饱和非线性的描述函数
- 格式:ppt
- 大小:1.24 MB
- 文档页数:28
9 控制系统的非线性问题9.1概述在物理世界中,理想的线性系统并不存在。
严格来讲,所有的控制系统都是非线性系统。
例如,由电子线路组成的放大元件,会在输出信号超过一定值后出现饱和现象。
当由电动机作为执行元件时,由于摩擦力矩和负载力矩的存在,只有在电枢电压达到一定值的时候,电动机才会转动,存在死区。
实际上,所有的物理元件都具有非线性特性。
如果一个控制系统包含一个或一个以上具有非线性特性的元件,则称这种系统为非线性系统,非线性系统的特性不能由微分方程来描述。
图9-1所示的伺服电机控制特性就是一种非线性特性,图中横坐标u 为电机的控制电压,纵坐标ω为电机的输出转速,如果伺服电动机工作在A 1OA 2区段,则伺服电机的控制电压与输出转速的关系近似为线性,因此可以把伺服电动机作为线性元件来处理。
但如果电动机的工作区间在B 1OB 2区段.那么就不能把伺服电动机再作为线性元件来处理,因为其静特性具有明显的非线性。
图9-1 伺服电动机特性9.1.1控制系统中的典型非线性特性的类型常见典型非线性特性有饱和非线性、间隙非线性、死区非线性、继电非线性等。
9.1.1.1饱和非线性控制系统中的放大环节及执行机构受到电源电压和功率的限制,都具有饱和特性。
如图9-2所示,其中a x a <<-的区域是线性范围,线性范围以外的区域是饱和区。
许多元件的运动范围由于受到能源、功率等条件的限制,也都有饱和非线性特性。
有时,工程上还人为引入饱和非线性特性以限制过载。
图9-2 饱和非线性9.1.1.2不灵敏区(死区)非线性控制系统中的测量元件、执行元件等一般都具有死区特性。
例如一些测量元件对微弱的输入量不敏感,电动机只有在输入信号增大到一定程度的时候才会转动等等。
如图9-3所示,其特性是输入信号在∆<<∆-x 区间时,输出信号为零。
超出此区间时,呈线性特性。
这种只有在输入量超过一定值后才有输出的特性称为不灵敏区非线性,其中区域∆<<∆-x 叫做不灵敏区或死区。
2.5系统非线性环节的仿真在实际系统中,往往存在各种非线性特性,可将此当作非线性环节处理,这种环节的输入和输出之间关系是一种非线性函数关系,因此非线性环节的仿真就是用仿真语言来描述这些关系。
本节介绍几种典型的非线性环节的仿真算法。
2.5.1饱和环节饱和环节在控制系统中较普遍,例如饱和放大器、限幅装置、伺服阀饱和特性等。
饱和环节特性如图所示。
图2.5-1饱和特性该特性对应的数学表达式为:u u兰Cy = * c u >c (2.5-1)—c u < —c式中,c为饱和环节特征参数,斜率为1,该环节特性可用MATLAB编程仿真,利用上面算法的编写的MATLAB函数SATURATION,调用格式为:y = saturation (u,c)其中,u为输入;c为饱和环节特征参数,y为饱和环节输出Saturati on.m; amp209.m2.5.2死区环节在控制装置中,放大器的不灵敏区,伺服阀和比例阀阀芯正遮羞特性,传动元件静摩擦等造成的死区特性。
典型死区非线性环节特性如图2.5-2所示。
可用下面数学关系来描述:0 u兰cy = * u -c u >c (2.5-2)u + c u c —c式中,c为死区特征参数,斜率为1。
该环节可根据上述算法编写MATLAB函数deadzone供调用,格式如下:y 二deadzone(u, c)其中,u为环节输入;c为死区环节特征参数,y为死区环节输出。
Deadz on e.m; amp210m齿轮传动副和丝杆螺母传动副中存在传动间隙都属这一类非线性因素,它对系统精度带来影响。
齿隙非线性环节特性如图2.5-3所示。
图2.5-3齿隙特性当输入u增加时,输出沿a > b > d线段变化;当输入u减小时,输出沿d >e > a线段变化。
在线段bd上,输入增加时,当前输出值y(k)总是大于前一时刻的输出值y(k-1)。
而在ea上,输入减小时,当前输出y(k)总是小于前一时刻的输出值y(k-1)。
8 非线性控制系统前面几章讨论的均为线性系统的分析和设计方法,然而,对于非线性程度比较严重的系统,不满足小偏差线性化的条件,则只有用非线性系统理论进行分析。
本章主要讨论本质非线性系统,研究其基本特性和一般分析方法。
8.1非线性控制系统概述在物理世界中,理想的线性系统并不存在。
严格来讲,所有的控制系统都是非线性系统。
例如,由电子线路组成的放大元件,会在输出信号超过一定值后出现饱和现象。
当由电动机作为执行元件时,由于摩擦力矩和负载力矩的存在,只有在电枢电压达到一定值的时候,电动机才会转动,存在死区。
实际上,所有的物理元件都具有非线性特性。
如果一个控制系统包含一个或一个以上具有非线性特性的元件,则称这种系统为非线性系统,非线性系统的特性不能由微分方程来描述。
图8-1所示的伺服电机控制特性就是一种非线性特性,图中横坐标u 为电机的控制电压,纵坐标ω为电机的输出转速,如果伺服电动机工作在A 1OA 2区段,则伺服电机的控制电压与输出转速的关系近似为线性,因此可以把伺服电动机作为线性元件来处理。
但如果电动机的工作区间在B 1OB 2区段.那么就不能把伺服电动机再作为线性元件来处理,因为其静特性具有明显的非线性。
图8-1 伺服电动机特性8.1.1控制系统中的典型非线性特性组成实际控制系统的环节总是在一定程度上带有非线性。
例如,作为放大元件的晶体管放大器,由于它们的组成元件(如晶体管、铁心等)都有一个线性工作范围,超出这个范围,放大器就会出现饱和现象;执行元件例如电动机,总是存在摩擦力矩和负载力矩,因此只有当输入电压达到一定数值时,电动机才会转动,即存在不灵敏区,同时,当输入电压超过一定数值时,由于磁性材料的非线性,电动机的输出转矩会出现饱和;各种传动机构由于机械加工和装配上的缺陷,在传动过程中总存在着间隙,等等。
实际控制系统总是或多或少地存在着非线性因素,所谓线性系统只是在忽略了非线性因素或在一定条件下进行了线性化处理后的理想模型。
§7.4非线性系统的描述函数分析法一、描述函数法的基本概念假设非线性系统的输入函数为)sin()(t X t x ω=非线性环节Nx (t )n(t )输出n(t)将是非正弦的周期信号。
可以展成傅利叶级数,n(t)是由恒定分量、基波分量、和高次谐波组成。
假设1:如果非线性部分的特性曲线具有中心对称性质,那以输出信号n(t)的波形具有奇次对称性(波形的后半个周期重复前半个周期的变化,但符号相反)输出不含直流分量,输出响应的平均值为零。
假设2:线性部分具有良好的低通滤波性,那么高次谐波的幅值远小于基波。
闭环通道内近似地只有一次谐波信号流通。
对于一般的非线性系统而言这个条件是满足的,线性部分的低通滤波性越好,用描述函数法分析的精度越高。
上述两个假设满足时,非线性环节的输入是一个正弦信号,系统的输出是相同频率的正弦信号,对于非线性环节的输出只研究其基波成分就足够了。
假设系统中非线性环节的输入函数为tX t x ωsin )(=输出信号可以展成傅利叶级数∑∑∞=∞=++=++=1010)sin(2)cos sin (2)(i i i i i i t i Y A t i B t i A A t n ϕωωω⎰=πωωπ20)()cos()(1t d t i t n A i ⎰=πωωπ20)()sin()(1t d t i t n B i 22iii BA Y +=iii B A tg1-=ϕ若非线性部分是齐次对称的,则A 0=0,线性部分又具有低通滤波特性,可以认为非线性环节的输出中只有基波分量能够通过闭环回路反馈到输入端。
输出部分的基波分量为)sin(cos sin )(11111ϕωωω+=+=t Y t B t A t y ⎰=πωωπ201)()cos()(1t d t t n A ⎰=πωωπ201)()sin()(1t d t t n B 21211B A Y +=1111B A tg -=ϕ可以用一个复数来描述非线性环节输入正弦信号和输出信号基波的关系。
Excel中s型曲线拟合Excel是一款常用的电子表格软件,它不仅可以用于数据存储和计算,还可以进行数据分析和可视化。
其中,S型曲线拟合是Excel中一个非常实用的功能,它可以帮助我们对数据进行非线性拟合,从而更好地理解数据的分布规律。
本文将介绍如何使用Excel进行S型曲线拟合。
一、S型曲线拟合的基本原理S型曲线是一种常见的非线性函数,它的图像呈“S”形,因此得名。
在实际应用中,S型曲线经常被用来描述一些具有饱和效应的非线性关系,例如生物生长模型、人口增长模型等。
S型曲线的数学表达式为:y = a / (1 + b * exp(-c * x))其中,a、b、c为常数,x为自变量,y为因变量。
通过调整a、b、c的值,我们可以使S型曲线的形状发生变化,从而更好地拟合实际数据。
二、Excel中进行S型曲线拟合的步骤1. 准备数据在进行S型曲线拟合之前,我们需要准备好需要分析的数据。
这些数据可以是实验数据、调查数据等,只要它们能够反映我们所关心的现象即可。
需要注意的是,数据应该按照时间或其他顺序排列好,以便我们能够观察到数据的变化趋势。
2. 打开Excel并导入数据打开Excel软件,新建一个工作簿。
然后,将准备好的数据导入到Excel中。
可以通过复制粘贴的方式将数据从其他软件或文件中导入到Excel中。
如果数据量较大,可以使用Excel的数据导入功能来快速导入数据。
3. 选择数据范围在Excel中,我们需要选择一个数据范围来进行S型曲线拟合。
这个数据范围应该包括所有需要进行拟合的数据点。
在选择数据范围时,可以使用Excel的单元格选择功能来选中需要的数据区域。
4. 打开“数据分析”工具箱在Excel中,有一个名为“数据分析”的工具箱,它可以帮助我们进行各种数据分析操作,包括S型曲线拟合。
要打开“数据分析”工具箱,可以按下“Alt+D”快捷键,或者在Excel菜单栏中选择“数据”>“数据分析”。