2019-2020年高三数学一轮复习 解析几何练习1
- 格式:doc
- 大小:64.00 KB
- 文档页数:8
高三数学复习专题之一----解析几何高考题目的分析解析几何是历届高考的热点和重点,它的基本特点是数形结合,是代数、三角、几何知识的综合应用.一般以四个小题、一个大题的结构出现,且大题往往是压轴题.纵观近几年高考试题有如下特征:(1)考查直线的基本概念,求在不同条件下的直线方程,判定直线的位置关系等题目,多以选择题、填空题形式出现;(2)中心对称与轴对称、充要条件多为基本题目;(3)考查圆锥曲线的基本知识和基本方法也多以选择题、填空题形式出现;(4)有关直线与圆锥曲线等综合性试题,通常作为解答题形式出现,有一定难度.一般情况是:给出几何条件,求曲线(动点的轨迹)方程;或利用曲线方程来研究诸如几何量的计算、直线与曲线的位置关系、最近(或最远)问题.但近几年的高考解析几何试题类型比较分散,每年都有不同.解题过程中的运算量有逐年降低的趋势,而解题过程中的思维量在增加.但万变不离其宗,常用的解题规律与技巧不变. 例①求圆锥曲线的有关轨迹方程时,要注意运用平面几何的基本知识特别是圆的知识,便于简化运算和求解;②在直线与圆锥曲线的有关问题中,要注意韦达定理和判别式的运用;③要注意圆锥曲线定义的活用.另外,解析几何的解答题也常在知识网络的交汇处出题,它具有一定的综合性,重点考察数形结合、等价转换、分类讨论、逻辑推理等能力.解析几何常与函数、不等式等建立联系.., ),0,1()3 ,)2 )1 , ,)0,(1:.12222222中点的轨迹方程求、为轴的端点为左准线的椭圆,其短为左焦点,以经过点设双曲线的方程;求双曲线截得的弦长为被直线若双曲线的值;的离心率求双曲线为等边,且右焦点两点、与两条渐近线交于右准线的离心率为设双曲线例BF F B l F C C ae b b ax y C e C PQF F Q P l e b a by a x C +=∆∆>=-. ),3 , 2(21的轨迹方程顶点求:当椭圆移动时其下为离心率,且过点轴为准线,以练习:设椭圆恰以P A x .)2( )1( 41)0,4( 02010.2222的方程求双曲线的渐近线方程;求双曲线上,又满足在线段点,且点轴交于两点,和、交于和双曲线,使的直线做斜率为过点相切,近线与圆的中心在原点,它的渐双曲线例G G PCPB PA AB P C y B A G l l P x y x G =⋅-=+-+最大值为多少?,多少时矩形的面积最大,当矩形的长与宽各是若矩形内接于曲线的方程求抛物线顶点轨迹轴为准线且以已知抛物线经过例 )2( ;)1( ),4,3(.3l l y A .)2( )1( )0,6( 8)0(2.42面积的最大值求求抛物线方程的垂直平分线通过定点又线段为焦点,且,、上有两动点设抛物线例AQB Q AB BF AF F B A p px y ∆=+>=。
3.在平行四边形ABCD 60,AD ,若P 是平0xAB y AD PA ++=(,x y ∈在以A 为圆心,||BD 为半径的圆上时,实数.22421x y xy ++= 21xy -= 是椭圆的两个焦点,满足120MF MF =的点的直线与抛物线交于点,且在轴上截得弦长为4,设该动圆圆心的轨迹为曲线.(Ⅰ)求曲线C 方程;(Ⅱ)设点A 为直线l :20x y --=上任意一点,过A 作曲线C 的切线,切点分别为P ,Q ,求APQ △面积的最小值及此时点A 的坐标.8.如图,已知点1F ,2F 是椭圆1C :2212x y +=的两个焦点,椭圆2C :222x y λ+=经过点1F ,2F ,点P 是椭圆2C 上异于1F ,2F 的任意一点,直线1PF 和2PF 与椭圆1C 的交点分别是A ,B 和C ,D .设AB ,CD 的斜率分别为k ,k '.(Ⅰ)求证kk '为定值; (Ⅱ)求||||AB CD 的最大值.9.在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段,D 为垂足,点M 在线段PD 上,且||2||DP DM =,点P 在圆上运动.(1)求点M 的轨迹方程;(2)过定点(1,0)C -的直线与点M 的轨迹交于A ,B 两点,在x 轴上是否存在N ,使NA NB 为常数,若存在,求出点N 的坐标;若不存在,请说明理由.121244x x kx x b+==-,且112k y ==01)(1)y x - 是椭圆2C 上的点,故212()x x +4[4|||CD =当且仅当k =±|||CD 的最大值等于00(,)P x y 2x y ∴+(Ⅱ)假设存在.当直线1+212212k x x k -=+1(NA NB x ∴=-412k+11NA NB 是与k 202n ∴+= 74n ∴=-即(4N -此时1516NA NB =-则1516NA NB =-综上所述,在x 轴上存在定点,使NA NB 为常数.。
巩固1.条件p :“直线l 在y 轴上的截距是在x 轴上的截距的2倍”;条件q :“直线l 的斜率为-2”,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .非充分也非必要条件解析:选B.主要考虑直线l 在x 、y 轴上的截距都为0时,满足条件p 但不能推出q . 2.(原创题)过点A (4,a )和点B (5,b )的直线与直线y =x +m 平行,则|AB |的值为( ) A .6 B. 2C .2D .不确定解析:选B.由题意得k AB =b -a5-4=1,即b -a =1,所以|AB |=(5-4)2+(b -a )2= 2.3.已知直线l 1的方向向量为a =(1,3),直线l 2的方向向量为b =(-1,k ).若直线l 2经过点(0,5)且l 1⊥l 2,则直线l 2的方程为( )A .x +3y -5=0B .x +3y -15=0C .x -3y +5=0D .x -3y +15=0解析:选B.∵l 2经过(0,5)且方向向量b =(-1,k ),∴l 2的方程为y -5=-kx ,又∵l 1的方向向量a =(1,3),l 1⊥l 2,∴-k ·3=-1⇒k =13,即l 2为y -5=-13x ,∴x +3y -15=0.4.经过圆x 2+2x +y 2=0的圆心C ,且与直线x +y =0垂直的直线方程是________.解析:圆x 2+2x +y 2=0可化为(x +1)2+y 2=1, ∴C (-1,0).∵直线x +y =0的斜率为-1, ∴所求直线斜率为1,∴所求直线方程为y =x +1,即x -y +1=0. 答案:x -y +1=05.若直线l 经过点(a -2,-1)和(-a -2,1),且与经过点(-2,1),斜率为-23的直线垂直,则实数a 的值为________.解析:直线l 的斜率k =2-a -2-a +2=-1a(a ≠0),∴-1a ·(-23)=-1,∴a =-23.答案:-236.△ABC 的三个顶点为A (-3,0),B (2,1),C (-2,3),求: (1)BC 所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边上的垂直平分线DE 的方程.解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0. (2)设BC 中点D 的坐标为(x ,y ),则 x =2-22=0,y =1+32=2.BC 边的中线AD 过点A (-3,0),D (0,2)两点,由截距式得AD 所在直线方程为x -3+y2=1,即2x -3y +6=0.(3)BC 的斜率k 1=-12,则BC 的垂直平分线DE 的斜率k 2=2,由斜截式得直线DE 的方程为y =2x +2.练习1.与直线x +4y -4=0垂直,且与抛物线y =2x 2相切的直线方程为( ) A .4x -y +1=0 B .4x -y -1=0 C .4x -y -2=0 D .4x -y +2=0 答案:C2.直线2x cos α-y -3=0(α∈[π6,π3])的倾斜角的变化范围是( )A .[π6,π3] B. [π4,π3]C .[π4,π2)D .[π4,2π3]解析:选B.直线2x cos α-y -3=0的斜率k =2cos α,由于α∈[π6,π3],所以12≤cos α≤32,因此k =2cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3],由于θ∈[0,π),所以θ∈[π4,π3],即倾斜角的变化范围是[π4,π3].3.若直线(2m 2+m -3)x +(m 2-m )y =4m -1在x 轴上的截距为1,则实数m 是( ) A .1 B .2C .-12D .2或-12解析:选D.当2m 2+m -3≠0时,在x 轴上截距为4m -12m 2+m -3=1,即2m 2-3m -2=0,∴m =2或m =-12.4.若点A (a,0),B (0,b ),C (1,-1)(a >0,b <0)三点共线,则a -b 的最小值等于( ) A .4 B .2 C .1 D .0 解析:选A.∵A 、B 、C 三点共线,∴k AB =k AC ,即b -00-a =-1-01-a ,∴1a -1b =1,∴a -b =(a -b )(1a -1b )=2-b a -ab =2+[(-b a )+(-ab)]≥2+2=4.(当a =-b =2时取等号)5.已知直线l 1,l 2的方程分别为x +ay +b =0,x +cy +d =0,其图象如图所示,则有( )A .ac <0B .a <cC .bd <0D .b >d 解析:选C.直线方程化为l 1:y =-1a x -b a,l 2:y =-1c x -dc.由图象知,-1c <-1a <0,-b a >0>-dc,∴a >c >0,b <0,d >0.6.设点A (-2,3),B (3,2),若直线ax +y +2=0与线段AB 没有交点,则a 的取值范围是( )A .(-∞,-52]∪[43,+∞)B .(-43,52)C .[-52,43]D .(-∞,-43]∪[52,+∞)解析:选B.直线ax +y +2=0恒过点M (0,-2), 且斜率为-a ,∵k MA =3-(-2)-2-0=-52,k MB =2-(-2)3-0=43,由图可知:-a >-52且-a <43,∴a ∈(-43,52),故选B.7.已知a =(6,2),b =(-4,12),直线l 过点A (3,-1),且与向量a +2b 垂直,则直线l 的一般方程是____________________.解析:a +2b =(-2,3),设P (x ,y )为直线l 上任意一点,由(a +2b )⊥PA →,得直线l 的一般方程是2x -3y -9=0.答案:2x -3y -9=08.从点(2,3)射出的光线沿与直线x -2y =0平行的直线射到y 轴上,则经y 轴反射的光线所在的直线方程为________________.解析:由题意得,射出的光线方程为y -3=12(x -2),即x -2y +4=0,与y 轴交点为(0,2),又(2,3)关于y 轴对称点为(-2,3), ∴反射光线所在直线过(0,2),(-2,3),故方程为y -2=3-2-2x ,即x +2y -4=0.答案:x +2y -4=0 9.与直线3x +4y +12=0平行,且与坐标轴构成的三角形的面积是24的直线l 的方程是____________________.解析:设直线l 的方程为3x +4y =a (a ≠0),则直线l 与两坐标轴的交点分别为(a 3,0),(0,a4),∴12×|a 3|·|a4|=24,解得a =±24, ∴直线l 的方程为3x +4y =±24.答案:3x +4y +24=0或3x +4y -24=010.(1)求经过点A (-5,2)且在x 轴上的截距等于在y 轴上的截距的2倍的直线方程. (2)过点A (8,6)引三条直线l 1,l 2,l 3,它们的倾斜角之比为1∶2∶4,若直线l 2的方程是y =34x ,求直线l 1,l 3的方程.解:(1) ①当横截距、纵截距都为零时,设所求的直线方程为y =kx ,将(-5,2)代入y=kx 中,得k =-25,此时,直线方程为y =-25x ,即2x +5y =0.②当横截距、纵截距都不是零时,设所求直线方程为x 2a +ya=1, 将(-5,2)代入所设方程, 解得a =-12,此时,直线方程为x +2y +1=0. 综上所述,所求直线方程为 x +2y +1=0或2x +5y =0.(2)设直线l 2的倾斜角为α,则tan α=34.于是tan α2=1-cos αsin α=1-4535=13,tan2α=2tan α1-tan 2α=2×341-(34)2=247, 所以所求直线l 1的方程为y -6=13(x -8),即x -3y +10=0,l 3的方程为y -6=247(x -8),即24x -7y -150=0.11.在△ABC 中,已知A (5,-2)、B (7,3),且AC 边的中点M 在y 轴上,BC 边的中点N 在x 轴上,求:(1)顶点C 的坐标; (2)直线MN 的方程.解:(1)设C (x ,y ),M (0,b ),N (a,0),则⎩⎪⎪⎨⎪⎪⎧x +52=0y -22=b x +72=a y +32=0,解得x =-5,y =-3,a =1,b =-52.∴C (-5,-3).(2)由(1)知M (0,-52),N (1,0),∴k MN =52,∴MN 的方程为y =52(x -1),即5x -2y -5=0.12.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4);(2)斜率为16.解:(1)设直线l 的方程是y =k (x +3)+4,它在x 轴、y 轴上的截距分别是-4k-3,3k +4,由已知,得|(3k +4)(-4k-3)|=6,解得k 1=-23或k 2=-83.所以直线l 的方程为2x +3y -6=0或8x +3y +12=0. (2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.。
高三数学习题集:解析几何与立体几何综合练
习
解析几何与立体几何是高中数学中的重要内容之一,对于高三学生来说,掌握这两个领域的知识和技巧至关重要。
为了帮助同学们更好地复习与训练,以下是一些解析几何与立体几何综合练习题。
一、解析几何部分
1. 已知点A(2,3)、B(5,7),求直线AB的斜率和方程。
2. 设直线L1过点A(1,2),斜率为1,求L1与x轴、y轴的交点坐标。
3. 已知直线L2的方程为y=2x-3,求L2与y轴的交点坐标。
4. 设四边形ABCD的顶点分别为A(1,2)、B(4,5)、C(6,1)、D(3,-2),求四边形ABCD的周长和面积。
二、立体几何部分
1. 已知圆柱体的高为8cm,底面直径为6cm,求圆柱体的表面积和体积。
2. 设正方体的边长为3cm,求正方体的表面积和体积。
3. 设棱长为5cm的正六面体A,另有一条边长为4cm的直线段BC平行于A的一条棱,求BC与正六面体A的交点坐标。
4. 已知圆锥的高为12cm,底面半径为4cm,求圆锥的表面积和体积。
以上是一些解析几何与立体几何的综合练习题,希望同学们能够认真思考并灵活运用所学知识来解答这些问题。
通过不断练习,相信你们对解析几何与立体几何的理解和掌握会更上一层楼,为应对高考数学提供有力的支持。
加油!。
高三数学一轮复习【解析几何】练习题1.已知圆O1的方程为x2+y2=4,圆O2的方程为(x-a)2+y2=1,如果这两个圆有且只有一个公共点,那么实数a的值可以是()A.-1B.1C.3D.5答案ABC解析由题意得两圆内切或外切,∴|O1O2|=2+1或|O1O2|=2-1,∴|a|=3或|a|=1,∴a=±3,或a=±1.故选ABC.2.设椭圆C:x28+y24=1的左、右焦点分别为F1,F2,P是椭圆C上任意一点,则下列结论正确的是() A.|PF1|+|PF2|=4 2B.离心率e=6 2C.△PF1F2面积的最大值为4 2D.以线段F1F2为直径的圆与直线x+y-22=0相切答案AD解析依题意知a=22,b=2,c=2.对于A,由椭圆的定义可知|PF1|+|PF2|=2a=42,所以A正确;对于B,e=ca =222=22,所以B不正确;对于C,|F1F2|=2c=4,当P为椭圆短轴的端点时,△PF1F2的面积取得最大值,最大值为12×2c·b=c·b=4,所以C错误;对于D,以线段F1F2为直径的圆的圆心为(0,0),半径为2,圆心到直线x+y-22=0的距离为222=2,也即圆心到直线的距离等于半径,所以以线段F1F2为直径的圆与直线x+y-22=0相切,所以D正确.故选AD.3.已知双曲线C :x 29-y 216=1,过其右焦点F 的直线l 与双曲线交于两点A ,B ,则( )A.若A ,B 同在双曲线的右支,则l 的斜率大于43 B.若A 在双曲线的右支,则|FA |的最短长度为2 C.|AB |的最短长度为323 D.满足|AB |=11的直线有4条 答案 BD解析 易知双曲线C 的右焦点为F (5,0).设点A (x 1,y 1),B (x 2,y 2),直线l 的方程为x =my +5. 当m ≠0时,直线l 的斜率为k =1m . 联立得方程组⎩⎪⎨⎪⎧x =my +5,16x 2-9y 2=144.消去x 并整理,得(16m 2-9)y 2+160my +256=0,则⎩⎪⎨⎪⎧16m 2-9≠0,Δ=1602m 2-4×256(16m 2-9)=962(m 2+1)>0,解得m ≠34.对于A 选项,当m =0时,直线l ⊥x 轴,则A ,B 两点都在双曲线的右支上,此时直线l 的斜率不存在,A 选项错误;对于B 选项,|FA |min =c -a =5-3=2,B 选项正确;对于C 选项,当直线l 与x 轴重合时,|AB |=2a =6<323,C 选项错误; 对于D 选项,当A ,B 两点在双曲线右支上,且直线与x 轴垂直时,|AB |=323.∵323<11,∴过F 的直线有两条;当A ,B 两点分别在双曲线的两个分支上时,∵a +c =8<11,∴过F 的直线有两条.故满足|AB |=11的直线有4条,D 选项正确.故选BD. 4.已知点O 为坐标原点,直线y =x -1与抛物线C :y 2=4x 相交于A ,B 两点,则( ) A.|AB |=8 B.OA ⊥OBC.△AOB 的面积为2 2D.线段AB 的中点到直线x =0的距离为2 答案 AC解析 设A (x 1,y 1),B (x 2,y 2). 联立⎩⎪⎨⎪⎧y =x -1,y 2=4x ,得y 2-4y -4=0,所以y 1+y 2=4,y 1y 2=-4,所以x 1+x 2=y 1+1+y 2+1=6,x 1x 2=(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1=-4+4+1=1.对于A ,直线AB 过抛物线的焦点,故|AB |=x 1+x 2+p =6+2=8,故A 正确; 对于B ,OA →·OB →=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=1+(-4)=-3≠0,故B 不正确;对于C ,点O 到直线AB 的距离d =|-1|12+12=22,所以S △AOB =12·|AB |·d =12×8×22=22,故C 正确; 对于D ,线段AB 的中点坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,即(3,2),所以线段AB 的中点到直线x =0的距离为3,故D 不正确.选AC.5.已知曲线C :y 2=m (x 2-a 2),其中m 为非零常数且a >0,则下列结论正确的是( )A.当m =-1时,曲线C 是一个圆B.当m =-2时,曲线C 的离心率为22 C.当m =2时,曲线C 的渐近线方程为y =±22xD.当m >-1且m ≠0时,曲线C 的焦点坐标分别为(-a 1+m ,0)和(a 1+m ,0)答案 ABD解析 对于A ,当m =-1时,曲线方程为y 2=-(x 2-a 2),即x 2+y 2=a 2,其是圆心为(0,0),半径为a 的圆,故A 正确;对于B ,当m =-2时,曲线方程为y 2=-2(x 2-a 2),即x 2a 2+y 22a 2=1,其为焦点在y 轴上的椭圆,且长半轴长为2a ,短半轴长为a ,则半焦距为a ,所以离心率e =a 2a =22,故B 正确;对于C ,当m =2时,曲线方程为y 2=2(x 2-a 2),即x 2a 2-y 22a 2=1,其为焦点在x轴上的双曲线,且实半轴长为a ,虚半轴长为2a ,所以渐近线方程为y =±2aa x =±2x ,故C 不正确;对于D ,当-1<m <0时,曲线方程为x 2a 2+y 2-ma 2=1,其为焦点在x 轴上的椭圆,且长半轴长为a , 短半轴长为a-m ,则半焦距为a1+m , 所以焦点坐标为(-a1+m ,0)和(a1+m ,0);当m >0时,曲线方程为x 2a 2-y 2ma 2=1,其为焦点在x 轴上的双曲线,且实半轴长为a ,虚半轴长为a m ,则半焦距为a1+m ,所以焦点坐标为(-a 1+m ,0)和(a 1+m ,0),故D 正确.综上所述,选ABD.6.已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2,过点F 的直线与抛物线交于P ,Q 两点,M 为线段PQ 的中点,O 为坐标原点,则( ) A.C 的准线方程为y =1 B.线段PQ 长度的最小值为4 C.M 的坐标可能为(3,2) D.OP →·OQ→=-3答案 BCD解析 对于A ,因为焦点F 到准线的距离为2,即p =2,所以抛物线C 的焦点为F (1,0),准线方程为x =-1,故A 错误;对于B ,由抛物线性质知当PQ 垂直于x 轴时,|PQ |取得最小值,此时可取P (1,2),Q (1,-2),所以|PQ |=4,故B 正确;对于C ,设P (x 1,y 1),Q (x 2,y 2),直线PQ 的方程为x =my +1,则由⎩⎪⎨⎪⎧y 2=4x ,x =my +1消去x ,得y 2-4my -4=0,Δ=16m 2+16>0,所以y 1+y 2=4m ,x 1+x 2=m (y 1+y 2)+2=4m 2+2,当m =1时,可得M (3,2),故C 正确;对于D ,因为y 1y 2=-4,x 1x 2=(my 1+1)(my 2+1)=m (y 1+y 2)+m 2y 1y 2+1=1,所以OP →·OQ →=x 1x 2+y 1y 2=-3,故D 正确.综上所述,选BCD.7.已知双曲线C :y 2a 2-x 2=1(a >0),其上、下焦点分别为F 1,F 2,O 为坐标原点.过双曲线上一点M (x 0,y 0)作直线l ,分别与双曲线的渐近线交于点P ,Q ,且点M 为PQ 中点,则下列说法正确的是( ) A.若l ⊥y 轴,则|PQ |=2B.若点M 的坐标为(1,2),则直线l 的斜率为14 C.直线PQ 的方程为y 0ya 2-x 0x =1D.若双曲线的离心率为52,则三角形OPQ 的面积为2 答案 ACD解析由题意知双曲线C的虚轴长为2b=2,半焦距为c=a2+1,双曲线的渐近线方程为y=±ax.A项,当l⊥y轴时,M是双曲线的顶点,从而|PQ|=2b=2,A项正确;将(1,2)代入双曲线方程,得a2=2.设P(x1,y1),Q(x2,y2),且P在直线y=ax 上,则y1=ax1,y2=-ax2,y1-y2=a(x1+x2),易知x1+x2=2,则y1-y2=22,又y1+y2=4,则y1=2+2,x1=2+1,所以k l=y1-2x1-1=1,B错误;C项,易得l的方程为y-y0x-x0·y0x0=a2,整理可得y0ya2-x0x=1,C正确;D项,由e=1+1a2=52,得a=2,所以双曲线方程为y24-x2=1,由C项可知l是双曲线的切线,因为双曲线的切线与两条渐近线相交所成三角形的面积为定值ab,所以三角形OPQ的面积为2,D正确.8.已知抛物线E:y2=4x的焦点为F,准线l交x轴于点C,直线m过C且交E 于不同的A,B两点,B在线段AC上,点P为A在l上的射影.下列命题正确的是()A.若AB⊥BF,则|AP|=|PC|B.若P,B,F三点共线,则|AF|=4C.若|AB|=|BC|,则|AF|=2|BF|D.对于任意直线m,都有|AF|+|BF|>2|CF|答案BCD解析法一如图,由已知条件可得F(1,0),C(-1,0).由抛物线的对称性,不妨设直线m 的方程为y =k (x +1)(k >0),A (x 1,y 1),B (x 2,y 2).依题意x 1>x 2>0,y 1>0,y 2>0, 由⎩⎪⎨⎪⎧y =k (x +1),y 2=4x消y 整理,得k 2x 2+(2k 2-4)x +k 2=0.当Δ=(2k 2-4)2-4k 4=16-16k 2>0, 即0<k <1时,由根与系数的关系, 得x 1+x 2=4-2k 2k 2,x 1x 2=1.对于A 选项,因为直线BF 的斜率为y 2x 2-1,AB ⊥BF ,所以k ·y 2x 2-1=-1,即y 2x 2-1·y 2x 2+1=-1. 又y 22=4x 2,所以x 22+4x 2-1=0,解得x 2=5-2(负值舍去),所以x 1=5+2. 所以|AP |=|AF |=5+3,|PC |=y 1=8+45,故|AP |≠|PC |,故A 错误; 对于B 选项,易得P (-1,y 1), 所以FB →=(x 2-1,y 2),FP →=(-2,y 1).当P ,B ,F 三点共线时,y 1(x 2-1)+2y 2=0, 所以k (x 1+1)(x 2-1)+2k (x 2+1)=0, 两边同时除以k ,得x 1x 2+3x 2-x 1+1=0, 又x 1x 2=1,故可得x 1=3, 所以|AF |=x 1+1=4,故B 正确;对于C 选项,过B 作BQ ⊥l ,垂足为Q ,由已知可得AP ∥BQ ,所以|BQ ||AP |=|BC ||AC |. 又|AB |=|BC |,所以|AP |=2|BQ |.由抛物线的定义,得|AF |=|AP |,|BF |=|BQ |, 因此|AF |=2|BF |,故C 正确;对于D 选项,因为|AF |=x 1+1,|BF |=x 2+1, 所以|AF |+|BF |=x 1+x 2+2≥2x 1x 2+2=4,又x 1≠x 2,|CF |=2,故|AF |+|BF |>2|CF |成立,故D 正确.法二 对于选项A ,假设|AP |=|PC |成立,则△APC 为等腰直角三角形,∠ACP =45°,∠ACF =45°,又AB ⊥BF ,所以△BCF 为等腰直角三角形,则点B 在y 轴上,这与已知条件显然矛盾,故|AP |≠|PC |,故A 错误.其他选项同法一进行判断.9.已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,A 为左顶点,P 为双曲线右支上一点.若|PF 1|=2|PF 2|,且△PF 1F 2的最小内角为30°,则( ) A.双曲线的离心率为 3B.双曲线的渐近线方程为y =±2xC.∠PAF 2=45°D.直线x +2y -2=0与双曲线有两个公共点 答案 ABD解析 因为|PF 1|=2|PF 2|,|PF 1|-|PF 2|=2a ,所以|PF 1|=4a ,|PF 2|=2a .又因为2c >2a ,4a >2a ,所以∠PF 1F 2=30°,所以cos ∠PF 1F 2=16a 2+4c 2-4a 22·4a ·2c =32,解得c =3a ,所以e =3,故A 正确;e 2=c 2a 2=a 2+b 2a 2=3,所以b 2a 2=2,即b a =±2,所以渐近线方程为y =±2x ,故B 正确;因为2c =23a ,所以|PF 1|2=|PF 2|2+|F 1F 2|2,所以∠PF 2F 1=90°,又因为|AF 2|=c +a =(3+1)a ,|PF 2|=2a ,所以|AF 2|≠|PF 2|,所以∠PAF 2≠45°,故C 错误;联立直线方程与双曲线方程⎩⎨⎧x +2y -2=0,x 2a 2-y 22a 2=1,化简得7y 2-16y +8-2a 2=0,Δ=(-16)2-4×7×(8-2a 2)=32+56a 2>0,所以直线x +2y -2=0与双曲线有两个公共点,故D 正确.故选ABD. 10.已知{a n }是公比为q 的等比数列,且a 1=1,曲线C n :x 2a n +y 2a n +1=1,n ∈N *,则下列说法中正确的是( ) A.若q >0且q ≠1,则C n 是椭圆B.若存在n ∈N *,使得C n 表示离心率为12的椭圆,则q =43C.若存在n ∈N *,使得C n 表示渐近线方程为x ±2y =0的双曲线,则q =-14 D.若q =-2,b n 表示双曲线C n 的实轴长,则b 1+b 2+…+b 20=6 138 答案 ACD解析 若q >0且q ≠1,则a n >0,a n +1>0且a n +1≠a n ,所以C n 表示椭圆,A 正确;当C n 表示椭圆时,显然q >0且q ≠1,若q >1,则a n +1>a n ,e =a n +1-a na n +1=1-a na n +1=1-1q ,令1-1q =12,解得q =43;若0<q <1,则a n >a n +1,e =a n -a n +1a n =1-a n +1a n=1-q ,令1-q =12,解得q =34,故B 错误;若C n 表示双曲线,显然q <0,故双曲线C n 的一条渐近线方程为y =-a n +1a nx=-qx ,令-q =12,解得q =-14,C 正确;若q =-2,则当n 为偶数时,a n <0,a n +1>0,双曲线C n 的焦点在y 轴上,则b n =2a n +1;当n 为奇数时,则a n >0,a n +1<0,双曲线C n 的焦点在x 轴上,则b n=2a n .所以b 1+b 2+…+b 20=2(a 1+a 3+…+a 19)+2(a 3+a 5+…+a 21)=4(a 1+a 3+…+a 19)-2+2a 21=4×1-2101-2-2+2×1×210=3×211-6=6138,D 正确.。
第九章 解析几何第1讲 直线方程和两直线的位置关系一、选择题1.已知直线l 的倾斜角α满足条件sinα+cosα=15,则l 的斜率为( )A.43B.34 C .-43 D .-34 解析 α必为钝角,且sinα的绝对值大,故选C. 答案 C2.经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y =( ). A .-1 B .-3 C .0 D .2 解析 由2y +1--34-2=2y +42=y +2,得:y +2=tan 3π4=-1.∴y =-3.答案 B3.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ).A.⎣⎢⎡⎭⎪⎫π6,π3 B.⎝ ⎛⎭⎪⎫π6,π2 C.⎝ ⎛⎭⎪⎫π3,π2D.⎣⎢⎡⎦⎥⎤π6,π2 解析 如图,直线l :y =kx -3,过定点P (0,-3),又A (3,0),∴k PA =33,则直线PA 的倾斜角为π6,满足条件的直线l 的倾斜角的范围是⎝ ⎛⎭⎪⎫π6,π2.答案 B4.过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( ). A .x -2y +4=0 B .2x +y -7=0 C .x -2y +3=0D .x -2y +5=0解析 由题意可设所求直线方程为:x -2y +m =0,将A (2,3)代入上式得2-2×3+m =0,即m =4,所以所求直线方程为x -2y +4=0. 答案 A5.设直线l 的方程为x +y cos θ+3=0(θ∈R ),则直线l 的倾斜角α的范围是( ). A .[0,π) B.⎣⎢⎡⎭⎪⎫π4,π2C. ⎣⎢⎡⎦⎥⎤π4,3π4D.⎣⎢⎡⎭⎪⎫π4,π2∪⎝ ⎛⎦⎥⎤π2,3π4解析 (直接法或筛选法)当cos θ=0时,方程变为x +3=0,其倾斜角为π2; 当cos θ≠0时,由直线方程可得斜率k =-1cos θ. ∵cos θ∈[-1,1]且cos θ≠0, ∴k ∈(-∞,-1]∪[1,+∞). ∴tan α∈(-∞,-1]∪[1,+∞), 又α∈[0,π),∴α∈⎣⎢⎡⎭⎪⎫π4,π2∪⎝ ⎛⎦⎥⎤π2,3π4.综上知,倾斜角的范围是⎣⎢⎡⎦⎥⎤π4,3π4.答案 C6.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =( ).A .4B .6C.345D.365解析 由题可知纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线,于是⎩⎪⎨⎪⎧3+n 2=2×7+m 2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35,n =315.故m +n =345.答案 C 二、填空题7.若A (-2,3),B (3,-2),C (12,m )三点共线,则m 的值为________.解析 由k AB =k BC ,即-2-33+2=m +212-3,得m =12.答案 128.直线过点(2,-3),且在两个坐标轴上的截距互为相反数,则这样的直线方程是________.解析 设直线方程为为x a -ya =1或y =kx 的形式后,代入点的坐标求得a =5和k =-32.答案 y =-32x 或x 5-y5=19.已知直线l 1:ax +3y -1=0与直线l 2:2x +(a -1)y +1=0垂直,则实数a =________.解析 由两直线垂直的条件得2a +3(a -1)=0,解得a =35. 答案 3510.若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c +2a 的值为________.解析 由题意得,36=-2a ≠-1c ,∴a =-4且c ≠-2, 则6x +ay +c =0可化为3x -2y +c2=0, 由两平行线间的距离,得21313=⎪⎪⎪⎪⎪⎪c 2+113,解得c =2或c =-6,所以c +2a =±1. 答案 ±1 三、解答题11.已知直线l 过点M (2,1),且分别与x 轴、y 轴的正半轴交于A 、B 两点,O 为原点,是否存在使△ABO 面积最小的直线l ?若存在,求出;若不存在,请说明理由.解 存在.理由如下.设直线l 的方程为y -1=k (x -2)(k <0),则A ⎝ ⎛⎭⎪⎫2-1k ,0,B (0,1-2k ),△ AOB 的面积S =12(1-2k )⎝⎛⎭⎪⎫2-1k =12⎣⎢⎡⎦⎥⎤4+-4k+⎝ ⎛⎭⎪⎫-1k ≥12(4+4)=4. 当且仅当-4k =-1k ,即k =-12时,等号成立,故直线l 的方程为y -1=-12(x -2),即x +2y -4=0.12.已知直线l 经过直线2x +y -5=0与x -2y =0的交点. (1)点A (5,0)到l 的距离为3,求l 的方程; (2)求点A (5,0)到l 的距离的最大值.解 (1)经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0, ∴|10+5λ-5|(2+λ)2+(1-2λ)2=3.解得λ=2或λ=12. ∴l 的方程为x =2或4x -3y -5=0.(2)由⎩⎨⎧2x +y -5=0,x -2y =0,解得交点P (2,1),如图,过P 作任一直线l ,设d 为点A 到l 的距离, 则d ≤|PA |(当l ⊥PA 时等号成立). ∴d max =|PA |=10.13.已知直线l 过点P (2,3),且被两条平行直线l 1:3x +4y -7=0,l 2:3x +4y +8=0截得的线段长为d . (1)求d 的最小值;(2)当直线l 与x 轴平行,试求d 的值.解 (1)因为3×2+4×3-7>0,3×2+4×3+8>0,所以点P 在两条平行直线l 1,l 2外.过P 点作直线l ,使l ⊥l 1,则l ⊥l 2,设垂足分别为G ,H ,则|GH |就是所求的d 的最小值.由两平行线间的距离公式,得d 的最小值为|GH |=|8-(-7)|32+42=3.(2)当直线l 与x 轴平行时,l 的方程为y =3,设直线l 与直线l 1,l 2分别交于点A (x 1,3),B (x 2,3),则3x 1+12-7=0,3x 2+12+8=0,所以3(x 1-x 2)=15,即x 1-x 2=5,所以d =|AB |=|x 1-x 2|=5.14.已知直线l 1:x -y +3=0,直线l :x -y -1=0.若直线l 1关于直线l 的对称直线为l 2,求直线l 2的方程. 解 法一 因为l 1∥l ,所以l 2∥l , 设直线l 2:x -y +m =0(m ≠3,m ≠-1). 直线l 1,l 2关于直线l 对称, 所以l 1与l ,l 2与l 间的距离相等. 由两平行直线间的距离公式得|3-(-1)|2=|m -(-1)|2, 解得m =-5或m =3(舍去). 所以直线l 2的方程为x -y -5=0.法二 由题意知l 1∥l 2,设直线l 2:x -y +m =0(m ≠3,m ≠-1). 在直线l 1上取点M (0,3),设点M 关于直线l 的对称点为M ′(a ,b ), 于是有⎩⎪⎨⎪⎧b -3a ×1=-1,a +02-b +32-1=0,解得⎩⎨⎧a =4,b =-1,即M ′(4,-1).把点M ′(4,-1)代入l 2的方程,得m =-5, 所以直线l 2的方程为x -y -5=0.第2讲 圆的方程一、选择题1.已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( ). A .x 2+y 2=2 B .x 2+y 2= 2 C .x 2+y 2=1D .x 2+y 2=4解析 AB 的中点坐标为:(0,0), |AB |=[1--1]2+-1-12=22,∴圆的方程为:x 2+y 2=2. 答案 A2.设圆的方程是x 2+y 2+2ax +2y +(a -1)2=0,若0<a <1,则原点与圆的位置关系是( ).A .原点在圆上B .原点在圆外C .原点在圆内D .不确定解析 将圆的一般方程化为标准方程(x +a )2+(y +1)2=2a ,因为0<a <1,所以(0+a )2+(0+1)2-2a =(a -1)2>0,所以原点在圆外. 答案 B3.已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( ) A .(x +2)2+(y -2)2=1 B .(x -2)2+(y +2)2=1C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1解析 只要求出圆心关于直线的对称点,就是对称圆的圆心,两个圆的半径不变.设圆C 2的圆心为(a ,b ),则依题意,有⎩⎪⎨⎪⎧a -12-b +12-1=0,b -1a +1=-1,解得⎩⎨⎧a =2,b =-2,对称圆的半径不变,为1.答案 B4.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0的距离等于1,则半径r 的取值范围是( ).A .(4,6)B .[4,6)C .(4,6]D .[4,6] 解析 因为圆心(3,-5)到直线4x -3y -2=0的距离为5,所以当半径r =4 时,圆上有1个点到直线4x -3y -2=0的距离等于1,当半径r =6时,圆上有3个点到直线4x -3y -2=0的距离等于1,所以圆上有且只有两个点到直线4x -3y -2=0的距离等于1时,4<r <6. 答案 A5.已知圆C :x 2+y 2+mx -4=0上存在两点关于直线x -y +3=0对称,则实数m 的值为( ). A .8B .-4C .6D .无法确定解析 圆上存在关于直线x -y +3=0对称的两点,则x -y +3=0过圆心⎝ ⎛⎭⎪⎫-m 2,0,即-m 2+3=0,∴m =6.答案 C6.圆心为C ⎝ ⎛⎭⎪⎫-12,3的圆与直线l :x +2y -3=0交于P ,Q 两点,O 为坐标原点,且满足OP →·OQ →=0,则圆C 的方程为( ).A.⎝ ⎛⎭⎪⎫x -122+(y -3)2=52B.⎝ ⎛⎭⎪⎫x -122+(y +3)2=52C.⎝ ⎛⎭⎪⎫x +122+(y -3)2=254D.⎝ ⎛⎭⎪⎫x +122+(y +3)2=254 解析 法一 ∵圆心为C ⎝ ⎛⎭⎪⎫-12,3,∴设圆的方程为⎝ ⎛⎭⎪⎫x +122+(y -3)2=r 2.设P (x 1,y 1),Q (x 2,y 2).由圆方程与直线l 的方程联立得:5x 2+10x +10-4r 2=0, ∴x 1+x 2=-2,x 1x 2=10-4r 25. 由OP →·OQ →=0,得x 1x 2+y 1y 2=0,即: 54x 1x 2-34(x 1+x 2)+94=10-4r 24+154=0, 解得r 2=254,经检验满足判别式Δ>0. 故圆C 的方程为⎝ ⎛⎭⎪⎫x +122+(y -3)2=254.法二 ∵圆心为C ⎝ ⎛⎭⎪⎫-12,3,∴设圆的方程为⎝ ⎛⎭⎪⎫x +122+(y -3)2=r 2,在所给的四个选项中只有一个方程所写的圆心是正确的,即⎝ ⎛⎭⎪⎫x +122+(y -3)2=254,故选C. 答案 C 二、填空题7.过两点A (0,4),B (4,6),且圆心在直线x -2y -2=0上的圆的标准方程是________.解析 设圆心坐标为(a ,b ),圆半径为r ,则圆方程为(x -a )2+(y -b )2=r 2, ∵圆心在直线x -2y -2=0上,∴a -2b -2=0,①又∵圆过两点A (0,4),B (4,6),∴(0-a )2+(4-b )2=r 2,②且(4-a )2+(6-b )2=r 2,③由①②③得:a =4,b =1,r =5,∴圆的方程为(x -4)2+(y -1)2=25. 答案 (x -4)2+(y -1)2=258.已知圆C :(x -3)2+(y -4)2=1,点A (0,-1),B (0,1).P 是圆C 上的动点,当|PA |2+|PB |2取最大值时,点P 的坐标是________.解析 设P (x 0,y 0),则|PA |2+|PB |2=x 20+(y 0+1)2+x 20+(y 0-1)2=2(x 20+y 20)+2,显然x 20+y 20的最大值为(5+1)2,∴d max =74,此时OP →=-6PC →,结合点P 在圆上,解得点P 的坐标为⎝ ⎛⎭⎪⎫185,245.答案 ⎝ ⎛⎭⎪⎫185,2459.已知平面区域⎩⎨⎧x ≥0,y ≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及其内部所覆盖,则圆C 的方程为________.解析 由题意知,此平面区域表示的是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部,所以覆盖它的且面积最小的圆是其外接圆,又△OPQ 为直角三角形,故其圆心为斜边PQ 的中点(2,1),半径为|PQ |2=5,∴圆C 的方程为(x -2)2+(y -1)2=5. 答案 (x -2)2+(y -1)2=510.已知圆C :(x -3)2+(y -4)2=1,点A (-1,0),B (1,0),点P 是圆上的动点,则d =|PA |2+|PB |2的最大值为________,最小值为________.解析 设点P (x 0,y 0),则d =(x 0+1)2+y 20+(x 0-1)2+y 20=2(x 20+y 20)+2,欲求d 的最值,只需求u =x 20+y 20的最值,即求圆C 上的点到原点的距离平方的最值.圆C 上的点到原点的距离的最大值为6,最小值为4,故d 的最大值为74,最小值为34. 答案 74 34 三、解答题11.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解 (1)直线AB 的斜率k =1,AB 的中点坐标为(1,2), ∴直线CD 的方程为y -2=-(x -1),即x +y -3=0. (2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.①又直径|CD |=410,∴|PA |=210, ∴(a +1)2+b 2=40,②由①②解得⎩⎨⎧ a =-3,b =6或⎩⎨⎧a =5,b =-2. ∴圆心P (-3,6)或P (5,-2),∴圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.12.已知圆M 过两点C (1,-1),D (-1,1),且圆心M 在x +y -2=0上. (1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,PA ,PB 是圆M 的两条切线,A ,B 为切点,求四边形PAMB 面积的最小值.解 (1)设圆M 的方程为(x -a )2+(y -b )2=r 2(r >0),根据题意得:⎩⎨⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0,解得a =b =1,r =2,故所求圆M 的方程为(x -1)2+(y -1)2=4. (2)因为四边形PAMB 的面积S =S △PAM +S △PBM =12|AM |·|PA |+12|BM |·|PB |,又|AM |=|BM |=2,|PA |=|PB |,所以S =2|PA |, 而|PA |=|PM |2-|AM |2=|PM |2-4, 即S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值即可, 即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小,所以|PM |min =|3×1+4×1+8|32+42=3, 所以四边形PAMB 面积的最小值为S =2|PM |2min -4=232-4=2 5.13.已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称. (1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ →·MQ→的最小值. 解(1)设圆心C (a ,b ),则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎨⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2, 故圆C 的方程为x 2+y 2=2.(2)设Q (x ,y ),则x 2+y 2=2,且PQ →·MQ →=(x -1,y -1)·(x +2,y +2)=x 2+y 2+x +y -4=x +y -2, 令x =2cos θ,y =2sin θ,∴PQ →·MQ →=x +y -2=2(sin θ+cos θ)-2 =2sin ⎝ ⎛⎭⎪⎫θ+π4-2,所以PQ →·MQ→的最小值为-4. 14.已知点A (-3,0),B (3,0),动点P 满足|PA |=2|PB |. (1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|QM |的最小值. 解 (1)设点P 的坐标为(x ,y ), 则x +32+y 2=2x -32+y 2.化简可得(x -5)2+y 2=16,此即为所求.(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图, 由直线l 2是此圆的切线,连接CQ ,则|QM|=|CQ|2-|CM|2=|CQ|2-16,当CQ⊥l1时,|CQ|取最小值,|CQ|=|5+3|2=42,此时|QM|的最小值为32-16=4.第3讲直线与圆、圆与圆的位置关系一、选择题1.已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为( ).A.4 B.3 C.2 D.1解析法一(直接法)集合A表示圆,集合B表示一条直线,又圆心(0,0)到直线x+y=1的距离d=12=22<1=r,所以直线与圆相交,故选C.法二(数形结合法)画图可得,故选C.答案 C2.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是().A.[-3,-1] B.[-1,3]C.[-3,1] D.(-∞,-3]∪[1,+∞)解析由题意可得,圆的圆心为(a,0),半径为2,∴|a-0+1|12+(-1)2≤2,即|a+1|≤2,解得-3≤a≤1.答案 C3.若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a,b满足的关系是( )A.a2+2a+2b-3=0B.a2+b2+2a+2b+5=0C.a2+2a+2b+5=0D .a 2-2a -2b +5=0解析 即两圆的公共弦必过(x +1)2+(y +1)2=4的圆心, 两圆相减得相交弦的方程为-2(a +1)x -2(b +1)y +a 2+1=0, 将圆心坐标(-1,-1)代入可得a 2+2a +2b +5=0. 答案 C4.若圆C 1:x 2+y 2+2ax +a 2-4=0(a ∈R )与圆C 2:x 2+y 2-2by -1+b 2=0(b ∈R )恰有三条切线,则a +b 的最大值为( ).A .-3 2B .-3C .3D .3 2解析 易知圆C 1的圆心为C 1(-a,0),半径为r 1=2; 圆C 2的圆心为C 2(0,b ),半径为r 2=1. ∵两圆恰有三条切线,∴两圆外切,∴|C 1C 2|=r 1+r 2,即a 2+b 2=9.∵⎝⎛⎭⎪⎫a +b 22≤a 2+b 22, ∴a +b ≤32(当且仅当a =b =32时取“=”), ∴a +b 的最大值为3 2. 答案 D5.若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值范围是( ).A.⎝ ⎛⎭⎪⎫-33,33B.⎝ ⎛⎭⎪⎫-33,0∪⎝ ⎛⎭⎪⎫0,33C.⎣⎢⎡⎦⎥⎤-33,33D.⎝ ⎛⎭⎪⎫-∞,-33∪⎝ ⎛⎭⎪⎫33,+∞解析 C 1:(x -1)2+y 2=1,C 2:y =0或y =mx +m =m (x +1).当m =0时,C 2:y =0,此时C 1与C 2显然只有两个交点;当m ≠0时,要满足题意,需圆(x -1)2+y 2=1与直线y =m (x +1)有两交点,当圆与直线相切时,m =±33,即直线处于两切线之间时满足题意,则-33<m<0或0<m<33.综上知-33<m<0或0<m<33.答案 B6.如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是().解析如图,建立直角坐标系,由题意可知,小圆O1总与大圆O相内切,且小圆O1总经过大圆的圆心O.设某时刻两圆相切于点A,此时动点M所处位置为点M′,则大圆圆弧的长与小圆圆弧的长之差为0或2π.切点A在三、四象限的差为0,在一、二象限的差为2π.以切点A在第三象限为例,记直线OM与此时小圆O1的交点为M1,记∠AOM=θ,则∠OM1O1=∠M1OO1=θ,故∠M1O1A=∠M1OO1+∠OM1O1=2θ.大圆圆弧的长为l1=θ×2=2θ,小圆圆弧的长为l2=2θ×1=2θ,则l1=l2,即小圆的两段圆弧与的长相等,故点M1与点M′重合.即动点M在线段MO上运动,同理可知,此时点N在线段OB上运动.点A在其他象限类似可得,故M,N的轨迹为相互垂直的线段.观察各选项知,只有选项A符合.故选A.答案 A二、填空题7.直线y=x被圆x2+(y-2)2=4截得的弦长为________.解析 由题意得,圆x 2+(y -2)2=4的圆心为(0,2),半径为2,圆心到直线x -y =0的距离d =22= 2. 设截得的弦长为l ,则由⎝ ⎛⎭⎪⎫l 22+(2)2=22,得l =2 2.答案 2 28.设集合A =(x ,y )⎪⎪⎪m2≤(x -2)2+y 2≤m 2,x ,y ∈R ,B ={(x ,y )|2m ≤x +y ≤2m+1,x ,y ∈R },若A ∩B =∅,则实数m 的取值范围是________. 解析 ∵A ∩B ≠∅,∴A ≠∅, ∴m 2≥m 2.∴m ≥12或m ≤0.显然B ≠∅.要使A ∩B ≠∅,只需圆(x -2)2+y 2=m 2(m ≠0)与x +y =2m 或x +y =2m +1有交点,即|2-2m |2≤|m |或|1-2m |2≤|m |,∴2-22≤m ≤2+ 2.又∵m ≥12或m ≤0,∴12≤m ≤2+ 2. 当m =0时,(2,0)不在0≤x +y ≤1内.综上所述,满足条件的m 的取值范围为⎣⎢⎡⎦⎥⎤12,2+2.答案 ⎣⎢⎡⎦⎥⎤12,2+29.从原点向圆x 2+y 2-12y +27=0作两条切线,则该圆夹在两条切线间的劣弧长为________.解析 (数形结合法)如图,圆x 2+y 2-12y +27=0 可化为x 2+(y -6)2=9,圆心坐标为(0,6),半径为3. 在Rt △OBC 中可得:∠OCB =π3,∴∠ACB =2π3, ∴所求劣弧长为2π. 答案 2 π10.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________.解析 画图可知,圆上有且只有四个点到直线12x -5y +c =0的距离为1,该圆半径为2即圆心O (0,0)到直线12x -5y +c =0的距离d <1,即0<|c |13<1,∴-13<c <13. 答案 (-13,13) 三、解答题11.已知:圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程. 解 将圆C 的方程x 2+y 2-8y +12=0化成标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2. (1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2,解得a =-34. (2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得⎩⎪⎨⎪⎧|CD |=|4+2a |a 2+1,|CD |2+|DA |2=|AC |2=22,|DA |=12|AB |= 2.解得a =-7或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.12.已知与圆C :x 2+y 2-2x -2y +1=0相切的直线l 交x 轴,y 轴于A ,B 两点,|OA |=a ,|OB |=b (a >2,b >2). (1)求证:(a -2)(b -2)=2; (2)求线段AB 中点的轨迹方程; (3)求△AOB 面积的最小值.解 (1)证明:圆的标准方程是(x -1)2+(y -1)2=1,设直线方程为x a +y b=1,即bx +ay -ab =0,圆心到该直线的距离d =|a +b -ab |a 2+b2=1, 即a 2+b 2+a 2b 2+2ab -2a 2b -2ab 2=a 2+b 2,即a 2b 2+2ab -2a 2b -2ab 2=0, 即ab +2-2a -2b =0,即(a -2)(b -2)=2.(2)设AB 中点M (x ,y ),则a =2x ,b =2y ,代入(a -2)(b -2)=2, 得(x -1)(y -1)=12(x >1,y >1).(3)由(a -2)(b -2)=2得ab +2=2(a +b )≥4ab , 解得ab ≥2+2(舍去ab ≤2-2), 当且仅当a =b 时,ab 取最小值6+42, 所以△AOB 面积的最小值是3+2 2.13.设直线l 的方程为y =kx +b (其中k 的值与b 无关),圆M 的方程为x 2+y 2-2x -4=0.(1)如果不论k 取何值,直线l 与圆M 总有两个不同的交点,求b 的取值范围; (2)b =1时,l 与圆交于A ,B 两点,求|AB |的最大值和最小值. 解 圆M 的标准方程为(x -1)2+y 2=5, ∴圆心M 的坐标为(1,0),半径为r = 5. (1)∵不论k 取何值,直线l 总过点P (0,b ),∴欲使l 与圆M 总有两个不同的交点,必须且只需点P 在圆M 的内部,即|MP |<5,即1+b 2<5,∴-2<b <2,即b 的取值范围是(-2,2).(2)当l 过圆心M 时,|AB |的值最大,最大值为圆的直径长2 5.当l ⊥MP 时,此时|MP |最大,|AB |的值最小,|MP |2=⎝ ⎛⎭⎪⎫k +1k 2+12=k 2+2k +1k 2+1=1+2k +1k≤1+22k ·1k=2,当且仅当k =1时取等号.最小值为2r 2-|MP |2=25-2=2 3.14.已知圆M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点.(1)若Q (1,0),求切线QA ,QB 的方程; (2)求四边形QAMB 面积的最小值; (3)若|AB |=423,求直线MQ 的方程.解 (1)设过点Q 的圆M 的切线方程为x =my +1,则圆心M 到切线的距离为1, ∴|2m +1|m 2+1=1,∴m =-43或0, ∴QA ,QB 的方程分别为3x +4y -3=0和x =1. (2)∵MA ⊥AQ ,∴S 四边形MAQB =|MA |·|QA |=|QA |=|MQ |2-|MA |2=|MQ |2-1≥|MO |2-1= 3.∴四边形QAMB 面积的最小值为 3.(3)设AB 与MQ 交于P ,则MP ⊥AB ,MB ⊥BQ , ∴|MP |=1-⎝⎛⎭⎪⎫2232=13. 在Rt △MBQ 中,|MB |2=|MP ||MQ |, 即1=13|MQ |,∴|MQ |=3,∴x 2+(y -2)2=9. 设Q (x,0),则x 2+22=9,∴x =±5,∴Q (±5,0), ∴MQ 的方程为2x +5y -25=0或2x -5y +25=0.第4讲 椭 圆一、选择题1.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( ). A.x 281+y 272=1 B.x 281+y 29=1 C.x 281+y 245=1 D.x 281+y 236=1解析 依题意知:2a =18,∴a =9,2c =13×2a ,∴c =3,∴b 2=a 2-c 2=81-9=72,∴椭圆方程为x 281+y 272=1.答案 A2.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为 ( ). A.14B.55C.12D.5-2解析 因为A ,B 为左、右顶点,F 1,F 2为左、右焦点,所以|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c .又因为|AF 1|,|F 1F 2|,|F 1B |成等比数列, 所以(a -c )(a +c )=4c 2,即a 2=5c 2. 所以离心率e =c a =55,故选B. 答案 B3.已知椭圆x 2+my 2=1的离心率e ∈⎝ ⎛⎭⎪⎫12,1,则实数m 的取值范围是 ( ).A.⎝ ⎛⎭⎪⎫0,34B.⎝ ⎛⎭⎪⎫43,+∞ C.⎝ ⎛⎭⎪⎫0,34∪⎝ ⎛⎭⎪⎫43,+∞D.⎝ ⎛⎭⎪⎫34,1∪⎝ ⎛⎭⎪⎫1,43 解析 椭圆标准方程为x 2+y 21m=1.当m >1时,e 2=1-1m ∈⎝ ⎛⎭⎪⎫14,1,解得m >43;当0<m <1时,e 2=1m -11m =1-m ∈⎝ ⎛⎭⎪⎫14,1,解得0<m <34,故实数m 的取值范围是⎝ ⎛⎭⎪⎫0,34∪⎝ ⎛⎭⎪⎫43,+∞. 答案 C4.设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点,P 是第一象限内该椭圆上的一点,且PF 1⊥PF 2,则点P 的横坐标为( ).A .1 B.83 C .2 2 D.263解析 由题意知,点P 即为圆x 2+y 2=3与椭圆x 24+y 2=1在第一象限的交点,解方程组⎩⎨⎧x 2+y 2=3,x24+y 2=1,得点P 的横坐标为263.答案 D5.椭圆x 2a 2+y 2b 2=1(a >b >0)的两顶点为A (a,0),B (0,b ),且左焦点为F ,△FAB 是以角B 为直角的直角三角形,则椭圆的离心率e 为( ) A.3-12 B.5-12C.1+54 D.3+14解析 根据已知a 2+b 2+a 2=(a +c )2,即c 2+ac -a 2=0,即e 2+e -1=0,解得e =-1±52,故所求的椭圆的离心率为5-12.答案 B6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( ).A.x 28+y 22=1B.x 212+y 26=1 C.x 216+y 24=1D.x 220+y 25=1解析 因为椭圆的离心率为32,所以e =c a =32,c 2=34a 2,c 2=34a 2=a 2-b 2,所以b 2=14a 2,即a 2=4b 2.双曲线的渐近线方程为y =±x ,代入椭圆方程得x 2a 2+x 2b 2=1,即x 24b 2+x 2b 2=5x 24b 2=1,所以x 2=45b 2,x =±25b ,y 2=45b 2,y =±25b ,则在第一象限双曲线的渐近线与椭圆C 的交点坐标为⎝ ⎛⎭⎪⎫25b ,25b ,所以四边形的面积为4×25b ×25b =165b 2=16,所以b 2=5,所以椭圆方程为x 220+y25=1.答案 D二、填空题7.设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为________.解析 由题意知|OM |=12|PF 2|=3,∴|PF 2|=6.∴|PF 1|=2×5-6=4.答案 48.在等差数列{a n }中,a 2+a 3=11,a 2+a 3+a 4=21,则椭圆C :x 2a 6+y 2a 5=1的离心率为________.解析 由题意,得a 4=10,设公差为d ,则a 3+a 2=(10-d )+(10-2d )=20-3d =11,∴d =3,∴a 5=a 4+d =13,a 6=a 4+2d =16>a 5,∴e =16-134=34.答案 349. 椭圆31222y x =1的焦点为F 1和F 2,点P 在椭圆上.如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的_____倍.解析 不妨设F 1(-3,0),F 2(3,0)由条件得P (3,±23),即|PF 2|=23,|PF 1|=2147,因此|PF 1|=7|PF 2|. 答案 710.如图,∠OFB =π6,△ABF 的面积为2-3,则以OA 为长半轴,OB 为短半轴,F 为一个焦点的椭圆方程为________.解析 设标准方程为x 2a 2+y 2b 2=1(a >b >0), 由题可知,|OF |=c ,|OB |=b ,∴|BF |=a , ∵∠OFB =π6,∴b c =33,a =2b .S △ABF =12·|AF |·|BO |=12(a -c )·b =12(2b -3b )b =2-3,∴b 2=2,∴b =2,∴a =22,∴椭圆的方程为x 28+y 22=1.答案 x 28+y 22=1 三、解答题11.如图,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.(1)当P 在圆上运动时,求点M 的轨迹C 的方程; (2)求过点(3,0)且斜率为45的直线被C 所截线段的长度.解 (1)设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎨⎧x P =x ,y P=54y ,∵P 在圆上,∴x 2+⎝ ⎛⎭⎪⎫54y 2=25,即C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与C 的交点为A (x 1,y 1),B (x 2,y 2), 将直线方程y =45(x -3)代入C 的方程,得x 225+x -3225=1,即x 2-3x -8=0. ∴x 1=3-412,x 2=3+412. ∴线段AB 的长度为|AB |=x 1-x 22+y 1-y 22=⎝⎛⎭⎪⎫1+1625x 1-x 22=4125×41=415. 12.设F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 2的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,F 1到直线l 的距离为2 3. (1)求椭圆C 的焦距;(2)如果AF 2→=2F 2B →,求椭圆C 的方程.解 (1)设椭圆C 的焦距为2c ,由已知可得F 1到直线l 的距离3c =23,故c =2.所以椭圆C 的焦距为4.(2)设A (x 1,y 1),B (x 2,y 2),由AF 2→=2F 2B →及l 的倾斜角为60°,知y 1<0,y 2>0, 直线l 的方程为y =3(x -2). 由⎩⎪⎨⎪⎧y =3(x -2),x 2a 2+y 2b 2=1消去x ,整理得(3a 2+b 2)y 2+43b 2y -3b 4=0. 解得y 1=-3b 2(2+2a )3a 2+b 2,y 2=-3b 2(2-2a )3a 2+b 2.因为AF 2→=2F 2B →,所以-y 1=2y 2,即3b 2(2+2a )3a 2+b 2=2·-3b 2(2-2a )3a 2+b 2,解得a =3.而a 2-b 2=4,所以b 2=5.故椭圆C 的方程为x 29+y 25=1. 13. 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以原点为圆心,椭圆C 的短半轴长为半径的圆与直线x -y +2=0相切. (1)求椭圆C 的方程;(2)已知点P (0,1),Q (0,2).设M ,N 是椭圆C 上关于y 轴对称的不同两点,直线PM 与QN 相交于点T .求证:点T 在椭圆C 上. (1)解 由题意知,b =22= 2. 因为离心率e =c a =32,所以ba =1-⎝ ⎛⎭⎪⎫c a 2=12. 所以a =2 2.所以椭圆C 的方程为x 28+y 22=1.(2)证明 由题意可设M ,N 的坐标分别为(x 0,y 0),(-x 0,y 0), 则直线PM 的方程为y =y 0-1x 0x +1,① 直线QN 的方程为y =y 0-2-x 0x +2.②法一 联立①②解得x =x 02y 0-3,y =3y 0-42y 0-3,即T ⎝ ⎛⎭⎪⎫x 02y 0-3,3y 0-42y 0-3.由x 208+y 202=1,可得x 20=8-4y 20.因为18⎝ ⎛⎭⎪⎫x 02y 0-32+12⎝ ⎛⎭⎪⎫3y 0-42y 0-32=x 20+4(3y 0-4)28(2y 0-3)2=8-4y 20+4(3y 0-4)28(2y 0-3)2=32y 20-96y 0+728(2y 0-3)2=8(2y 0-3)28(2y 0-3)2=1,所以点T 的坐标满足椭圆C 的方程,即点T 在椭圆C 上. 法二 设T (x ,y ),联立①②解得x 0=x 2y -3,y 0=3y -42y -3.因为x 208+y 22=1,所以18⎝ ⎛⎭⎪⎫x 2y -32+12⎝⎛⎭⎪⎫3y -42y -32=1. 整理得x 28+(3y -4)22=(2y -3)2,所以x 28+9y 22-12y +8=4y 2-12y +9,即x 28+y 22=1. 所以点T 坐标满足椭圆C 的方程,即点T 在椭圆C 上. 14.如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形. (1)求该椭圆的离心率和标准方程;(2)过B 1作直线l 交椭圆于P ,Q 两点,使PB 2⊥QB 2,求直线l 的方程. 解 (1) 如图,设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F 2(c,0). 因△AB 1B 2是直角三角形, 又|AB 1|=|AB 2|, 故∠B 1AB 2为直角, 因此|OA |=|OB 2|,得b =c2. 结合c 2=a 2-b 2得4b 2=a 2-b 2,故a 2=5b 2,c 2=4b 2,所以离心率e =c a =25 5.在Rt △AB 1B 2中,OA ⊥B 1B 2,故S △AB 1B 2=12·|B 1B 2|·|OA |=|OB 2|·|OA |=c2·b =b 2.由题设条件S △AB 1B 2=4得b 2=4,从而a 2=5b 2=20.因此所求椭圆的标准方程为:x 220+y 24=1.(2)由(1)知B 1(-2,0),B 2(2,0).由题意知直线l 的倾斜角不为0,故可设直线l 的方程为x =my -2.代入椭圆方程得(m 2+5)y 2-4my -16=0. 设P (x 1,y 1),Q (x 2,y 2),则y 1,y 2是上面方程的两根, 因此y 1+y 2=4m m 2+5,y 1·y 2=-16m 2+5,又B 2P →=(x 1-2,y 1),B 2Q →=(x 2-2,y 2), 所以B 2P →·B 2Q →=(x 1-2)(x 2-2)+y 1y 2=(my 1-4)(my 2-4)+y 1y 2=(m 2+1)y 1y 2-4m (y 1+y 2)+16 =-16(m 2+1)m 2+5-16m 2m 2+5+16=-16m 2-64m 2+5,由PB 2⊥QB 2,得B 2P →·B 2Q →=0, 即16m 2-64=0,解得m =±2.所以满足条件的直线有两条,其方程分别为x +2y +2=0和x -2y +2=0.第5讲 双曲线一、选择题1.设双曲线x 2a 2-y 29=1(a >0)的渐近线方程为3x ±2y =0,则a 的值为( ).A .4B .3C .2D .1解析 双曲线x 2a 2-y 29=1的渐近线方程为3x ±ay =0与已知方程比较系数得a=2. 答案 C2.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( ).A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1D.x 220-y 280=1解析 不妨设a >0,b >0,c =a 2+b 2. 据题意,2c =10,∴c =5.① 双曲线的渐近线方程为y =±b a x ,且P (2,1)在C 的渐近线上,∴1=2ba . ②由①②解得b 2=5,a 2=20,故正确选项为A. 答案 A3.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→·PF 2→的最小值为 ( ).A .-2B .-8116C .1D .0解析 设点P (x ,y ),其中x ≥1.依题意得A 1(-1,0),F 2(2,0),则有y 23=x 2-1,y 2=3(x 2-1),PA 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=(x +1)(x -2)+y 2=x 2+3(x 2-1)-x -2=4x 2-x -5=4⎝ ⎛⎭⎪⎫x -182-8116,其中x ≥1.因此,当x =1时,PA 1→·PF 2→取得最小值-2,选A. 答案 A4.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F (-c,0)(c >0)作圆x 2+y 2=a 24的切线,切点为E ,延长FE 交双曲线右支于点P ,若OF →+OP →=2OE →,则双曲线的离心率为( ).A. 2B.105C.102D.10解析 设双曲线的右焦点为A ,则OF→=-OA →,故OF →+OP →=OP →-OA →=AP →=2OE→,即OE =12AP .所以E 是PF 的中点,所以AP =2OE =2×a 2=a .所以PF =3a .在Rt △APF 中,a 2+(3a )2=(2c )2,即10a 2=4c 2,所以e 2=52,即离心率为e=52=102,选C.答案 C5.已知双曲线x 24-y 2b 2=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( ).A. 5B .4 2C .3D .5解析 易求得抛物线y 2=12x 的焦点为(3,0),故双曲线x 24-y 2b 2=1的右焦点为(3,0),即c =3,故32=4+b 2,∴b 2=5,∴双曲线的渐近线方程为y =±52x ,∴双曲线的右焦点到其渐近线的距离为⎪⎪⎪⎪⎪⎪52×31+54= 5.答案 A6.如图,已知点P 为双曲线x 216-y 29=1右支上一点,F 1、F 2分别为双曲线的左、右焦点,I 为△PF 1F 2的内心,若S △IPF 1=S △IPF 2+λS △IF 1F 2成立,则λ的值为()A.58B.45C.43D.34解析 根据S △IPF 1=S △IPF 2+λS △IF 1F 2,即|PF 1|=|PF 2|+λ|F 1F 2|,即2a =λ2c ,即λ=a c =45.答案 B 二、填空题7.双曲线x 23-y 26=1的右焦点到渐近线的距离是________.解析 由题意得:双曲线x 23-y 26=1的渐近线为y =±2x .∴焦点(3,0)到直线y =±2x 的距离为322+1= 6. 答案 68.在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为________.解析 由题意得m >0,∴a =m ,b =m 2+4. ∴c =m 2+m +4,由e =ca =5,得m 2+m +4m=5,解得m =2. 答案 29.如图,已知双曲线以长方形ABCD 的顶点A 、B 为左、右焦点,且双曲线过C 、D 两顶点.若AB =4,BC =3,则此双曲线的标准方程为________.解析 设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0).由题意得B (2,0),C (2,3),∴⎩⎨⎧4=a 2+b 2,4a 2-9b 2=1,解得⎩⎨⎧a 2=1,b 2=3,∴双曲线的标准方程为x 2-y 23=1.答案 x 2-y 23=110.如图,双曲线x 2a 2-y 2b 2=1(a ,b >0)的两顶点为A 1,A 2,虚轴两端点为B 1,B 2,两焦点为F 1,F 2.若以A 1A 2为直径的圆内切于菱形F 1B 1F 2B 2,切点分别为A ,B ,C ,D .则 (1)双曲线的离心率e =________; (2)菱形F 1B 1F 2B 2的面积S 1与矩形ABCD 的面积S 2的比值S 1S 2=________.解析 (1)由题意可得ab 2+c 2=bc ,∴a 4-3a 2c 2+c 4=0,∴e 4-3e 2+1=0,∴e 2=3+52,∴e =1+52.(2)设sin θ=b b 2+c 2,cos θ=c b 2+c 2,S 1S 2=2bc 4a 2sin θcos θ=2bc4a 2bc b 2+c 2=b 2+c 22a 2=e 2-12=2+52.答案 (1)1+52 (2)2+52 三、解答题11.中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴与双曲线半实轴之差为4,离心率之比为3∶7. (1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos ∠F 1PF 2的值.解 (1)由已知:c =13,设椭圆长、短半轴长分别为a ,b ,双曲线半实、虚轴长分别为m ,n ,则⎩⎨⎧a -m =4,7·13a =3·13m .解得a =7,m =3.∴b =6,n =2.∴椭圆方程为x 249+y 236=1,双曲线方程为x 29-y 24=1.(2)不妨设F 1,F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,所以|PF 1|=10,|PF 2|=4.又|F 1F 2|=213, ∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=102+42-(213)22×10×4=45.12.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10). (1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0; (3)求△F 1MF 2的面积.(1)解 ∵e =2,∴设双曲线方程为x 2-y 2=λ. 又∵双曲线过(4,-10)6,∴双曲线方程为x 2-y 2=6.(2)证明 法一 由(1)知a =b∴F 1(-23,0),F 2(23,0), ∴kMF 1=m 3+23,kMF 2=m3-23,∴kMF 1·kMF 2=m 29-12=m 2-3,又点(3,m )在双曲线上,∴m 2=3,∴kMF 1·kMF 2=-1,MF 1⊥MF 2,MF 1→·MF 2→=0.法二 ∵MF 1→=(-3-23,-m ),MF 2→=(23-3,-m ), ∴MF 1→·MF 2→=(3+23)(3-23)+m 2=-3+m 2. ∵M 在双曲线上,∴9-m 2=6, ∴m 2=3,∴MF 1→·MF 2→=0.(3)解 ∵在△F 1MF 2中,|F 1F 2|=43,且|m |=3, ∴S △F 1MF 2=12·|F 1F 2|·|m |=12×43×3=6.13.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点分别为F 1,F 2,点P 在双曲线上,且PF 1⊥PF 2,|PF 1|=8,|PF 2|=6. (1)求双曲线的方程;(2)设过双曲线左焦点F 1的直线与双曲线的两渐近线交于A ,B 两点,且F 1A →=2F 1B →,求此直线方程.解 (1)由题意知,在Rt △PF 1F 2中, |F 1F 2|=|PF 1|2+|PF 2|2, 即2c =82+62=10,所以c =5.由椭圆的定义,知2a =|PF 1|-|PF 2|=8-6=2,即a =1. 所以b 2=c 2-a 2=24,故双曲线的方程为x 2-y 224=1.(2)左焦点为F 1(-5,0),两渐近线方程为y =±26x . 由题意得过左焦点的该直线的斜率存在.设过左焦点的直线方程为y =k (x +5),则与两渐近线的交点为⎝ ⎛⎭⎪⎫5k 26-k ,106k 26-k 和⎝ ⎛⎭⎪⎫-5k k +26,106k k +26.由F 1A →=2F 1B →,得⎝ ⎛⎭⎪⎫5k 26-k +5,106k 26-k =2⎝ ⎛⎭⎪⎫-5k k +26+5,106k k +26或者⎝ ⎛⎭⎪⎫-5k k +26+5,106k k +26=2⎝ ⎛⎭⎪⎫5k 26-k +5,106k 26-k ,解得k =±263.故直线方程为y =±263(x +5).14. P (x 0,y 0)(x 0≠±a )是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)上一点,M ,N 分别是双曲线E 的左,右顶点,直线PM ,PN 的斜率之积为15. (1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于A ,B 两点,O 为坐标原点,C 为双曲线上一点,满足OC→=λOA →+OB →,求λ的值.解 (1)由点P (x 0,y 0)(x 0≠±a )在双曲线x 2a 2-y 2b 2=1上,有x 20a 2-y 20b 2=1. 由题意有y 0x 0-a ·y 0x 0+a=15, 可得a 2=5b 2,c 2=a 2+b 2=6b 2,e =c a =305. (2)联立⎩⎨⎧x 2-5y 2=5b 2,y =x -c ,得4x 2-10cx +35b 2=0.设A (x 1,y 1),B (x 2,y 2), 则⎩⎪⎨⎪⎧x 1+x 2=5c2,x 1x 2=35b 24.①设OC →=(x 3,y 3),OC →=λOA →+OB →,即⎩⎨⎧x 3=λx 1+x 2,y 3=λy 1+y 2.又C 为双曲线上一点,即x 23-5y 23=5b 2,有(λx 1+x 2)2-5(λy 1+y 2)2=5b 2.化简得λ2(x 21-5y 21)+(x 22-5y 22)+2λ(x 1x 2-5y 1y 2)=5b 2.②又A (x 1,y 1),B (x 2,y 2)在双曲线上,所以x 21-5y 21=5b 2,x 22-5y 22=5b 2.由①式又有x 1x 2-5y 1y 2=x 1x 2-5(x 1-c )(x 2-c )=-4x 1x 2+5c (x 1+x 2)-5c 2=10b 2,②式可化为λ2+4λ=0,解得λ=0或λ=-4.第6讲 抛物线一、选择题1.抛物线x 2=(2a -1)y 的准线方程是y =1,则实数a =( ) A.52 B.32 C .-12 D .-32解析 根据分析把抛物线方程化为x 2=-2⎝ ⎛⎭⎪⎫12-a y ,则焦参数p =12-a ,故抛物线的准线方程是y =p 2=12-a 2,则12-a2=1,解得a =-32.答案 D 2.若抛物线y 2=2px (p >0)的焦点在圆x 2+y 2+2x -3=0上,则p =( ) A.12 B .1 C .2D .3解析 ∵抛物线y 2=2px (p >0)的焦点为(p 2,0)在圆x 2+y 2+2x -3=0上,∴p 24+p -3=0,解得p =2或p =-6(舍去). 答案 C3.已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB = ( ). A.45B.35C .-35D .-45解析 由⎩⎨⎧y 2=4xy =2x -4,得x 2-5x +4=0,∴x =1或x =4.不妨设A (4,4),B (1,-2),则|FA →|=5,|FB →|=2,FA →·FB →=(3,4)·(0,-2)=-8,∴cos ∠AFB =FA →·FB →|FA →||FB →|=-85×2=-45.故选D. 答案 D4.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( ).A .x 2=833y B .x 2=1633y C .x 2=8yD .x 2=16y解析 ∵x 2a 2-y 2b 2=1的离心率为2,∴c a =2,即c 2a 2=a 2+b 2a 2=4,∴ba = 3.x 2=2py 的焦点坐标为⎝⎛⎭⎪⎫0,p 2,x 2a 2-y 2b 2=1的渐近线方程为y =±b a x ,即y =±3x .由题意,得p21+(3)2=2,∴p =8.故C 2:x 2=16y ,选D.答案 D5.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上一点,则△ABP 的面积为( ). A .18 B .24 C .36 D .48 解析 如图,设抛物线方程为y 2=2px (p >0). ∵当x =p2时,|y |=p ,∴p =|AB |2=122=6. 又P 到AB 的距离始终为p ,∴S△ABP=12×12×6=36.答案 C6.已知P是抛物线y2=4x上一动点,则点P到直线l:2x-y+3=0和y轴的距离之和的最小值是().A. 3B. 5 C.2 D.5-1解析由题意知,抛物线的焦点为F(1,0).设点P到直线l的距离为d,由抛物线的定义可知,点P到y轴的距离为|PF|-1,所以点P到直线l的距离与到y轴的距离之和为d+|PF|-1.易知d+|PF|的最小值为点F到直线l的距离,故d+|PF|的最小值为|2+3|22+(-1)2=5,所以d+|PF|-1的最小值为5-1.答案 D二、填空题7.已知动圆过点(1,0),且与直线x=-1相切,则动圆的圆心的轨迹方程为________.解析设动圆的圆心坐标为(x,y),则圆心到点(1,0)的距离与其到直线x=-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y2=4x.答案y2=4x8.已知抛物线y2=4x的焦点为F,准线与x轴的交点为M,N为抛物线上的一点,且满足|NF|=32|MN|,则∠NMF=________.解析过N作准线的垂线,垂足是P,则有PN=NF,∴PN=32MN,∠NMF=∠MNP.又cos∠MNP=3 2,∴∠MNP=π6,即∠NMF=π6.答案π69.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.。
高三数学一轮复习 解析几何单元练习题第Ⅰ卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分). 1.圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2π+k π,k ∈Z )的位置关系是( )A .相交B .相切C .相离D .不确定的2.下列方程的曲线关于x =y 对称的是 ( )A .x 2-x +y 2=1B .x 2y +xy 2=1C .x -y =1D .x 2-y 2=13.设动点P 在直线x =1上,O 为坐标原点.以OP 为直角边,点O 为直角顶点作等腰Rt △OP Q ,则动点Q 的轨迹是 ( ) A .圆 B .两条平行直线 C .抛物线 D .双曲线4.已知双曲线)0( 1222>=-a y ax 的一条准线为23=x ,则该双曲线的离心率为 ( )A .23B .23 C .26 D .332 5.当θ是第四象限时,两直线0cos 1sin =-++a y x θθ和0cos 1=+-+b y x θ的位置关系是( )A .平行B .垂直C .相交但不垂直D .重合6.抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为 ( )A .2B .3C .4D .57.设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是( )A .1±B .21±C .33±D .3±8.设直线:220l x y ++=关于原点对称的直线为l ',若l '与椭圆2214y x +=的交点为A 、B 、,点P 为椭圆上的动点,则使PAB ∆的面积为12的点P 的个数为 ( )A .1B .2C .3D .4 9.直线3+=x y 与曲线1492=-x x y 的公共点的个数是 ( )A .1B .2C .3D .410.已知x ,y 满足0))(1(≤+--y x y x ,则22)1()1(+++y x 的最小值是( )A .0B .21C .22D .211.已知P 是椭圆192522=+y x 上的点,Q 、R 分别是圆41)4(22=++y x 和圆41)4(22=+-y x 上的点,则|PQ|+|PR|的最小值是 ( )A .89B .85C .10D .912.动点P (x ,y )是抛物线y =x 2-2x -1上的点,o 为原点,op 2当x=2时取得极小值,求,op 2的最小值 ( ) A.43116- B.43611+ C.43611- D.43116+第Ⅱ卷二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分). 13.将直线220x y +-=绕原点逆时针旋转90︒所得直线方程是 . 14.圆心为(1,2)且与直线51270x y --=相切的圆的方程为_____________.15.已知⊙M :,1)2(22=-+y x Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点,求动弦AB 的中点P 的轨迹方程为 .16.如图把椭圆2212516x y +=的长轴AB 分成8分,过每个 作x轴的垂线交椭圆的上半部分于1P ,2P ,……7P 七个点, F 是椭圆的一个焦点,则127......PF P F P F +++=______.三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共74分)。
2019-2020年高三数学一轮复习 解析几何练习7一、选择题1.已知抛物线x 2=ay 的焦点恰好为双曲线y 2-x 2=2的上焦点,则a 等于 ( ) A .1 B .4 C .8D .16解析:根据抛物线方程可得其焦点坐标为(0,a4),双曲线的上焦点为(0,2),依题意则有a4=2, 解得a =8. 答案:C2.抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是 ( ) A .-1716B .-1516C.716D.1516解析:抛物线方程可化为x 2=-y 4,其准线方程为y =116.设M (x 0,y 0),则由抛物线的定义,可知116-y 0=1⇒y 0=-1516.答案:B3.(辽宁高考)已知F 是拋物线y 2=x 的焦点,A ,B 是该拋物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为 ( )A.34 B .1 C.54D.74解析:根据拋物线定义与梯形中位线定理,得线段AB 中点到y 轴的距离为: 12(|AF |+|BF |)-14=32-14=54. 答案:C4.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是 ( ) A .相离 B .相交 C .相切D .不确定解析:设抛物线焦点弦为AB ,中点为M ,准线l ,A 1、B 1分别为A 、B 在直线l 上的射影,则|AA 1|=|AF |,|BB 1|=|BF |,于是M 到l 的距离d =12(|AA 1|+|BB 1|)=12(|AF |+|BF |)=12|AB |=半径,故相切.答案:C5.(宜宾检测)已知F 为抛物线y 2=8x 的焦点,过F 且斜率为1的直线交抛物线于A 、B 两点,则||FA |-|FB ||的值等于 ( )A .4 2B .8C .8 2D .16解析:依题意F (2,0),所以直线方程为y =x -2由⎩⎪⎨⎪⎧y =x -2,y 2=8x,消去y 得x 2-12x+4=0.设A (x 1,y 1),B (x 2,y 2),则||FA |-|FB ||=|(x 1+2)-(x 2+2)|=|x 1-x 2|=x 1+x 22-4x 1x 2=144-16=8 2.答案:C6.已知P 为抛物线y 2=4x 上一个动点,Q 为圆x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线的距离之和的最小值是 ( )A .5B .8 C.17-1D.5+2解析:抛物线y 2=4x 的焦点为F (1,0),圆x 2+(y -4)2=1的圆心为C (0,4),设点P 到抛物线的准线的距离为d ,根据抛物线的定义有d =|PF |,∴|PQ |+d =|PQ |+|PF |≥(|PC |-1)+|PF |≥|CF |-1=17-1.答案:C 二、填空题7.(永州模拟)以抛物线x 2=16y 的焦点为圆心,且与抛物线的准线相切的圆的方程为________.解析:抛物线的焦点为F (0,4),准线为y =-4,则圆心为(0,4),半径r =8.所以,圆的方程为x 2+(y -4)2=64.答案:x 2+(y -4)2=648.已知抛物线的顶点在原点,对称轴为y 轴,抛物线上一点Q (-3,m )到焦点的距离是5,则抛物线的方程为________.解析:设抛物线方程为x 2=ay (a ≠0), 则准线为y =-a4.∵Q (-3,m )在抛物线上, ∴9=am .而点Q 到焦点的距离等于点Q 到准线的距离,∴|m -(-a 4)|=5.将m =9a代入,得|9a +a4|=5,解得,a =±2,或a =±18, ∴所求抛物线的方程为x 2=±2y ,或x 2=±18y . 答案:x 2=±2y 或x 2=±18y9.给出抛物线y 2=4x ,其焦点为F ,坐标原点为O ,则在抛物线上使得△MOF 为等腰三角形的点M 有________个.解析:当MO =MF 时,△MOF 为等腰三角形,这样的M 点有两个,是线段OF 的垂直平分线与抛物线的交点;当OM =OF 时,△MOF 也为等腰三角形,这样的M 点也有两个;而使得OF =MF 的点M 不存在,所以符合题意的点M 有4个.答案:4 三、解答题10.根据下列条件求抛物线的标准方程:(1)抛物线的焦点是双曲线 16x 2-9y 2=144的左顶点; (2)过点P (2,-4).解:双曲线方程化为x 29-y 216=1,左顶点为(-3,0), 由题意设抛物线方程为y 2=-2px (p >0),则-p2=-3,∴p =6,∴抛物线方程为y 2=-12x .(2)由于P (2,-4)在第四象限且抛物线对称轴为坐标轴,可设抛物线方程为y 2=mx 或x 2=ny ,代入P 点坐标求得m =8,n =-1,∴所求抛物线方程为y 2=8x 或x 2=-y .11.已知点A (-1,0),B (1,-1),抛物线C :y 2=4x ,O 为坐标原点,过点A 的动直线l 交抛物线C 于M ,P 两点,直线MB 交抛物线C 于另一点Q .若向量与的夹角为π4,求△POM的面积.解:设点M (y 214,y 1),P (y 224,y 2),∵P ,M ,A 三点共线, ∴k AM =k PM ,即y 1y 214+1=y 1-y 2y 214-y 224, 即y 1y 21+4=1y 1+y 2, ∴y 1y 2=4.∴ · =y 214·y 224+y 1y 2=5.∵向量 与 的夹角为π4,∴| |·| |·cos π4=5.∴S △POM =12| | ·| | ·sin π4=52.12.(新课标全国卷)在平面直角坐标系xOy 中,已知点A (0,-1),B 点在直线y =-3上,M 点满足 ∥ , · = · ,M 点的轨迹为曲线C .(1)求C 的方程;(2)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值. 解:(1)设M (x ,y )由已知得B (x ,-3),A (0,-1). 所以 =(-x ,-1-y ), =(0,-3-y ), =(x ,-2).再由题意可知(+ )·=0,即(-x ,-4-2y )·(x ,-2)=0. 所以曲线C 的方程为y =14x 2-2.(2)设P (x 0,y 0)为曲线C :y =14x 2-2上一点,因为y ′=12x ,所以l 的斜率为12x 0.因此曲线l 的方程为y -y 0=12x 0(x -x 0),即x 0x -2y +2y 0-x 20=0.则O 点到l 的距离d =|2y 0-x 20|x 20+4.又y 0=14x 20-2, 所以d =12x 20+4x 20+4=12(x 20+4+4x 20+4)≥2, 当x 0=0时取等号,所以O 点到l 距离的最小值为2.2019-2020年高三数学一轮复习随机事件的概率学案文新人教版一、知识整理1.事件的分类2.频率和概率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A 出现的次数n A为事件A出现的频数,称事件A出现的比例为事件A出现的频率. (2)对于给定的随机事件A,如果随着试验次数的增加,事件A发生的稳定在某个常数上,把这个常数记为_______,叫事件A发生的概率.特别提示:频率随着试验次数的变化而变化,概率却是一个常数,它是频率的科学抽象.当试验次数越来越多时,频率向概率靠近,只要次数足够多,所得频率就近似地当作随机事件的概率.特别提示:互斥事件和对立事件都是针对两个事件而言的.在一次试验中,两个互斥的事件有可能都不发生,也可能有一个发生;而两个对立的事件则必有一个发生,但不可能同时发生.所以,两个事件互斥,他们未必对立;反之,两个事件对立,它们一定互斥.也就是说,两个事件对立是这两个事件互斥的充分而不必要条件.4.概率的几个基本性质(1)概率的取值范围: .(2)必然事件的概率P(E)= .(3)不可能事件的概率P(F)= .(4)互斥的和.事件..概率的加法公式.①如果事件A与事件B互斥,则P(A∪B)=.②若事件B与事件A互为对立事件,则P(A)=.(5)相互独立同时发生的积事件...概率的乘法公式若事件A与事件B相互独立,则=_________________二、基础训练A 组1.从6个男生、2个女生中任选3人,则下列事件中必然事件是( )A.3个都是男生B.至少有1个男生C.3个都是女生 D.至少有1个女生2.下列说法中,正确的是 ( )①频率反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n次随机试验,事件A发生m次,则事件A发生的频率就是事件的概率;③百分率是频率,但不是概率;④频率是不能脱离n次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;⑤频率是概率的近似值,概率是频率的稳定值.A.①②③④ B.①④⑤ C.①②③④⑤ D.②③3.从某班学生中任意找出一人,如果该同学的身高小于160cm的概率为0.2,该同学的身高在[160,175]的概率为0.5,那么该同学的身高超过175 cm的概率为( ) A.0.2 B.0.3 C.0.7 D.0.84.某人打靶,连续射击2次,事件“至少有1次中靶”的对立事件是( )A.至多有1次中靶 B.2次都中靶C.2次都不中靶 D.只有1次中5.(xx·马鞍山模拟)从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A.至少有1个白球,都是白球B.至少有1个白球,至少有1个红球C.恰有1个白球,恰有2个白球D.至少有1个白球,都是红球6.向三个相邻的军火库投一枚炸弹,击中第一个军火库的概率是0.025,击中另两个军火库的概率各为0.1,并且只要击中一个,另两个也爆炸,则军火库爆炸的概率为_____.7.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为________.8.袋中装有100个大小相同的红球、白球、黑球,从中任取一球,摸出红球、白球的概率分别为0.40和0.35,那么黑球共有________个.9. 一盒中装有12个球,其中5个红球、4个黑球、2个白球、1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.10. (xx·福建高考)(12分)袋中有大小、形状相同的红、黑球各一个,现依次有放回地随机摸取3次,每次摸取一个球.(1)试问:一共有多少种不同的结果?请列出所有可能的结果;(2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率.B 组1.下列事件中,随机事件的个数为 ( ) ①物体在只受重力的作用下会自由下落; ②方程x 2+2x +8=0有两个实根;③某信息台每天的某段时间收到信息咨询的请求次数超过10次; ④下周六会下雨. A .1 B .2 C .3 D .42.掷一枚均匀的硬币两次,事件M :一次正面朝上,一次反面朝上;事件N :至少一 次正面朝上,则下列结果正确的是 ( )A .P(M)=13,P(N)=12B .P(M)=12,P(N)=12C .P(M)=13,P(N)=34D .P(M)=12,P(N)=343.甲、乙二人下棋,甲获胜的概率是40%,甲不输的概率为90%,则甲、乙二人下成和 棋的概率( ) A .60% B .30% C .10% D .50%4.(xx·汕头模拟)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生 产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一只是正品(甲级)的概率为 ( ) A .0.95 B .0.97 C .0.92 D .0.085.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的 概率为 ( ) A.15B.25C.35D.456.某家庭电话,打进的电话响第一声时被接的概率为110,响第二声时被接的概率为310, 响第三声时被接的概率为25,响第四声时被接的概率为110,则电话在响前四声内被接的概率为__________.7.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的 概率为13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、得到黄球、得到绿球的概率各是多少?高三文科数学随机事件的概率学案参考答案二、基础训练A组1、B2、B3、B4、C5、C6、0.2257、0.58、259、(1)(2) 10、(1)红红红,红红黑,红黑红,黑红红,红黑黑,黑红黑,黑红黑,黑黑黑(2)B组1、B2、D3、 D4、C5、C6、7、。
高三数学解析几何练习及答案解析1.圆x2+y2+Dx+Ey=0的圆心在直线x+y=1上,那么D与E的关系是()A.D+E=2 B.D+E=1C.D+E=-1 D.D+E=-2[来X k b 1 . c o m解析 D 依题意得,圆心-D2,-E2在直线x+y=1上,因此有-D2-E2=1,即D+E=-2.2.以线段AB:x+y-2=0(02)为直径的圆的方程为()A.(x+1)2+(y+1)2=2 B.(x-1)2+(y-1)2=2C.(x+1)2+(y+1)2=8 D.(x-1)2+(y-1)2=8解析 B 直径的两端点为(0,2),(2,0),圆心为(1,1),半径为2,圆的方程为(x-1)2+(y-1)2=2.3.F1、F2是椭圆x24+y2=1的两个焦点,P为椭圆上一动点,那么使|PF1||PF2|取最大值的点P为()A.(-2,0) B.(0,1) C.(2,0) D.(0,1)和(0,-1)解析 D 由椭圆定义,|PF1|+|PF2|=2a=4,|PF1||PF2||PF1|+|PF2|22=4,当且仅当|PF1|=|PF2|,即P(0,-1)或(0,1)时,取“=”.4.椭圆x216 +y225=1的焦点分别是F1、F2,P是椭圆上一点,假设连接F1、F2、P三点恰好能构成直角三角形,那么点P到y轴的间隔是()A.165 B.3 C.163 D.253解析 A 椭圆x216+y225=1的焦点分别为F1(0,-3)、F2(0,3),易得F1PF22,PF1F2=2或PF2F1=2,点P到y轴的间隔d= |xp|,又|yp|=3,x2p16+y2p25=1,解得|xP|=165,应选A.5.假设曲线y=x2的一条切线l与直线x+4y-8=0垂直,那么l的方程为()A.4x+y+4=0 B.x-4y-4=0C.4x-y-12=0 D.4x-y-4=0解析 D 设切点为(x0,y0),那么y|x=x0=2x0, 2x0=4,即x0=2,切点为(2,4),方程为y-4=4(x-2),即4x-y-4=0.6.“m0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析 C 方程可化为x21m+y21n=1,假设焦点在y轴上,那么1n0,即m0.7.设双曲线x2a2-y2b2=1的一条渐近线与抛物线y=x2+1只有一个公共点,那么双曲线的离心率为()A.54 B.5 C.52 D.5解析 D 双曲线的渐近线为y=bax,由对称性,只要与一条渐近线有一个公共点即可由y=x2+1,y=bax,得x2-bax+1=0.=b2a2-4=0,即b2=4a2,e=5.8.P为椭圆x24+y23=1上一点,F1、F2为该椭圆的两个焦点,假设F1PF2=60,那么PF1PF2=()A.3 B.3C.23 D.2解析D ∵S△PF1F2=b2tan602=3tan 30=3=12|PF1||PF2|sin 60,|PF1||PF2|=4,PF1PF2=412=2.9.设椭圆x2m2+y2n2=1(m0,n0)的右焦点与抛物线y2=8x 的焦点相同,离心率为12,那么此椭圆的方程为()A.x212+y216=1B.x216+y212=1C.x248+y264=1D.x264+y248=1解析 B 抛物线的焦点为(2,0),由题意得c=2,cm=12,m=4,n2=12,方程为x216+y212=1.10.设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,那么C的离心率为()A.2B.3C.2 D.3解析 B 设双曲线C的方程为x2a2-y2b2=1,焦点F(-c,0),将x=-c代入x2a2-y2b2=1可得y2=b4a2,|AB|=2b2a=22a,b2=2a2,c2=a2+b2=3a2,e=ca=3.11.抛物线y2=4x的准线过双曲线x2a2-y2b2=1(a0,b0)的左顶点,且此双曲线的一条渐近线方程为y=2x,那么双曲线的焦距为()A.5 B.25C.3 D.23解析B ∵抛物线y2=4x的准线x=-1过双曲线x2a2-y2b2=1(a0,b0)的左顶点,a=1,双曲线的渐近线方程为y=bax=bx.∵双曲线的一条渐近线方程为y=2x,b=2,c=a2+b2=5,双曲线的焦距为25.12.抛物线y2=2px(p0)上一点M(1,m)(m0)到其焦点的间隔为5,双曲线x2a-y2=1的左顶点为 A,假设双曲线的一条渐近线与直线AM平行,那么实数a的值为()A.19B.14C.13D.12解析 A 由于M(1,m)在抛物线上,m2=2p,而M到抛物线的焦点的间隔为5,根据抛物线的定义知点M到抛物线的准线x=-p2的间隔也为5,1+p2=5,p=8,由此可以求得m=4,双曲线的左顶点为A(-a,0),kAM=41+a,而双曲线的渐近线方程为y=xa,根据题意得,41+a=1a,a=19.13.直线l1:ax-y+2a+1=0和l2:2x-(a-1)y+2=0(aR),那么l1l2的充要条件是a=.解析 l1l2a2a-1=-1,解得a=13.【答案】 1314.直线l:y=k(x+3)与圆O:x2+y2=4交于A,B两点,|AB|=22,那么实数k=.解析∵|AB|=22,圆O半径为2,O到l的间隔d=22-2=2.即|3k|k2+1=2,解得k= 147.【答案】 14715.过原点O作圆x2+y2-6x-8y+20=0的两条切线,设切点分别为P、Q,那么线段的长为.解析如图,圆的方程可化为(x-3)2+(y-4)2=5,|OM|=5,|OQ|=25-5=25.在△OQM中,12|QA||OM|=12|OQ||QM|,|AQ|=2555=2,||=4.【答案】 416.在△ABC中,|BC|=4,△ABC的内切圆切BC于D点,且|BD|-|CD|=22,那么顶点A的轨迹方程为.解析以BC的中点为原点,中垂线为y轴建立如下图的坐标系,E、F分别为两个切点.那么|BE|=|BD|,|CD|=|CF|,|AE|=|AF|.|AB|-|AC|=22,点A的轨迹为以B,C为焦点的双曲线的右支(y0),且a=2,c =2,b=2,方程为x22-y22=1(x2).【答案】 x22-y22=1(x2)17.(10分)在平面直角坐标系中,圆心在直线y=x+4上,半径为22的圆C经过原点O.(1)求圆C的方程;(2)求经过点(0,2)且被圆C所截得弦长为4的直线方程.解析 (1)设圆心为(a,b),那么b=a+4,a2+b2=22,解得a=-2,b=2,故圆的方程为(x+2)2+(y-2)2=8.(2)当斜率不存在时,x=0,与圆的两个交点为(0,4),(0,0),那么弦长为4,符合题意;当斜率存在时,设直线为y-2=kx,那么由题意得,8=4+-2k1+k22,无解.综上,直线方程为x=0.18.(12分)(xx合肥一模)椭圆的两个焦点坐标分别为F1(-3,0)和F2(3,0),且椭圆过点1,-32.(1)求椭圆方程;(2)过点-65,0作不与y轴垂直的直线l交该椭圆于M,N两点,A为椭圆的左顶点.试判断MAN的大小是否为定值,并说明理由.解析 (1)设椭圆方程为x2a2+y2b2=1(a0),由c=3,椭圆过点1,-32可得a2-b2=3,1a2+34b2=1,解得a2=4,b2=1,所以可得椭圆方程为x24+y2=1.(2)由题意可设直线MN的方程为:x=ky-65,联立直线MN和椭圆的方程:x=ky-65,x24+y2=1,化简得(k2+4)y2-125ky-6425=0.设M(x1,y1),N(x2,y2),那么y1y2=-6425k2+4,y1+y2=12k5k2+4,又A(-2,0),那么AMAN=(x1+2,y1)(x2+2,y2)=(k2+1)y1y2+45k(y1+y2)+1625=0,所以MAN=2.19.(12分)椭圆C的中心为直角坐标系xOy的原点,焦点在x 轴上,它的一个顶点到两个焦点的间隔分别为7和1.(1)求椭圆C的方程;(2)假设P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,|OP||OM|=e(e为椭圆离心率),求点M的轨迹方程,并说明轨迹是曲线.解析 (1)设椭圆长半轴长及半焦距分别为a,c,由,得a-c=1,a+c=7,解得a=4,c=3.椭圆方程为x216+y27=1.(2)设M(x,y),P(x,y1),其中x[-4,4],由得x2+y21x2+y2=e2,而e=34,故16(x2+y21)=9(x2+y2),①由点P在椭圆C上,得y21=112-7x216,代入①式并化简,得9y2=112.点M的轨迹方程为y=473(-44),轨迹是两条平行于x轴的线段.20.(12分)给定抛物线y2=2x,设A(a,0),a0,P是抛物线上的一点,且|PA|=d,试求d的最小值.解析设P(x0,y0)(x00),那么y20=2x0,d=|PA|=x0-a2+y20=x0-a2+2x0=[x0+1-a]2+2a-1.∵a0,x00,(1)当01时,1-a0,此时有x0=0时,dmin=1-a2+2a-1=a;(2)当a1时,1-a0,此时有x0=a-1时,dmin=2a-1.21.(12分)双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为2,且过点(4,-10),点M(3,m)在双曲线上.(1)求双曲线方程;(2)求证:点M在以F1F2为直径的圆上;(3)求△F1MF2的面积.解析(1)∵双曲线离心率e=2,设所求双曲线方程为x2-y2=(0),那么由点(4,-10)在双曲线上,知=42-(-10)2=6,双曲线方程为x2-y2=6.(2)假设点M(3,m)在双曲线上,那么32-m2=6,m2=3,由双曲线x2-y2=6知F1(23,0),F2(-23,0),MF1MF2=(23-3,-m)(-23- 3,-m)=m2-3=0,MF1MF2,故点M在以F1F2为直径的圆上.(3)S△F1MF2=12|F1F2||m|=233=6.22.(12分)实数m1,定点A(-m,0),B(m,0),S为一动点,点S与A,B两点连线斜率之积为-1m2.(1)求动点S的轨迹C的方程,并指出它是哪一种曲线;(2)当m=2时,问t取何值时,直线l:2x-y+t=0(t0)与曲线C有且只有一个交点?(3)在(2)的条件下,证明:直线l上横坐标小于2的点P到点(1,0)的间隔与到直线x=2的间隔之比的最小值等于曲线C的离心率.解析 (1)设S(x,y),那么kSA=y-0x+m,kSB=y-0x-m.由题意,得y2x2-m2=-1m2,即x2m2+y2=1(xm).∵m1,轨迹C是中心在坐标原点,焦点在x轴上的椭圆(除去x轴上的两顶点),其中长轴长为2m,短轴长为2.(2)当m=2时,曲线C的方程为x22+y2=1(x2).由2x-y+t=0,x22+y2=1,消去y,得9x2+8tx+2t2-2=0.令=64t2-362(t2-1)=0,得t=3.∵t0,t=3.此时直线l与曲线C有且只有一个公共点.(3)由(2)知直线l的方程为2x-y+3=0,设点P(a,2a+3)(a2),d1表示P到点(1,0)的间隔,d2表示P 到直线x=2的间隔,那么d1=a-12+2a+32=5a2+10a+10,d2=2-a,d1d2=5a2+10a+102-a=5a2+2a+2a-22.令f(a)=a2+2a+2a-22,那么f(a)=2a+2a-22-2a2+2a+2a-2a-24=-6a+8a-23.令f(a)=0,得a=-43.∵当a-43时,f(a)0;当-432时,f(a)0.f(a)在a=-43时取得最小值,即d1d2取得最小值,d1d2min=5f-43=22,又椭圆的离心率为22,d1d2的最小值等于椭圆的离心率.。
题组层级快练(五十五)1.如果圆的方程为x 2+y 2+kx +2y +k 2=0,那么当圆面积最大时,圆心坐标为( ) A .(-1,1) B .(1,-1) C .(-1,0) D .(0,-1)答案 D解析 r =12k 2+4-4k 2=124-3k 2,当k =0时,r 最大.2.(2019·贵州贵阳一模)圆C 与x 轴相切于T(1,0),与y 轴正半轴交于A ,B 两点,且|AB|=2,则圆C 的标准方程为( ) A .(x -1)2+(y -2)2=2 B .(x -1)2+(y -2)2=2 C .(x +1)2+(y +2)2=4 D .(x -1)2+(y -2)2=4答案 A解析 由题意得,圆C 的半径为1+1=2,圆心坐标为(1,2),∴圆C 的标准方程为(x -1)2+(y -2)2=2,故选A.3.已知圆C :x 2+y 2+Dx +Ey +F =0,则“E=F =0且D<0”是“圆C 与y 轴相切于原点”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 圆C 与y 轴相切于原点⇔圆C 的圆心在x 轴上(设坐标为(a ,0)),且半径r =|a|.∴当E =F =0且D<0时,圆心为(-D 2,0),半径为|D 2|,圆C 与y 轴相切于原点;圆(x +1)2+y 2=1与y 轴相切于原点,但D =2>0,故选A.4.(2019·重庆一中一模)直线mx -y +2=0与圆x 2+y 2=9的位置关系是( ) A .相交 B .相切 C .相离 D .无法确定答案 A解析 方法一:圆x 2+y 2=9的圆心为(0,0),半径为3,直线mx -y +2=0恒过点A(0,2),而02+22=4<9,所以点A 在圆的内部,所以直线mx -y +2=0与圆x 2+y 2=9相交.故选A. 方法二:求圆心到直线的距离,从而判定.5.(2015·山东)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A .-53或-35B .-32或-23C .-54或-45D .-43或-34答案 D解析 由光的反射原理知,反射光线的反向延长线必过点(2,-3),设反射光线所在直线的斜率为k ,则反射光线所在直线的方程为y +3=k(x -2)即kx -y -2k -3=0,又因为反射光线与圆相切,所以|-3k -2-2k -3|k 2+1=1⇒12k 2+25k +12=0⇒k =-43,或k =-34,故选D 项. 6.已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( ) A .x 2+(y±33)2=43B .x 2+(y±33)2=13C .(x±33)2+y 2=43D .(x±33)2+y 2=13答案 C解析 方法一:(排除法)由圆心在x 轴上,则排除A ,B ,再由圆过(0,1)点,故圆的半径大于1,排除D ,选C.方法二:(待定系数法)设圆的方程为(x -a)2+y 2=r 2,圆C 与y 轴交于A(0,1),B(0,-1),由弧长之比为2∶1,易知∠OCA=12∠ACB =12×120°=60°,则tan60°=|OA||OC|=1|OC|,所以a =|OC|=33,即圆心坐标为(±33,0),r 2=|AC|2=12+(33)2=43.所以圆的方程为(x±33)2+y 2=43,选C. 7.(2019·保定模拟)过点P(-1,0)作圆C :(x -1)2+(y -2)2=1的两条切线,设两切点分别为A ,B ,则过点A ,B ,C 的圆的方程是( ) A .x 2+(y -1)2=2 B .x 2+(y -1)2=1 C .(x -1)2+y 2=4 D .(x -1)2+y 2=1答案 A解析 P ,A ,B ,C 四点共圆,圆心为PC 的中点(0,1),半径为12|PC|=12(1+1)2+22=2,则过点A ,B ,C 的圆的方程是x 2+(y -1)2=2.8.直线xsinθ+ycosθ=2+sinθ与圆(x -1)2+y 2=4的位置关系是( ) A .相离 B .相切 C .相交 D .以上都有可能答案 B解析 圆心到直线的距离d =|sinθ-2-sinθ|sin 2θ+cos 2θ=2. 所以直线与圆相切.9.(2013·山东,理)过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .2x +y -3=0 B .2x -y -3=0 C .4x -y -3=0 D .4x +y -3=0答案 A解析 如图,圆心坐标为C(1,0),易知A(1,1).又k AB ·k PC =-1,且k PC =1-03-1=12,∴k AB =-2.故直线AB 的方程为y -1=-2(x -1),即2x +y -3=0,故选A.另解:易知P ,A ,C ,B 四点共圆,其方程为(x -1)(x -3)+(y -0)(y -1)=0,即x 2+y 2-4x -y +3=0.又已知圆为x 2+y 2-2x =0, ∴切点弦方程为2x +y -3=0,选A.10.(2019·湖南师大附中月考)已知圆x 2+(y -1)2=2上任一点P(x ,y),其坐标均使得不等式x +y +m≥0恒成立,则实数m 的取值范围是( ) A .[1,+∞) B .(-∞,1] C .[-3,+∞) D .(-∞,-3]答案 A解析 如图,圆应在直线x +y +m =0的右上方,圆心C(0,1)到l 的距离为|1+m|2,切线l 1应满足|1+m|2=2,∴|1+m|=2,m =1或m =-3(舍去).从而-m≤-1,∴m ≥1.11.(2019·福建福州质检)若直线x -y +2=0与圆C :(x -3)2+(y -3)2=4相交于A ,B 两点,则CA →·CB →的值为( ) A .-1 B .0 C .1 D .6答案 B解析 联立⎩⎪⎨⎪⎧(x -3)2+(y -3)2=4,x -y +2=0,消去y ,得x 2-4x +3=0.解得x 1=1,x 2=3. ∴A(1,3),B(3,5).又C(3,3),∴CA →=(-2,0),CB →=(0,2). ∴CA →·CB →=-2×0+0×2=0.12.由直线y =x +1上的一点向圆(x -3)2+y 2=1引切线,则切线长的最小值为( ) A .1 B .2 2 C.7 D .3答案 C解析 设直线上一点P ,切点为Q ,圆心为M , 则|PQ|即为切线长,MQ 为圆M 的半径,长度为1,|PQ|=|PM|2-|MQ|2=|PM|2-1,要使|PQ|最小,即求|PM|最小,此题转化为求直线y =x +1上的点到圆心M 的最小距离,设圆心到直线y =x +1的距离为d ,则d =|3-0+1|12+(-1)2=22,∴|PM|最小值为22,|PQ|=|PM|2-1=(22)2-1=7,选C.13.以直线3x -4y +12=0夹在两坐标轴间的线段为直径的圆的方程为________.答案 (x +2)2+(y -32)2=254解析 对于直线3x -4y +12=0,当x =0时,y =3;当y =0时,x =-4.即以两点(0,3),(-4,0)为端点的线段为直径,则r =32+422=52,圆心为(-42,32),即(-2,32).∴圆的方程为(x +2)2+(y -32)2=254.14.从原点O 向圆C :x 2+y 2-6x +274=0作两条切线,切点分别为P ,Q ,则圆C 上两切点P ,Q 间的劣弧长为________. 答案 π解析 如图,圆C :(x -3)2+y 2=94,所以圆心C(3,0),半径r =32.在Rt△P OC 中,∠POC =π6.则劣弧PQ 所对圆心角为2π3.弧长为23π×32=π.15.若直线l :4x -3y -12=0与x ,y 轴的交点分别为A ,B ,O 为坐标原点,则△AOB 内切圆的方程为________. 答案 (x -1)2+(y +1)2=1解析 由题意知,A(3,0),B(0,-4),则|AB|=5.∴△AOB 的内切圆半径r =3+4-52=1,内切圆的圆心坐标为(1,-1).∴内切圆的方程为(x -1)2+(y +1)2=1.16.一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,求此圆的方程.答案 x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0解析 方法一:∵所求圆的圆心在直线x -3y =0上,且与y 轴相切, ∴设所求圆的圆心为C(3a ,a),半径为r =3|a|.又圆在直线y =x 上截得的弦长为27, 圆心C(3a ,a)到直线y =x 的距离为d =|3a -a|12+12. ∴有d 2+(7)2=r 2.即2a 2+7=9a 2,∴a =±1. 故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9. 方法二:设所求的圆的方程是(x -a)2+(y -b)2=r 2, 则圆心(a ,b)到直线x -y =0的距离为|a -b|2.∴r 2=(|a -b|2)2+(7)2.即2r 2=(a -b)2+14.①由于所求的圆与y 轴相切,∴r 2=a 2.② 又因为所求圆心在直线x -3y =0上, ∴a -3b =0.③ 联立①②③,解得a =3,b =1,r 2=9或a =-3,b =-1,r 2=9. 故所求的圆的方程是(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9. 方法三:设所求的圆的方程是x 2+y 2+Dx +Ey +F =0, 圆心为(-D 2,-E 2),半径为12D 2+E 2-4F.令x =0,得y 2+Ey +F =0.由圆与y 轴相切,得Δ=0,即E 2=4F.④又圆心(-D 2,-E2)到直线x -y =0的距离为|-D 2+E2|2,由已知,得⎝⎛⎭⎪⎪⎫|-D 2+E 2|22+(7)2=r 2,即(D -E)2+56=2(D 2+E 2-4F).⑤ 又圆心(-D 2,-E2)在直线x -3y =0上,∴D -3E =0.⑥ 联立④⑤⑥,解得D =-6,E =-2,F =1或D =6,E =2,F =1.故所求圆的方程是x 2+y 2-6x -2y +1=0 或x 2+y 2+6x +2y +1=0.17.(2019·杭州学军中学月考)已知圆C :x 2+y 2+2x +a =0上存在两点关于直线l :mx +y +1=0对称. (1)求实数m 的值;(2)若直线l 与圆C 交于A ,B 两点,OA →·OB →=-3(O 为坐标原点),求圆C 的方程. 答案 (1)m =1 (2)x 2+y 2+2x -3=0解析 (1)圆C 的方程为(x +1)2+y 2=1-a ,圆心C(-1,0). ∵圆C 上存在两点关于直线l :mx +y +1=0对称, ∴直线l :mx +y +1=0过圆心C. ∴-m +1=0,解得m =1.(2)联立⎩⎪⎨⎪⎧x 2+y 2+2x +a =0,x +y +1=0,消去y ,得2x 2+4x +a +1=0. 设A(x 1,y 1),B(x 2,y 2), Δ=16-8(a +1)>0,∴a<1. 由x 1+x 2=-2,x 1x 2=a +12,得y 1y 2=(-x 1-1)(-x 2-1)=a +12-1. ∴OA →·OB →=x 1x 2+y 1y 2=a +1-1=a =-3. ∴圆C 的方程为x 2+y 2+2x -3=0.。
2019-2020年高三数学一轮复习 解析几何练习1一、选择题1.已知过点A (-2,m )和B (m,4)的直线与直线2x +y -1=0平行,则m 的值为 ( ) A .0 B .-8 C .2D .10解析:由k =4-m m +2=-2,得m =-8.答案:B2.(宜宾模拟)直线x sin α+y +2=0的倾斜角的取值范围是 ( ) A .[0,π) B .[0,π4]∪[3π4,π)C .[0,π4]D .[0,π4]∪(π2,π)解析:设题中直线的倾斜角为θ,则有tan θ=-sin α,其中sin α∈[-1,1]. 又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π答案:B3.直线2x -y -2=0绕它与y 轴的交点逆时针旋转π2所得的直线方程是 ( )A .x -2y +4=0B .x +2y -4=0C .x -2y -4=0D .x +2y +4=0解析:直线2x -y -2=0与y 轴的交点为A (0,-2), 所求直线过A 且斜率为-12,∴所求直线方程:y +2=-12(x -0),即x +2y +4=0.答案:D4.设点A (-2,3),B (3,2),若直线ax +y +2=0与线段AB 没有交点,则a 的取值范围是( )A .(-∞,-52]∪[43,+∞)B .(-43,52)C .[-52,43]D .(-∞,-43]∪[52,+∞)解析:直线ax +y +2=0恒过点M (0,-2),且斜率为-a , ∵k MA =3---2-0=-52,k MB =2--3-0=43,由图可知:-a >-52且-a <43, ∴a ∈(-43,52).答案:B5. (皖南八校联考)已知直线a 2x +y +2=0与直线bx - (a 2+1)y -1=0互相垂直,则|ab |的最小值为 ( )A .5B .4C .2D .1解析:由题意知,a 2b -(a 2+1)=0且a ≠0,∴a 2b =a 2+1,∴ab =a 2+1a =a +1a,∴|ab |=|a +1a |=|a |+1|a |≥2.(当且仅当a =±1时取“=”).答案:C6.直线l 1:3x -y +1=0,直线l 2过点(1,0),且l 2的倾斜角是l 1的倾斜角的2倍,则直线l 2的方程为 ( )A .y =6x +1B .y =6(x -1)C .y =34(x -1)D .y =-34(x -1)解析:设直线l 1的倾斜角为α,则由tan α=3可求出直线l 2的斜率k =tan2α=2tan α1-tan 2α=-34,再由直线l 2过点(1,0)即可求得其方程. 答案:D 二、填空题7.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =________.解析:由题可知纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线,于是⎩⎪⎨⎪⎧3+n 2=2×7+m 2-3n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35n =315.故m +n =345.答案:3458.(长沙模拟)已知A (3,0),B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________.解析:直线AB 的方程为x 3+y 4=1,P (x ,y ),则x =3-34y ,∴xy =3y -34y 2=34(-y 2+4y )=34[-(y -2)2+4]≤3. 答案:39.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为________. 解析:由题意知截距均不为零.设直线方程为x a +y b=1,由⎩⎪⎨⎪⎧a +b =62a +1b=1,解得⎩⎪⎨⎪⎧a =3b =3或⎩⎪⎨⎪⎧a =4b =2.故所求直线方程为x +y -3=0或x +2y-4=0.答案:x +y -3=0或x +2y -4=0 三、解答题10.在△ABC 中,已知A (5,-2)、B (7,3),且AC 边的中点M 在y 轴上,BC 边的中点N 在x 轴上,求:(1)顶点C 的坐标; (2)直线MN 的方程.解:(1)设点C 的坐标为(x ,y ),则有x +52=0,3+y2=0, ∴x =-5,y =-3.即点C 的坐标为(-5,-3).(2)由题意知,M (0,-52),N (1,0),∴直线MN 的方程为x -y52=1,即5x -2y -5=0.11.已知两点A (-1,2),B (m,3). (1)求直线AB 的方程; (2)已知实数m ∈[-33-1,3-1],求直线AB 的倾斜角α的取值范围. 解:(1)当m =-1时,直线AB 的方程为x =-1,当m ≠-1时,直线AB 的方程为y -2=1m +1(x +1). (2)①当m =-1时,α=π2;②当m ≠-1时,m +1∈[-33,0)∪(0,3], ∴k =1m +1∈(-∞,-3]∪[33,+∞), ∴α∈[π6,π2)∪(π2,2π3].综合①②知,直线AB 的倾斜角α的取值范围为[π6,23π].12.已知实数x ,y 满足y =x 2-2x +2(-1≤x ≤1).试求:y +3x +2的最大值与最小值.解:由y +3x +2的几何意义可知,它表示经过定点P (-2,-3)与曲线段AB 上任一点(x ,y )的直线的斜率k ,如图可知:k PA ≤k ≤k PB ,由已知可得: A (1,1),B (-1,5),∴43≤k ≤8, 故y +3x +2的最大值为8,最小值为43.2019-2020年高三数学一轮复习 解析几何练习2一、选择题1.已知两点A (3,2)和B (-1,4)到直线mx +y +3=0的距离相等,则m 的值等于 ( )A .0或-12 B.12或-6C .-12或12D .0或12解析:依题意得|3m +2+3|m 2+1=|-m +4+3|m 2+1,∴|3m +5|=|m -7|,∴3m +5=m -7或3m +5=7-m .∴m =-6或m =12.答案:B2.直线x -2y +1=0关于直线x =1对称的直线方程是 ( )A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=0解析:由⎩⎪⎨⎪⎧x -2y +1=0x =1得交点A (1,1),且可知所求直线斜率为-12.∴方程为x +2y -3=0.答案:D3.(南昌模拟)P 点在直线3x +y -5=0上,且P 到直线x -y -1=0的距离为2,则P 点坐标为 ( )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-1,2) 解析:设P (x,5-3x ),则d =|x -5+3x -1|12+-2=2,|4x -6|=2,4x -6=±2, ∴x =1或x =2,∴P (1,2)或(2,-1). 答案:C4.直线l 1:3x +4y -7=0与直线l 2:6x +8y +1=0间的距离为 ( ) A.85 B.32 C .4D .8解析:因为直线l 2的方程可化为3x +4y +12=0.所以直线l 1与直线l 2的距离为|12+7|32+42=32. 答案:B5.使三条直线4x +y =4,mx +y =0,2x -3my =4不能围成三角形的m 值最多有 ( ) A .1个 B .2个 C .3个D .4个解析:要使三条直线不能围成三角形,只需其中两条直线平行或者三条直线共点即可. 若4x +y =4与mx +y =0平行,则m =4;若4x +y =4与2x -3my =4平行,则m =-16;若mx +y =0与2x -3my =4平行,则m 值不存在;若4x +y =4与mx +y =0及2x -3my =4共点,则m =-1或m =23.综上可知,m 值最多有4个. 答案:D6.曲线|x |2-|y |3=1与直线y =2x +m 有两个交点,则m 的取值范围是 ( )A .m >4或m <-4B .-4<m <4C .m >3或m <-3D .-3<m <3解析:曲线|x |2-|y |3=1的草图如图所示.与直线y =2x +m 有两个交点.则m >4或m <-4.. 答案:A 二、填空题7.过两直线x +3y -10=0和y =3x 的交点,并且与原点距离为1的直线方程为________________.解析:设所求直线为(x +3y -10)+λ(3x -y )=0, 整理,得(1+3λ)x +(3-λ)y -10=0. 由点到直线距离公式,得λ=±3. ∴所求直线为x =1和4x -3y +5=0. 答案:x =1或4x -3y +5=08.(苏州检测)已知实数x 、y 满足2x +y +5=0,那么x 2+y 2的最小值为 解析:x 2+y 2表示点(x ,y )到原点的距离.根据数形结合得x 2+y 2的最小值为原点到直线2x +y +5=0的距离,即d =55= 5.答案: 59.已知1a +1b=1(a >0,b >0),点(0,b )到直线x -2y -a =0的距离的最小值为________.解析:点(0,b )到直线x -2y -a =0的距离为d =a +2b5=15(a +2b )(1a +1b )=15(3+2ba +ab)≥15(3+22)=35+2105,当a 2=2b 2且a +b =ab ,即a =1+2,b =2+22时取等号.答案:35+2105三、解答题10.已知直线l 经过点P (3,1),且被两平行直线l 1:x +y +1=0和l 2:x +y +6=0截得的线段之长为5,求直线l 的方程.解:法一:若直线l 的斜率不存在,则直线l 的方程为x =3,此时与l 1、l 2的交点分别为A (3,-4)和B (3,-9),截得的线段AB 的长|AB |=|-4+9|=5.符合题意.若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1.解方程组⎩⎪⎨⎪⎧y =k x -+1,x +y +1=0, 得A (3k -2k +1,-4k -1k +1)解方程组⎩⎪⎨⎪⎧y =k x -+1,x +y +6=0, 得B (3k -7k +1,-9k -1k +1)由|AB |=5,得(3k -2k +1-3k -7k +1)2+(-4k -1k +1+9k -1k +1)2=52.解之,得k =0,即所求的直线方程为y =1. 综上可知,所求l 的方程为x =3或y =1.法二:由题意,直线l 1、l 2之间的距离为d =|1-6|2=522,且直线l被平行直线l 1、l 2所截得的线段AB 的长为5(如图所示),设直线l 与直线l 1的夹角为θ,则sin θ=5225=22,故θ=45°.由直线l 1:x +y +1=0的倾斜角为135°,知直线l 的倾斜角为0°或90°,又由直线l 过点P (3,1),故直线l 的方程为x =3或y =1.11.已知两直线l 1:ax -by +4=0,l 2:(a -1)x +y +b =0. 求分别满足下列条件的a ,b 的值.(1)直线l 1过点(-3,-1),并且直线l 1与l 2垂直;(2)直线l 1与直线l 2平行,并且坐标原点到l 1,l 2的距离相等. 解:(1)∵l 1⊥l 2, ∴a (a -1)+(-b )·1=0, 即a 2-a -b =0.①又点(-3,-1)在l 1上, ∴-3a +b +4=0② 由①②得a =2,b =2.(2)∵l 1∥l 2,∴a b =1-a ,∴b =a1-a .故l 1和l 2的方程可分别表示为: (a -1)x +y +a -a =0,(a -1)x +y +a1-a =0,又原点到l 1与l 2的距离相等. ∴4⎪⎪⎪⎪⎪⎪a -1a =⎪⎪⎪⎪⎪⎪a 1-a ,∴a =2或a =23,∴a =2,b =-2或a =23,b =2.12.两条互相平行的直线分别过点A (6,2)和B (-3,-1),如果两条平行直线间的距离为d ,求:(1)d 的变化范围;(2)当d 取最大值时,两条直线的方程.解:(1)当两条平行直线与AB 垂直时,两平行直线间的距离最大,最大值为d =|AB |=+2++2=310,当两条平行线各自绕点B ,A 逆时针旋转时,距离逐渐变小,越来越接近于0,所以0<d ≤310,即所求的d 的变化范围是(0,310].(2)当d 取最大值310时,两条平行线都垂直于AB , 所以k =-1k AB =-12--6--=-3,故所求的直线方程分别为y -2=-3(x -6) 和y +1=-3(x +3), 即3x +y -20=0和3x +y +10=0.。