八年级数学上册第1章分式1.3整数指数幂1.3.2零次幂和负整数指数幂习题课件新版湘教版PPT
- 格式:ppt
- 大小:923.50 KB
- 文档页数:11
章节测试题1.【答题】如果,,,那么、、的大小关系为()A.B.C.D.【答案】D【分析】根据负整数指数幂的运算法则进行运算即可.【解答】解:那么、、的大小关系为选D.2.【答题】若,则()A.B.C.D.【答案】B【分析】根据零指数幂和绝对值进行运算即可.【解答】解:当x≠1时,,∴且x≠1,解得:x=-1 选B.3.【答题】下列运算正确的是()A. 2a-3=B. =x2-1C. (3x-y)(-3x+y)=9x2-y2D. (-2x-y)(-2x+y)=4x2-y2【答案】D【分析】根据负整数指数幂的运算法则和乘法公式进行运算即可. 【解答】A. 2a-3=,故A选项错误;B. =x2-1,故B选项错误;C. (3x-y)(-3x+y)=-9x2+6xy-y2,故C选项错误;D. (-2x-y)(-2x+y)=4x2-y2,正确,选D.4.【答题】人体血液中每个成熟红细胞的平均直径为0.0000077米,则数字0.0000077用科学记数法表示为()A. 7.7×10-5B. 0.77×10-4C. 77×10-7D. 7.7×10-6【答案】D【分析】根据负整数指数幂的运算法则进行运算即可.【解答】0.0000077=7.7×10-6.选D.5.【答题】1纳米=0.000 000 001米,则2.5纳米应表示为()A. 2.5×10-8米B. 2.5×10-9米C. 2.5×10-10米D. 2.5×109米【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】2.5纳米=2.5×0.000000001米=2.5×10−9米.选B.6.【答题】计算的结果是().A.B.C.D.【答案】B【分析】根据负整数指数幂的运算法则进行运算即可.【解答】3-2==.选B.方法总结:a-b=,a≠0.7.【答题】某种球形病毒的直径大约为0.000000102m,这个数用科学记数法表示为()A. 1.02×mB. 1.02×mC. 1.02×mD. 1.02×m【答案】C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000102=1.02×10﹣7,选C.8.【答题】(2016·内蒙古东河区一模)一种细菌的半径是0.000 045米,该数字用科学记数法表示正确的是()A. 4.5×105B. 45×106C. 4.5×10-5D. 4.5×10-4【答案】C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000045米米.选C.9.【答题】某种秋冬流感病毒的直径约为0.000000308米,该直径用科学记数法表示为()A. 0.308米B. 3.08米C. 3.08米D. 3.1米【答案】C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】0.0000003083.08米.选C.10.【答题】将0.00000305用科学记数法表示为()A.B.C.D.【答案】D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】0.00000305=30.5×10-6.方法总结:对于一个绝对值小于1的非0小数,用科学记数法写成的形式,其中,n是正整数,n等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).11.【答题】下列计算正确的是()A.B.C.D.【答案】B【分析】根据负整数指数幂的运算法则和整式的运算进行运算即可. 【解答】A. ∵与不是同类项,∴不能合并,故错误;B. ∵,故正确;C. ∵,故错误;D. ∵,故错误;选B.12.【答题】下列计算正确的是()A.B.C.D.【答案】A【分析】根据负整数指数幂的运算法则进行运算即可.【解答】解:A、,故A正确;B、,故B错误;C、不能化简,故C错误;D、没有意义.故D错误.选A.13.【答题】世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司。
2018年秋八年级数学上册第1章分式1.3 整数指数幂1.3.2 零次幂和负整数指数幂同步练习(无答案)(新版)湘教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋八年级数学上册第1章分式1.3 整数指数幂1.3.2 零次幂和负整数指数幂同步练习(无答案)(新版)湘教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋八年级数学上册第1章分式1.3 整数指数幂1.3.2 零次幂和负整数指数幂同步练习(无答案)(新版)湘教版的全部内容。
1.3。
2零次幂和负整数指数幂 同步练习一.填空:⑴ =23 ;=03 ;=-23 。
⑵ ()23-= ;()03-= ;()23--= 。
2、用科学记数法填空:①0。
000000001= ②0.0012= ③0.000000345=④0.00003_____________-= ⑤0.000000301______________=3、用科学记数法把0。
0000031415表示成3。
1415×m 10,那么m= .二.选择4、一颗人造地球卫星的速度是8×103/秒,一架喷气式飞机的速度是5×102米/秒,这颗人造地球卫星的速度是这架喷气式飞机的速度的多少倍?( )(A)15倍 (B )16倍 (C )160倍 (D )17倍5、用科学记数法表示—0.000 0085记为( )(A)—85×10-7(B )—0。
85×10-4 (C )—8.5×10—6 (D )-850×10-86、如果(a-1)0=1成立,则( )A .a ≠1B .a=0C .a=2D .a=0或a=2三、解答7、下列等式是否正确,为什么?(1)m n m n a a a a -÷=⋅ (2)nn n a a n b -⎛⎫= ⎪⎝⎭8、计算:(1)()313--ab (2)2223--⋅ab b a(3)()12224---÷yz x z xy (4)()3231x y x y --9、已知412=-a ,则a 等于 10、若式子1)1(--x 有意义 ,则x 的取值范围是_______11、已知0132=+-a a ,求1-+a a 和22-+a a 的值.。
秋八年级数学上册第1章分式1.3整数指数幂1.3.2零次幂和负整数指数幂同步练习无答案新版湘教版 1 / 1 1.3.2 零次幂和负整数指数幂 同步练习一. 填空:⑴ 32 ; 30 ; 3 2 .⑵ 3 2 3 0 3 2; ; =.= =2、用科学记数法填空:① 0.000000001= ② 0.0012= ③0.000000345=④ 0.00003 _____________ ⑤ 0.000000301 ______________3、用科学记数法把 0.0000031415 表示成 3.1415 × 10m ,那么 m=.二.选择4、一颗人造地球 卫星的速度是 8× 103/ 秒,一架喷气式飞机的速度是 5× 102 米/ 秒,这颗人造地球卫星 的速度是这架喷气式飞机的速度的多少倍?( )(A )15 倍 ( B )16 倍 (C )160 倍 (D )17 倍5、用科学记数法表示 -0.0000085 记为( )(A ) -85 ×10-7 ( B ) -0.85 × 10-4 ( C ) -8.5 ×10-6 ( D ) -850 × 10-86、假如( a-1 ) 0=1 建立,则( )A . a ≠1B . a=0C . a=2D . a=0 或 a=2三、解答7、以下等式能否正确,为何?a n(1) a m a n a m a n ( 2) a n n n b8、计算:(1) 3ab 1 3 2 2( 2) 3a b 2ab(3) 4xy 2 z2x 2 yz 1 ( 4) x 2 y 3 3x 1 y9、已知 a 2 1 , 则 a 等于410、若式子 (1 x) 1 存心义 , 则 x 的取值范围是_______11、已知 a 2 3a 1 0 ,求 a a 1 和 a 2 a 2 的值。