第4章 Multisim分析方法
- 格式:ppt
- 大小:1.09 MB
- 文档页数:46
Multisim常用分析方法第四章 Multisim9 常用分析方法(1.6 电路分析方法 )1.6.1 multisim 的分析菜单multisim 具有较强的分析功能,用鼠标点击Simulate(仿真)菜单中的Analysis (分析)菜单(Simulate →Analysis ),可以弹出电路分析菜单。
点击设计工具栏的也可以弹出该电路分析菜单。
1.6.2 直流工作点分析(DC Operating Point )在进行直流工作点分析时,电路中的交流源将被置零,电容开路,电感短路。
用鼠标点击Simulate → Analysis →DC Operating Point ,将弹出DC Operating Point Analysis 对话框,进入直流工作点分析状态。
如图1.6.1 所示,DCOperating Point Analysis 对话框有Output 、Analysis Options 和Summary 3 个选项,分别介绍如下:图1.6.1 DC Operating Point Analysis 对话框1.6.2 直流工作点分析 (DC OperatingPoint )1. Output 对话框Output 对话框用来选择需要分析的节点和变量。
(1 )Variables in Circuit 栏在Variables in Circuit 栏中列出的是电路中可用于分析的节点和变量。
点击 Variables in circuit 窗口中的下箭头按钮,可以给出变量类型选择表。
在变量类型选择表中:点击Voltage and current 选择电压和电流变量。
点击Voltage 选择电压变量。
点击 Current 选择电流变量。
点击Device /Model Parameters 选择元件/模型参数变量。
点击All variables 选择电路中的全部变量。
1.6.2 直流工作点分析 (DC Operating Point )点击该栏下的 Filter Unselected Variables 按钮,可以增加一些变量。
Multisim的电路分析方法:主要有直流工作点分析,交流分析,瞬态分析,傅里叶分析,噪声分析,失真分析,直流扫描分析,灵敏度分析,参数扫描分析,温度扫描分析,零一极点分析,传递函数分析,最坏情况分析,蒙特卡罗分析,批处理分析,用户自定义分析,噪声系数分析。
1.直流工作点分析(DC Operating):在进行直流工作点分析时,电路中的交流源将被置零,电容开路,电感短路。
2.交流分析(AC Analysis):交流分析用于分析电路的频率特性。
需先选定被分析的电路节点,在分析时,电路中的直流源将自动置零,交流信号源、电容、电感等均处在交流模式,输入信号也设定为正弦波形式。
若把函数信号发生器的其他信号作为输入激励信号,在进行交流频率分析时,会自动把它作为正弦信号输入。
因此输出响应也是该电路交流频率的函数。
3.瞬态分析(Transient Analysis):瞬态分析是指定所选定的电路节点的时域响应。
即观察该节点在整个显示周期中每一时刻的电压波形。
在进行瞬态分析时,直流电源保持常数,交流信号源随着时间而改变,电容和电感都是能量储存模式元件。
4.傅里叶分析(Fourier Analysis):用于分析一个时域信号的直流分量、基频分量和谐波分量。
即把被测节点处的时域变化信号作为离散傅里叶变换,分析的节点,一般将电路中的交流激励源的频率设定为基频,若在电路中有几个交流源时,可以将基频设定在这些频率的最小公因数上。
5.噪声分析(Noise Analysis):噪声分析用于检查电子线路输出信号的噪声功率幅度,用于计算、分析电阻或晶体管的噪声对电路的影响。
在分析时,假定电路中各自噪声源是互不相关的,因此他们的数值可以分开各自计算。
总的噪声是各自噪声在该节点的和(用有效值表示)。
6.噪声系数分析(Noise Figure Analysis):主要用于研究元件模型中的噪声参数对电路的影响。
在Multisim中噪声系数定义中:No是输出噪声功率,Ns是信号源电阻的热噪声,G是电路的AC增益(即二端口网络的输出信号与输入信号的比)。
multisim电路课程设计一、课程目标知识目标:1. 理解Multisim软件的基本操作和界面功能,掌握电路图的绘制方法。
2. 学习并掌握Multisim中常用电子元器件的属性、功能及使用方法。
3. 学会运用Multisim软件进行电路仿真,分析电路性能,理解电路工作原理。
技能目标:1. 能够独立使用Multisim软件绘制电路图,并进行仿真实验。
2. 能够运用Multisim软件对电路进行分析,解决实际问题。
3. 培养学生动手实践、团队协作和解决问题的能力。
情感态度价值观目标:1. 培养学生对电子电路的兴趣和热情,激发创新意识。
2. 培养学生严谨的科学态度,养成良好的实验习惯。
3. 增强学生的团队合作意识,培养沟通、交流的能力。
课程性质:本课程为实践性课程,强调理论联系实际,培养学生的动手能力和创新思维。
学生特点:学生已具备一定的电子电路基础知识,对Multisim软件有一定了解,但对软件的具体应用尚不熟悉。
教学要求:教师需引导学生通过实践操作,掌握Multisim软件的使用,将理论知识应用于实际电路设计中。
教学过程中注重培养学生的动手实践能力、分析问题和解决问题的能力。
通过课程学习,使学生能够独立完成电路设计与仿真实验,提高电子电路设计能力。
二、教学内容1. Multisim软件基本操作与界面介绍:包括软件安装、界面布局、菜单功能、工具栏使用等,使学生熟悉Multisim的操作环境。
教材章节:第一章 Multisim软件概述2. 电子元器件及其使用方法:学习电阻、电容、电感、二极管、三极管等常用元器件的属性、符号及功能。
教材章节:第二章 常用电子元器件3. 电路图的绘制与编辑:掌握电路图的绘制、修改、元件属性设置等操作。
教材章节:第三章 电路图的绘制与编辑4. 电路仿真与分析:学习使用Multisim进行电路仿真,分析电路性能,包括静态工作点分析、瞬态分析、交流分析等。
教材章节:第四章 电路仿真与分析5. 实践项目:设计简单的电路并进行仿真实验,如放大器、滤波器等,巩固所学知识。
基于MULTISIM仿真电路的设计与分析一、本文概述本文旨在探讨基于Multisim仿真软件的电路设计与分析方法。
我们将详细介绍Multisim仿真电路的基本原理,操作流程,以及在实际电路设计中的应用。
通过本文,读者将能够了解Multisim仿真软件的基本功能,掌握电路设计的基本步骤,学会利用Multisim进行电路仿真分析,从而提高电路设计效率,减少实际电路搭建过程中的错误和成本。
我们将简要介绍Multisim仿真软件的发展历程、特点及其在电路设计领域的重要性。
然后,我们将详细阐述电路设计的基本流程,包括需求分析、原理图设计、仿真分析、优化改进等步骤。
接下来,我们将通过具体的案例,展示如何利用Multisim进行电路仿真分析,包括电路元件的选择、电路连接、仿真参数设置、结果分析等过程。
我们将对基于Multisim仿真电路的设计与分析方法进行总结,并展望其在未来电路设计领域的应用前景。
通过本文的学习,读者将能够熟悉并掌握基于Multisim仿真电路的设计与分析方法,为实际电路设计提供有力的支持。
本文也将为电路设计师、电子爱好者以及相关专业学生提供有益的参考和借鉴。
二、MULTISIM仿真软件基础MULTISIM是一款强大的电路设计与仿真软件,广泛应用于电子工程、计算机科学及相关领域的教学和科研中。
它为用户提供了一个直观、易用的图形界面,允许用户创建、编辑和模拟各种复杂的电路系统。
本章节将详细介绍MULTISIM仿真软件的基础知识和基本操作,为后续的电路设计与分析奠定坚实基础。
MULTISIM软件界面简洁明了,主要由菜单栏、工具栏、电路图编辑区和结果输出区等部分组成。
用户可以通过菜单栏访问各种命令和功能,如文件操作、电路元件库、仿真设置等。
工具栏则提供了一系列快捷按钮,方便用户快速选择和使用常用的电路元件和工具。
电路图编辑区是用户创建和编辑电路图的主要区域,支持多种电路元件的拖拽和连接。
结果输出区则用于显示仿真结果和数据分析。
Multisim的电路分析方法:主要有直流工作点分析,交流分析,瞬态分析,傅里叶分析,噪声分析,失真分析,直流扫描分析,灵敏度分析,参数扫描分析,温度扫描分析,零一极点分析,传递函数分析,最坏情况分析,蒙特卡罗分析,批处理分析,用户自定义分析,噪声系数分析。
1.直流工作点分析(DC Operating):在进行直流工作点分析时,电路中的交流源将被置零,电容开路,电感短路。
2.交流分析(AC Analysis):交流分析用于分析电路的频率特性。
需先选定被分析的电路节点,在分析时,电路中的直流源将自动置零,交流信号源、电容、电感等均处在交流模式,输入信号也设定为正弦波形式。
若把函数信号发生器的其他信号作为输入激励信号,在进行交流频率分析时,会自动把它作为正弦信号输入。
因此输出响应也是该电路交流频率的函数。
3.瞬态分析(Transient Analysis):瞬态分析是指定所选定的电路节点的时域响应。
即观察该节点在整个显示周期中每一时刻的电压波形。
在进行瞬态分析时,直流电源保持常数,交流信号源随着时间而改变,电容和电感都是能量储存模式元件。
4.傅里叶分析(Fourier Analysis):用于分析一个时域信号的直流分量、基频分量和谐波分量。
即把被测节点处的时域变化信号作为离散傅里叶变换,分析的节点,一般将电路中的交流激励源的频率设定为基频,若在电路中有几个交流源时,可以将基频设定在这些频率的最小公因数上。
5.噪声分析(Noise Analysis):噪声分析用于检查电子线路输出信号的噪声功率幅度,用于计算、分析电阻或晶体管的噪声对电路的影响。
在分析时,假定电路中各自噪声源是互不相关的,因此他们的数值可以分开各自计算。
总的噪声是各自噪声在该节点的和(用有效值表示)。
6.噪声系数分析(Noise Figure Analysis):主要用于研究元件模型中的噪声参数对电路的影响。
在Multisim中噪声系数定义中:No是输出噪声功率,Ns是信号源电阻的热噪声,G是电路的AC增益(即二端口网络的输出信号与输入信号的比)。
第4讲Multisim7的高级分析方法1主要内容• 4.1灵敏度分析(Sensitivity Analysis)• 4.2参数扫描分析(Parameter Sweep Analysis)• 4.3温度扫描分析(Temperature Sweep Analysis)• 4.4零极点分析(Pole Zero Analysis)• 4.5传输函数分析(Transfer Function Analysis)• 4.6蒙特卡罗分析(Monte Carlo Analysis)• 4.7最坏情况分析(Worst case Analysis)• 4.8批处理分析(Batched Analysis)• 4.9用户自定义分析(User defined Analysis )24.1灵敏度分析(Sensitivity Analysis)利用参数扰动法,计算元件参数变化对输出电压或电流的影响。
可以找到电路中对直流偏置点影响最大的元件。
目的是努力减少电路对元件参数变化或温度漂移的敏感程度。
直流灵敏度分析是在确定电路直流工作点的基础上,计算电路中指定的输出节点电压或电流相对于其他所有元件参数的直流灵敏度仿真结果以数值形式显示。
交流灵敏度分析是计算指定的输出节点电压或电流相对于一个元件参数的小信号交流灵敏度,仿真结果是绘出相应的曲线。
31.构造电路电阻分压电路,分析该电路的灵敏度42.启动灵敏度分析工具选择Simulate / Analysis / Sensitivity573.检查分析结果直流灵敏度分析结果交流灵敏度分析结果89104.2参数扫描分析(Parameter Sweep Analysis)参数扫描分析是在用户指定每个参数变化值的情况下,对电路的特性进行分析。
在参数扫描分析中,变化的参数可以从温度参数扩展为独立电压源、独立电流源、温度、模型参数和全局参数等多种参数。
显然,温度扫描分析也可以通过参数扫描分析来完成。
111.构造电路122.启动参数扫描分析工具选择Simulate / Analysis / Parameter Sweep133.查看分析结果154.3温度扫描分析(Temperature Sweep Analysis)温度扫描分析就是研究温度变化对电路性能的影响,如果未设定温度扫描,Multisim7将在固定温度27℃下对电路进行仿真分析。