课题研究:最短的路径问题
- 格式:ppt
- 大小:55.50 KB
- 文档页数:7
最短路径问题介绍全文共四篇示例,供读者参考第一篇示例:最短路径问题是指在一个带有边权的图中,寻找连接图中两个特定节点的最短路径的问题。
在实际生活中,最短路径问题广泛应用于交通运输、通信网络、物流配送等领域。
通过解决最短路径问题,可以使得资源的利用更加高效,节约时间和成本,提高运输效率,并且在紧急情况下可以迅速找到应急通道。
最短路径问题属于图论中的基础问题,通常通过图的表示方法可以简单地描述出这样一个问题。
图是由节点和边组成的集合,节点表示不同的位置或者对象,边表示节点之间的连接关系。
在最短路径问题中,每条边都有一个权重或者距离,表示从一个节点到另一个节点移动的代价。
最短路径即是在图中找到一条路径,使得该路径上的边权和最小。
在解决最短路径问题的过程中,存在着多种算法可以应用。
最著名的算法之一是Dijkstra算法,该算法由荷兰计算机科学家Edsger W. Dijkstra于1956年提出。
Dijkstra算法是一种贪心算法,用于解决单源最短路径问题,即从一个给定的起点到图中所有其他节点的最短路径。
该算法通过维护一个距离数组和一个集合来不断更新节点之间的最短距离,直到找到目标节点为止。
除了Dijkstra算法和Floyd-Warshall算法外,还有一些其他与最短路径问题相关的算法和技术。
例如A*算法是一种启发式搜索算法,结合了BFS和Dijkstra算法的特点,对图中的节点进行评估和排序,以加速搜索过程。
Bellman-Ford算法是一种解决含有负权边的最短路径问题的算法,通过多次迭代来找到最短路径。
一些基于图神经网络的深度学习方法也被应用于最短路径问题的解决中,可以获得更快速和精确的路径搜索结果。
在实际应用中,最短路径问题可以通过计算机程序来实现,利用各种算法和数据结构来求解。
利用图的邻接矩阵或者邻接表来表示图的连接关系,再结合Dijkstra或者Floyd-Warshall算法来计算最短路径。
13.4 课题学习最短路径问题一、教课方案理念最短路径问题在现实生活中常常碰到,初中阶段主要以“两点之间线段最短”、“连结直线外一点与直线上各点的全部线段中,垂线段最短”为知识基础,有时还要借助轴对称、平移、旋转等变化进行研究。
本节课以数学史中的两个经典问题——“将军饮马”“造桥选址”为载体睁开对“最短路径问题”的课题研究,让学生经历将实质问题转变为数学识题,利用轴对称、平移等变化再把数学识题转变为线段和最小问题,并运用“两点之间线段最短”(或“三角形两边之和大于第三边”)解决问题,表现了数学化的过程和转变思想。
最短路径问题从实质上说是最值问题,作为初中生,此前极少在几何中接触最值问题,解决此类问题的数学经验尚显不足,特别是面对拥有实质背景的最值问题,更会感觉陌生,无从下手.解答“当点 A、B 在直线 l 的同侧时,如安在直线 l 上找到点 C,使 AC 与 CB的和最小”,需要将其转变为“在直线 l 异侧两点的线段和最小值问题”,为何需要这样转变、如何经过轴对称、平移变化实现转变,一些学生在理解和操作上存在困难.在证明作法的合理性时,需要在直线上任取点 (与所求作的点不重合 ),证明所连线段和大于所求作的线段和,这种思路、方法,一些学生想不到.因此在讲堂上特别对这几个问题进行了针对性的设计。
二、教课对象剖析八年级的学生已经学习研究过一些“两点之间,线段最短”、“垂线段最短”等问题。
向来以来,学生对多媒体环境下的几何研究都十分感兴趣,有较强的好奇心,在学习上有较强的求知欲念,学习投入程度大。
他们察看、操作、猜想能力较强,但演绎推理、概括、运用数学意识的思想比较单薄,思想的广阔性、矫捷性、灵巧性比较短缺,自主研究和合作学习能力也需要在讲堂教课中进一步增强和指引。
学生在数学识题的提出和解决上有必定的方法,但不够深入和全面,需要教师的指引和帮助,学生自己拥有必定的研究精神和合作意识,能在亲自的经历体验中获得必定的数学新知识,但在数学的说理上还不规范,几何演绎推理能力有待增强。
13.4课题学习:最短路径问题夯实基础篇一、单选题:1.直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是().A.B.C.D.【答案】D【知识点】轴对称的应用-最短距离问题【解析】【解答】作点P关于直线L的对称点P′,连接QP′交直线L于M.根据两点之间,线段最短,可知选项D铺设的管道,则所需管道最短.故选D.【分析】利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.2.如图,点M,N在直线l的同侧,小东同学想通过作图在直线l上确定一点Q,使MQ与QN的和最小,那么下面的操作正确的是()A.B.C.D.【答案】C【知识点】轴对称的应用-最短距离问题【解析】【解答】作点M关于直线l的对称点M′,再连接M′N交l于点Q,则MQ+NQ=M′Q+NQ=M′N,由“两点之间,线段最短”,可知点Q即为所求.故答案为:C【分析】先作点M关于l的对称点M′,连接M′N交l于点Q,即可.3.如图,在等腰△AB C中,AB=AC=6,∠ACB=75°,AD⊥BC于D,点M、N分别是线段AB,AD上的动点,则MN+BN的最小值是()C.4.5D.6A.3B.【答案】A【知识点】角平分线的性质;等腰三角形的性质;含30°角的直角三角形;轴对称的应用-最短距离问题【解析】【解答】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AB=AC,AD⊥BC于D,∴∠ABC=∠C,AD是∠BAC 的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵∠ABC=∠C,∠ACB=75°,∴∠BAC=30°,∵BH⊥AC,∴BH=12AB=3.故答案为:A【分析】根据等腰三角形的三线合一,得到AD是∠BAC的平分线,由角平分线的性质可知,角平分线上的点到角两边的距离相等,得到BH是点B到直线AC的最短距离,再由三角形内角和定理得到∠BAC=30°,根据在直角三角形中,30度角所对的边是斜边的一半,求出MN+BN的最小值.4.如图:△AB C中, ACB=90°,AC=BC,AB=4,点E在BC上,且BE=2,点P在 ABC 的平分线BD上运动,则PE+PC的长度最小值为()A.1B.2C.3D.4【答案】B【知识点】三角形的角平分线、中线和高;轴对称的应用-最短距离问题【解析】【解答】作点E关于BD的对称点E',连接E'C,如下图:∵BD是∠ABC的平分线,∴通过作图知,BP垂直平分EE',∴PE'=PE∴此时PE+PC=PE'+PC=E'C,PE+PC的长度最小,∵点E、点E'关于BD的对称,∴BE'=BE=2,又∵AB=4,∴点E'是A B中点,CE'是中线.∵△AB C中,∠ACB=90°,AC=BC,∴△ABC是等腰直角三角形,∠ABC=45 ,∴CE'又是底边AB的高,∴△BE'C也是等腰直角三角形,∴E'C=2,即:PE+PC的长度最小值为2.故选B.【分析】此题考查最短路径问题,利用轴对称,作点E关于BD的对称点E',连接E'C,可知此时PE+PC的长度最小,PE+PC=PE'+PC=E'C.再根据作图和等腰直角三角形性质求出E'C的长即可.5.如图,在锐角△AB C中,AB=AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是()A.4B.245C.5D.6【答案】C【知识点】等腰三角形的性质;轴对称的应用-最短距离问题【解析】【解答】解:如图,∵AD 是∠BAC 的平分线,AB =AC ,∴点B 关于AD 的对称点为点C ,过点C 作CN ⊥AB 于N 交AD 于M ,由轴对称确定最短路线问题,点M 即为使BM +MN 最小的点,CN =BM +MN ,∵AB =10,S △ABC =25,∴12×10•CN =25,解得CN =5,即BM +MN 的最小值是5.故答案为:C.【分析】根据AD 是∠BAC 的平分线,AB =AC 可得出确定出点B 关于AD 的对称点为点C ,根据垂线段最短,过点C 作CN ⊥AB 于N 交AD 于M ,根据轴对称确定最短路线问题,点M 即为使BM +MN 最小的点,CN =BM +MN ,利用三角形的面积求出CN ,从而得解.6.如图,等边ABC 中,D 为A C 中点,点P 、Q 分别为AB 、AD 上的点,4BP AQ ,3QD ,在BD 上有一动点E ,则PE QE 的最小值为()A .7B .8C .10D .12【答案】C【知识点】等边三角形的判定与性质;轴对称的应用-最短距离问题【解析】【解答】解:如图,ABC ∵是等边三角形,BA BC ,∵D 为A C 中点,∴BD AC ,∵4AQ ,3QD ,7AD DC AQ QD ,作点Q 关于BD 的对称点Q ',连接PQ '交BD 于E ,连接QE ,此时PE +QE 的值最小,最小值PE +QE =PE +EQ '=PQ ',4AQ ∵,7AD DC ,3QD DQ ,4CQ BP ,10AP AQ ,60A ∵,APQ 是等边三角形,10PQ PA ,∴PE +QE 的最小值为10.故答案为:C.【分析】作点Q关于BD的对称点Q',连接PQ'交BD于E,连接QE,此时PE+QE 的值最小,最小值PE+QE=PE+EQ'=PQ',进而判断△APQ'是等边三角形,即可解决问题.7.如图,等腰三角形ABC的底边BC长为3,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM 周长的最小值为()A.7.5B.8.5C.10.5D.13.5【答案】D【知识点】三角形的面积;线段垂直平分线的性质;等腰三角形的性质;轴对称的应用-最短距离问题【解析】【解答】解:如图,连接AM、AD∵EF垂直平分线段AC∴CM=AM∴CM+MD=AM+MD≥AD即当A、M、D三点在一直线上且与AD重合时,CM+MD取得最小值,且最小值为线段AD的长∵△CMD的周长=CM+MD+CD=AM+MD+AD∴△CMD的周长的最小值为AD+CD ∵D为BC的中点,AB=AC∴1 1.52CD BC,AD⊥BC∴13182ABCS AD∴AD=12∴AD+CD=12+1.5=13.5即△CDM周长的最小值为13.5故答案为:D.【分析】连接AM、AD,由线段垂直平分线的性质可得CM=AM,当A、M、D三点在一直线上且与AD重合时,CM+MD取得最小值,且最小值为线段AD的长;根据等腰三角形三线合一的性质可得1 1.52CD BC,AD⊥BC,利用△ABC的面积可求出AD的长,从而求出此时△CDM的周长即可.二、填空题:8.如图的4×4的正方形网格中,有A,B,C,D四点,直线a上求一点P,使PA+PB 最短,则点P应选点(C或D).【答案】C【知识点】轴对称的应用-最短距离问题【解析】【解答】解:如图,点A ′是点A 关于直线a 的对称点,连接A ′B ,则A ′B 与直线a 的交点,即为点P ,此时PA +PB 最短,∵A ′B 与直线a 交于点C ,∴点P 应选C 点.故答案为:C.【分析】点A ′是点A 关于直线a 的对称点,连接A ′B ,则A ′B 与直线a 的交点,即为点P ,此时PA +PB 最短,据此即得结论.9.如图,在ABC 中,3,4,,AB AC AB AC EF 垂直平分BC ,点P 为直线EF 上一动点,则ABP 周长的最小值是.【答案】7【知识点】轴对称的应用-最短距离问题【解析】【解答】解:∵EF 垂直平分BC ,∴B ,C 关于直线EF 对称.设AC 交EF 于点D ,∴当P 和D 重合时,AP BP 的值最小,最小值等于AC 的长,∴ABP 周长的最小值是437 .【分析】根据题意知点B关于直线EF的对称点为点C,故当点P与点D重合时,AP+BP 的最小值,求出AC长度即可得到结论.中,AB=4,AC=6,BC=7,EF垂直平分BC,点P为直线EF上10.如图,在ABC的任一点,则ABP周长的最小值是.【答案】10【知识点】轴对称的应用-最短距离问题【解析】【解答】解:如图,连接PC,∵,4AB,AB PA PB PA PB的周长为4ABP要使ABP的周长最小,则需PA PB的值最小,∵垂直平分BC,EF,PC PBPA PB PA PC ,由两点之间线段最短可知,当点,,A P C 共线,即点P 在AC 边上时,PA PC 取得最小值,最小值为AC ,即PA PB 的最小值为6AC ,则ABP 周长的最小值是4610 .故答案为:10.【分析】如图,连接PC ,先把ABP 的周长表示出来为4+PA +PB ,接着根据垂直平分线性质得到PB =PC ,故只需PA +PC 最小△ABP 周长才最小,由两点之间线段最短得出P 点在AC 上时最小,此时PA +PC =AC =6,从而即可得出答案.11.如图,在△AB C 中,AB =AC =10,BC =12,AD =8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是.【答案】9.6【知识点】三角形的面积;等腰三角形的性质;轴对称的应用-最短距离问题【解析】【解答】解:∵AB =AC ,AD 是∠BAC 的平分线,∴AD 垂直平分BC ,∴BP =CP .过点B 作BQ ⊥AC 于点Q ,BQ 交AD 于点P ,则此时PC +PQ 取最小值,最小值为BQ 的长,如图所示.∵S△ABC12BC•AD12AC•BQ,∴BQ12810BC ADAC9.6.故答案为:9.6.【分析】根据等腰三角形的三线合一得出AD垂直平分BC,根据垂直平分线上的点到线段两个端点的距离相等得出BP=CP,过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,然后根据三角形的面积法,得出BC•AD =AC•BQ,根据等积式即可求出BQ的长.三、作图题:12.有一个养鱼专业户,在如图所示地形的两个池塘里养鱼,他每天早上要从住处P分别前往两个池塘投放鱼食,试问他怎样走才能以最短距离回到住地?(请用尺规作图,保留作图痕迹,不写做法)【答案】解:答图如图所示,该养鱼专业户若要以最短距离回到住地,则他所走路线是:,P M N P.或P N M P【知识点】轴对称的应用-最短距离问题【解析】【分析】分别作P点关于AB,AC的对称点,连接这两个对称点交AB于点M,交AC于点N,该养鱼专业户若要以最短距离回到住地,则他所走路线是:,或P N M P.P M N P13.如图,P和Q为△ABC边AB与AC上两点,在BC边上求作一点M, 使△PQM的周长最小。
人教版八年级数学上册教学设计:13.4 课题学习最短路径问题一. 教材分析人教版八年级数学上册第十三章第四节“课题学习最短路径问题”主要是让学生了解最短路径问题的背景和意义,掌握利用图的性质和算法求解最短路径问题的方法。
通过本节课的学习,学生能够将所学的图的知识应用到实际问题中,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了图的基本概念和相关性质,如顶点、边、连通性等。
同时,学生也学习了一定的算法知识,如排序、查找等。
因此,学生在学习本节课时,能够将已有的知识和经验与最短路径问题相结合,通过自主探究和合作交流,理解并掌握最短路径问题的求解方法。
三. 教学目标1.了解最短路径问题的背景和意义,能运用图的性质和算法求解最短路径问题。
2.提高学生将实际问题转化为数学问题的能力,培养学生的逻辑思维和解决问题的能力。
3.增强学生合作交流的意识,提高学生的团队协作能力。
四. 教学重难点1.教学重点:最短路径问题的求解方法及其应用。
2.教学难点:理解并掌握最短路径问题的求解算法,能够灵活运用到实际问题中。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.算法教学法:以算法为主线,引导学生了解和掌握最短路径问题的求解方法。
3.合作学习法:学生进行小组讨论和合作交流,共同解决问题,提高团队协作能力。
六. 教学准备1.准备相关实际问题的案例,如城市间的道路网络、网络通信等。
2.准备算法教学的PPT,以便在课堂上进行讲解和演示。
3.准备练习题和拓展题,以便进行课堂练习和课后巩固。
七. 教学过程1.导入(5分钟)通过展示实际问题案例,如城市间的道路网络,引导学生了解最短路径问题的背景和意义。
提问:如何找到两点之间的最短路径?引发学生的思考和兴趣。
2.呈现(10分钟)讲解最短路径问题的求解方法,如迪杰斯特拉算法、贝尔曼-福特算法等。
通过PPT演示算法的具体步骤和过程,让学生清晰地了解算法的原理和应用。
八年级数学上册 13.4 课题学习最短路径问题说课稿(新版)新人教版一. 教材分析八年级数学上册13.4课题学习“最短路径问题”是新人教版教材中的一项重要内容。
这一节内容是在学生掌握了平面直角坐标系、一次函数、几何图形的性质等知识的基础上进行学习的。
本节课的主要内容是最短路径问题的研究,通过实例引导学生了解最短路径问题的背景和意义,学会利用图论知识解决实际问题。
教材中给出了两个实例:光纤敷设和城市道路规划,让学生通过解决这两个实例来理解和掌握最短路径问题的求解方法。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于平面直角坐标系、一次函数等知识有了一定的了解。
但是,对于图论知识以及如何利用图论解决实际问题还比较陌生。
因此,在教学过程中,我需要引导学生理解和掌握图论知识,并能够将其应用到实际问题中。
三. 说教学目标1.知识与技能目标:让学生了解最短路径问题的背景和意义,掌握利用图论知识解决最短路径问题的方法。
2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,让学生体验到数学在实际生活中的应用价值。
四. 说教学重难点1.教学重点:最短路径问题的求解方法。
2.教学难点:如何将实际问题转化为图论问题,并利用图论知识解决。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过解决实际问题来学习和掌握最短路径问题的求解方法。
2.教学手段:利用多媒体课件辅助教学,通过展示实例和动画效果,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过展示光纤敷设和城市道路规划的实例,引导学生了解最短路径问题的背景和意义。
2.新课导入:介绍图论中最短路径的概念和相关的数学知识。
3.实例分析:分析光纤敷设和城市道路规划两个实例,引导学生将其转化为图论问题。
4.方法讲解:讲解如何利用图论知识解决最短路径问题,包括迪杰斯特拉算法和贝尔曼-福特算法等。
部编版八年级数学上册《课题学习最短路径问题》评课稿1. 引言《课题学习最短路径问题》是部编版八年级数学上册的一个重要课题。
在本评课稿中,我们将对该课题进行详细的评价和分析。
首先,我们会介绍该课题的内容和目标;然后,我们会评估该课题的教学设计和教学方法;最后,我们会对该课题的教学效果进行评估和总结。
2. 课题内容和目标《课题学习最短路径问题》是八年级数学上册的一个重要课题,主要内容是介绍最短路径问题的概念和解题方法。
该课题的学习目标主要包括: - 掌握最短路径问题的基本概念;- 理解最短路径问题的解题思路和方法; - 能够运用最短路径问题的方法解决实际问题。
3. 教学设计和教学方法3.1 教学设计《课题学习最短路径问题》的教学设计合理、清晰。
教学过程主要分为三个步骤:引入、讲解和巩固。
具体设计如下:1. 引入:通过一个生活中的例子引入最短路径问题的概念,激发学生的学习兴趣,为后续学习做好铺垫。
2. 讲解:通过课件和教科书的讲解,详细介绍最短路径问题的定义、性质和求解方法,注重概念的理解和方法的运用。
3. 巩固:通过一些典型的练习题,让学生运用所学知识解决实际问题,加深对最短路径问题的理解和掌握程度。
3.2 教学方法《课题学习最短路径问题》采用了多种教学方法,既包括老师的讲解和示范,也包括学生的参与和合作。
其中,主要的教学方法包括: - 讲解法:老师通过课件、教科书等工具进行讲解,向学生介绍最短路径问题的基本概念和解题方法。
- 示范法:老师通过具体的例子,演示最短路径问题的解题过程,引导学生理解和掌握解题思路。
- 合作学习法:在巩固环节,通过小组合作的方式,让学生共同解决最短路径问题的练习题,培养学生的合作精神和解决问题的能力。
4. 教学效果评估4.1 学生学习情况评估通过观察学生平时的课堂表现和完成的练习情况,可以评估学生对《课题学习最短路径问题》的学习情况。
根据观察和评估的结果,大部分学生已经掌握了最短路径问题的基本概念和解题方法,并且能够运用所学知识解决实际问题。
初二数学最短路径问题,“将军饮马”四种题型详解,折变直是关键初二数学最短路径问题,“将军饮马”四种题型详解,折变直是关键 -初二数学轴对称这一章节中,课题研究中的最短路径问题,是中考的热门考点,在初二的考试中也是经常会出现。
最短路径问题中,初中阶段主要涉及三方面的内容,“将军饮马”、“造桥选址”和“费马点”,涉及到的知识点主要有“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”等,需要同学们根据题目给定的条件,做出最短路径问题,而这类题目的解题思路就是找对称点实现“折”转“直”,这是最为关键的,从而找到最短路径的点,解决出最短路径的问题,我们先来学习一个比较简单的“将军饮马”类型,最短路径的求解,通过四种题型,详解解释作图方法。
希望同学们能够认真总结,将这类题目掌握。
以“将军饮马”为原型常见的四种类型的题目分别是:(1)、A,B两点位于L的同侧,求出直线上一点P,使得PA+PB最小;(2)、A,B两点位于L的两侧,求出直线上一点P,使得PA+PB最小;(3)、在两条相交直线L1,L2内一点P,在两条直线上分别求出M,N,使△PMN的周长最小;(4)、在直线L1、L2上分别求点M、N,使四边形PQMN的周长最小。
例1:作图题.如图,小河边有两个村庄A、B,要在河边建一自来水厂P,向A村B村供水.(1)若要使厂部到A、B两村的距离相等,则厂部P应选在哪里?在图①中画出;(2)若要使厂部到A、B两村的输水管长度之和最小,则厂部P应选在什么地方?在图②中画出.(保留作图痕迹,不写作法,但要写结论)本题关键是掌握在直线L上的同侧有两个点A、B,在直线L 上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.例2:尺规作图:(不要求写作法,只保留作图痕迹)如图,工厂A和工厂B,位于两条公路OC、OD之间的地带,现要建一座货物中转站P.若要求中转站P到两条公路OC、OD的距离相等,且到工厂A和工厂B的距离之和最短,请用尺规作出P的位置.本题不仅考察了最短路径的作图方法,还要求根据题意明确点P还在角COD的角平分线上。
13.4 课题学习:最短路径问题学习目标:1.理解并掌握平面内一条直线同侧两个点到直线上的某一点距离之和为最小值时点的位置的确定。
2.能利用轴对称平移解决实际问题中路径最短的问题。
3.通过独立思考,合作探究,培养学生运用数学知识解决实际问题的基本能力,感受学习成功的快乐。
学习重点:将实际问题转化成数学问题,运用轴对称平移解决生活中路径最短的问题,确定出最短路径的方法。
学习难点:探索发现“最短路径”的方案,确定最短路径的作图及说理。
学习过程:一、自主学习。
我们已经学习过“两点的所有连线中,。
”和“连接直线外一点与直线上各点的所有线段中,”等问题,这些问题都是最短路径问题。
二、合作交流探究一:如图所示,从A地到B地有三条路可供选择,你会选走哪条路最近?你的理由是什么?(1)、两点在一条直线异侧:已知:如图,A,B在直线L的两侧,在L上求一点P,使得这个点到点AB的距离和最短,即PA+PB最小。
思考:为什么这样做就能得到最短距离呢?你如何验证PA+PB最短呢?(2) 两点在一条直线同侧如图,牧马人从A地出发到一条笔直的河边L饮马,然后到C地,牧马人到B河边的什么地方饮马,可是所走的路径最短?这个问题可以转化为;当点L在的什么位置时。
AC与BC 的和最小。
探究二:造桥选址问题中的最短路径问题如图,A和B连地在一条河的两岸,要在河上造一座桥MN,桥造在何处可使从A到B 路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直)三、展示提升1、 问题:如图,点A 是总局,想在公路L1上建一分局D ,在公路L2上建一分局E ,怎样AD+DE+EA 使最小? L1A • L22、 如图:C 为马厩,D 为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮他确定这一天的最短路线。
C •D •四、达标检测1、在一条河的同一岸上有AB 两个油库,要在河边建一个码头C ,怎样作图使:①AB 两油库到码头C 的距离相等. ②AC+BC 最短.2、如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船的最短路径. 五、通过这节课的学习,我的收获是 。