基于Harris的图像拼接技术(MATLAB源代码)
- 格式:pdf
- 大小:1.07 MB
- 文档页数:14
在Matlab中进行图像配准和形变分析图像配准是计算机视觉和医学影像处理中的一个重要技术,它用于对多个图像进行比较、分析和匹配。
图像形变分析则是对配准后的图像进行进一步分析,得到图像中的形变信息。
在Matlab中,有多种方法可以实现图像配准和形变分析,下面将介绍一些常用的方法及其应用。
一、基础知识在进行图像配准和形变分析之前,需要了解图像的基本概念和表示方式。
在Matlab中,图像通常表示为一个矩阵,每个元素代表图像中某个像素的灰度值或颜色值。
图像配准的目标是将两幅或多幅图像进行对齐,使它们在空间上完全或部分重叠。
为了实现配准,需要找到两个图像之间的几何变换关系。
常见的几何变换包括平移、旋转、缩放和仿射变换。
形变分析是对配准后的图像进行进一步分析,得到图像中的形变信息。
形变可以分为刚体形变和非刚体形变。
刚体形变是指图像中的物体保持形状和大小不变,只发生位置上的改变;非刚体形变是指图像中的物体发生形状和大小的改变。
二、图像配准方法1. 特征点匹配法特征点匹配是一种常用的图像配准方法。
它通过在图像中提取出一些显著的特征点,如角点和边缘点,然后在不同图像之间进行特征点的匹配,从而得到两个图像之间的几何变换关系。
在Matlab中,可以使用SURF算法(加速稳健特征)来提取特征点,并使用RANSAC算法(随机抽样一致性)来进行特征点的匹配。
通过这种方法,可以实现较好的图像配准效果。
2. 互信息法互信息是一种在图像配准中常用的相似性度量方法。
它通过计算两个图像间的信息增益来评估它们的相似性。
在Matlab中,可以使用imregister函数来实现基于互信息的图像配准。
3. 形状上下文法形状上下文是一种用于描述和匹配不同形状的方法。
在图像配准中,可以使用形状上下文来描述图像中的特征点,并基于形状上下文的距离度量来进行特征点的匹配。
在Matlab中,可以使用shape_context函数来实现形状上下文法。
三、图像形变分析方法1. 网格形变法网格形变是一种常用的图像形变分析方法。
JOURNAL OF JINING MEDIC AL UNIVERSIT Y V o l132No.62009#方法#技术#浅谈基于matlab的图像拼接技术在医学图像处理中的应用李娟张宝昌孙娟(济宁医学院现代教育技术中心,山东日照276826)摘要医学拼接在医学影像研究中有着广泛的应用。
利用图片对器官整体研究时,需要将具有重叠区域的多源信道所采集到的关于同一器官的图像进行图像配准、图像融合等图像拼接技术处理,生成一副关于器官的立体影像图。
本文讨论了医学图像处理中图像拼接的几种基本算法。
每种图像拼接算法在图像处理中都有各自不同的处理效果,各有优、缺点。
在实际使用中,根据不同的情况采用不同的拼接算法,以达到更好的效果。
关键词医学成像;图像匹配;图像拼接;图像配准;图像融合中图分类号:T P391文献标志码:A文章编号:1000-9760(2009)12-0433-04Analysis of image stitching technology in medical image processingLI J uan,ZH A N G Bao-chang,S UN J uan(Center o f M odern Educational T echnolog y,Jining M edical U niv ersity,Rizhao276826,China)Abstract:Medical images in medical research have a wide range of a pplications.It is needed to have overlap-ping regions of multi-source channel of the collected images on the same organs,im age registration,image fusion processing and other image-splicing tec hniques to produce a three-dimensional image of the organ,when we use pictures to c omplete a comprehensive study of the organ.This artic le discusses several ba sic algorithm of image m osaic in m edical image proc essing.Each image mosaic algorithm and image proc essing have different treatment, eac h with its own advantages and disadvantages.I n practice,ac cording to the different circum stances of different splicing algorithm,in order to achieve better results.Key words:Medical imaging;Imaging matc hing;Image mosaic在医学影像学方面,大幅度的全景图像能帮助医生对病灶及其周围部位的情况进行全面、直观地观察[1];然而显微图像的放大倍数与视野范围一直是不能兼得的。
matlab图像融合课程设计一、课程目标知识目标:1. 学生能理解图像融合的基本概念,掌握MATLAB软件在图像处理中的应用。
2. 学生能掌握图像融合的基本方法,如加权融合、多尺度融合等,并了解各自优缺点。
3. 学生能运用MATLAB实现不同类型的图像融合,并对融合效果进行定量和定性分析。
技能目标:1. 学生能运用MATLAB软件进行图像预处理,如读取、显示和保存图像。
2. 学生能运用MATLAB编程实现图像融合算法,并对融合参数进行调整。
3. 学生能运用相关评价指标对融合效果进行评估,提出优化方案。
情感态度价值观目标:1. 学生通过学习图像融合技术,培养对图像处理领域的兴趣和热情。
2. 学生在团队协作中,培养沟通与协作能力,提高解决问题的信心和责任感。
3. 学生通过了解图像融合在现实生活中的应用,认识到技术发展对社会进步的重要性。
课程性质:本课程为选修课,适用于高年级本科生或研究生,旨在帮助学生掌握图像融合技术,提高实际问题解决能力。
学生特点:学生具备一定的数学基础和编程能力,对图像处理领域有一定了解,但可能对MATLAB软件应用和图像融合技术尚不熟悉。
教学要求:课程注重理论与实践相结合,要求学生在掌握基本理论知识的基础上,通过MATLAB实践操作,提高解决实际问题的能力。
教学过程中,注重启发式教学,引导学生主动探索和思考,提高学生的创新意识和实践能力。
通过课程学习,使学生能够独立完成图像融合相关任务,并为后续深入研究打下基础。
二、教学内容1. 图像融合基本概念:图像融合的定义、分类及其应用场景。
2. MATLAB图像处理基础:图像的读取、显示、保存等基本操作,以及MATLAB图像处理工具箱的介绍。
3. 图像融合方法:- 加权融合法:原理、实现步骤及MATLAB编程示例。
- 多尺度融合法:原理、实现步骤及MATLAB编程示例。
- 其他融合方法:如基于变换域的融合方法、基于稀疏表示的融合方法等。
在Matlab中进行图像融合与图像叠加的方法与技巧引言:随着数字图像处理和计算机视觉领域的发展,图像融合和图像叠加变得越来越重要。
图像融合是指将多幅图像合成为一幅具有更清晰、更丰富信息的图像,而图像叠加则是在保留所叠加图像的原始信息的同时,使图像更加丰富和易于理解。
Matlab作为一种强大的科学计算工具,提供了丰富的图像处理函数和工具箱,可以很方便地进行图像融合与图像叠加。
一、图像融合的方法与技巧1. 融合算法图像融合的基本方法有加权平均法、空间域融合法、频域融合法、小波融合法等。
加权平均法是最简单的方法,通过计算图像像素的平均值来融合。
空间域融合法是通过对直接融合的图像进行空间域操作来提取融合结果。
频域融合法则是通过将图像转换到频域,然后进行频域操作来实现融合。
小波融合法是基于小波变换的方法,利用小波分析的多尺度分解能力对图像进行分析和融合。
根据具体需求和图像的特点,选择合适的融合算法是非常重要的。
2. 图像预处理在进行图像融合之前,通常需要进行图像预处理,以提高融合结果的质量。
常用的图像预处理方法包括灰度拉伸、直方图均衡化、滤波等。
灰度拉伸是通过对图像的像素值进行线性变换,将图像像素值的范围拉伸到合适的范围内,从而增加图像的对比度。
直方图均衡化则是将图像的像素值在灰度直方图上均匀分布,以增强图像的细节。
滤波是通过对图像进行滤波操作,如低通滤波、高通滤波等,以去除图像中的噪声和不需要的细节。
3. 图像融合的策略图像融合的策略可以根据具体需求来选择。
常见的策略包括全局融合和局部融合。
全局融合是将所有图像的信息进行融合,得到整体的融合结果。
而局部融合则是将不同图像的不同区域进行融合,以保留更多的细节和纹理。
根据具体应用和需求,选择合适的融合策略可以使融合结果更加符合实际需求。
4. 参数设置与调整在进行图像融合过程中,不同的算法和方法有各自的参数,根据不同的图像和具体应用,需要适时地进行参数的设置和调整。
matlab中的detectharrisfeatures -回复Matlab中的detectHarrisFeatures函数是一个用于检测图像中Harris角点的函数。
在本文中,我们将一步一步地回答与这个函数相关的问题,从函数的目的和输入参数到如何使用和优化这个函数。
第一步:了解Harris角点检测算法在解释detectHarrisFeatures函数之前,我们首先需要了解Harris角点检测算法的原理。
Harris角点检测算法是一种用于检测图像中角点的经典算法。
它基于角点的特征,即图像上曲线交叉或曲率变化显著的点。
Harris 角点检测算法使用局部窗口的二阶矩矩阵来计算Harris响应函数,根据阈值筛选出具有较高响应值的像素点作为角点。
第二步:了解detectHarrisFeatures函数的输入参数detectHarrisFeatures函数有多个输入参数,了解这些参数是使用该函数的重要前提。
下面是detectHarrisFeatures函数的常用参数列表:1. I:待检测的图像。
这是唯一一个必需的参数,它指定了我们要对哪个图像进行角点检测。
2. Name-Value参数对:可选参数,用于进一步指定检测的各种设置。
比如,'MinQuality'参数指定了检测到的角点最小质量,'FilterSize'参数指定了输入图像的响应滤波器尺寸,'ROI'参数指定了感兴趣区域等。
第三步:使用detectHarrisFeatures函数进行角点检测使用detectHarrisFeatures函数进行角点检测非常简单。
我们只需要提供待检测的图像作为输入参数,然后函数将返回一个包含检测到的角点位置信息的角点检测结果对象。
下面是一个简单的使用示例:matlabI = imread('image.jpg');corners = detectHarrisFeatures(I);在上面的示例中,我们使用imread函数读取了一张图片,然后将该图片作为输入参数传递给detectHarrisFeatures函数。
第24期2023年12月无线互联科技Wireless Internet Science and TechnologyNo.24December,2023作者简介:汪强(1997 ),男,安徽宣城人,硕士研究生;研究方向:图像处理及FPGA 开发㊂自适应阈值Harris 算法遥感图像配准的FPGA 实现汪㊀强,郭来功(安徽理工大学电气与信息工程学院,安徽淮南232001)摘要:针对Harris 角点检测器响应值R 的阈值选择而导致角点失真问题,文章提出了一种基于现场可编程门阵列(FPGA )的自适应Harris 角点检测器实现遥感图像的配准方式㊂该方式依据非最大值抑制(NMS )处理后的响应值对阈值进行实时变化㊂实验结果显示,优化架构在硬件资源仅增加2.76%的情况下,准确率相应提升了8.31%㊂因此,文章提出的遥感图像配准架构适用于硬件资源有限的平台㊂关键词:Harris 角点检测器;FPGA ;非最大值抑制(NMS );遥感图像配准中图分类号:TP391㊀㊀文献标志码:A 0㊀引言㊀㊀在众多的计算机视觉应用中,Harris 角点检测被视为关键的预处理技术,例如特征识别㊁动态追踪㊁图像配准㊁3D 模型构建等㊂在众多常用的计算方法中,选择合适的阈值通常会对最终结果产生长远和深刻的影响㊂但是,在Harris 算法的应用中,阈值的选择只能依赖于个体的经验判断[1]㊂过高的阈值不仅可能导致角点信息的丢失,还可能引发伪角点的出现;较低的阈值不仅导致角点质量的下降,还会提高其对噪声的敏感性[2]㊂潘聪等[3]通过消除伪角点的方法,成功地实施了基于FPGA 的Harris 角点自适应阈值检测㊂本研究在其基础上,对自适应阈值算法进行了优化,并利用FPGA 将其成功应用于遥感图像配准技术中㊂1㊀Harris 角点检测算法㊀㊀在图像中,角点是正交轴渐变较高的点,Harris 算法能满足这些条件的点[4]㊂扫描窗口w (x ,y )(位移u 在x 方向,v 在y 方向),得到式(1):E (u ,v )=ðw (x ,y )[I (x +u ,y +v )-I (x ,y )]2(1)其中,w (x ,y )为(x ,y )处的窗口位置;I (x ,y )为(x ,y )处的强度;I (x +u ,y +v )为移动窗口(x +u ,y +v )处的强度㊂因为算法的最终目的是找到有角点(强度变化很大)的窗户㊂因此,必须最大化公式(1),则对公式(1)使用泰勒展开,得到公式(2):E (u ,v )=ð[I (x ,y )+uI x +vI y -I (x ,y )]2(2)展开公式(2),并用-I (x ,y )抵消I (x ,y ),得到公式(3):E (u ,v )=ðu 2I 2x+2uvI x I y +v 2I 2y(3)公式(3)可以用矩阵形式表示为:E (u ,v )=[u ㊀v ]ðw (x ,y )I 2xI x I y I x I y I 2y éëêêùûúú()u v éëêêùûúú(4)则公式(4)可表示为以下形式:E (u ,v )=[u ㊀v ]M u v éëêêùûúú(5)最后,计算遥感图像中每个窗口的分数,以确定其是否可能包含符合条件的角点:R =det (M )-k (trace (M ))2(6)其中,det (M )=λ1λ2;trace (M )=λ1+λ2㊂λ1和λ2相关数学意义如图1所示㊂在非最大抑制(NMS)中,如果半径r =1,则边界框为2ˑr +1=3㊂在这种情况下,考虑中心像素上的3ˑ3邻域㊂如果中心像素大于周围像素,则将其视为角点㊂同时将与半径内的周围像素进行比较㊂2㊀硬件实现架构㊀㊀遥感图像配准的硬件实现架构如图1所示,依次通过导数生成模块㊁高斯滤波模块㊁角点获得模块(角点提取和非最大值抑制)和优化后的自适应阈值模㊀㊀㊀㊀图1㊀λ1㊁λ2特征值相关数学意义块,以实现遥感图像角点的提取㊂至于图像配准部分,本次实验选择了特征法和区域法㊂2.1㊀导数生成模块㊀㊀导数生成器分别计算每一个像素水平方向和垂直方向的导数及其乘积[3]㊂先读取SDRAM存储器中图像灰度数据,再用IP核的加法器㊁减法器和乘法器来实现I2x㊁I2y和I x I y值的计算㊂其中,设置这3个数值的输出位宽为32㊂2.2㊀高斯滤波模块㊀㊀对上一步计算得到的3幅梯度图像进行高斯平滑处理,得到3个高斯值㊂高斯滤波模块窗口大小设置为3ˑ3,主要由X方向和Y方向进行㊂其中,图像在FPGA中是逐行输出的,因此需要通过延迟的方式来获得3ˑ3窗口内的9个图像像素值㊂其中实验输入的遥感图像大小为128ˑ128,对图像的第一二行分别进行128延迟和256延迟[5]㊂2.3㊀角点获得模块㊀㊀将高斯滤波得到的3个高斯值代入公式(7),得到遥感图像中每一个像素的Harris角点响应函数值R,其中R为该局部区域的最大值[6]㊂其计算需要完成3个乘法计算,并保存至寄存器中,其中乘以参数k (设k=0.06)的计算,使用算数右移来完成㊂同时避免造成角点团簇现象,R需要非最大值抑制(NMS),即去除一些较小值,将其中一些大于阈值的R输出进行后一级的角点配准功能[5]㊂2.4㊀自适应阈值模块㊀㊀阈值的选择对图像候选角点的质量也有很大影响㊂寻找理想阈值需要在未检测到的真角和检测到的假角之间进行权衡比较,这个阈值因图像而异[7]㊂本文设计的自适应模块结构如图2所示,依据NMS 后角点数量值N,分3个区间对阈值进行调节,同时利用简单地左右移1个单位以实现P值的乘除法,其中P取2.2ˑ10-7㊂图2㊀自适应阈值模块实现结构2.5㊀遥感图像配准模块㊀㊀特征法是通过图像中的特征点来进行图像的配准操作㊂核心的步骤包括:首先从2张图片中抽取特征点或描述特征的子项㊂再对2张图片中的特征点或描述子项进行匹配,以确定它们之间的匹配关系㊂依据所识别的相应关联,进行图像变换矩阵的计算㊂最后,对其中一张图像执行变换操作,确保2张图像在空间维度上达到配准状态㊂至于后2步通常采用最小二乘法来进行问题的解决,这样就可以达到图像的精确配准㊂3㊀仿真验证与分析㊀㊀该部分采用FPGA和MATLAB对比的方式进行㊂其中,FPGA采用Intel(Altera)公司CycloneⅣE系列的EP4CE15F23C6型开发平台,开发环境为Quartus II18.0,使用Verilog HDL完成数据流的描述㊂遥感图像配准仿真对比结果如图3 5所示㊂图3㊀传统遥感图像配准的MATLAB仿真4㊀结语㊀㊀本文提出的基于FPGA的自适应阈值Harris特征提取和遥感图像配准架构,以NMS为载体,改进自适应阈值模块,在FPGA占用资源增加2.76%的情况下,适度提高了遥感图像角点检测速度和配准精度㊂图4㊀传统遥感图像配准的FPGA仿真图5㊀自适应遥感图像配准的FPGA 仿真参考文献[1]孙万春.基于视频的公共场所人数统计研究[D ].重庆:重庆理工大学,2018.[2]孙万春,张建勋,朱佳宝,等.S -Harris :一种改进的角点检测算法[J ].重庆理工大学学报(自然科学),2018(10):156-161.[3]潘聪,黄鲁.基于FPGA 的自适应阈值Harris 角点检测硬件实现[J ].微型机与应用,2016(19):44-46,49.[4]SIKKA P ,ASATI A R ,SHEKHAR C.Real timeFPGA implementation of a high speed and areaoptimized Harris corner detection algorithm [J ].Microprocessors and Microsystems ,2021(2):1-6.[5]王跃霖.基于FPGA 的动态目标检测与跟踪系统的研究[D ].兰州:兰州交通大学,2018.[6]闫小盼,敖磊,杨新.Harris 角点检测的FPGA 快速实现方法[J ].计算机应用研究,2017(12):3848-3851.[7]MAURYA S ,CHOUDHURY Z ,PURINI S.Accuracyconfigurable FPGA implementation of Harris corner detection [C ].2022IEEE Computer Society Annual Symposium on VLSI (ISVLSI ).Nicosia ,2022:422-427.(编辑㊀沈㊀强)FPGA implementation of adaptive threshold Harris algorithm for remotesensing image registrationWang Qiang Guo LaigongSchool of Electrical and Information Engineering Anhui University of Technology Huainan 232001 ChinaAbstract Aiming at the problem of corner distortion caused by the threshold selection of the response value R ofHarris corner detector an adaptive Harris corner detector based on FPGA is proposed to achieve remote sensing imageregistration.This method changes the threshold in real -time based on the response value after Non Maximum Suppression NMS processing.The experimental results show that the optimized architecture achieved an accuracyimprovement of 8.31%with only a 2.76%increase in hardware resources.Therefore the remote sensing imageregistration architecture proposed in this article is suitable for computing on platforms with limited hardware resources.Key words Harris corner detector FPGA Non Maximum Suppression NMS remote sensing image registration。
基于Harris和最佳缝合线的图像拼接算法摘要:图像拼接是图像处理技术的一个重要内容,是一种将多张有衔接重叠的图像拼成一张高分辨率图像的技术。
该技术广泛应用于显微图像分析、数字视频、运动分析、医学图像处理、虚拟现实技术和遥感图像处理等领域[1]。
本次方法探究是为满足不同形态的工件图像拼接要求,得到拼接影像量测工件尺寸,从而对图像拼接技术做深入探究,提出基于棋盘格标定板角点检测图像拼接的处理方法。
探究基于棋盘格标定板角点特征的图像拼接技术,利用RANSAC算法提高关键点匹配度,然后为消除拍摄角度产生的尺寸误差,对拍摄的图像进行透视变换,最后基于C++编程实验实现透视变换后两张图像拼接过程,实验结果证明了拼接方法的可行性及有效性。
关键词:特征检测匹配;RANSAC;最佳缝合线图像拼接;透视变换;0引言图像拼接是一个日益流行的研究领域,它已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点话题。
图像拼接所要解决的问题一般表现为通过对齐一系列的空间重叠图像构造一个无缝的高清晰度的图像,它具有比单个图像更高的分辨率和更大的视野[2]。
对于这些有重叠部分的图像,一边通过两种方法获得:一种是固定照相机的转轴,然后绕轴旋转所拍摄的照片;另一种是固定照相机的光心,水平摇动镜头所拍摄的照片[3]。
其中前者主要是用于远景或遥感图像的获取,后者主要用于显微图像的获取还有一种方法是针对于工件测量的拍摄方式,将相机放于工件上方水平移动拍摄,将拍摄的照片拼接起来。
它们共同的特点都是获得二维图像,但通常由于机械或者场景的不理想导致各衔接图像不能完全匹配,因此这给拼接图像环节带来了严重问题。
为此,本文就图像拼接出现的严重问题,为了满足不同形态的工件图像拼接要求,提高拼接的精度,提出一种基于棋盘格标定板角点检测特征匹配的拼接方法。
1 工件图像特征点检测完成高分辨率图像拼接的第一步是选择准确度较高的图片配准方法,这样才能找出图片中的关键点(即特征点)[4]。
基于matlab的图像识别与匹配基于matlab的图像识别与匹配摘要图像的识别与匹配是⽴体视觉的⼀个重要分⽀,该项技术被⼴泛应⽤在航空测绘,星球探测机器⼈导航以及三维重建等领域。
本⽂意在熟练运⽤图像的识别与匹配的⽅法,为此本⽂使⽤⼀个包装袋并对上⾯的数字进⾏识别与匹配。
⾸先在包装袋上提取出来要⽤的数字,然后提取出该数字与包装袋上的特征点,⽤SIFT⽅法对两幅图进⾏识别与匹配,最终得到对应匹配数字的匹配点。
仿真结果表明,该⽅法能够把给定数字与包装袋上的相同数字进⾏识别与匹配,得到了良好的实验结果,基本完成了识别与匹配的任务。
1 研究容图像识别中的模式识别是⼀种从⼤量信息和数据出发,利⽤计算机和数学推理的⽅法对形状、模式、曲线、数字、字符格式和图形⾃动完成识别、评价的过程。
图形辨别是图像识别技术的⼀个重要分⽀,图形辨别指通过对图形的图像采⽤特定算法,从⽽辨别图形或者数字,通过特征点检测,精确定位特征点,通过将模板与图形或数字匹配,根据匹配结果进⾏辨别。
2 研究意义数字图像处理在各个领域都有着⾮常重要的应⽤,随着数字时代的到来,视频领域的数字化也必将到来,视频图像处理技术也将会发⽣⽇新⽉异的变化。
在多媒体技术的各个领域中,视频处理技术占有⾮常重要的地位,被⼴泛的使⽤于农业,智能交通,汽车电⼦,⽹络多媒体通信,实时监控系统等诸多⽅⾯。
因此,现今对技术领域的研究已⽇趋活跃和繁荣。
⽽图像识别也同样有着更重要的作⽤。
3 设计原理3.1 算法选择Harris ⾓点检测器对于图像尺度变化⾮常敏感,这在很⼤程度上限制了它的应⽤围。
对于仅存在平移、旋转以及很⼩尺度变换的图像,基于 Harris 特征点的⽅法都可以得到准确的配准结果,但是对于存在⼤尺度变换的图像,这⼀类⽅法将⽆法保证正确的配准和拼接。
后来,研究⼈员相继提出了具有尺度不变性的特征点检测⽅法,具有仿射不变性的特征点检测⽅法,局部不变性的特征检测⽅法等⼤量的基于不变量技术的特征检测⽅法。
matlab立体匹配代码立体匹配是计算机视觉中的一个重要任务,用于从一对立体图像中计算出对应点的深度信息。
Matlab提供了一些函数和工具箱,可以用于实现立体匹配算法。
下面是一个基于Semi-Global Matching (SGM) 算法的示例代码:matlab.% 读取左右视图图像。
leftImage = imread('left_image.png');rightImage = imread('right_image.png');% 将图像转换为灰度图。
leftGray = rgb2gray(leftImage);rightGray = rgb2gray(rightImage);% 定义立体匹配参数。
disparityRange = [0, 64]; % 最大视差范围。
blockSize = 15; % 匹配块的大小。
% 使用SGM算法进行立体匹配。
disparityMap = disparitySGM(leftGray, rightGray,'DisparityRange', disparityRange, 'BlockSize', blockSize); % 显示视差图。
imshow(disparityMap, disparityRange);title('Disparity Map');colormap jet;colorbar;需要注意的是,上述代码中的`left_image.png`和`right_image.png`是左右视图图像的文件名,你需要将其替换为你自己的图像文件。
此外,Matlab还提供了其他一些立体匹配算法,例如 Block Matching (BM)、Graph Cuts (GC) 等。
你可以根据自己的需求选择合适的算法,并使用相应的函数进行实现。
基于Matlab的图像处理算法优化与实验一、引言图像处理是计算机视觉领域的重要分支,随着数字图像技术的不断发展,图像处理算法在各个领域得到了广泛的应用。
Matlab作为一种强大的科学计算软件,提供了丰富的图像处理工具和函数,为研究人员提供了便利。
本文将探讨基于Matlab的图像处理算法优化与实验,旨在提高图像处理算法的效率和准确性。
二、图像处理算法优化1. 图像去噪图像去噪是图像处理中常见的问题,影响着图像的清晰度和质量。
在Matlab中,可以利用各种去噪算法对图像进行处理,如中值滤波、均值滤波、小波变换等。
通过比较不同算法的效果和速度,优化选择最适合的去噪方法。
2. 图像增强图像增强旨在改善图像的视觉效果,使其更加清晰和易于分析。
在Matlab中,可以使用直方图均衡化、灰度变换等方法对图像进行增强。
通过调整参数和比较实验结果,优化图像增强算法,提高图像的质量。
3. 特征提取特征提取是图像处理中的关键步骤,用于从原始图像中提取出有用信息。
在Matlab中,可以利用各种特征提取算法,如边缘检测、角点检测、纹理特征提取等。
通过优化算法参数和选择合适的特征描述子,提高特征提取的准确性和稳定性。
三、实验设计与结果分析1. 实验环境搭建在进行图像处理算法优化实验前,需要搭建合适的实验环境。
选择适当的Matlab版本和工具箱,并准备测试用的图像数据集。
2. 实验步骤步骤一:对比不同去噪算法在同一张图片上的效果,并记录去噪前后的PSNR值。
步骤二:比较不同图像增强方法对同一张图片的效果,并进行主观评价。
步骤三:提取同一组图片的特征,并比较不同特征提取算法的性能。
3. 实验结果分析根据实验数据和结果分析,可以得出以下结论: - 在某些情况下,中值滤波比均值滤波效果更好; - 直方图均衡化对于低对比度图像效果显著; - Harris角点检测在复杂背景下表现更稳定。
四、结论与展望通过基于Matlab的图像处理算法优化与实验研究,我们可以得出一些有益的结论,并为未来研究方向提供参考。
角点提取与匹配算法实验报告1 说明本文实验的目标是对于两幅相似的图像,通过角点检测算法,进而找出这两幅图像的共同点,从而可以把这两幅图像合并成一幅图像。
下面描述该实验的基本步骤:1.本文所采用的角点检测算法是Harris 角点检测算法,该算法的基本原理是取以目标像素点为中心的一个小窗口,计算窗口沿任何方向移动后的灰度变化,并用解析形式表达。
设以像素点(x,y)为中心的小窗口在X 方向上移动u ,y 方向上移动v ,Harris 给出了灰度变化度量的解析表达式:2,,|,|,,()(x y x y x u y v x y x y I I E w I I w uv o X Y∂∂=-=++∂∂∑∑ (1) 其中,,x y E 为窗口内的灰度变化度量;,x y w 为窗口函数,一般定义为222()/,x y x y w e σ+=;I 为图像灰度函数,略去无穷小项有:222222,,[()()2]2x y x y x y x y E w u I v I uvI I Au Cuv Bv =++=++∑(2)将,x y E 化为二次型有:,[]x yu E u v M v ⎡⎤=⎢⎥⎣⎦(3)M 为实对称矩阵:2,2x y x x y x y y I I I M w I I I •⎤⎡=⎥⎢•⎢⎥⎣⎦∑ (4)通过对角化处理得到:11,200x y E R R λλ-⎛⎫= ⎪⎝⎭(5)其中,R 为旋转因子,对角化处理后并不改变以u,v 为坐标参数的空间曲面的形状,其特征值反应了两个主轴方向的图像表面曲率。
当两个特征值均较小时,表明目标点附近区域为“平坦区域”;特征值一大一小时,表明特征点位于“边缘”上;只有当两个特征值均比较大时,沿任何方向的移动均将导致灰度的剧烈变化。
Harris 的角点响应函数(CRF)表达式由此而得到:2(,)det()(())CRF x y M k trace M =-(6)其中:det(M)表示矩阵M的行列式,trace(M)表示矩阵的迹。
基于MATLAB的图像拼接技术实验报告学院:数信学院专业班级: 12级信息工程1班姓名学号:一、 实验名称:基于MATLAB 的图像拼接技术二、 实验目的:利用图像拼接技术得到超宽视角的图像,用来虚拟实际场景。
三、 实验原理:基于相位相关的图像拼接技术是一种基于频域的方法,通过求得图像在频域上是相位相关特点来找到特征位置,从而进行图像拼接。
其基本原理是基于傅氏功率谱的相关技术。
该方法仅利用互功率谱中的相位信息进行图像配准,对图像间的亮度变化不敏感,而且所获得的相关峰尖突出,具有一定的鲁棒性和较高的配准精度。
基于相位相关法进行图像拼接的基本原理如下:假设f (x ,y )表示尺寸 为M ⨯N 的图像,该函数的二维离散傅里叶变换(DFT )为:112(//)001(,)(,)M N j ux M vy N x y F u v f x y eM Nπ---+===⨯∑∑其中,F (u ,v )是复变函数;u 、v 是频率变量,u=0,1,…,M-1,v=0,1,…,N-1;x 、y 是空间或图像变量。
二维离散傅里叶逆变换(IDFT )为:112(//)0(,)(,)N M j ux M vy N y x f u v e F x y π---+===∑∑其中,x=0,1,…,M-1;y=0,1,…,N-1。
设两幅图像1I 、2I 的重叠位置为(0x ,0y ),则图像1I 、2I 的互功率谱为:00*2()1212(,)(,)(,)(,)j x y I I e I I πξηξηξηξηξη-+⨯=⨯其中,*为共轭符号,对上式两边进行傅里叶逆变换将在(0x ,0y )处产生一个 函数。
因此,只要检测上式傅里叶逆变换结果最大值的位置,就可以获得两幅图像间的评议量(0x ,0y 。
具体算法步骤如下: ①读入两幅图片1I 、2I (函数输入),并转换为灰度图像; ②分别对1I 、2I 做二维傅里叶变换,即: A=2fft (1I ) B=2fft (2I )则通过A 、B 的简单的矩阵运算得到另一矩阵3C ,即: 3C =B*.conj (A )/norm (B*.conj (A ),1)矩阵3C 的二维傅里叶逆变换C 在(0x ,0y )处取得最大,可通过遍历比较C (i ,j )大小即可找到该位置,并作为函数返回值。
如何使用MATLAB进行图像拼接和合成概述:图像拼接和合成是一种将多张图片融合成一张完整图片的技术。
MATLAB作为一种功能强大的科学计算软件,提供了许多方便易用的工具包,使得图像拼接和合成变得更加简单。
本文将介绍如何使用MATLAB进行图像拼接和合成的方法和技巧。
一、图像预处理:在进行图像拼接和合成之前,首先需要对原始输入进行一系列的预处理。
这包括图像的尺寸统一、色彩平衡和去噪等操作。
MATLAB提供了许多内置函数和工具箱,可以轻松完成这些预处理工作。
1. 图像尺寸统一:由于不同图片可能具有不同的尺寸和比例,为了实现拼接和合成的目标,我们需要将所有输入图片的尺寸统一。
MATLAB中的imresize函数可以很方便地实现图像的缩放操作,使得所有图像具有相同的尺寸。
2. 色彩平衡:当合成图像中不同部分的色彩不匹配时,我们需要进行色彩平衡操作,使得整体图像具有统一的色调。
MATLAB提供了imadjust函数,可以对图像的亮度和对比度进行调整,以达到色彩平衡的效果。
3. 去噪:在拼接和合成图像时,由于图片在拍摄和处理过程中可能会出现噪点和不完整的部分,我们需要使用去噪算法来提高图像质量。
MATLAB中的imfilter函数可以实现常见的去噪算法,如中值滤波和高斯滤波等。
二、图像拼接:图像拼接是将多个图片按照一定规则拼接成一张完整图片的过程。
MATLAB 提供了多种实现图像拼接的函数和技术,下面列举其中几种常见的方法。
1. 水平拼接:水平拼接是将多张图片按照水平方向排列,形成一张更宽的图片。
MATLAB 中的imresize和imwrite函数可以实现此功能。
首先,将所有输入图片调整为相同的高度和宽度,然后调用imwrite函数将它们水平排列在一起。
2. 垂直拼接:垂直拼接是将多张图片按照垂直方向排列,形成一张更高的图片。
与水平拼接类似,需要先调整所有输入图片为相同的高度和宽度,然后使用imwrite函数将它们垂直排列在一起。
matlab中的detectharrisfeatures -回复Matlab中的detectHarrisFeatures函数是一个用于检测Harris角点的特征点的函数。
在本文中,我们将一步一步回答与这个函数相关的问题,并详细讨论其工作原理和用法,包括输入参数、输出参数以及一些示例代码。
Harris角点检测方法是由Chris Harris和Mike Stephens在1988年提出的,它是一种用于在图像中检测兴趣点的算法。
这个算法主要用于计算图像局部区域的强度变化,以及这些变化的方向,并根据这些信息确定特征点。
首先,让我们了解一下detectHarrisFeatures函数的基本用法和语法。
在Matlab中,您可以使用以下语法调用这个函数:points = detectHarrisFeatures(img)这个函数采用一个图像作为输入,并返回一个包含检测到的Harris角点的一个对象数组。
可以使用这个点数组进行进一步的处理和分析。
在这里,'img'是要进行Harris角点检测的输入图像。
这可以是一个灰度图像或一个彩色图像。
函数将自动将彩色图像转换为灰度图像进行处理。
现在,让我们深入了解detectHarrisFeatures函数的工作原理和各个参数的作用。
Harris角点检测方法是通过对图像进行局部窗口内的像素灰度值计算来实现的。
通过在每个像素位置使用一个小的窗口,该方法计算出一个称为Harris矩阵的矩阵。
Harris矩阵包含了图像局部区域中的灰度值变化情况。
根据Harris矩阵的特征值,可以确定图像中的角点。
Harris矩阵的计算基于以下公式:H = [A B; B C]其中A、B和C是通过计算图像灰度值在局部窗口内的x和y方向上的梯度的平方和的积分。
detectHarrisFeatures函数具有几个参数,这些参数可以根据需要进行设置。
以下是这些参数的详细说明:1. 'FilterSize'参数:这个参数用来指定局部窗口的大小。
科技与创新|Science and Technology & Innovation2024年 第02期DOI :10.15913/ki.kjycx.2024.02.037基于MATLAB的无人机图像拼接算法研究*张 建,李 行,于晓燕,张 康,王 博(昌吉学院,新疆 昌吉回族自治州 831100)摘 要:阐述了小波图像融合、图像块匹配、SURF (加速稳健特征)算法3种图像拼接算法。
借助MATLAB 平台工具,进行了GUI (图形用户)界面设计,对3种图像拼接算法进行了对比分析,得出图像块匹配拼接算法具有的优势。
关键词:小波图像融合;图像块匹配;SURF 算法;图像拼接中图分类号:TG333 文献标志码:A 文章编号:2095-6835(2024)02-0126-03——————————————————————————*[基金项目]昌吉学院科研项目(编号:21KY004)图像拼接技术[1-2]在实际行业中的应用价值非常高,在医学图像、遥感图像处理、交通运输、模式识别、计算机视觉等领域已经被广泛应用。
国内外很多学者早已把图像拼接作为计算机图形学的焦点来研究,对图像拼接及其相关技术进行广泛而深入的研究有着重要而深远的意义[3]。
无人机航拍时受外部环境因素影响,一些图像变得不完美。
为了得到视角更宽、分辨率更高的全局图像,需对图像进行拼接处理。
文献[4]选择SIFT (尺度不变换特征)算法对无人机航拍苗圃图像进行拼接,拼接过程耗时长。
文献[5]提出一种将分数阶微分处理和SIFT 算法结合的图像处理算法。
文献[6]利用SIFT 算法对无人机图形拼接进行了改进。
为解决图像匹配耗时问题,文献[7]提出在尺度不变特性变换(SIFT )算法的基础上,根据特征点邻域灰度值的差熵大小来筛选稳定特征点,提高算法匹配效率。
文献[8]利用RANSAC (随机抽样一致) 算法对SIFT 算法提取特征点进行筛选剔除,优化了拼接效果。
M A T L A B图像拼接算法及实现图像拼接算法及实现(一)论文关键词:图像拼接图像配准图像融合全景图论文摘要:图像拼接(image mosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。
图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。
一般来说,图像拼接的过程由图像获取,图像配准,图像合成三步骤组成,其中图像配准是整个图像拼接的基础。
本文研究了两种图像配准算法:基于特征和基于变换域的图像配准算法。
在基于特征的配准算法的基础上,提出一种稳健的基于特征点的配准算法。
首先改进Harris角点检测算法,有效提高所提取特征点的速度和精度。
然后利用相似测度NCC(normalized cross correlation——归一化互相关),通过用双向最大相关系数匹配的方法提取出初始特征点对,用随机采样法RANSAC(Random Sample Consensus)剔除伪特征点对,实现特征点对的精确匹配。
最后用正确的特征点匹配对实现图像的配准。
本文提出的算法适应性较强,在重复性纹理、旋转角度比较大等较难自动匹配场合下仍可以准确实现图像配准。
Abstract:Image mosaic is a technology that carries on the spatial matching to aseries of image which are overlapped with each other, and finally builds a seamless and high quality image which has high resolution and big eyeshot. Image mosaic has widely applications in the fields of photogrammetry, computer vision, remote sensingimage processing, medical image analysis, computer graphic and so on. 。
结合特征点与极谐变换的图像拼接李淑尚;李雷达;何霁野;宋万宝【摘要】提出了一种新的结合特征点与极谐变换(Polar Harmonic Transform,PHT)的图像拼接算法.利用Harris角检测器提取图像中的特征点,计算特征点圆形邻域的PHT特征矢量,并通过计算欧氏距离作为特征点匹配的依据提取出初始特征点对.根据几何变换模型剔除伪匹配对,利用正确映射模型计算出变换参数,采用加权平均法得到图像的拼接结果.实验结果表明了算法的有效性.%A new image mosaic method is proposed by combining feature point and Polar Harmonic Transform(PHT). The feature points are extracted from the image using Harris detector, and the PHT feature vectors are computed over the circular neighboring area around the feature points. The initial feature point pairs are obtained by estimating the Euclidean distance between the PHT feature vectors. The spurious feature point pairs are removed according to the geometric transform model, and the transform parameters are computed through the correct mapping mode. Image mosaic is achieved using the weighed average method. Experimental results show the efficiencies of the proposed scheme.【期刊名称】《计算机工程与应用》【年(卷),期】2013(049)003【总页数】4页(P234-237)【关键词】图像拼接;特征点;极谐变换(PHT)【作者】李淑尚;李雷达;何霁野;宋万宝【作者单位】中国矿业大学信息与电气工程学院,江苏徐州221116;中国矿业大学信息与电气工程学院,江苏徐州221116;霍州煤电集团霍宝干河煤矿有限公司,山西霍州031400;上海大屯能源股份有限公司物资贸易部,江苏徐州221611;上海大屯能源股份有限公司物资贸易部,江苏徐州221611【正文语种】中文【中图分类】TP391.4图像拼接技术就是将两张有部分重叠的图像拼成一幅无缝的高分辨率图像的技术,它具有比单个图像更高的分辨率和更大的视野。