4……50×52=50×52-50+50=50×(52-1)+50=50×51+50将上面各式左、右两边分别相加,可以得到1×3+2×4+3×5+4×6+……+50×52=1×2+1+2×3+2+3×4+3+4×5+4+……+50×51+50=1×2+2×3+3×4+4×5+……+50×51+1+2+3+4+……+50=44200+1275=45475例14 计算(1+0.23+0.34)×(0.23+0.34+0.56)-(1+0.23+0.34+0.56)×(0.23+0.34)分析与解根据题中给出的数据,设1+0.23+0.34=a,0.23+0.34=b,那么a-b=1+0.23+0.34-0.23-0.34=1。
和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
分数裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
分数裂项的最基本的公式这一种方法在一般的小升初考试中不常见,属于小学奥数方面的知识。
有余力的孩子可以学一下。
简便运算(一)专题简析:根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
例题1。
计算4.75-9.63+(8.25-1.37)原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1计算下面各题。
例2 计算9999×2222+3333×3334分析与解利用乘法的结合律和分配律可以使运算简便。
9999×2222+3333×3334=3333×(3×2222)+3333×3334=3333×6666+3333×3334=3333×(6666+3334)=3333×10000=33330000分析与解将分子部分变形,再利用除法性质可以使运算简便。
分析与解在计算时,利用除法性质可以使运算简便。
分析与解这道分数乘、除法计算题中,各分数的分子、分母的数都很大,为了便于计算时进行约分,应该先将各分数的分子、分母分别分解质因数,这样计算比较简便。
分析与解通过观察发现,原算式是求七个分数相加的和,而这七个分由此得出原算式分析与解观察题中给出的数据特点,应该将小括号去掉,然后适当分组,这样可使运算简便。
(完整版)小升初简便运算奥数专题讲解戴氏教育新津总校新津县太康东路奥数之简便运算目录:计算专题1 小数分数运算律的运用:计算专题2 大数认识及运用计算专题3 分数专题计算专题4 列项求和计算专题5 计算综合计算专题6 超大数的巧算计算专题7 利用积不变、拆数和乘法分配率巧解计算题:计算专题8 牢记设字母代入法计算专题9 利用a ÷b=ba巧解计算题:计算专题10 利用裂项法巧解计算题计算专题11 (递推法或补数法) 计算专题12 斜着约分更简单计算专题13 定义新运算计算专题14 解方程计算专题15 等差数列计算专题16 尾数与完全平方数计算专题17 加法原理、乘法原理计算专题18 分数的估算求值计算专题19 简单数论奥数专题20 周期问题在小学计算题中有好多题型方法新颖独特,在升重点中学考试和进入中学分班考试中,多有出现,有的学生因为没见过这种题型常常得分很少或得零分,其实这种题型只要掌握一定的解题方法和规律一点都不难。
下面老师跟你支支招:计算专题1小数分数运算律的运用:【例题精选】例题一: 4.75+9.63+(8.25-1.37)例题二:11 333387797906666124+?例题三:32232537.96555+?例题四:36?1.09+1.2?67.3例题五: 81.5?15.8+81.5?51.8+67.6?18.5 【练习】1、 6.73-892(3.271)1717+- 2、71713(43)0.7513413-+-3. 975?0.25+39769.754- 4、999999×222222+333333×3333345、 45?2.08+1.5?37.66、1391371137 138138?+?7、72?2.09-1.8?73.6 8、 53.5?35.3+53.5?43.2+78.5?46.5计算专题2大数认识及运用【例题精讲】例题一:1234+2341+3412+4123 例题二:4223.411.157.6 6.5428 5+?+?例题三:199319941199319921994-+?例题四:(229779+)÷(5579+)例题五:有一串数1, 4, 9, 16,25……它们是按照一定规律排列的,那么其中第2010个数与2011个数相差多少?例六:2010×201120112011-2011×201020102010【综合练习】1、 23456+34562+45623+56234+623452、198819891987 198819891+?-3、99999?77776+33333?666664、30122-301125、999?274+62746、(83619711++)÷(3541179++)7、123456789×987654321-123456788×987654322计算专题3分数专题【例题精讲】例题一:44374527?1526例题二:11731581164179例题三:13274155+?例题四:5152566139131813 +?+?例题五:11664120÷2010 20102010 2011÷【综合练习】1、 73?74 752、2008201020093、1157764、131441513445+? 5、13392744+? 6、1451179179+?7、238238238239÷ 8、73171131581516152+?+?计算专题4列项求和【例题精讲】例题一:1111.......12233499100++++例题二:1111.......2446684850++++例题三:179111315131220304056-+-+-例题四:1111111 248163264128++++++例题五:(1111234+++)?(11112345+++)-(111112345++++)?(111234++)【综合练习】1、1111 ........ 1011111212134950 ++++2、111111 2612203042+++++3、1111142870130208++++ 4、191113151420304256-+-+5、201020102010201020101223344556++++6、22222392781243++++7、1111111111111111 () ()()() 89101191011128910111291011 +++?+++-++++?++计算专题5计算综合【例题精讲】例题一: 11111......1212312341234 (4950)+++++++++++++++例题二: 111111111?111111111 例题三: 12324671421135261072135+??++??+??例题四:201012010220103111...1111222...2222333...3333=÷142431424314243个个个例题五:从2000到6999这5000个数中数字只和能被5整除的数一共有多少个?例六:100+99—98—97+96+95—94—93……+4+3—2—1例七:??+????? ?????? ??+???? ?????? ??+991-1991131-131121-1211 【综合练习】1、1111111111+++++++++361015212836455055 2、76666666666666201062011434214434421个个3、1612886443224201612108654??+??++??+?? 4、443442144344212201242012222222444444个个443442162012666666个??÷5、(1+3+5+7+...+1999)-(2+4+6+8+ (1998)6、??1001-151-141-131-121-17、(13 +23 )+(14 +24 +34 )+(15 +25 +35 +45 )+…+(1100 +2100 +3100 +4100 +…+99100 )计算专题6超大数的巧算熟记规律,常能化难为易。
小学数学简便运算方法归类一、带符号搬家法(根据:加法交换律和乘法交换率)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带 号搬家”。
二、结合律法(一)加括号法1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
)2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。
(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
) c)(二)去括号法1.当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。
但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。
(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)2.当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。
但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。
(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)三、乘法分配律法1.分配法括号里是加或减运算,与另一个数相乘,注意分配24×(1211-83-61-31)2.提取公因式注意相同因数的提取。
0.92×1.41+0.92×8.59 516×137-53×1373.注意构造,让算式满足乘法分配律的条件。
小升初简便运算奥数题小升初是每个家庭都非常重视的阶段,因为它是孩子们从小学升入初中的重要关口。
在小升初考试中,数学是一个重要的科目,而简便运算奥数题则是其中的一部分。
简便运算奥数题是为了考察学生在运算中的灵活性和快速计算能力。
这些题目通常需要学生在短时间内做出正确答案,要求他们熟练掌握基本的运算规则和技巧。
在解答这些题目时,学生可以运用一些简便的方法来提高计算速度。
以下是一些常见的简便运算方法:1. 快速计算乘法:学生可以使用分配律和结合律来简化乘法计算。
例如,计算12 x 6时,可以先计算10 x 6 = 60,然后再计算2 x 6 = 12,最后将两个结果相加得到最终答案72。
2. 近似计算:有些题目可能需要计算较大的数,但学生不需要计算得非常准确。
在这种情况下,可以利用近似计算来简化问题。
例如,计算137 x 18时,学生可以近似为140 x 20 = 2800,这样就可以更快地得到答案。
3. 利用整数性质:有时候,题目中的数字具有一些整数性质,学生可以利用这些性质来简化计算。
例如,如果题目中要求计算7 x 9,学生可以利用9是3的倍数的性质,将7 x 9转化为7 x 3 x 3 = 21 x 3 = 63。
除了以上的方法,学生还可以通过多做题目来提高自己的计算能力。
可以在家庭作业或课余时间给孩子一些简便运算奥数题,帮助他们熟悉各种计算方法,并提高他们的计算速度和准确性。
总之,简便运算奥数题在小升初考试中占据重要的地位。
家长和老师可以通过教授一些简便的计算方法,帮助孩子在考试中取得更好的成绩。
同时,多做题目也是提高计算能力的有效途径。
希望每个孩子都能在小升初考试中取得好成绩,顺利升入初中!。
小升初奥数简便计算题
小升初奥数中的简便计算题可以包括各种数学运算,如加减乘除、分数运算、整数运算、小数运算等。
这些题目的特点是可以通
过一些技巧或简化的方法来快速计算得出结果,帮助学生提高计算
速度和准确性。
举例来说,可以有以下几种类型的简便计算题:
1. 快速算术,通过利用数字的性质和运算规律,例如交换律、
结合律、分配律等,可以简化计算步骤。
比如,计算两个两位数相
加时,可以先将个位数相加,再将十位数相加,并将结果合并。
2. 折半计算,当遇到较大的数相乘或相除时,可以利用折半计
算的方法,将大数拆分成较小的数进行计算,再将结果合并。
例如,计算48 × 25 可以拆分为24 × 50,然后将结果乘以 2。
3. 分数计算,对于分数的加减乘除,可以通过化简分数、通分、约分等方法简化计算步骤。
例如,计算 3/4 + 5/6 可以先通分,然
后将分子相加,再将结果约分。
4. 小数计算,对于小数的加减乘除,可以利用小数的性质,如小数点移位、小数位数对齐等,简化计算过程。
例如,计算0.6 × 0.25 可以将小数点右移两位,然后将结果除以 100。
5. 近似计算,当要求的精确度不高时,可以使用近似计算的方法,将复杂的计算简化为简单的计算。
例如,计算39 × 17 可以近似为40 × 20,然后将结果减去 1。
以上只是一些简便计算题的例子,实际上奥数中的简便计算题还有很多种类和方法。
通过熟练掌握这些技巧和方法,学生可以在有限的时间内迅速得出正确的结果,提高解题效率和准确性。
9999×2222+3333×3334
=3333×(3×2222)+3333×3334
=3333×6666+3333×3334
=3333×(6666+3334)
=3333×10000
=33330000
分析与解将分子部分变形,再利用除法性质可以使运算简便。
分析与解在计算时,利用除法性质可以使运算简便。
分析与解这道分数乘、除法计算题中,各分数的分子、分母的数都很大,为了便于计算时进行约分,应该先将各分数的分子、分母分别分解质因数,这样计算比较简便。
分析与解通过观察发现,原算式是求七个分数相加的和,而这七个分
由此得出原算式
分析与解观察题中给出的数据特点,应该将小括号去掉,然后适当分组,这样可使运算简便。
分析与解观察这些分数的分母,都是连续自然数的和,我们可以先求出分母来,再进行拆项,简算。
分析与解我们知道
例12 计算1×2+2×3+3×4+……+10×11
分析与解
将这10个等式左、右两边分别相加,可以得到
例13 计算1×3+2×4+3×5+4×6+……+50×52
分析与解我们知道
1×3=1×3-1+1=1×(3-1)+1=1×2+1
2×4=2×4-2+2=2×(4-1)+2==2×3+2。
小升初常见奥数题
简便运算
知识储备:
1. 常见整数的拆解
AAAAA=Aⅹ11111 A0A0A0A0A=Aⅹ1
ABABABABAB=ABⅹ1 ABCABCABC=ABCⅹ1001001
=1111111ⅹ1111111
2. 常见公式
1n(n+1) =1n - 1n+1 如:120 =14 - 1
5
1n(n+k) =( 1n - 1n+k )ⅹ1k 如:124 =( 14 - 16 )ⅹ1
2
121 =( 13 - 17 )ⅹ14
a+baⅹb = a aⅹb + b aⅹb = 1b + 1
a
(a,b不等于0)
即:a+baⅹb = 1a + 1b 如:1128 = 14 + 17 1663 = 17 + 19
3. 字母代替法
在多个代数式运算时,可以设最短的算式为a,次短的算式为b
典型考题:
分析 =1111111ⅹ1111111,所以约分后= 13ⅹ5 = 115
121 + 2022121 + 50505
212121
+
= 121 + 2ⅹ10121ⅹ101 + 5ⅹ1010121ⅹ10101 + 13ⅹ101010121ⅹ1010101
= 121 + 221 + 521 + 1321
= 1
( 17 + 111 + 113 + 117 )ⅹ( 1+17 + 111 + 113 ) –( 1+ 17 + 111 + 113 + 117 )
ⅹ( 17 + 111 + 113 )
解:设 17 + 111 + 113 = m,17 + 111 + 113 + 117 = n,所以
原式= nⅹ(1 + m)- (1 + n)ⅹ m
=n + mn - m – mn
=n – m
=17 + 111 + 113 + 117 - ( 17 + 111 + 113 )
=117
11ⅹ2 + 12ⅹ3 + 13ⅹ4 + 14ⅹ5 + …… + 12017ⅹ2018
= (1- 12 )+ ( 12 - 13 )+ ( 13 - 14 )+ …… +( 12017 - 12018 )
= 1- 12018
= 20172018
214 + 4128 + 6170 + 81130
根据:1n(n+k) =( 1n - 1n+k )ⅹ1k
原式=(2+4+6+8)+(1- 14 +14 -17 +17 -110 +110 - 113 )ⅹ13
=20+(1- 113 )ⅹ13
=20413
已知A= 1- 12 + 13 - 14 + 15 - 16 +…… + 199 - 1100 ,B= 150 + 151 + 152 + 153
+…… + 199 ,则A B,它们相差 。
A= 1- 12 + 13 - 14 + 15 - 16 +…… + 199 - 1100
= 1+ 12 + 13 + 14 + 15 + 16 +…… + 199 + 1100 -2ⅹ( 12 + 14 + 16 +…… +
1
100
)
=1+ 12 + 13 + 14 + 15 + 16 +…… + 199 + 1100 -( 1+ 12 + 13 + +…… + 150 )
=151 + 152 + 153 +…… + 199 + 1100
所以B > A, B–A=150 - 1100 = 1100