高中数学讲义微专题80 排列组合中的常见模型
- 格式:doc
- 大小:413.11 KB
- 文档页数:7
1思维的开掘 能力的飞跃1.基本计数原理⑴加法原理 分类计数原理:做一件事,完成它有n 类方法,在第一类方法中有1m 种不同的方法,在第二类方法中有2m 种方法,……,在第n 类方法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++种不同的方法.又称加法原理.⑴乘法原理分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯种不同的方法.又称乘法原理.⑴加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用.2. 排列与组合⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.〔其中被取的对象叫做元素〕排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A mn 表示.排列数公式:A (1)(2)(1)m n n n n n m =---+,m n +∈N ,,并且m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=.知识内容排列组合问题的常见模型12 思维的开掘 能力的飞跃⑴组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C mn 表示. 组合数公式:(1)(2)(1)!C !!()!mn n n n n m n m m n m ---+==-,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.〔规定0C 1n =〕⑴排列组合综合问题解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法:1.特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空.6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排,从1n -个空中选1m -个空,各插一个隔板,有11m n C --.7.分组、分配法:分组问题〔分成几堆,无序〕.有等分、不等分、部分等分之别.一般地平均分成n 堆〔组〕,必须除以n !,如果有m 堆〔组〕元素个数相等,必须除以m !8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径: ⑴元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; ⑴位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;⑴间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,防止“选取”时重复和遗漏;最后列出式子计算作答.2.具体的解题策略有:⑴对特殊元素进行优先安排;⑴理解题意后进行合理和准确分类,分类后要验证是否不重不漏;⑴对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复;⑴对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法;⑴顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理;⑴对于正面考虑太复杂的问题,可以考虑反面.⑴对于一些排列数与组合数的问题,需要构造模型.典例分析排队问题【例1】三个女生和五个男生排成一排⑴如果女生必须全排在一起,可有多少种不同的排法?⑵如果女生必须全分开,可有多少种不同的排法?⑶如果两端都不能排女生,可有多少种不同的排法?【例2】6个人站成一排:⑴其中甲、乙两人必须相邻有多少种不同的排法?⑴其中甲、乙两人不相邻有多少种不同的排法?⑴其中甲、乙两人不站排头和排尾有多少种不同的排法?⑴其中甲不站排头,且乙不站排尾有多少种不同的排法?3思维的开掘能力的飞跃【例3】7名同学排队照相.⑴假设分成两排照,前排3人,后排4人,有多少种不同的排法?⑵假设排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?⑶假设排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?⑷假设排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不同的排法?【例4】6个队员排成一排,⑴共有多少种不同的排法?⑴假设甲必须站在排头,有多少种不同的排法?⑶假设甲不能站排头,也不能站排尾,问有多少种不同的排法?【例5】ABCDE五个字母排成一排,假设ABC的位置关系必须按A在前、B居中、C在后的原则,共有_______种排法〔用数字作答〕.【例6】用1到8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有_ __个〔用数字作答〕.4 思维的开掘能力的飞跃5思维的开掘 能力的飞跃【例7】 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有〔 〕A .1440种B .960种C .720种D .480种【例8】 12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,假设其他人的相对顺序不变,则不同调整方法的总数是〔 〕A .2283C AB .2686C A C .2286C AD .2285C A【例9】 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有〔 〕A .1440种B .960种C .720种D .480种【例10】 在数字123,,与符号+-,五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是〔 〕A .6B .12C .18D .24【例11】 计划展出10幅不同的画,其中1幅水彩、4幅油画、5幅国画,排成一列陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有_____种.6 思维的开掘 能力的飞跃【例12】 6人站一排,甲不站在排头,乙不站在排尾,共有_________种不同的排法〔用数字作答〕.【例13】 一条长椅上有7个座位,4人坐,要求3个空位中,有2个空位相邻,另一个空位与2个相邻位不相邻,共有几种坐法?【例14】 3位男生和3位女生共6位同学站成一排,假设男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是〔 〕A .360B .288C .216D .96【例15】 古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有 种〔结果用数值表示〕.【例16】 在1234567,,,,,,的任一排列1234567,,,,,,a a a a a a a 中,使相邻两数都互质的排列方式共有〔 〕种.A .288B .576C .864D .11527思维的开掘 能力的飞跃【例17】 从集合{}P Q R S ,,,与{}0123456789,,,,,,,,,中各任取2个元素排成一排〔字母和数字均不能重复〕.每排中字母Q 和数字0至多只能出现一个的不同排法种数是_________.〔用数字作答〕【例18】 从集合{}O P Q R S ,,,,与{0123456789},,,,,,,,,中各任取2个元素排成一排〔字母和数字均不能重复〕.每排中字母O Q ,和数字0至多只能出现一个的不同排法种数是_________.〔用数字作答〕【例19】6个人坐在一排10个座位上,问 ⑴ 空位不相邻的坐法有多少种?⑵ 4个空位只有3个相邻的坐法有多少种?⑶ 4个空位至多有2个相邻的坐法有多少种?【例20】 3位男生和3位女生共6位同学站成一排,假设男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是〔 〕A .360B .288C .216D .968 思维的开掘 能力的飞跃【例21】 12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整的方法的总数有〔 〕A .2283C AB .2686C A C .2286C AD .2285C A【例22】 两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是_______.【例23】2007年12月中旬,我国南方一些地区遭遇历史罕见的雪灾,电煤库存吃紧.为了支援南方地区抗灾救灾,国家统一部署,加紧从北方采煤区调运电煤.某铁路货运站对6列电煤货运列车进行编组调度,决定将这6列列车编成两组,每组3列,且甲与乙两列列车不在同一小组.如果甲所在小组3列列车先开出,那么这6列列车先后不同的发车顺序共有〔 〕A .36种B .108种C .216种D .432种数字问题【例24】 给定数字0、1、2、3、5、9,每个数字最多用一次,⑴可能组成多少个四位数?⑴可能组成多少个四位奇数?⑴可能组成多少个四位偶数?⑴可能组成多少个自然数?【例25】 用0到9这10个数字,可组成多少个没有重复数字的四位偶数?9思维的开掘 能力的飞跃【例26】 在1,3,5,7,9中任取3个数字,在0,2,4,6,8中任取两个数字,可组成多少个不同的五位偶数.【例27】 用12345,,,,排成一个数字不重复的五位数12345a a a a a ,,,,,满足12233445a a a a a a a a <><>,,,的五位数有多少个?【例28】 用0129,,,,这十个数字组成无重复数字的四位数,假设千位数字与个位数字之差的绝对值是2,则这样的四位数共有多少个?【例29】 用数字0123456,,,,,,组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有______个〔用数学作答〕.【例30】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这810 思维的开掘 能力的飞跃 张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法数一共有 种.432;【例31】 有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有..中间行的两张卡片上的数字之和为5,则不同的排法共有〔 〕 A .1344种 B .1248种 C .1056种 D .960种【例32】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有____种〔用数字作答〕.【例33】 用1,2,3,4,5,6组成六位数〔没有重复数字〕,要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________〔用数字作答〕.【例34】 用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有〔 〕A .48个B .36个C .24个D .18个【例35】 从1238910,,,,,这6个数中,取出两个,使其和为偶数,则共可得到 个这样的不同偶数?高中数学讲义 11思维的开掘 能力的飞跃【例36】 求无重复数字的六位数中,能被3整除的数有______个.【例37】 用数字0123456,,,,,,组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有 个〔用数学作答〕.【例38】 从012345,,,,,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为〔 〕A .300B .216C .180D .162【例39】 从012345,,,,,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为〔 〕A .300B .216C .180D .162【例40】 从1到9的九个数字中取三个偶数四个奇数,试问:⑴能组成多少个没有重复数字的七位数?其中任意两偶数都不相邻的七位数有几个?⑴上述七位数中三个偶数排在一起的有几个?⑴⑴中的七位数中,偶数排在一起、奇数也排在一起的有几个?高中数学讲义 12 思维的开掘 能力的飞跃⑷⑴其中任意两偶数都不相邻的七位数有几个?【例41】 用0到9这九个数字.可组成多少个没有重复数字的四位偶数?【例42】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有______种〔用数字作答〕.【例43】 在由数字12345,,,,组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有〔 〕个A .56个B .57个C .58个D .60个【例44】 由0,1,2,3,4这五个数字组成的无重复数字的四位偶数,按从小到大的顺序排成一个数列{}n a ,则19a =_____.A .2014B .2034C .1432D .1430高中数学讲义 13 思维的开掘 能力的飞跃【例45】 从数字0、1、3、5、7中取出不同的三个作系数,可组成多少个不同的一元二次方程20ax bx c ++=,其中有实数根的有几个?【例46】 从{}32101234,,,,,,,---中任选三个不同元素作为二次函数2y ax bx c =++的系数,问能组成多少条图像为经过原点且顶点在第一象限或第三象限的抛物线?。
排列组合问题的常见模型1知识内容1.基本计数原理⑴加法原理分类计数原理:做一件事,完成它有n类办法,在第一类办法中有m种不同的方法,在第二类办法中1有m种方法,……,在第n类办法中有m种不同的方法.那么完成这件事共有N=m+m+L+m种2n12n不同的方法.又称加法原理.⑴乘法原理分步计数原理:做一件事,完成它需要分成n个子步骤,做第一个步骤有m种不同的方法,做第二个1步骤有m种不同方法,……,做第n个步骤有m种不同的方法.那么完成这件事共有2nN=m⨯m⨯L⨯m种不同的方法.又称乘法原理.12n⑴加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用.2.排列与组合⑴排列:一般地,从n个不同的元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m个元素的一个排列.(其中被取的对象叫做元素)排列数:从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A m表示.n排列数公式:A m=n(n-1)(n-2)L(n-m+1),m,n∈N,并且m≤n.n+全排列:一般地,n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列.n的阶乘:正整数由1到n的连乘积,叫作n的阶乘,用n!表示.规定:0!=1.思维的发掘能力的飞跃1组合数公式: C m = n (n - 1)(n - 2)L (n - m + 1) = m ! m !(n - m )!⑴组合:一般地,从 n 个不同元素中,任意取出m (m ≤ n) 个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.组合数:从 n 个不同元素中,任意取出 m (m ≤ n) 个元素的所有组合的个数,叫做从 n 个不同元素中,任意取出 m 个元素的组合数,用符号 C m 表示.n n n !, m , n ∈ N ,并且 m ≤ n .+组合数的两个性质:性质 1: C m = C n -m ;性质 2: C m = C m + C m -1 .(规定 C 0 = 1)nn n +1 n n n⑴排列组合综合问题解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排 列还是组合,同时要掌握一些常见类型的排列组合问题的解法:1.特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列, 然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空.6.插板法:n 个相同元素,分成 m (m ≤ n) 组,每组至少一个的分组问题——把 n 个元素排成一排,从 n - 1个空中选 m -1 个空,各插一个隔板,有 C m -1 .n -17.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成 n 堆(组),必须除以 n !,如果有 m 堆(组)元素个数相等,必须除以 m !8.错位法:编号为 1 至 n 的 n 个小球放入编号为 1 到 n 的 n 个盒子里,每个盒子放一个小球,要求 小球与盒子的编号都不同,这种排列称为错位排列,特别当n = 2 ,3,4,5 时的错位数各为 1,2, 9,44.关于 5、6、7 个元素的错位排列的计算,可以用剔除法转化为 2 个、3 个、4 个元素的错位 排列的问题.1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径:⑴元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; ⑴位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;⑴间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.2思维的发掘 能力的飞跃求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答.2.具体的解题策略有:⑴对特殊元素进行优先安排;⑴理解题意后进行合理和准确分类,分类后要验证是否不重不漏;⑴对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复;⑴对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法;⑴顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理;⑴对于正面考虑太复杂的问题,可以考虑反面.⑴对于一些排列数与组合数的问题,需要构造模型.典例分析排队问题【例1】三个女生和五个男生排成一排⑴如果女生必须全排在一起,可有多少种不同的排法?⑵如果女生必须全分开,可有多少种不同的排法?⑶如果两端都不能排女生,可有多少种不同的排法?【例2】6个人站成一排:⑴其中甲、乙两人必须相邻有多少种不同的排法?⑴其中甲、乙两人不相邻有多少种不同的排法?⑴其中甲、乙两人不站排头和排尾有多少种不同的排法?⑴其中甲不站排头,且乙不站排尾有多少种不同的排法?思维的发掘能力的飞跃3【例3】7名同学排队照相.⑴若分成两排照,前排3人,后排4人,有多少种不同的排法?⑵若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?⑶若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?⑷若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不同的排法?【例4】6个队员排成一排,⑴共有多少种不同的排法?⑴若甲必须站在排头,有多少种不同的排法?⑶若甲不能站排头,也不能站排尾,问有多少种不同的排法?【例5】ABCDE五个字母排成一排,若ABC的位置关系必须按A在前、B居中、C在后的原则,共有_______种排法(用数字作答).【例6】用1到8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有___个(用数字作答).4思维的发掘能力的飞跃2【例7】 记者要为 5 名志愿者和他们帮助的 2 位老人拍照,要求排成一排, 2 位老人相邻但不排在两端,不同的排法共有( )A . 1440 种B . 960 种C . 720 种D . 480 种【例8】 12 名同学合影,站成前排 4 人后排 8 人,现摄影师要从后排 8 人中抽 2 人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( )A . C 2A 283B .C 2A 68 6C . C 2A 28 6D . C 2A 28 5【例9】 记者要为 5 名志愿者和他们帮助的 2 位老人拍照,要求排成一排, 位老人相邻但不排在两端, 不同的排法共有( ) A .1440 种 B .960 种 C .720 种 D .480 种【例10】在数字1,2 ,3 与符号 + ,- 五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是( ) A . 6B .12C .18D . 24【例11】计划展出 10 幅不同的画,其中 1 幅水彩、4 幅油画、5 幅国画,排成一列陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有_____种.思维的发掘 能力的飞跃52 3 4 5 6 7 a a a a a a【例12】6 人站一排,甲不站在排头,乙不站在排尾,共有_________种不同的排法(用数字作答).【例13】一条长椅上有 7 个座位,4 人坐,要求 3 个空位中,有 2 个空位相邻,另一个空位与 2 个相邻位不相邻,共有几种坐法?【例14】 3 位男生和 3 位女生共 6 位同学站成一排,若男生甲不站两端,3 位女生中有且只有两位女生相邻,则不同排法的种数是( ) A . 360 B . 288 C . 216 D . 96【例15】古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相 邻,则这样的排列方法有 种(结果用数值表示).【例16】在 1, , , , , , 的任一排列 a , , , , , , 中,使相邻两数都互质的排列方1 2 3 4 5 6 7式共有()种.A . 288B . 576C . 864D .11526思维的发掘 能力的飞跃Q R S 1 2 3 4 5 6 7 8 9 P Q R S 1 2 3 4 5 6 7 8 Q【例17】从集合 {P , , , }与 {0 ,, , , , , , , ,}中各任取 2 个元素排成一排(字母和数字 均 不 能 重 复 ). 每 排 中 字 母 Q 和 数 字 0 至 多 只 能 出 现 一 个 的 不 同 排 法 种 数 是_________.(用数字作答)【例18】从集合 {O , , , , } 与 {0,, , , , , , , ,9}中各任取 2 个元素排成一排(字母和数字均不能重复) .每排中字母 O , 和数字 0 至多只能出现一个的不同排法种数是_________.(用数字作答)【例19】 6 个人坐在一排10 个座位上,问⑴ 空位不相邻的坐法有多少种?⑵ 4 个空位只有 3 个相邻的坐法有多少种?⑶ 4 个空位至多有 2 个相邻的坐法有多少种?【例20】 3 位男生和 3 位女生共 6 位同学站成一排,若男生甲不站两端,3 位女生中有且只有两位女生相邻,则不同排法的种数是( )A . 360B . 288C . 216D . 96思维的发掘 能力的飞跃7【例21】12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整的方法的总数有()A.C2A283B.C2A686C.C2A286D.C2A285【例22】两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是_______.【例23】2007年12月中旬,我国南方一些地区遭遇历史罕见的雪灾,电煤库存吃紧.为了支援南方地区抗灾救灾,国家统一部署,加紧从北方采煤区调运电煤.某铁路货运站对6列电煤货运列车进行编组调度,决定将这6列列车编成两组,每组3列,且甲与乙两列列车不在同一小组.如果甲所在小组3列列车先开出,那么这6列列车先后不同的发车顺序共有()A.36种B.108种C.216种D.432种数字问题【例24】给定数字0、1、2、3、5、9,每个数字最多用一次,⑴可能组成多少个四位数?⑴可能组成多少个四位奇数?⑴可能组成多少个四位偶数?⑴可能组成多少个自然数?【例25】用0到9这10个数字,可组成多少个没有重复数字的四位偶数?8思维的发掘能力的飞跃2 3 4 5 a a a a a a a 1 2 L 9 1 2 3 4 2 3 4【例26】在 1,3,5,7,9 中任取 3 个数字,在 0,2,4,6,8 中任取两个数字,可组成多少个不同的五位偶数.【例27】用 1, , , , 排 成 一 个 数 字 不 重 复 的 五 位 数 a , , , , 12345a < a , > a , < a , > a 的五位数有多少个?12233445, 满 足【例28】用 0 ,, , , 这十个数字组成无重复数字的四位数,若千位数字与个位数字之差的绝对值是2 ,则这样的四位数共有多少个?【例29】用数字 0 , ,2 ,3 ,4 ,5 ,6 组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有______个(用数学作答).【例30】有 4 张分别标有数字 1, , , 的红色卡片和 4 张分别标有数字 1, , , 的蓝色卡片,从这 8思维的发掘 能力的飞跃9求 3 行中仅有中间行的两张卡片上的数字之和为 5 ,则不同的排法共有( )2 3 4 2 3 4张卡片中取出 4 张卡片排成一行.如果取出的 4 张卡片所标数字之和等于 10 ,则不同的排法 数一共有 种.432 ;【例31】有 8 张卡片分别标有数字1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ,从中取出 6 张卡片排成 3 行 2 列,要..A .1344 种B .1248 种C .1056 种D . 960 种【例32】有 4 张分别标有数字 1, , , 的红色卡片和 4 张分别标有数字 1, , , 的蓝色卡片,从这 8张卡片中取出 4 张卡片排成一行.如果取出的 4 张卡片所标数字之和等于 10 ,则不同的排法共有____种(用数字作答).【例33】用 1,2,3,4,5,6 组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且 1 和 2 相邻,这样的六位数的个数是__________(用数字作答).【例34】用数字1,2,3,4,5 可以组成没有重复数字,并且比 20000 大的五位偶数共有()A . 48 个B . 36 个C . 24 个D .18 个【例35】从 1,2 ,3 ,8 ,9 ,10 这 6 个数中,取出两个,使其和为偶数,则共可得到不同偶数?个这样的10思维的发掘 能力的飞跃1 12345 12345高中数学讲义【例36】求无重复数字的六位数中,能被3整除的数有______个.【例37】用数字0,,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有个(用数学作答).【例38】从0,,,,,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A.300B.216C.180D.162【例39】从0,,,,,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A.300B.216C.180D.162【例40】从1到9的九个数字中取三个偶数四个奇数,试问:⑴能组成多少个没有重复数字的七位数?其中任意两偶数都不相邻的七位数有几个?⑴上述七位数中三个偶数排在一起的有几个?⑴⑴中的七位数中,偶数排在一起、奇数也排在一起的有几个?思维的发掘能力的飞跃112 3 4 2 3 4 2 3 4 5 高中数学讲义⑷⑴其中任意两偶数都不相邻的七位数有几个?【例41】用 0 到 9 这九个数字.可组成多少个没有重复数字的四位偶数?【例42】有 4 张分别标有数字 1, , , 的红色卡片和 4 张分别标有数字 1, , , 的蓝色卡片,从这 8张卡片中取出 4 张卡片排成一行.如果取出的 4 张卡片所标数字之和等于 10 ,则不同的排法 共有______种(用数字作答).【例43】在由数字 1, , , , 组成的所有没有重复数字的 5 位数中,大于 23145 且小于 43521的数 共有( )个A . 56 个B . 57 个C . 58 个D . 60 个【例44】由 0,1,2,3,4 这五个数字组成的无重复数字的四位偶数,按从小到大的顺序排成一个数列 {a },则 a = _____.n 19 A . 2014B . 2034C . 1432D . 143012 思维的发掘 能力的飞跃--01234高中数学讲义【例45】从数字0、1、3、5、7中取出不同的三个作系数,可组成多少个不同的一元二次方程ax2+bx+c=0,其中有实数根的有几个?【例46】从{-3,2,1,,,,,}中任选三个不同元素作为二次函数y=ax2+bx+c的系数,问能组成多少条图像为经过原点且顶点在第一象限或第三象限的抛物线?思维的发掘能力的飞跃13。
高考培优数学“排列组合的经典模型及其应用”讲义编号:排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?经典方法知识的讲解已结合在下面的例题中。
排列组合中的经典方法(★★☆☆☆)我竟然不知道以下经典方法,太恐怖了!1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.A、60种B、48种C、36种D、24种2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有()A、4441284C C C种 B、44412843C C C种 C、4431283C C A种 D、444128433C C CA种6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为()A、480种B、240种C、120种D、96种7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。
1.基本计数原理 ⑴加法原理分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++L 种不同的方法.又称加法原理.⑵乘法原理分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯L 种不同的方法.又称乘法原理.⑶加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素) 排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示.排列数公式:A (1)(2)(1)m n n n n n m =---+L ,m n +∈N ,,并且m n ≤.全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列.知识内容排列组合问题的常见模型 1n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=.⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示.组合数公式:(1)(2)(1)!C !!()!m nn n n n m n m m n m ---+==-L ,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0C 1n =)⑶排列组合综合问题解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法: 1.特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法. 4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空. 6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排,从1n -个空中选1m -个空,各插一个隔板,有11m n C --.7.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成n 堆(组),必须除以n !,如果有m 堆(组)元素个数相等,必须除以m ! 8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径:①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素;②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置; ③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答.2.具体的解题策略有: ①对特殊元素进行优先安排;②理解题意后进行合理和准确分类,分类后要验证是否不重不漏; ③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复;④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法; ⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理; ⑥对于正面考虑太复杂的问题,可以考虑反面.⑦对于一些排列数与组合数的问题,需要构造模型.排队问题【例1】 三个女生和五个男生排成一排⑴ 如果女生必须全排在一起,可有多少种不同的排法? ⑵ 如果女生必须全分开,可有多少种不同的排法? ⑶ 如果两端都不能排女生,可有多少种不同的排法?【考点】排列组合问题的常见模型 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】⑴ (捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 种不同的排法,因此共有63634320⋅=A A 种不同典例分析的排法.⑵ (插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任间两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有36A 种方法,因此共有535614400⋅=A A 种不同的排法.⑶ (间接法)3个女生和5个男生排成一排共有88A 种不同的排法,从中扣除女生排在首位的1737⋅A A 种排法和女生排在末位的1737⋅A A 种排法,但这样两端都是女生的排法在扣除女生排在首位的情况时被扣去一次,在扣除女生排末位的情况时又被扣去一次,所以还需加一次回来,由于两端都是女生有2636⋅A A 种不同的排法,所以共有817268373614400-+=A A A A A 种不同的排法.【例2】 6个人站成一排:⑴其中甲、乙两人必须相邻有多少种不同的排法? ⑵其中甲、乙两人不相邻有多少种不同的排法?⑶其中甲、乙两人不站排头和排尾有多少种不同的排法? ⑷其中甲不站排头,且乙不站排尾有多少种不同的排法?【考点】排列组合问题的常见模型 【难度】2星 【题型】解答 【关键字】无 【解析】略【答案】⑴(捆绑法)因为甲、乙两人必须相邻,可视甲、乙在一起为一个元素与其他4人有55A 种排法,而甲、乙又有22A 种排法,根据分步计数原理共有2525A A 240=种排法.⑵(插空法)甲、乙两人外的其余4人有44A 种排法,要使甲、乙不相邻只有排在他们的空档位置,有25A 种排法,所以共有4245A A 480=种排法; (间接法)用总的排法减去相邻的排法,即625625A A A 480-=种排法.⑶(位置分析法)甲、乙两人不站排头和排尾,则这两个位置可从其余4人中选2人来站有24A 种排法,剩下的4人有44A 种排法,共有2444A A 288=种排法;(元素分析法)甲、乙两人不站排头和排尾,故可以用中间四个位置中选2个站甲、乙,有24A 种排法,其它4人站在余下的4个位置上,有44A 种排法,共有2444A A 288=种排法;(间接法)六人全排有66A 种排法,除去甲站排头、甲站排尾、乙站排头和乙站排尾的554A 种,补上重复减去的甲、乙都在排头排尾的2424A A 种排法,共有排法65246524A 4A A A 288-+=种.⑷甲站排头有55A 种排法,乙站排尾有55A 种排法,但两种情况都包含了“甲站排头,乙站排尾”的情况,有44A 种排法,故共有654654A 2A A 504-+=种排法.【例3】 7名同学排队照相.⑴ 若分成两排照,前排3人,后排4人,有多少种不同的排法?⑵ 若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?⑶ 若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?⑷ 若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不同的排法?【考点】排列组合问题的常见模型 【难度】2星 【题型】解答 【关键字】无 【解析】略【答案】分析:⑴ 可分两步完成;第一步,从7人中选出3人排在前排,有37A 种排法;第二步,剩下的4人排在后排,有44A 种排法,故一共有347747⋅=A A A 种排法.事实上排两排与排成一排一样,只不过把第4~7个位子看成第二排而已,排法总数都是77A ,相当于7个人的全排列.⑴ 3477475040⋅==A A A 种.⑵ 第一步安排甲,有13A 种排法;第二步安排乙,有14A 种排法;第三步余下的5人排在剩下的5个位置上,有55A 种排法,由分步计数原理得,符合要求的排法共有1153451440⋅⋅=A A A 种.⑶ 第一步,将甲、乙、丙视为一个元素,和其余4个元素排成一排,即看成5个元素的全排列问题,有55A 种排法;第二步,甲、乙、丙三人内部全排列,有33A 种排法.由分步计数原理得,共有5353720⋅=A A 种排法.⑷ 第一步,4名男生全排列,有44A 种排法;第二步,女生插空,即将3名女生插入4名男生之间的5个空位,这样可保证女生不相邻,易知有35A 种插入方法.由分步计数原理得,符合条件的排法共有:43451440⋅=A A 种.点评:⑴ 相邻问题用“捆绑法”,即把若干个相邻的特殊元素“捆绑”为一个“大元素”,与其他普通元素全排列;最后再“松绑”,将这些特殊元素进行全排列. ⑵ 不相邻问题用“插空法”,即先安排好无限制条件的元素,然后再将有限制条件的元素按要求插入排好的元素之间.【例4】 6个队员排成一排,⑴共有多少种不同的排法?⑵若甲必须站在排头,有多少种不同的排法?⑶若甲不能站排头,也不能站排尾,问有多少种不同的排法?【考点】排列组合问题的常见模型 【难度】2星 【题型】解答 【关键字】无 【解析】略【答案】⑴6个队员排成一排,作全排列,共有66A 720=种排法;⑵由于甲的位置已确定,其余5人可任意排列,有55A 120=种排法. ⑶要计算甲不排在排头和排尾有以下三种方法:法一:要使甲不在排头和排尾,可先让甲在中间4个位置中任选1个位置,有14A 种站法;然后对其余5人在另外5个位置上作全排列有55A 种站法.根据分步计数原理,共有排法1545A A 480=(种)法二:由于甲不站排头和排尾,这两个位置只能在其余5个人中,选2个人站,有25A 种站法;对于中间的四个位置,4个人有44A 种站法.根据分步计数原理,共有排法2454A A 480=(种) 法三:若对甲没有限制条件,共有66A 种排法,这里面包含下面三种情况:①甲在排头;②甲在排尾;③甲不在排头,也不在排尾.甲在排头有55A 种站法;甲在排尾有55A 种站法,这都不符合题设条件,从总数中减去这两种情况的排列数即得所求的排法数,共有6565A 2A 480-=(种)【例5】 ABCDE 五个字母排成一排,若ABC 的位置关系必须按A 在前、B 居中、C 在后的原则,共有_______种排法(用数字作答).【考点】排列组合问题的常见模型 【难度】3星【题型】填空 【关键字】无 【解析】略【答案】ABC 先按顺序排好,它们之间及两端共有4个空,把D 插入,有14Α种;然后将E 插入ABCD 形成的空中,有15Α种,故共有114520=ΑΑ种排法.【例6】 用1到8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有_ __个(用数字作答). 【考点】排列组合问题的常见模型 【难度】3星 【题型】填空【关键字】2005年,辽宁高考 【解析】略【答案】此题是捆绑法和插空法的应用问题.把相邻的两个数捆成一捆,分成四个空,然后再将7与8插进空中有24Α种插法;而相邻的三捆都有22Α种排法,在它们之间又有33Α种排序方法.故这样的八位数共有:2223222234576=ΑΑΑΑΑ(个).【例7】 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A .1440种 B .960种 C .720种D .480种【考点】排列组合问题的常见模型 【难度】2星 【题型】选择【关键字】2007年,北京高考【解析】先对五名志愿者全排,再将两位老人看成一个元素,插入五名志愿者中间的四个空档中,最后两位老人之间全排,共有排法512542A C A 960=(种); 【答案】B ;【例8】 12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( )A .2283C AB .2686C AC .2286C AD .2285C A 【考点】排列组合问题的常见模型 【难度】3星 【题型】选择【关键字】2008年,安徽高考【解析】从后排8个人中选择两人,前排加两个人后共个六个位置,从中选择两个位置将选出的两个以一定的顺序排入,故共有2286C A 不同的调整办法.【答案】C ;【例9】 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A .1440种 B .960种 C .720种 D .480种【考点】排列组合问题的常见模型 【难度】2星 【题型】选择【关键字】2007年,北京高考【解析】5名志愿者先排成一排,有55A 种方法,2位老人作一组插入其中,且两位老人有左右顺序,共有5524960⋅⋅=A 种不同的排法,选B .【答案】B ;【例10】 在数字123,,与符号+-,五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是( )A .6B .12C .18D .24【考点】排列组合问题的常见模型【难度】3星 【题型】选择 【关键字】无【解析】思路提示:数字123,,的排列有33A ,符号+-,的排列有22A . 【答案】B ;【例11】 计划展出10幅不同的画,其中1幅水彩、4幅油画、5幅国画,排成一列陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有_____种.【考点】排列组合问题的常见模型 【难度】3星 【题型】填空 【关键字】无 【解析】略【答案】先把3种品种的画看成整体,而水彩画优先考虑只能放在中间,油画与国画有22Α种,同一品种画之间又可以进行全排列,故方法总数为245245ΑΑΑ种.【例12】 6人站一排,甲不站在排头,乙不站在排尾,共有_________种不同的排法(用数字作答).【考点】排列组合问题的常见模型 【难度】2星 【题型】填空 【关键字】无【解析】用间接法,6人全排列有66Α种,减去甲站排头的55Α种,减去乙站排尾的55Α种,但是其中甲站排头且乙站排尾的排法多减了一次,故再加上这种共44Α种,因此排法数有6546542504-+=ΑΑΑ种【答案】504;【例13】 一条长椅上有7个座位,4人坐,要求3个空位中,有2个空位相邻,另一个空位与2个相邻位不相邻,共有几种坐法?【考点】排列组合问题的常见模型 【难度】3星 【题型】解答 【关键字】无【解析】分析:对于空位,我们可以当成特殊元素对待,设空座依次编号为1、2、3、4、5、6、7.先选定两个空位,可以1、2号位,也可以在2、3号位……共有六种可能,再安排另一空位,此时需看到,如果空位在1、2号位,则另一空位可以在4、5、6、7号位,有4种可能,相邻空位在6、7号位,亦如此.如果相邻位在2、3号位,另一空位可以在5、6、7号位,只有3种可能,相邻空位在3、4号,4、5号,5、6号亦如此,所以必须就两相邻空位的位置进行分类.本题的另一考虑是,对于两相邻空位可以用合并法看成一个元素与另一空位插入已坐人的4个座位之间,用插空法处理它们的不相邻. 解析:解法1:就两相邻空位的位置分类:若两相邻空位在1、2或6、7,共有4424192⨯⨯=A (种)坐法.若两相邻空位在2、3,3、4,4、5或5、6,共有4443288⨯⨯=A (种)不同坐法,所以所有坐法总数为192288480+=(种).解法2:本题还可采用间接法,逆向考虑在所有坐法中去掉3个空位全不相邻或全部相邻的情况,4个人任意坐到7个座位上,共有47A 种坐法,三个空位全相邻可以用合并法,直接将三个空位看成一个元素与其它座位一起排列,共有55A 种不同方法.三个空位全不相邻仍用插空法,但三个空位不须排列,直接插入4个人的5个间隙中,有4410⨯A 种不同方法,所以,所有满足条件的不同坐法种数为45475410480--=A A A (种).【答案】480;【例14】 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A .360B .288C .216D .96【考点】排列组合问题的常见模型【难度】2星 【题型】选择【关键字】2009年,四川高考【解析】6位同学站成一排,3位女生中有且只有两位女生相邻的排法有32223342C 432ΑΑΑ=种,其中男生甲站两端的有1222222332C C 144ΑΑΑ=种,所求排法有432144288-=.或由题意有2221122222322323242(C )C C (C )288ΑΑΑΑΑ⋅⋅⋅⋅+⋅⋅⋅=.【答案】B ;【例15】 古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有 种(结果用数值表示).【考点】排列组合问题的常见模型 【难度】3星 【题型】填空 【关键字】无【解析】不妨设5个位置为1,2,3,4,5,3号位随意放入一个物质,有15C 种选法;不妨设为火,则金,水都只能选择1号位或者5号位,共有12C 种选择,剩下的木,土都别无选择.方法数共有1152C C 10⋅=.【答案】10;【例16】 在1234567,,,,,,的任一排列1234567,,,,,,a a a a a a a 中,使相邻两数都互质的排列方式共有( )种.A .288B .576C .864D .1152【考点】排列组合问题的常见模型 【难度】5星 【题型】选择【关键字】2006年,四川联赛【解析】先让数字1、3、5、7作全排列,有44A 24=种;再排数字6,由于数字6不与3相邻,在排好的排列中,1、3、5、7之间以及首末位共有5个空隙,除开3的左右两个空隙,还有3个空隙可以排数字6,故数字6有3种排法;最后排数字2、4,在剩下的4个空隙中,排上数字2、4,共有24A 种排法.因此,共有4244A 3A 864⨯⨯=种.【答案】C ;【例17】 从集合{}P Q R S ,,,与{}0123456789,,,,,,,,,中各任取2个元素排成一排(字母和数字均不能重复).每排中字母Q 和数字0至多只能出现一个的不同排法种数是_________.(用数字作答)【考点】排列组合问题的常见模型 【难度】3星 【题型】填空 【关键字】无【解析】分三种情况:情况1.不含Q 、0的排列:224394C C A ⋅⋅;情况2.0、Q 中只含一个元素Q 的排列:124394C C A ⋅⋅;情况3.只含元素0的排列:214394C C A ⋅⋅.综上符合题意的排法种数为224124214394394394C C A C C A C C A 5832⋅⋅+⋅⋅+⋅⋅=. 当然也可以用间接法,2241144104394C C C C 5832-=ΑΑ.【答案】5832;【例18】 从集合{}O P Q R S ,,,,与{0123456789},,,,,,,,,中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O Q ,和数字0至多只能出现一个的不同排法种数是_________.(用数字作答)【考点】排列组合问题的常见模型 【难度】4星 【题型】填空【关键字】无【解析】分三种情况:情况1.不含O 、Q 、0的排列:224394C C A ⋅⋅;情况2.只含O 、Q 中一个元素,且不含0的排列:11242394C C C A ⋅⋅⋅;情况3.只含元素0的排列:214394C C A ⋅⋅.综上符合题意的排法种数为22411242143942394394C C A C C C A C C A 8424⋅⋅+⋅⋅⋅+⋅⋅=.【答案】8424【例19】 6个人坐在一排10个座位上,问⑴ 空位不相邻的坐法有多少种?⑵ 4个空位只有3个相邻的坐法有多少种? ⑶ 4个空位至多有2个相邻的坐法有多少种?【考点】排列组合问题的常见模型 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】6个人排有66Α种,6人排好后包括两端共有7个“间隔”可以插入空位.⑴ 空位不相邻相当于将4个空位安插在上述7个“间隔”中,有47C 种插法,故空位不相邻的坐法有6467C Α种.⑵ 将相邻的3个空位当作一个元素,另一空位当作另一个元素,往7个“间隔”里插有27Α种插法,故4个空位中只有3个相邻的坐法有6267ΑΑ种.⑶ 4个空位至多有2个相邻的情况有三类:①4个空位各不相邻有47C 种;②4个空位2个相邻,另有2个不相邻有373C 种;③4个空位分两组,每组都有2个相邻,有27C 种.综合上述,应有6432667776(C 3C C )161115920++==ΑΑ种坐法.【例20】 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( ) A .360 B .288 C .216 D .96【考点】排列组合问题的常见模型 【难度】4星 【题型】选择【关键字】2009年,四川高考【解析】6位同学站成一排,先考虑3位女生中有且只有两位女生相邻的全部排法,将男生全排,再女生分成两组,采用插空法,故有32223324(C 432=ΑΑ)Α种,其中男生甲站两端时,先选择一端,再对另两名男生全排,最后插空时有一个空(甲所在的排头或排尾)不能放女生,共有1222222323C (C 144=ΑΑ)Α种,所求排法有432144288-=.也可先考虑三名男生的排列,分成甲在中间和甲在两边的两种情况,由题意有222222211232423223(C )2(C )C C 288⋅⋅⋅+⋅⋅⋅⋅=ΑΑΑΑΑ种排法.【答案】B ;【例21】 12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整的方法的总数有( )A .2283C A B .2686C A C .2286C A D .2285C A 【考点】排列组合问题的常见模型 【难度】2星 【题型】选择【关键字】2008年,安徽高考【解析】从后排8人中选2人共28C 种选法,这2人插入前排4人且保证前排人的顺序不变,则先从4人中的5个空挡插入一人,有5种插法;余下的一人则要插入前排5人的空挡,有6种插法,故有1156C C 种插法,综上知答案:选C .【答案】C ;【例22】 两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是_______.【考点】排列组合问题的常见模型 【难度】3星 【题型】填空 【关键字】无【解析】从两部不同的长篇小说8本书的排列方法有88A 种,左边4本恰好都属于同一部小说的排列方法有144244C ΑΑ⋅⋅种.所以, 将符合条件的长篇小说任意地排成一排,左边4本恰好都属于同一部小说的概率是14424488C A A 1A 35P ⋅⋅==种. 【答案】135;【例23】 2007年12月中旬,我国南方一些地区遭遇历史罕见的雪灾,电煤库存吃紧.为了支援南方地区抗灾救灾,国家统一部署,加紧从北方采煤区调运电煤.某铁路货运站对6列电煤货运列车进行编组调度,决定将这6列列车编成两组,每组3列,且甲与乙两列列车不在同一小组.如果甲所在小组3列列车先开出,那么这6列列车先后不同的发车顺序共有( )A .36种B .108种C .216种D .432种【考点】排列组合问题的常见模型 【难度】3星 【题型】选择【关键字】2008年,海淀1模【解析】在先开出的三列列车中,选择一个位置放甲,在后开出的三列列车中,选择一个位置放乙,其它四辆列车全排即可,不同的发生顺序有:114334C C A 216=(种).【答案】C ;数字问题【例24】 给定数字0、1、2、3、5、9,每个数字最多用一次,⑴可能组成多少个四位数?⑵可能组成多少个四位奇数?⑶可能组成多少个四位偶数?⑷可能组成多少个自然数?【考点】排列组合问题的常见模型 【难度】2星 【题型】解答 【关键字】无 【解析】略【答案】注意0不能放在首位,还要注意个位数字,方法多种多样,利用特殊优先法,即特殊的元素,特殊的位置优先考虑. ⑴法一(位置分析法)从“位置”考虑,由于0不能放在首位,因此首位数字只能有15A 种取法,其余3个数位可以从余下的5个数字(包括0)中任取3个排列,所以可以组成1355A A 300=个四位数; 法二(元素分析法)从“元素”考虑,组成的四位数可以按有无数字0分成两类,有数字0的先排0的位置,有1335A A 个,无数字0的有45A 个,所以共组成134355A A A 300+=个四位数;法三(排除法)从6个元素中取4个元素的所有排列中,减去0在首位上的排列数即为所求,所以共有413615A A A 300-=个四位数; ⑵个位数字必须是奇数有14A 种排法,由于0不能放在首位,因此首位数字只能有14A 种取法,其余两个数位的排法有24A ,所以共有112444A A A 192=个四位奇数;⑶法一:由⑴⑵知共有300192108-=个四位偶数;法二:从“位置”考虑,按个位数字是否为0分成两种情况,0在个位时,有1315A A 个四位偶数;2在个位时,有112144A A A 个四位偶数,所以共有1311215144A A A A A 108+=个四位偶数;⑷一位数:有16A 6=个;两位数:有1155A A 25=个;三位数:有1255A A 100=个; 四位数:有1355A A 300=个;五位数:有1455A A 600=个;六位数:有1555A A 600=个;所以共有6251003006006001631+++++=个自然数.【例25】 用0到9这10个数字,可组成多少个没有重复数字的四位偶数?。
巧解排列组合的21种模型排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握.实践证明,掌握题型和识别模式,并熟练运用,是解决排列组合的有效途径.下面就系统地介绍巧解排列组合的21种模型.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有排法种数有A 、60种B B、、48种C C、、36种D D、、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离元素相离(即不相邻)问题,(即不相邻)问题,(即不相邻)问题,可先把无位置要求的几个元素全排列,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端再把规定的相离的几个元素插入上述几个元素的空位和两端. .例2.2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是A 、1440种B B、、3600种C C、、4820种D D、、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法的方法. .例3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是么不同的排法种数是A 、24种B B、、60种C C、、90种D D、、120种解析:B 在A 的右边与B 在A 的左边排法数相同,的左边排法数相同,所以题设的排法只是所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成再排另一个元素,如此继续下去,依次即可完成. .例4.4.将数字将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B B、、9种C C、、11种D D、、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法有序分配问题指把元素分成若干组,可用逐步下量分组法. . 例5.5.((1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是人承担这三项任务,不同的选法种数是A 、1260种B B、、2025种C C、、2520种D D、、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有配方案有A 、4441284C C C 种B B、、44412843C C C 种 C C、、4431283C C A 种D D、、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.6.((1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法种方法. .说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配. .(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为A 、480种B B、、240种C C、、120种D D、、96种答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?案?解析:解析:1010个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法: 例8.8.某高校从某系的某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法方法..所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计分别计数,最后总计. .例9.9.((1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有十位数字的共有A 、210种B B、、300种C C、、464种D D、、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,I,能被能被7整除的数的集合记做{}7,14,217,14,21,,98A = 共有14个元素个元素,,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A = ð共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A ð中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+- .例10.10.从从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?四棒,共有多少种不同的参赛方案?解析:设全集解析:设全集=={6人中任取4人参赛的排列},A=A={甲跑第一棒的排列}{甲跑第一棒的排列},B=B={乙跑第{乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+Ç43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
巧解排列组合的21种模型排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易把握.实践证明,把握题型和识别模式,并熟练运用,是解决排列组合的有效途径.下面就系统地介绍巧解排列组合的21种模型.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,看成一个大元素参与排列. 例1.,,,,A B C D E 五人并排站成一排,若是,A B 必需相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,那么此题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离〔即不相邻〕问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两头.例2.七人并排站成一行,若是甲乙两个必需不相邻,那么不同的排法种数是A 、1440种B 、3600种C 、4820种D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必需维持必然的顺序,可用缩小倍数的方式.例3.,,,,A B C D E 五人并排站成一排,若是B 必需站在A 的右边〔,A B 能够不相邻〕那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左侧排法数一样,因此题设的排法只是5个元素全排列数的一半,即551602A =种,选B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,那么每一个方格的标号与所填数字均不一样的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方式,第二步把被填入方格的对应数字填入其它三个方格,又有三种方式;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分派问题逐分法:有序分派问题指把元素分成假设干组,可用慢慢下量分组法.例5.〔1〕有甲乙丙三项任务,甲需2人承当,乙丙各需一人承当,从10人当选出4人承当这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人当选出2人承当甲项任务,再从剩下的8人当选1人承当乙项任务,第三步从另外的7人当选1人承当丙项任务,不同的选法共有21110872520C C C =种,选C . 〔2〕12名同窗别离到三个不同的路口进展流量的调查,假设每一个路口4人,那么不同的分派方案有A 、4441284C C C 种B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分派问题分组法:例6.〔1〕4名优秀学生全数保送到3所学校去,每所学校至少去一名,那么不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方式,再把三组学生分派到三所学校有33A 种,故共有234336C A =种方式.说明:分派的元素多于对象且每一对象都有元素分派时经常使用先分组再分派.〔2〕5本不同的书,全局部给4个学生,每一个学生至少一本,不同的分法种数为A 、480种B 、240种C 、120种D 、96种答案:B .7.名额分派问题隔板法:例7.10个三勤学生名额分到7个班级,每一个班级至少一个名额,有多少种不同分派方案? 解析:10个名额分到7个班级,确实是把10个名额看成10个一样的小球分成7堆,每堆至少一个,能够在10个小球的9个空位中插入6块木板,每一种插法对应着一种分派方案,故共有不同的分派方案为6984C =种.8.限制条件的分派问题分类法:例8.某高校从某系的10名优秀毕业生当选4人别离到西部四城市参加中国西部经济开发成立,其中甲同窗不到银川,乙不到西宁,共有多少种不同调派方案?解析:因为甲乙有限制条件,因此依照是不是含有甲乙来分类,有以下四种情形:①假设甲乙都不参加,那么有调派方案48A 种;②假设甲参加而乙不参加,先安排甲有3种方式,然后安排其余学生有38A 方式,因此共有383A ;③假设乙参加而甲不参加同理也有383A 种;④假设甲乙都参加,那么先安排甲乙,有7种方式,然后再安排其余8人到另外两个城市有28A 种,共有287A 方式.因此共有不同的调派方式总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,掏出的情形也多种,可按结果要求分成不相容的几类情形别离计数,最后共计.例9.〔1〕由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情形,别离有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,归并共计300个,选B .〔2〕从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法〔不计顺序〕共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能够被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种.〔3〕从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法〔不计顺序〕有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;另外其它取法都不符合要求;因此符合要求的取法共有211225252525C C C C ++种.10.穿插问题集合法:某些排列组合问题几局部之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运发动当选出4人参加4×100米接力赛,若是甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},依照求集合元素个数的公式得参赛方式共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
排列组合实际模型【题型概述】考察各种有限制条件的排列组合问题,需要将实际情况建立为数学模型,并掌握常见的处理策略。
类型1 相邻问题例1.已知A,B,C,D,E五个同学,按下列要求进行排列,分别求其满足条件的排列方法数.(1)把这五个同学安排到五个空位上且A,B必须相邻;(2)把这五个同学安排到五个空位上且A,B必须相邻,C,D,E也必须相邻;(3)把这五个同学安排到六个空位中的五个空位上且A,B必须相邻.【答案】(1)48;(2)24;(3)240【解析】(1)分两步.第一步:把A,B两个同学看作一个整体,看成一个“大元素”,和C,D,E共四个元素进行排列,其排列方法有A44种;第二步.对捆绑到一起的A,B这两个同学内部排列,即“松绑”,其排列方法有A22种;故根据分步乘法计数原理,符合题意的排列方法数有A44·A22种.(2)分两步.第一步:把A,B两个同学看作一个整体,看成一个“大同学”,把C,D,E这三个同学看作一个整体,看成一个“大同学”,这两个“大元素”排成一列的方法数为A22种;第二步:对捆绑到一起的A,B这个“大元素”的内部排列,即“松绑”,其排列方法有A22种;对捆绑到一起的C,D,E这个“大元素”的内部排列,即“松绑”,其排列方法有A33种.故根据分步乘法计数原理,符合题意的排列方法数有A22A22A33=24种.(3)分两步.第一步:先看成A,B,C,D,E五个同学带着座位排列,而且满足A,B 相邻的要求,由第(1)题可知,其排列方法有48种;第二步:把剩下的一个空位往已经坐好的五个同学中间(包括两端)插空,且不能插在A,B之间,其排列方法有A 51种.故根据分步乘法计数原理,符合题意的排列方法数有48A 51=240种.【思维点睛】解决“相邻”问题用“捆绑法”,将n 个不同的元素排列成一排,其中k 个元素排在相邻位置上,求不同排法种数的方法:(1)先将这k 个元素“捆绑”在一起,看成一个整体;(2)把整体当作一个元素与其他元素一起排列,其排列方法有A n−k+1n−k+1种排法; (3)“松绑”,即将“捆绑”在一起的元素内部进行排列,其排列方法有A k k 种;(4)根据分布乘法计数原理,符合条件的排法有A n−k+1n−k+1·A k k 种.变式训练.把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有_________种. 【答案】36【解析】产品A,B 相邻时,不同的摆法有A 22A 44=48种.而A,B 相邻,A,C 也相邻时的摆法为A 在中间,C,B 在A 的两侧,不同的摆法共有A 22A 33=12种.故产品A 与产品B 相邻,且产品A 与产品C 不相邻的不同摆法有48-12=36种.类型二 定序问题例2.有3名男生,4名女生,按下述要求,分别求出其不同排列的种数. (1)选其中5人排成一行;(2)全体排成一行,其中甲只能在中间或者两头的位置; (3)全体排成一行,其中甲、乙必须在两头; (4)全体排成一行,其中甲不在首,乙不在尾; (5)全体排成一行,其中男生、女生都各不相邻; (6)全体排成一行,其中男生不能排在一起;(7)全体排成一行,其中甲、乙、丙按自左至右的顺序保持不变; (8)全体排成一行,甲、乙两人间恰有3人; (9)全体排成前后两排,前排3人,后排4人.【答案】(1)2520;(2)2160;(3)240;(4)3720;(5)144;(6)4320;(7)840;(8)720;(9)5040【解析】(1)由排列的定义可知不同排列的种数为A57=2520.(2)首先在中间或两头之一排甲,共有A31种方法;其次在所剩的6个位置上对其余6人进行全排列,共有A66种方法,依分步乘法计数原理,所以有A31A66=2160种.(3)仿(2)先排甲、乙共A22种排法,其余5人尚有A55种排法,故共有A22A55=240种不同排法.(4)当乙排在首位时,共有A66种排法,当乙不在首位时,先排乙有A51种方法,再排甲也有A51种方法.最后其余各元素有几种方法,故有A51A51A51种不同排法.所有不同的排列种数为A66+A51A51A51=3720.(5)先排男生有A33种排法,此三人中间及两端恰有4空供女生排列,有A44种排法,从而共有A33A44=144种不同的排列.(6)从7人的全排列中出去男生皆相邻的情况即可,故所求不同排列种数为A77-A33A55=4320.(7)只需在7个位置中选4个位置将余下4人进行排列,再将甲、乙、丙3人按顺序插入,共有A74=840种不同排法.(8)先选3人排在甲、乙之间,有A53种排法,又因甲、乙排列有A22种,再将此5人看作一个元素与其余2人进行全排列有A33种,故共有A53A22A33=720种不同排法.(9)前后两排形势变化,顺序之实犹存,其排法仍有A77=5040种.【变式训练】有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次.A,B两位学生去问成绩,老师对A说,你的名次不知道,但肯定没得第一名;又对B说,你是第三名,那么这五位学生的名次排列共有________种不同的可能.【答案】18【解析】B是第三名,有一种可能,接下来排A,有A31种,最后排剩下的三位,有A33种,共有A31·A33种.类型三分组分配问题例3. 6本不同的书,按下列要求各有多少种不同的分法:(1)分给甲、乙、丙三人,每人两本;(2)分为三份,每份两本;(3)分为三份,一份一本,一份两本,一份三本;(4)分给甲、乙、丙三人,一人一本,一人两本,一人三本.【答案】(1)90;(2)15;(3)60;(4)360【解析】(1)分3步完成:甲取2本,有C62种方法,乙再取2本,有C42种方法,剩余的2本分给丙,有C22种方法,根据分步乘法计数原理,得C62C42C22=90种.(2)分给甲、乙、丙三人,每人两本有C62C42C22种方法,这个过程可以分两步完成:第一步分为三份,每份两本,设有x种方法;第二步再将这三份分给甲、乙、丙三名同学,有A33种方法.根据分步乘法计数原理可得C62C42C22=x A33,所以x-C62C42C22=15.因此分为三份,每份两本一共有15种方A33法.(3)这是“不均匀分组”问题,一共有C61C52C33=60种方法.(4)在(3)的基础上再进行全排列,所以一共有有C61C52C33A33=360种方法.【思维点睛】1.解决此类问题要分清是分组问题还是分配问题.2.分组问题属于“组合”问题,常见的分组问题有三种:(1)完全均匀分组,每组的元素个数均相同;(2)部分均匀分组,应注意不要重复,有m组均匀,最后必须除以m!;(3)完全非均匀分组,不用考虑重复现象.3.分配问题属于“排列”问题,分配问题可以按要求逐个分配,也可以分组后再分配.【变式训练】将4名新来的同学分配到A,B,C三个班级中,每个班级至少安排1名学生,其中甲同学不能分配到A班,那么不同的分配方案种数是________.【答案】24【分析】将4名新来的同学分配到A,B,C三个班级中,每个班级至少安排一名学生有C42A33种分配方案,其中甲同学分配到A班共有C32A22+C31A22种方案.因此满足条件的不同方案共有C42A33-C32A22-C31A22=24种.类型四不相邻问题例4.某停车场有连成1排的9个停车位,现有5辆不同的车需要停放,要求2辆车相邻,还有2辆车也相邻,另外1辆车单独停放的停法共有多少种?【解答】首先把5辆车分为3组,分别为2辆,2辆,1辆,共有C52C32C11A22种方法.考虑内部顺序:A22A22. 现在除了5辆车会占的5个车位之外,还剩下4个车位. 把5辆车(3组车)“带着车位”插入到剩余4个车位间的5个空隙中,如图:共有A53种插入方法. 故总共有C52C32C11A22A22A22A53=3600种方法.【思维点睛】对于某几个元素不相邻的排列问题,可先将其他元素排好,然后再将不相邻的元素在已排好的元素之间及两端的空隙中插入即可.【变式训练】某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168【答案】B【分析】解决该问题分为两类:第一类分两步,先排歌舞类A33,然后利用插空法将剩余3个节目排入左边或右边3个空,故不同排法有A33·2A33=72.第二类也分两步,先排歌舞类A33,然后将剩余3个节目放入中间两空排法有C21A22A22,故不同的排法有A33A22A22C21=48.故共有120种不同的排法.类型五“小集团”问题例5. 7人站成一排照相,要求甲、乙之间恰好间隔2人的站法有多少种?【答案】960【分析】甲、乙及间隔的2人组成一个“小集团”,这2人可从其余5人中任选出来,有C52种选法;这个小集团与其余3人共4个元素全排列有A44种方法,它的内部甲、乙两人又A22种站法,中间选的2人也有A22种站法,因而符合要求的站法共有C52A44A22A22=960种.【思维点睛】“小团体”问题“先整体后局部法”对于“小团体”排列问题,与“相邻问题”相似,可先将小团体看作一个元素与其余元素排列,最后再进行小团体内部的排列.【变式训练】用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹在1,5这两个奇数之间,这样的五位数有多少个?【答案】8【分析】将1245这4个数字看作一个“小集团”,其中2,4必须在1,5之间,共有4种情况,最后排“小集团”和数字3,共有2种情况,所以共有8种情况.类型六隔板法例6. 15 个相同的球放入编号为1、2、3 的盒子内,盒内球数不少于编号数,有几种不同的放法?【答案】55【分析】编号1:至少 1 个,符合要求;编号2:至少 2 个:需预先添加 1 个球,则总数-1 ;编号3:至少 3 个,需预先添加 2 个,才能满足条件,后面添加一个,则总数-2 ;则球总数15-1-2=12 个放进 3 个盒子里,所以C(11,2)=55 (种)【思维点睛】“隔板法”适用于相同元素的分配问题,如投球进盒、名额或指标的分配、部分不定方程的整数解的组数等,解决时通常设计一个问题情景. 构造一个隔板模型,将复杂的问题简单化,抽象的问题具体化,从而实现解题的目的.【变式训练】方程x1+x2+x3+x4=10共有多少组正整数解?【答案】84【分析】巧构隔板模型,即可化繁为简.将10个完全相同的小球排成一列,形成9个空,从中选3个,插入隔板,将球分成4份,每一份插法所得4份球的各份的数目,分别对应x1、x2、x3、x4,即为原方程的一组正整数解.故原方程组共有C93=84组不同的整数解.。
排列组合问题的基本类型及解题方法解决排列组合问题要讲究策略,首先要认真审题,弄清楚是排列(有序)还是组合(无序),还是排列与组合混合问题。
其次,要抓住问题的本质特征,准确合理地利用两个基本原则进行“分类与分步”,还有排除法。
加法原理的特征是分类解决问题,分类必须满足两个条件:①类与类必须互斥(不相容),②总类必须完备(不遗漏);乘法原理的特征是分步解决问题,分步必须做到步与步互相独立,互不干扰并确保连续性。
分类与分步是解决排列组合问题的最基本的思想策略,在实际操作中往往是“步”与“类”交叉,有机结合,可以是类中有步,也可以是步中有类。
以上解题思路分析,可以用顺口溜概括为:审明题意,排(组)分清;合理分类,用准加乘;周密思考,防漏防重;直接间接,思路可循;元素位置,特殊先行;一题多解,检验真伪。
(一)特殊元素的“优先安排法”对于特殊元素的排列组合问题,一般先考虑特殊元素,再考虑其他元素的安排。
在操作时,针对实际问题,有时“元素优先”,有时“位置优先”。
例1: 0,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有几个?(二)排除法对于含有否定词语的问题,还可以从总体中把不符合要求的除去,此时应注意既不能多减也不能少减,例如在例1中也可以用此法解答:5个数字组成三位数的全排列为35A ,排好后发现0不能在首位,而且3和5不能排在末尾,这两种不合题意的排法要除去,故有30个偶数.(三)合理分类与准确分步解含有约束条件的排列组合问题,应按元素的性质进行分类,事情的发生的连续过程分步,做到分类标准明确,分布层次清楚,不重不漏.例2:5个人从左到右站成一排,甲不站排头,乙不站第二个位置,不同的站法有(四)相邻问题:捆绑法对于某些元素要求相邻排列的问题,可先将相邻元素捆绑成整体并看作一个元素再与其 它元素进行排列,同时对相邻元素内部进行自排。
例3: 5个男生3个女生排成一列,要求女生排一起,共有几种排法?(五)不相邻问题用“插空法”对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻的元素在已排好的元素之间及两端的空隙之间插入即可(注意有时候两端的空隙的插法是不符合题意的).例4: 5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法?(六)定序问题用“除法”消序或选位不排或先定后插对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数。
1.基本计数原理 ⑴加法原理分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++L 种不同的方法.又称加法原理.⑵乘法原理分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯L 种不同的方法.又称乘法原理.⑶加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素)排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示.排列数公式:A (1)(2)(1)m n n n n n m =---+L ,m n +∈N ,,并且m n ≤.全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=.⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示.组合数公式:(1)(2)(1)!C !!()!m nn n n n m n m m n m ---+==-L ,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0C 1n =)知识内容排列组合问题的常见模型1⑶排列组合综合问题解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法: 1.特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空.6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排,从1n -个空中选1m -个空,各插一个隔板,有11m n C --.7.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成n 堆(组),必须除以n !,如果有m 堆(组)元素个数相等,必须除以m !8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径: ①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; ②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数. 求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答.2.具体的解题策略有:①对特殊元素进行优先安排;②理解题意后进行合理和准确分类,分类后要验证是否不重不漏; ③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复;④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法; ⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理; ⑥对于正面考虑太复杂的问题,可以考虑反面. ⑦对于一些排列数与组合数的问题,需要构造模型.排队问题【例1】 三个女生和五个男生排成一排⑴ 如果女生必须全排在一起,可有多少种不同的排法 ⑵ 如果女生必须全分开,可有多少种不同的排法 ⑶ 如果两端都不能排女生,可有多少种不同的排法典例分析【例2】6个人站成一排:⑴其中甲、乙两人必须相邻有多少种不同的排法⑵其中甲、乙两人不相邻有多少种不同的排法⑶其中甲、乙两人不站排头和排尾有多少种不同的排法⑷其中甲不站排头,且乙不站排尾有多少种不同的排法【例3】7名同学排队照相.⑴若分成两排照,前排3人,后排4人,有多少种不同的排法⑵若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法⑶若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法⑷若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不同的排法【例4】6个队员排成一排,⑴共有多少种不同的排法⑵若甲必须站在排头,有多少种不同的排法⑶若甲不能站排头,也不能站排尾,问有多少种不同的排法【例5】 ABCDE 五个字母排成一排,若ABC 的位置关系必须按A 在前、B 居中、C 在后的原则,共有_______种排法(用数字作答).【例6】 用1到8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有_ __个(用数字作答).【例7】 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A .1440种 B .960种C .720种D .480种【例8】 12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( )A .2283C AB .2686C AC .2286C AD .2285C A【例9】 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A .1440种 B .960种 C .720种 D .480种【例10】 在数字123,,与符号+-,五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是( )A .6B .12C .18D .24【例11】 计划展出10幅不同的画,其中1幅水彩、4幅油画、5幅国画,排成一列陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有_____种.【例12】 6人站一排,甲不站在排头,乙不站在排尾,共有_________种不同的排法(用数字作答).【例13】 一条长椅上有7个座位,4人坐,要求3个空位中,有2个空位相邻,另一个空位与2个相邻位不相邻,共有几种坐法【例14】 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A .360B .288C .216D .96【例15】 古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有 种(结果用数值表示).【例16】 在1234567,,,,,,的任一排列1234567,,,,,,a a a a a a a 中,使相邻两数都互质的排列方式共有( )种.A .288B .576C .864D .1152【例17】 从集合{}P Q R S ,,,与{}0123456789,,,,,,,,,中各任取2个元素排成一排(字母和数字均不能重复).每排中字母Q 和数字0至多只能出现一个的不同排法种数是_________.(用数字作答)【例18】 从集合{}O P Q R S ,,,,与{0123456789},,,,,,,,,中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O Q ,和数字0至多只能出现一个的不同排法种数是_________.(用数字作答)【例19】 6个人坐在一排10个座位上,问⑴ 空位不相邻的坐法有多少种⑵ 4个空位只有3个相邻的坐法有多少种 ⑶ 4个空位至多有2个相邻的坐法有多少种【例20】 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A .360B .288C .216D .96【例21】 12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整的方法的总数有( )A .2283C A B .2686C A C .2286C A D .2285C A【例22】 两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是_______.【例23】 2007年12月中旬,我国南方一些地区遭遇历史罕见的雪灾,电煤库存吃紧.为了支援南方地区抗灾救灾,国家统一部署,加紧从北方采煤区调运电煤.某铁路货运站对6列电煤货运列车进行编组调度,决定将这6列列车编成两组,每组3列,且甲与乙两列列车不在同一小组.如果甲所在小组3列列车先开出,那么这6列列车先后不同的发车顺序共有( )A .36种B .108种C .216种D .432种数字问题 【例24】 给定数字0、1、2、3、5、9,每个数字最多用一次,⑴可能组成多少个四位数⑵可能组成多少个四位奇数 ⑶可能组成多少个四位偶数⑷可能组成多少个自然数【例25】 用0到9这10个数字,可组成多少个没有重复数字的四位偶数【例26】 在1,3,5,7,9中任取3个数字,在0,2,4,6,8中任取两个数字,可组成多少个不同的五位偶数.【例27】 用12345,,,,排成一个数字不重复的五位数12345a a a a a ,,,,,满足12233445a a a a a a a a <><>,,,的五位数有多少个【例28】 用0129L ,,,,这十个数字组成无重复数字的四位数,若千位数字与个位数字之差的绝对值是2,则这样的四位数共有多少个【例29】 用数字0123456,,,,,,组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有______个(用数学作答).【例30】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法数一共有 种. 432;【例31】 有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有..中间行的两张卡片上的数字之和为5,则不同的排法共有( ) A .1344种B .1248种C .1056种D .960种【例32】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有____种(用数字作答).【例33】用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答).【例34】用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有()A.48个B.36个C.24个D.18个,,,,,这6个数中,取出两个,使其和为偶数,则共可得到个这样的不【例35】从1238910同偶数【例36】求无重复数字的六位数中,能被3整除的数有______个.,,,,,,组成没有重复数字的四位数,其中个位、十位和百位上的数字【例37】用数字0123456之和为偶数的四位数共有个(用数学作答).,,,,,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的【例38】从012345个数为()A.300B.216C.180D.162【例39】 从012345,,,,,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为( )A .300B .216C .180D .162【例40】 从1到9的九个数字中取三个偶数四个奇数,试问:⑴能组成多少个没有重复数字的七位数其中任意两偶数都不相邻的七位数有几个 ⑵上述七位数中三个偶数排在一起的有几个⑶⑴中的七位数中,偶数排在一起、奇数也排在一起的有几个⑷⑴其中任意两偶数都不相邻的七位数有几个【例41】 用0到9这九个数字.可组成多少个没有重复数字的四位偶数【例42】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有______种(用数字作答).【例43】 在由数字12345,,,,组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( )个A .56个B .57个C .58个D .60个【例44】 由0,1,2,3,4这五个数字组成的无重复数字的四位偶数,按从小到大的顺序排成一个数列{}n a ,则19a =_____.A .2014B .2034C .1432D .1430【例45】 从数字0、1、3、5、7中取出不同的三个作系数,可组成多少个不同的一元二次方程20ax bx c ++=,其中有实数根的有几个【例46】 从{}32101234,,,,,,,---中任选三个不同元素作为二次函数2y ax bx c =++的系数,问能组成多少条图像为经过原点且顶点在第一象限或第三象限的抛物线。
高中数学讲义摆列组合问题的常有模型1知识内容1.基本计数原理⑴加法原理分数原理:做一件事,达成它有n 法,在第一法中有m1种不一样的方法,在第二法中有 m2种方法,⋯⋯,在第 n 法中有 m n种不一样的方法.那么达成件事共有N m1 m2 L m n种不一样的方法.又称加法原理.⑴乘法原理分步数原理:做一件事,达成它需要分红 n 个子步,做第一个步有 m1种不一样的方法,做第二个步有 m2种不同方法,⋯⋯,做第 n 个步有 m n种不同的方法.那么完成件事共有N m1 m2 L m n种不一样的方法.又称乘法原理.⑴加法原理与乘法原理的综合运用假如达成一件事的各样方法是互相独立的,那么计算达成这件事的方法数时,使用分类计数原理.假如达成一件事的各个步骤是互相联系的,即各个步骤都一定达成,这件事才告达成,那么计算达成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导摆列数、组合数公式的理论基础,也是求解摆列、组合问题的基本思想方法,这两个原理十分重要一定仔细学好,并正确地灵巧加以应用.2.摆列与组合⑴摆列:一般地,从n 个不一样的元素中任取m(m ≤ n) 个元素,依据必定的次序排成一列,叫做从n 个不一样元素中拿出m 个元素的一个摆列.(此中被取的对象叫做元素)摆列数:从 n 个不一样的元素中拿出m(m ≤ n) 个元素的所有摆列的个数,叫做从n个不一样元素中拿出m 个元素的摆列数,用符号 A m n表示.摆列数公式: A m n 全摆列:一般地,n的阶乘:正整数由n(n 1)(n 2) L (n m 1) , m,n N,而且 m ≤ n .n 个不一样元素所有拿出的一个摆列,叫做n 个不一样元素的一个全摆列.1到n的连乘积,叫作n的阶乘,用n! 表示.规定: 0! 1 .思想的挖掘能力的飞腾1高中数学讲义⑴组合:一般地,从 n 个不一样元素中,随意拿出 m ( m≤n)个元素并成一组,叫做从n 个元素中任取m个元素的一个组合.组合数:从 n 个不一样元素中,随意拿出m (m≤n)个元素的所有组合的个数,叫做从n 个不一样元素中,随意拿出 m 个元素的组合数,用符号C n m表示.组合数公式: C n m n( n1)(n 2)L( n m1)n!, m, n N ,而且m≤ n .m!m!( n m)!组合数的两个性质:性质1:C n m C n n m;性质 2:C n m1 C n m C n m 1.(规定 C n0 1 )⑴摆列组合综合问题解摆列组合问题,第一要用好两个计数原理和摆列组合的定义,即第一弄清是分类仍是分步,是排列仍是组合,同时要掌握一些常有种类的摆列组合问题的解法:1.特别元素、特别地点优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其余元素;地点优先法:先考虑有限制条件的地点的要求,再考虑其余地点;2.分类分步法:对于较复杂的摆列组合问题,常需要分类议论或分步计算,必定要做到分类明确,层次清楚,不重不漏.3.清除法,从整体中清除不切合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的摆列,能够先将相邻的元素“捆成一个”元素,与其余元素进行摆列,而后再给那“一捆元素”内部摆列.5.插空法:某些元素不相邻的摆列,能够先排其余元素,再让不相邻的元素插空.6.插板法:n个同样元素,分红 m( m≤ n) 组,每组起码一个的分组问题——把n个元素排成一排,从 n 1个空中选 m 1 个空,各插一个隔板,有C n m11.7.分组、分派法:分组问题(分红几堆,无序).有平分、不平分、部分平分之别.一般地均匀分红 n 堆(组),一定除以n !,假如有m 堆(组)元素个数相等,一定除以m !8.错位法:编号为 1 至n的n个小球放入编号为 1 到n的n个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不一样,这类摆列称为错位摆列,特别当n 2 ,3,4,5 时的错位数各为1,2,9,44.对于 5、6、7 个元素的错位摆列的计算,能够用剔除法转变为 2 个、 3 个、 4 个元素的错位摆列的问题.1.摆列与组合应用题,主要考察有附带条件的应用问题,解决此类问题往常有三种门路:⑴元素剖析法:以元素为主,应先知足特别元素的要求,再考虑其余元素;⑴地点剖析法:以地点为主考虑,即先知足特别地点的要求,再考虑其余地点;⑴间接法:先不考虑附带条件,计算出摆列或组合数,再减去不切合要求的摆列数或组合数.2思想的挖掘能力的飞腾高中数学讲义求解时应注意先把详细问题转变或归纳为摆列或组合问题;再经过剖析确立运用分类计数原理仍是分步计数原理;而后剖析题目条件,防止“选用”时重复和遗漏;最后列出式子计算作答.2.详细的解题策略有:⑴对特别元素进行优先安排;⑴理解题意后进行合理和正确分类,分类后要考证能否不重不漏;⑴对于抽出部分元素进行摆列的问题一般是先选后排,以防出现重复;⑴对于元素相邻的条件,采纳捆绑法;对于元素间隔摆列的问题,采纳插空法或隔板法;⑴次序固定的问题用除法办理;分几排的问题能够转变为直排问题办理;⑴对于正面考虑太复杂的问题,能够考虑反面.⑴对于一些摆列数与组合数的问题,需要结构模型.典例剖析排队问题【例 1】三个女生和五个男生排成一排⑴ 假如女生一定全排在一同,可有多少种不一样的排法?⑵ 假如女生一定全分开,可有多少种不一样的排法?⑶ 假如两头都不可以排女生,可有多少种不一样的排法?【例 2】 6 个人站成一排:⑴此中甲、乙两人一定相邻有多少种不一样的排法?⑴此中甲、乙两人不相邻有多少种不一样的排法?⑴此中甲、乙两人不站排头和排尾有多少种不一样的排法?⑴此中甲不站排头,且乙不站排尾有多少种不一样的排法?思想的挖掘能力的飞腾3高中数学讲义【例 3】 7 名同学排队照相.⑴若分红两排照,前排 3 人,后排 4 人,有多少种不一样的排法?⑵若排成两排照,前排 3 人,后排 4 人,但此中甲一定在前排,乙一定在后排,有多少种不一样的排法?⑶ 若排成一排照,甲、乙、丙三人一定相邻,有多少种不一样的排法?⑷若排成一排照,7 人中有 4 名男生, 3 名女生,女生不可以相邻,有多少种不一样的排法?【例 4】 6 个队员排成一排,⑴共有多少种不一样的排法?⑴若甲一定站在排头,有多少种不一样的排法?⑶若甲不可以站排头,也不可以站排尾,问有多少种不一样的排法?【例 5】ABCDE 五个字母排成一排,若 ABC 的地点关系一定按 A 在前、 B 居中、 C 在后的原则,共有 _______种排法(用数字作答).【例 6】用 1 到 8 构成没有重复数字的八位数,要求 1 与 2 相邻, 3 与 4 相邻,5 与6 相邻,而7 与8 不相邻,这样的八位数共有___个(用数字作答).4思想的挖掘能力的飞腾高中数学讲义【例 7】记者要为5名志愿者和他们帮助的2 位老人拍照,要求排成一排, 2 位老人相邻但不排在两头,不一样的排法共有()A .1440 种B. 960种C. 720种D. 480 种【例 8】12 名同学合影,站成前排 4 人后排 8 人,现拍照师要从后排 8人中抽 2 人调整到前排,若其余人的相对次序不变,则不一样调整方法的总数是()22B.2622D.22A .C C C A CA A A【例 9】记者要为5名志愿者和他们帮助的 2 位老人拍照,要求排成一排, 2 位老人相邻但不排在两头,不一样的排法共有()A . 1440 种B .960 种C.720 种 D .480 种【例 10】在数字 1,2 ,3与符号,五个元素的所有全摆列中,随意两个数字都不相邻的全摆列个数是()A .6B.12C.18D.24【例 11】计划展出 10 幅不一样的画,此中 1 幅水彩、 4 幅油画、 5 幅国画,排成一列陈设,要求同一品种的画一定连在一同,而且水彩画不放在两头,那么不一样的陈设方式有_____种.思想的挖掘能力的飞腾5高中数学讲义【例 12】 6 人站一排,甲不站在排头,乙不站在排尾,共有_________种不一样的排法(用数字作答).【例 13】一条长椅上有7 个座位, 4 人坐,要求 3 个空位中,有 2 个空位相邻,另一个空位与 2 个相邻位不相邻,共有几种坐法?【例 14】3位男生和3位女生共6位同学站成一排,若男生甲不站两头, 3 位女生中有且只有两位女生相邻,则不一样排法的种数是()A. 360B. 288C. 216D. 96【例 15】古代“五行”学说以为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不一样属性的物质随意排成一列,但摆列中属性相克的两种物质不相邻,则这样的摆列方法有种(结果用数值表示).【例 16】在1,2,3,4,5,6,7的任一摆列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的摆列方式共有()种.A. 288B. 576C. 864D. 11526思想的挖掘能力的飞腾高中数学讲义【例 17】从会合P ,Q ,R ,S 与 0 ,1,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 中各任取2个元素排成一排(字母和数字均不可以重复).每排中字母 Q和数字0至多只好出现一个的不一样排法种数是_________.(用数字作答)【例 18】从会合{O,P,Q,R,S}与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不可以重复).每排中字母 O,Q 和数字 0 至多只好出现一个的不一样排法种数是_________.(用数字作答)【例 19】6个人坐在一排10个座位上,问⑴空位不相邻的坐法有多少种?⑵ 4 个空位只有 3 个相邻的坐法有多少种?⑶ 4 个空位至多有 2 个相邻的坐法有多少种?【例 20】3位男生和3位女生共6位同学站成一排,若男生甲不站两头, 3 位女生中有且只有两位女生相邻,则不一样排法的种数是()A . 360B. 288C. 216D. 96思想的挖掘能力的飞腾7高中数学讲义【例 21】12名同学合影,站成了前排 4 人后排 8 人,现拍照师要从后排8 人中抽 2 人调整到前排,其余人的相对次序不变,则不一样调整的方法的总数有()2 A 2B.2A6C.2A2D.22A .C C C C A【例 22】两部不一样的长篇小说各由第一、二、三、四卷构成,每卷1本,共 8 本.将它们随意地排成一排,左侧 4 本恰巧都属于同一部小说的概率是_______.【例 23】2007年12月中旬,我国南方一些地域遭受历史稀有的雪灾,电煤库存吃紧.为了增援南方地域抗灾救灾,国家一致部署,加紧从北方采煤区调运电煤.某铁路货运站对 6 列电煤货运列车进行编组调动,决定将这 6 列列车编成两组,每组3列,且甲与乙两列列车不在同一小组.假如甲所在小组 3 列列车先开出,那么这 6 列列车先后不一样的发车次序共有()A. 36种B.108种C. 216种D. 432种数字问题【例 24】给定数字0、1、2、3、5、9,每个数字最多用一次,⑴可能构成多少个四位数?⑴可能构成多少个四位奇数?⑴可能构成多少个四位偶数?⑴可能构成多少个自然数?【例 25】用 0 到 9 这 10 个数字,可构成多少个没有重复数字的四位偶数?8思想的挖掘能力的飞腾高中数学讲义【例 26】在1,3,5,7,9中任取3个数字,在0,2,4, 6,8 中任取两个数字,可构成多少个不一样的五位偶数.【例 27】用1,2,3,4,5排成一个数字不重复的五位数 a1,a2,a3,a4,a5,满足a1 a2,a2 a3,a3 a4,a4 a5的五位数有多少个?【例 28】用0,1,2,L,9这十个数字构成无重复数字的四位数,若千位数字与个位数字之差的绝对值是2,则这样的四位数共有多少个?【例 29】用数字0,1,2,3,4,5,6构成没有重复数字的四位数,此中个位、十位和百位上的数字之和为偶数的四位数共有______个(用数学作答).【例 30】有4张分别标有数字1,2,3 ,4 的红色卡片和 4 张分别标有数字1,2,3,4 的蓝色卡片,从这8思想的挖掘能力的飞腾9张卡片中拿出 4 张卡片排成一行.假如拿出的 4 张卡片所标数字之和等于10 ,则不一样的排法数一共有种.432;【例 31】有8张卡片分别标有数字1, 2 , 3, 4 , 5 , 6 , 7 , 8,从中拿出 6 张卡片排成 3行 2列,要求 3行中仅有中间行的两张卡片上的数字之和为 5 ,则不一样的排法共有()..A .1344种B .1248种C.1056种D.960种【例 32】有4张分别标有数字1,2,3,4的红色卡片和4 张分别标有数字 1,2 ,3,4的蓝色卡片,从这 8张卡片中拿出 4 张卡片排成一行.假如拿出的 4 张卡片所标数字之和等于10 ,则不一样的排法共有 ____种(用数字作答).【例 33】用 1, 2, 3, 4, 5, 6 构成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不一样,且 1 和 2 相邻,这样的六位数的个数是__________ (用数字作答).【例 34】用数字1,2,3,4,5能够构成没有重复数字,而且比20000大的五位偶数共有()A.48个B.36个C.24个D.18个【例 35】从1,2,3,8,9,10这6个数中,拿出两个,使其和为偶数,则共可获得个这样的不一样偶数?10思想的挖掘能力的飞腾【例 36】求无重复数字的六位数中,能被 3 整除的数有 ______个.【例 37】用数字0,1,2,3,4,5,6构成没有重复数字的四位数,此中个位、十位和百位上的数字之和为偶数的四位数共有个(用数学作答).【例 38】从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,构成没有重复数字的四位数的个数为()A.300B. 216C.180D. 162【例 39】从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,构成没有重复数字的四位数的个数为()A.300B. 216C.180D.162【例 40】从1到9的九个数字中取三个偶数四个奇数,试问:⑴能构成多少个没有重复数字的七位数?此中随意两偶数都不相邻的七位数有几个?⑴上述七位数中三个偶数排在一同的有几个?⑴⑴中的七位数中,偶数排在一同、奇数也排在一同的有几个?思想的挖掘能力的飞腾11⑷ ⑴此中随意两偶数都不相邻的七位数有几个?【例 41】用0到9这九个数字.可构成多少个没有重复数字的四位偶数?【例 42】有4张分别标有数字1,2,3,4 的红色卡片和 4 张分别标有数字1,2 ,3,4 的蓝色卡片,从这8张卡片中拿出 4 张卡片排成一行.假如拿出的 4 张卡片所标数字之和等于10 ,则不一样的排法共有 ______种(用数字作答).【例 43】在由数字1,2,3,4,5构成的所有没有重复数字的5 位数中,大于23145且小于 43521的数共有()个A. 56个B. 57个C. 58个D. 60个【例 44】由0,1,2,3,4这五个数字构成的无重复数字的四位偶数,按从小到大的次序排成一个数列 a n,则 a19_____.A . 2014B . 2034C. 1432D. 143012思想的挖掘能力的飞腾【例 45】从数字0、 1、 3、 5、 7 中拿出不一样的三个作系数,可构成多少个不一样的一元二次方程ax2bx c0 ,此中有实数根的有几个?【例 46】从 3 , 2 , 1,0 ,1,2 ,3 ,4 中任选三个不一样元素作为二次函数y ax2bx c 的系数,问能构成多少条图像为经过原点且极点在第一象限或第三象限的抛物线?思想的挖掘能力的飞腾13。
排列组合常见模型及解题技巧■河南省南阳市第二中学校李红勤解排列组合问题常分三步走:首先审题,明确要完成的事件;其次确定是独立完成还是分步完成,是排列还是组合;最后要用计数原理和排列数、组合数公式求解。
一、优先法(先特殊后一般)元素优先法:先考虑有限制条件的元素,再考虑其他元素。
位置优先法:先考虑有限制条件的位置,再考虑其他位置。
f用1,2,3,4,5,6这6个数字组成无重复的五位数,试求满足下列条件的五位数各有多少个。
(1)数字1不在个位和千位;(2)数字1不在个位,数字6不在万位。
解析:(1)位置优先,个位和千位从5个数中选,共有A:种选择方法,其余3位从4个数中选,共有A;种选择方法,由乘法原理知有A[A;=480(个)数满足题意。
(2)元素优先,当1在万位时余下四位有A?=120(种)选法;1不在万位时,万位有A:种选法,个位有A:种选法,余下的有A:种选法,共有A:A;A:=384(种)选法。
所以总共有384+120=504(种)选法。
变式训练1:1名老师和4名获奖同学排成一排照相留念,若老师不站两端,则不同的排法有多少种?(答案:72种)二、捆绑法某些元素必相邻的排列,可以先将相邻的元素绑捆成一个元素,与其他元素进行排列,然后再把捆绑元素松开内部全排列。
侧2某市图书馆要在国庆长假一周内接待5所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观两天,其余只参观一天,则不同的安排方法有多少种?解析:注意连续参观两天,即把7天中的连续两天“捆绑成一天”,有Cj种方法,其余的就是4所学校选5天进行排列,共有C;A:=720(种)方法。
变式训练2:4个不同的小球全部放入3个不同的盒子中,若使每个盒子不空,则不同的放法有____种。
(答案:C:A§=36)三、插空法对于元素不相邻的排列,可以先排其他元素,再让不相邻的元素插空。
若局部元素相邻,可参照“捆绑法”。
高中数学资料共享群284110736,每天都有更新,海量资料随意下载。 公众号“品数学”,一个提供数学解题研究,并且提供资料下载的公众号! 微专题80 排列组合的常见模型 一、基础知识: (一)处理排列组合问题的常用思路: 1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。 例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法? 解:五位数意味着首位不能是0,所以先处理首位,共有4种选择,而其余数位没有要求,只需将剩下的元素全排列即可,所以排法总数为44496NA种 2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可。 例如:在10件产品中,有7件合格品,3件次品。从这10件产品中任意抽出3件,至少有一件次品的情况有多少种 解:如果从正面考虑,则“至少1件次品”包含1件,2件,3件次品的情况,需要进行分类讨论,但如果从对立面想,则只需用所有抽取情况减去全是正品的情况即可,列式较为简单。3310785NCC
(种)
3、先取再排(先分组再排列):排列数mnA是指从n个元素中取出m个元素,再将这m个元素进行排列。但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列。 例如:从4名男生和3名女生中选3人,分别从事3项不同的工作,若这3人中只有一名女生,则选派方案有多少种。 解:本题由于需要先确定人数的选取,再能进行分配(排列),所以将方案分为两步,第一步:确定选哪些学生,共有2143CC种可能,然后将选出的三个人进行排列:33A。所以共有213433108CCA
种方案
(二)排列组合的常见模型 1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。 例如:5个人排队,其中甲乙相邻,共有多少种不同的排法 高中数学资料共享群284110736,每天都有更新,海量资料随意下载。 公众号“品数学”,一个提供数学解题研究,并且提供资料下载的公众号! 解:考虑第一步将甲乙视为一个整体,与其余3个元素排列,则共有44A种位置,第二步考虑甲乙自身顺序,有22A种位置,所以排法的总数为424248NAA种 2、插空法:当题目中有“不相邻元素”时,则可考虑用剩余元素“搭台”,不相邻元素进行“插空”,然后再进行各自的排序 注:(1)要注意在插空的过程中是否可以插在两边 (2)要从题目中判断是否需要各自排序 例如:有6名同学排队,其中甲乙不相邻,则共有多少种不同的排法 解:考虑剩下四名同学“搭台”,甲乙不相邻,则需要从5个空中选择2个插入进去,即有25C
种选择,然后四名同学排序,甲乙排序。所以242542480NCAA种 3、错位排列:排列好的n个元素,经过一次再排序后,每个元素都不在原先的位置上,则称为这n个元素的一个错位排列。例如对于,,,abcd,则,,,dcab是其中一个错位排列。3个元素的错位排列有2种,4个元素的错位排列有9种,5个元素的错位排列有44种。以上三种情况可作为结论记住 例如:安排6个班的班主任监考这六个班,则其中恰好有两个班主任监考自己班的安排总数有多少种? 解:第一步先确定那两个班班主任监考自己班,共有26C种选法,然后剩下4个班主任均不监考自己班,则为4个元素的错位排列,共9种。所以安排总数为269135NC 4、依次插空:如果在n个元素的排列中有m个元素保持相对位置不变,则可以考虑先将这m个元素排好位置,再将nm个元素一个个插入到队伍当中(注意每插入一个元素,下一个元素可选择的空1) 例如:已知,,,,,ABCDEF6个人排队,其中,,ABC相对位置不变,则不同的排法有多少种 解:考虑先将,,ABC排好,则D有4个空可以选择,D进入队伍后,E有5个空可以选择,以此类推,F有6种选择,所以方法的总数为456120N种 5、不同元素分组:将n个不同元素放入m个不同的盒中 6、相同元素分组:将n个相同元素放入m个不同的盒内,且每盒不空,则不同的方法共有11mnC
种。解决此类问题常用的方法是“挡板法”,因为元素相同,所以只需考虑每个盒子里所含元
素个数,则可将这n个元素排成一列,共有1n个空,使用1m个“挡板”进入空档处,高中数学资料共享群284110736,每天都有更新,海量资料随意下载。 公众号“品数学”,一个提供数学解题研究,并且提供资料下载的公众号! 则可将这n个元素划分为m个区域,刚好对应那m个盒子。例如:将6个相同的小球放入到4个不同的盒子里,那么6个小球5个空档,选择3个位置放“挡板”,共有3520C种可能 7、涂色问题:涂色的规则是“相邻区域涂不同的颜色”,在处理涂色问题时,可按照选择颜色的总数进行分类讨论,每减少一种颜色的使用,便意味着多出一对不相邻的区域涂相同的颜色(还要注意两两不相邻的情况),先列举出所有不相邻区域搭配的可能,再进行涂色即可。例如:最多使用四种颜色涂图中四个区域,不同的涂色方案有多少种? 解:可根据使用颜色的种数进行分类讨论 (1)使用4种颜色,则每个区域涂一种颜色即可:414NA (2)使用3种颜色,则有一对不相邻的区域涂同一种颜色,首先要选择不相邻的区域:用列举法可得:,IIV不相邻 所以涂色方案有:324NA (3)使用2种颜色,则无法找到符合条件的情况,所以讨论终止 总计434448SAA种 二、典型例题: 例1:某电视台邀请了6位同学的父母共12人,请12位家长中的4位介绍对子女的教育情况,如果这4位中恰有一对是夫妻,则不同选择的方法种数有多少 思路:本题解决的方案可以是:先挑选出一对夫妻,然后在挑选出两个不是夫妻的即可。 第一步:先挑出一对夫妻:16C 第二步:在剩下的10个人中选出两个不是夫妻的,使用间接法:2105C 所以选择的方法总数为126105240NCC(种) 答案:240种 例2:某教师一天上3个班级的课,每班上1节,如果一天共9节课,上午5节,下午4节,并且教师不能连上3节课(第5节和第6节不算连上),那么这位教师一天的课表的所有不同排法有( ) A. 474种 B. 77种 C. 462种 D. 79种 思路:本题如果用直接法考虑,则在安排的过程中还要考虑两节连堂,并且会受到第5,6节课连堂的影响,分类讨论的情形较多,不易求解。如果使用间接法则更为容易。首先在无任高中数学资料共享群284110736,每天都有更新,海量资料随意下载。 公众号“品数学”,一个提供数学解题研究,并且提供资料下载的公众号! 何特殊要求下,安排的总数为39A。不符合要求的情况为上午连上3节:34A和下午连上三节:33A,所以不同排法的总数为:333943474AAA
(种)
答案:A 例3:2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( ) A. 60 B. 48 C. 42 D. 36 思路:首先考虑从3位女生中先选中相邻的两位女生,从而相邻的女生要与另一女生不相邻,则可插空,让男生搭架子,因为男生甲不站两端,所以在插空的过程中需有人站在甲的边上,再从剩下的两个空中选一个空插入即可。 第一步:从三位女生中选出要相邻的两位女生:23C 第二步:两位男生搭出三个空,其中甲的边上要进入女生,另外两个空中要选一个空进女生,所以共有12C种选法。 第三步:排列男生甲,乙的位置:22A,排列相邻女生和单个女生的位置:22A,排列相邻女生相互的位置:22A 所以共有212223222248NCCAAA种 答案:B 例4:某班班会准备从甲,乙等7名学生中选派4名学生发言,要求甲,乙两名同学至少有一人参加,且若甲乙同时参加,则他们发言时不能相邻,那么不同的发言顺序种数为( ) A. 360 B. 520 C. 600 D. 720 思路:因为选人的结果不同会导致安排顺序的不同,所以考虑“先取再排”,分为“甲乙”同时选中和“甲乙只有一人选中”两种情况讨论:若甲乙同时被选中,则只需再从剩下5人中选取2人即可:25C,在安排顺序时,甲乙不相邻则“插空”,所以安排的方式有:2232AA,从而第一种情况的总数为:2221532120NCAA(种),若甲乙只有一人选中,则首先先从甲乙中选一人,有12C,再从剩下5人中选取三人,有35C,安排顺序时则无要求,所以第二种情况的总数为:1342254480NCCA(种),从而总计600种 答案:C 高中数学资料共享群284110736,每天都有更新,海量资料随意下载。 公众号“品数学”,一个提供数学解题研究,并且提供资料下载的公众号! 例5:从单词“equation”中选取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不变)的不同排列共有________种 思路:从题意上看,解决的策略要分为两步:第一步要先取出元素,因为“qu”必须取出,所以另外3个元素需从剩下的6个元素中取出,即36C种,然后在排列时,因为要求“qu”相连,所以采用“捆绑法”,将qu视为一个元素与其它三个元素进行排列:44A,因为“qu”顺序不变,所以不需要再对qu进行排列。综上,共有:3464480CA种 答案:480 例6:设有编号1,2,3,4,5的五个茶杯和编号为1,2,3,4,5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有( ) A. 30种 B. 31种 C. 32种 D. 36种 思路:本题可按照相同编号的个数进行分类讨论,有两个相同时,要先从5个里选出哪两个相同,有25C种选法,则剩下三个为错位排列,有2种情况,所以2152NC,有三个相同时,同理,剩下两个错位排列只有一种情况(交换位置),所以3251NC,有四个相同时则最后一个也只能相同,所以31N,从而235521131SCC(种) 答案:B 例7:某人上10级台阶,他一步可能跨1级台阶,称为一阶步,也可能跨2级台阶,称为二阶步;最多能跨3级台阶,称为三阶步,若他总共跨了6步,而且任何相邻两步均不同阶,则此人所有可能的不同过程的种数为( ) A. 6 B. 8 C. 10 D. 12 答案:A 思路:首先要确定在这6步中,一阶步,二阶步,三阶步各有几步,分别设为,,xyzN,
则有62310xyzxyz,解得:4320,2,4210xxxyyyzzz,因为相邻两步不同阶,所以符合要