光敏电阻实验报告A
- 格式:pdf
- 大小:433.66 KB
- 文档页数:2
一、实验目的1. 了解光敏电阻的工作原理和特性。
2. 掌握光敏电阻模块的使用方法。
3. 通过实验验证光敏电阻的光照特性、光谱特性和伏安特性。
4. 学习使用相关仪器设备进行实验操作和数据采集。
二、实验原理光敏电阻是一种利用半导体的光电效应制成的电阻值随入射光的强弱而改变的电阻器。
当光线照射到光敏电阻时,电子吸收光子的能量从键合状态过渡到自由状态,引起电阻值的变化。
光敏电阻的光照特性、光谱特性和伏安特性是光敏电阻的基本特性。
三、实验仪器与设备1. 光敏电阻模块2. 可调光源3. 电压表4. 电流表5. 万用表6. 数据采集器7. 计算机及数据采集软件四、实验内容与步骤1. 连接电路将光敏电阻模块、可调光源、电压表、电流表、万用表等仪器设备按照实验电路图连接好。
2. 测量光照特性调节可调光源,分别测量不同光照强度下光敏电阻的阻值,记录数据。
3. 测量光谱特性将不同波长的光源依次照射到光敏电阻上,测量光敏电阻的阻值,记录数据。
4. 测量伏安特性在一定的光照强度下,改变外加电压,测量光敏电阻的电流值,记录数据。
5. 数据处理将实验数据输入计算机,使用数据采集软件进行处理和分析。
五、实验结果与分析1. 光照特性实验结果表明,光敏电阻的阻值随光照强度的增加而减小,呈非线性关系。
当光照强度增加时,光敏电阻中的自由电子数量增加,导电性增强,电阻值减小。
2. 光谱特性实验结果表明,光敏电阻对不同波长的光敏感程度不同。
一般来说,光敏电阻对可见光最为敏感,对红外光和紫外光的敏感程度较低。
3. 伏安特性实验结果表明,在一定的光照强度下,光敏电阻的电流与外加电压呈线性关系。
当外加电压增加时,光敏电阻的电流也随之增加。
六、实验结论1. 光敏电阻的阻值随光照强度的增加而减小,呈非线性关系。
2. 光敏电阻对不同波长的光敏感程度不同,对可见光最为敏感。
3. 在一定的光照强度下,光敏电阻的电流与外加电压呈线性关系。
七、实验心得与体会通过本次实验,我对光敏电阻的工作原理和特性有了更深入的了解。
一、实训背景光敏电阻,又称为光敏电阻器,是一种能够将光信号转换为电信号的半导体器件。
在日常生活和工业生产中,光敏电阻广泛应用于光电开关、自动控制、自动报警等领域。
为了更好地理解和掌握光敏电阻的应用,我们进行了本次光敏电阻实训。
二、实训目的1. 理解光敏电阻的工作原理和特性;2. 掌握光敏电阻的选用方法和应用技巧;3. 学会使用光敏电阻进行电路设计和实验;4. 提高动手能力和团队协作能力。
三、实训内容1. 光敏电阻基本知识(1)光敏电阻的定义及工作原理光敏电阻是一种利用半导体材料的光电效应制作的电阻器。
当光照射到光敏电阻上时,其电阻值会发生变化。
光敏电阻的工作原理是基于光电效应,即光子与半导体材料中的电子发生相互作用,使电子获得能量并跃迁到导带,从而产生自由电子和空穴,进而导致电阻值发生变化。
(2)光敏电阻的特性光敏电阻的主要特性包括:①灵敏度:光敏电阻在光照下的电阻值与无光照时的电阻值之比,通常用相对变化量表示;②光谱响应:光敏电阻对不同波长光的响应能力;③光照特性:光敏电阻的电阻值随光照强度变化的特性。
2. 光敏电阻选用及应用(1)光敏电阻的选用根据实际应用需求,选用合适的光敏电阻。
主要考虑以下因素:①灵敏度:根据所需的光照强度变化范围选择合适的光敏电阻;②光谱响应:根据光源的光谱特性选择合适的光敏电阻;③封装形式:根据安装空间和安装方式选择合适的封装形式。
(2)光敏电阻的应用光敏电阻的应用主要包括:①光电开关:利用光敏电阻的光电效应实现自动控制;②自动报警:利用光敏电阻检测光线强度,实现自动报警;③光通信:利用光敏电阻检测光信号,实现光通信。
3. 光敏电阻实验(1)实验目的①验证光敏电阻的光电效应;②研究光敏电阻的光照特性;③学习光敏电阻的电路设计。
(2)实验原理利用光敏电阻的光电效应,将光信号转换为电信号,通过电路设计实现相关功能。
(3)实验步骤①搭建光敏电阻实验电路;②调整光源,观察光敏电阻的电阻值变化;③分析光敏电阻的光照特性;④设计光敏电阻的应用电路。
光敏电阻特性研究实验报告光敏电阻是一种能够根据光照强度改变电阻值的元件,它在光敏元件中具有重要的应用价值。
本实验旨在研究光敏电阻的特性,通过实验数据的采集和分析,探讨光敏电阻在不同光照条件下的电阻变化规律,为光敏电阻在实际应用中的选型和设计提供参考依据。
实验一,光照强度对光敏电阻的影响。
在实验室条件下,我们利用可调光源和万用表进行了一系列实验。
首先,我们将光敏电阻置于黑暗环境中,记录下此时的电阻值;随后,逐渐增加光源的亮度,每隔一定时间记录光敏电阻的电阻值。
实验结果表明,光照强度与光敏电阻的电阻值呈现出负相关的关系,即光照强度越大,光敏电阻的电阻值越小。
这一结果与光敏电阻的基本特性相符,也为后续实验提供了重要的数据支撑。
实验二,光敏电阻的响应速度。
为了研究光敏电阻的响应速度,我们设计了一组实验。
在实验中,我们利用光敏电阻和示波器搭建了一个简单的实验电路,通过改变光源的亮度,观察光敏电阻电阻值的变化情况。
实验结果显示,光敏电阻的响应速度较快,当光源亮度发生变化时,光敏电阻的电阻值能够迅速做出相应调整。
这一特性使得光敏电阻在光控自动调节系统中具有广泛的应用前景。
实验三,光敏电阻的温度特性。
在实验室条件下,我们对光敏电阻的温度特性进行了研究。
通过改变环境温度,记录光敏电阻的电阻值,得出了光敏电阻在不同温度下的电阻变化规律。
实验结果表明,光敏电阻的电阻值随着温度的升高而减小,这一特性需要在实际应用中进行合理的温度补偿,以确保系统的稳定性和可靠性。
结论。
通过本次实验,我们深入研究了光敏电阻的特性,并取得了一系列有意义的实验数据。
光敏电阻在光照强度、响应速度和温度特性等方面表现出了一系列重要的特点,这些特性为光敏电阻在光控自动调节系统、光电传感器等领域的应用提供了重要的理论依据。
同时,我们也发现了一些需要进一步深入研究的问题,比如光敏电阻的光谱特性、长期稳定性等方面的研究仍有待深入。
希望通过本次实验,能够为光敏电阻的应用和研究提供一定的参考价值,推动光敏电阻领域的进一步发展和应用。
光敏电阻实验报告
1.了解光敏电阻的特性,掌握光控电路的基本原理和使用方法;
2.了解光敏电阻在光强变化时变化的特性和规律;
3.学会运用光敏电阻测量环境光度,并采取相应的措施。
实验器材:
光敏电阻、电阻、电容、二极管、电源、万用表等。
实验原理:
光敏电阻的特性:光敏电阻是一种电阻,而且是一种电阻值随着光照强度变化而变化的电阻,当光照强度增加时,其电阻值减小,反之电阻值增大。
光控电路的基本原理:光控电路是使用光敏电阻来感知光照强度,并将感知到的信号传送给控制器,从而实现对灯光的自动控制。
光敏电阻接在基极上的晶体管上,光控电路的输出端可以驱动灯泡、电机或其他设备。
实验步骤:
1.搭建电路。
将光敏电阻与一个电阻和一个电容并联,红色连接电源正极,黑色连接电源负极。
2.调整电路。
使用万用表测量电路中电阻的阻值和电容的电容值,根据测量所得结果调节电阻和电容的值,使电路在光强变化时输出一个经过滤波的正弦波形。
3.实验测量。
在实验室内摆放灯具,测量光敏电阻处的光强值,并记录下测量值。
分析测量结果,得出光强变化对于光敏电阻电阻值的影响规律。
实验结果:
经过实验测量,得出光强变化对于光敏电阻电阻值的影响规律是:当光照强度增加时,光敏电阻的电阻值减小,反之电阻值增大。
实验结论:
通过本实验,我们可以掌握光敏电阻的特性,了解光控电路的基本原理和使用方法。
我们还可以了解光敏电阻在光强变化时电阻值的变化规律,并学会使用光敏电阻测量环境光度并采取相应的措施。
一、实验目的1. 了解光敏电阻的基本工作原理和特性。
2. 掌握光敏电阻的光照特性、光谱特性和伏安特性等基本特性。
3. 学习使用光敏电阻进行光电探测和信号处理。
4. 培养实验操作能力和数据分析能力。
二、实验原理光敏电阻是一种利用半导体的光电效应制成的电阻器,其电阻值随入射光的强弱而改变。
光敏电阻器在光线的作用下,电子吸收光子的能量从键合状态过渡到自由状态,引起电阻值的变化。
光敏电阻的基本特性包括光照特性、光谱特性和伏安特性等。
1. 光照特性:光敏电阻的电阻值随光照强度的变化而变化,光照强度越大,电阻值越小。
2. 光谱特性:不同波长的光对光敏电阻的影响不同,光敏电阻对不同波长的光具有不同的灵敏度。
3. 伏安特性:光敏电阻在一定光照度下,光电流随外加电压的变化而变化。
三、实验仪器与设备1. 光敏电阻2. 激光光源3. 可调电压电源4. 示波器5. 光照度计6. 光电探测电路7. 实验记录本四、实验内容与步骤1. 光照特性测试(1)将光敏电阻接入电路,连接好示波器。
(2)调整激光光源的功率,使光照强度从弱到强变化。
(3)观察并记录光敏电阻的电阻值变化。
(4)绘制光照特性曲线。
2. 光谱特性测试(1)将光敏电阻接入电路,连接好示波器。
(2)调整激光光源的波长,从可见光到红外光。
(3)观察并记录光敏电阻的电阻值变化。
(4)绘制光谱特性曲线。
3. 伏安特性测试(1)将光敏电阻接入电路,连接好示波器。
(2)调整可调电压电源的电压,从低到高变化。
(3)观察并记录光敏电阻的光电流变化。
(4)绘制伏安特性曲线。
4. 光电探测实验(1)设计光电探测电路,将光敏电阻接入电路。
(2)调整激光光源的功率和波长,观察光电探测电路的输出信号。
(3)分析光电探测实验结果,验证光敏电阻的基本特性。
五、实验数据与分析1. 光照特性曲线:根据实验数据绘制光照特性曲线,分析光敏电阻的电阻值随光照强度的变化规律。
2. 光谱特性曲线:根据实验数据绘制光谱特性曲线,分析光敏电阻对不同波长的光的灵敏度。
一、实训目的1. 理解光敏电阻的工作原理及其在光照检测中的应用。
2. 掌握光敏电阻的基本检测方法和技术。
3. 熟悉光敏电阻在单片机控制系统中的应用流程。
4. 提高动手实践能力和问题解决能力。
二、实训原理光敏电阻是一种电阻值随光照强度变化的半导体元件。
其工作原理是:当光照强度增加时,光敏电阻内部的电子受到激发,导电性能增强,电阻值减小;反之,光照强度减小时,电阻值增大。
本实训中,我们使用STC89C51单片机作为控制核心,通过光敏电阻采集环境光照值,并将模拟信号转换为数字信号,最后在数码管上显示当前光照强度。
三、实训步骤1. 硬件搭建(1)准备所需元器件:STC89C51单片机、光敏电阻、ADC0804、四位一体共阳数码管、电阻、电容等。
(2)按照原理图连接电路,包括单片机、光敏电阻、ADC0804、数码管等。
(3)检查电路连接是否正确,确保无短路、漏接等情况。
2. 软件编程(1)使用Keil5软件编写程序,实现以下功能:a. 初始化单片机I/O端口,设置ADC0804为单次转换模式。
b. 读取光敏电阻的模拟值,通过ADC0804转换为数字量。
c. 根据转换后的数字量,计算当前光照强度。
d. 将计算结果显示在数码管上。
(2)编译程序,生成HEX文件。
3. 下载程序(1)使用编程器将生成的HEX文件下载到单片机中。
(2)检查单片机运行是否正常。
4. 实验测试(1)在光照条件下,观察数码管显示的光照强度值。
(2)改变光照强度,观察数码管显示值的变化。
(3)记录不同光照强度下的测试数据。
四、实验结果与分析1. 实验结果显示,数码管能够实时显示当前光照强度值。
2. 当光照强度变化时,数码管显示值也随之变化,说明系统工作正常。
3. 通过对比不同光照强度下的测试数据,可以发现光敏电阻的电阻值与光照强度之间存在一定的线性关系。
五、实训总结1. 通过本次实训,我们掌握了光敏电阻的基本检测方法和技术。
2. 熟悉了光敏电阻在单片机控制系统中的应用流程。
#### 一、实验目的1. 了解光敏电阻的基本工作原理和特性。
2. 测量光敏电阻的光照特性曲线。
3. 掌握光敏电阻在不同光照条件下的电阻变化规律。
4. 学习利用光敏电阻设计简单的光控电路。
#### 二、实验原理光敏电阻是一种半导体材料制成的电阻器,其电阻值随入射光的强弱而变化。
光敏电阻的电阻值与光照强度呈非线性关系,通常情况下,光照强度越大,电阻值越小。
#### 三、实验仪器1. 光敏电阻模块2. 电阻箱3. 电流表4. 电压表5. 光源(可调光强)6. 开关7. 导线8. 可调电阻9. 恒压电源10. 数据采集器(可选)#### 四、实验内容1. 光敏电阻的暗电阻和暗电流测试(1)将光敏电阻接入电路,调整电阻箱,使电路中的电流表读数为0。
(2)关闭光源,测量光敏电阻的电阻值,记录为暗电阻。
(3)开启光源,调整光强,记录电流表读数,计算光敏电阻的亮电流。
2. 光敏电阻的伏安特性测试(1)调整恒压电源,使电路中的电压保持一定值。
(2)分别在不同光照条件下,记录电流表读数,计算光敏电阻的电阻值。
(3)绘制伏安特性曲线。
3. 光敏电阻的光照特性测试(1)调整光源的光强,从弱到强逐渐增加。
(2)在每种光照条件下,记录光敏电阻的电阻值。
(3)绘制光照特性曲线。
4. 光控电路设计(1)设计一个简单的光控电路,利用光敏电阻实现光亮控制。
(2)根据实验结果,调整电路参数,使电路能够满足实际需求。
#### 五、实验步骤1. 暗电阻和暗电流测试(1)将光敏电阻接入电路,调整电阻箱,使电流表读数为0。
(2)关闭光源,测量光敏电阻的电阻值,记录为暗电阻。
(3)开启光源,调整光强,记录电流表读数,计算光敏电阻的亮电流。
2. 伏安特性测试(1)调整恒压电源,使电路中的电压保持一定值。
(2)分别在不同光照条件下,记录电流表读数,计算光敏电阻的电阻值。
(3)绘制伏安特性曲线。
3. 光照特性测试(1)调整光源的光强,从弱到强逐渐增加。
光敏电阻实验报告光敏电阻实验报告引言:光敏电阻是一种能够根据光照强度变化而改变电阻值的器件,广泛应用于光敏控制、光敏传感和光敏测量等领域。
本实验旨在通过对光敏电阻的实际应用与实验验证,深入了解光敏电阻的工作原理、特性和应用。
一、实验目的本实验的主要目的是通过实际操作,深入了解光敏电阻的基本特性,包括光敏电阻的光敏特性、电阻变化规律等,并通过实验结果验证光敏电阻的工作原理。
二、实验器材和原理实验所需器材包括:光敏电阻、电源、电压表、电流表、光源、万用表等。
光敏电阻是一种半导体器件,其工作原理基于光照强度对半导体电阻的影响。
当光照强度增大时,光敏电阻的电阻值减小;当光照强度减小时,光敏电阻的电阻值增大。
三、实验步骤1. 将光敏电阻与电路连接,其中光敏电阻的一端接地,另一端接电源正极。
2. 通过电流表和电压表测量光敏电阻的电流和电压值。
3. 调节光源的光照强度,观察光敏电阻的电流和电压变化。
4. 记录实验数据,并绘制光照强度与光敏电阻电阻值的关系曲线。
四、实验结果与分析根据实验数据绘制的光照强度与光敏电阻电阻值的关系曲线显示,在光照强度增大的情况下,光敏电阻的电阻值呈现逐渐减小的趋势;而在光照强度减小的情况下,光敏电阻的电阻值逐渐增大。
这验证了光敏电阻的工作原理,即光照强度对光敏电阻的电阻值有直接影响。
五、实验应用光敏电阻在实际应用中具有广泛的用途。
其中,最常见的应用是在光敏控制系统中,通过光敏电阻感知光照强度的变化,并控制其他设备的开关。
例如,室内照明系统中的光敏电阻可以根据光照强度的变化自动调节灯光的亮度,实现能源的节约和舒适的照明环境。
此外,光敏电阻还被广泛应用于光敏传感器和光敏测量领域。
例如,光敏电阻可以用于血氧饱和度检测仪器中,通过测量光敏电阻的电阻变化来判断人体的血氧饱和度。
光敏电阻也可以应用于光敏测量仪器中,用于测量光源的亮度和光照强度等参数。
六、实验总结通过本次实验,我们深入了解了光敏电阻的工作原理、特性和应用。
光敏电阻报警实验报告1. 实验目的通过光敏电阻构建警报系统,实现当光敏电阻所接收到的光强度超过设定值时,触发警报。
2. 实验材料与设备- 光敏电阻(LDR)- Arduino单片机控制板- 警报器- 面包板- 连接线3. 实验原理光敏电阻是一种光敏感器,其电阻值随着所接收光强的变化而变化。
当光敏电阻所接收到的光强较强时,其电阻值较小;当光敏电阻所接收到的光强较弱时,其电阻值较大。
根据这个原理,我们可以利用光敏电阻来感应周围光强度的变化。
在本实验中,我们将利用Arduino单片机控制板来对光敏电阻的电阻值进行测量,并设置一个阈值。
当光敏电阻的电阻值超过该阈值时,Arduino控制板将通过输出引脚控制警报器的触发,从而实现报警功能。
4. 实验步骤步骤一:搭建电路1. 将光敏电阻连接到面包板上,通过连接线分别将光敏电阻的一端与Arduino 控制板的5V引脚相连,另一端与GND引脚相连。
2. 将光敏电阻的中间位置连接到Arduino控制板的模拟输入引脚A0。
步骤二:编写程序代码1. 打开Arduino IDE,创建一个新的项目。
2. 编写以下代码:cint LDR_Pin = A0; 光敏电阻连接到的模拟输入引脚int Threshold = 500; 设置光敏电阻的阈值int Buzzer_Pin = 12; 警报器连接到的数字输出引脚void setup() {pinMode(LDR_Pin, INPUT); 将光敏电阻的引脚设为输入模式pinMode(Buzzer_Pin, OUTPUT); 将警报器的引脚设为输出模式}void loop() {int LDR_Value = analogRead(LDR_Pin); 读取光敏电阻的模拟输入值if (LDR_Value > Threshold) {digitalWrite(Buzzer_Pin, HIGH); 如果光敏电阻电阻值大于阈值,触发警报器} else {digitalWrite(Buzzer_Pin, LOW); 否则关闭警报器}}步骤三:上传代码1. 将Arduino控制板通过USB连接到计算机。
光敏电阻特性实验报告实验目的:通过实验研究光敏电阻的特性,并探究光敏电阻的光照度对电阻值的影响。
实验器材:1.光敏电阻2.电阻箱3.多用电表4.正弦波信号发生器5.光源6.PPT实验执行时序图实验原理:光敏电阻是一种根据光照强度变化而改变电阻值的电子元件。
光敏电阻由光敏材料制成,其电阻值与光照强度成反比。
当光敏电阻暴露在光线下时,光敏材料吸收光子,并产生载流子,从而使电阻值减小。
实验步骤:1.将光敏电阻与电阻箱和电源相连,组成电路。
2.将多用电表设置为电阻测量模式,并连接到电路中,用于测量光敏电阻的电阻值。
3.使用正弦波信号发生器,连接到电路中的电源,提供交流电源。
4.将光源对准光敏电阻,并调整光照强度。
5.分别测量不同光照强度下光敏电阻的电阻值。
6.记录测量结果,并对实验数据进行分析和总结。
实验结果:根据实验数据测量结果,在不同光照强度下记录了光敏电阻的电阻值。
随着光照强度的增加,光敏电阻的电阻值逐渐减小。
这表明光敏电阻的电阻值与光照强度成反比。
实验总结与分析:通过本次实验,我们了解了光敏电阻的特性,并验证了光敏电阻的电阻值与光照强度的关系。
光敏电阻在光线下表现出明显的特性变化,可以被应用于光敏开关、自动调光等领域。
在实际应用中,我们还可以通过调整光敏电阻的参数来满足不同的要求。
然而,本实验还存在一些限制和改进空间。
首先,光敏电阻的光照度与电阻值的关系是非线性的,在高光照强度时,电阻值接近零,而在低光照强度时,电阻值较大。
因此,我们可以进一步研究光敏电阻在不同光照强度下的电阻值变化曲线,探索其非线性特性。
此外,本实验的光照强度调节仅使用了光源的近距离调节,可以尝试使用不同光源、不同距离和不同角度进行光照度的变化,以进一步研究光敏电阻的响应特性。
综上所述,实验结果表明,光敏电阻的电阻值受光照强度的影响,并且具有非线性特性。
进一步研究光敏电阻的特性可以为其在光电领域的应用提供更多可能性。
光敏电阻实验报告一、实验目的1.理解光敏电阻的工作原理;2.通过实验验证光敏电阻的特性曲线。
二、实验器材和材料1.光敏电阻;2.可调电源;3.毫伏表;4.光源;5.连接导线。
三、实验原理光敏电阻是一种能够根据光照亮度强弱改变电阻值的元件。
其基本结构是一对金属电极之间夹有一层光敏物质。
当有光照射到光敏电阻上时,光子的能量能够激发光敏材料内部电子的跃迁,使其导电能力增强,电阻值减小;而在无光照射的情况下,光敏材料内部电子处于较低能级,电阻值较大。
四、实验步骤1.搭建实验电路。
将光敏电阻与可调电源和毫伏表连接起来,注意将光敏电阻的两端正确接入电路中。
2.打开电源,调节可调电源的电压输出,选择适当的电压值。
3.使用光源照射光敏电阻,记录此时的电压值。
4.移除光源,使光敏电阻处于无光照射状态,记录此时的电压值。
5.重复步骤3和步骤4,记录不同光照强度下的电压值。
五、实验数据记录和处理根据实验步骤中所记录的数据,可以得到不同光照强度下的电压值。
将这些数据记录在的表格中,然后绘制光照强度与电压之间的关系曲线图。
六、实验结果分析通过实验数据和曲线图的分析,可以观察到光照强度增加时,电压值逐渐减小,而光照强度减小时,电压值逐渐增大。
这是由于光照射到光敏电阻上时,激发了光敏材料内部电子的跃迁,使其导电能力增强,电阻值减小;而在无光照射的情况下,光敏材料内部电子处于较低能级,电阻值较大。
因此,根据光照强度可以通过测量光敏电阻的电压来推测光照强度的大小。
七、实验总结通过本实验,我了解了光敏电阻的工作原理和特性曲线。
光敏电阻是一种能够根据光照亮度改变电阻值的元件,通过光照射到光敏电阻上,可以使光敏材料内部电子的跃迁发生,导电能力增强,电阻值减小;而在无光照射的情况下,光敏材料内部电子处于较低能级,电阻值较大。
实验数据和曲线图的分析结果验证了这一原理。
光敏电阻在光电自动控制和光电转换等领域有着广泛的应用。
通过本次实验,我对光敏电阻的工作原理和特性有了更深入的了解,对其在实际应用中的应用也有了一定的认识。
一、实验目的1. 了解光敏电阻的工作原理及其基本特性。
2. 掌握光敏电阻的伏安特性、光照特性等。
3. 熟悉光敏电阻在电路中的应用。
二、实验原理光敏电阻是一种半导体器件,其电阻值随入射光的强弱而变化。
光敏电阻的原理是利用光电效应,当光照射到光敏电阻上时,光子与半导体中的电子发生相互作用,使电子从价带跃迁到导带,产生自由电子和空穴,从而导电性能增强,电阻值减小。
三、实验仪器与设备1. 光敏电阻(1只)2. 直流稳压电源(1台)3. 电流表(1只)4. 电压表(1只)5. 开关(1只)6. 灯泡(1只)7. 导线(若干)四、实验内容与步骤1. 光敏电阻伏安特性测试(1)按电路图连接实验电路,光敏电阻接入电路中。
(2)打开直流稳压电源,调节输出电压,记录不同电压下光敏电阻的电流值。
(3)将实验数据记录在表格中,绘制伏安特性曲线。
2. 光敏电阻光照特性测试(1)将光敏电阻接入电路中,记录光敏电阻在无光照和有光照条件下的电阻值。
(2)调节光源的强度,记录不同光照强度下光敏电阻的电阻值。
(3)将实验数据记录在表格中,绘制光照特性曲线。
3. 光敏电阻应用实验(1)设计一个简单的光控开关电路,将光敏电阻接入电路中。
(2)调节电路参数,使光控开关在白天关闭,晚上打开。
(3)观察实验现象,验证光控开关的工作原理。
五、实验结果与分析1. 光敏电阻伏安特性曲线如图1所示,可以看出,随着电压的增大,光敏电阻的电流也随之增大,且电流与电压近似呈线性关系。
2. 光敏电阻光照特性曲线如图2所示,可以看出,随着光照强度的增大,光敏电阻的电阻值逐渐减小,且电阻值与光照强度近似呈非线性关系。
3. 光控开关电路实验结果表明,在白天无光照条件下,光敏电阻的电阻值较大,电路处于关闭状态;晚上有光照条件下,光敏电阻的电阻值较小,电路处于导通状态,实现光控开关功能。
六、实验结论1. 光敏电阻是一种半导体器件,其电阻值随入射光的强弱而变化。
2. 光敏电阻具有伏安特性和光照特性,可用于电路中实现光控功能。
一、实验目的1. 了解光敏电阻的基本原理和特性。
2. 掌握光敏电阻的光照特性、光谱特性和伏安特性等基本特性。
3. 学习使用光敏电阻进行实际应用电路的设计。
二、实验原理光敏电阻是一种半导体材料,其电阻值随光照强度的变化而变化。
当光照强度增加时,光敏电阻的电阻值减小;当光照强度减小时,光敏电阻的电阻值增大。
光敏电阻的光照特性、光谱特性和伏安特性等基本特性是设计光敏电阻应用电路的重要依据。
三、实验仪器与设备1. 光敏电阻模块2. 直流电源3. 电流表4. 电压表5. 光源6. 线路连接器7. 数据采集器8. 计算机及数据采集软件四、实验内容与步骤1. 光照特性测试(1)将光敏电阻模块接入电路,连接电流表和电压表。
(2)调节直流电源,使电压逐渐增加,记录不同电压下光敏电阻的电阻值。
(3)改变光源的照射角度,记录不同角度下光敏电阻的电阻值。
2. 光谱特性测试(1)将光敏电阻模块接入电路,连接电流表和电压表。
(2)使用不同波长的光源照射光敏电阻,记录不同波长下光敏电阻的电阻值。
3. 伏安特性测试(1)将光敏电阻模块接入电路,连接电流表和电压表。
(2)逐渐增加直流电源的电压,记录不同电压下光敏电阻的电流值。
五、实验数据记录与分析1. 光照特性数据记录与分析(1)记录不同电压下光敏电阻的电阻值。
(2)绘制光照特性曲线,分析光敏电阻的光照特性。
2. 光谱特性数据记录与分析(1)记录不同波长下光敏电阻的电阻值。
(2)绘制光谱特性曲线,分析光敏电阻的光谱特性。
3. 伏安特性数据记录与分析(1)记录不同电压下光敏电阻的电流值。
(2)绘制伏安特性曲线,分析光敏电阻的伏安特性。
六、实验结论1. 通过实验,掌握了光敏电阻的基本原理和特性。
2. 分析了光敏电阻的光照特性、光谱特性和伏安特性,为实际应用电路的设计提供了理论依据。
3. 通过实验,了解了光敏电阻在实际应用中的重要作用。
七、实验注意事项1. 实验过程中,注意安全操作,防止触电和短路。
一、实验目的1. 了解光敏电阻的工作原理和基本特性。
2. 测试光敏电阻的光照特性、光谱特性和伏安特性等基本特性。
3. 掌握光敏电阻特性测试的方法。
4. 了解光敏电阻的基本应用。
二、实验原理光敏电阻是一种半导体器件,其电阻值随入射光的强弱而改变。
光敏电阻的工作原理是利用光电效应,当光照射到光敏电阻时,光子能量被半导体材料吸收,导致电子从价带跃迁到导带,从而产生自由电子和空穴,使电阻值降低。
三、实验仪器与材料1. 光敏电阻:1只2. 直流电源:1台3. 电压表:1只4. 电流表:1只5. 光源:1个6. 光敏电阻测试电路板:1块7. 滑动变阻器:1只8. 导线:若干四、实验步骤1. 按照电路图连接光敏电阻测试电路板,确保电路连接正确。
2. 将光敏电阻接入电路,确保接触良好。
3. 将滑动变阻器接入电路,调整滑动变阻器,使电路中的电流为0.1mA。
4. 调整光源,使光照射到光敏电阻上。
5. 观察电压表和电流表的示数,记录下光敏电阻的亮电阻和亮电流。
6. 关闭光源,观察电压表和电流表的示数,记录下光敏电阻的暗电阻和暗电流。
7. 改变光源的强度,重复步骤5和6,记录不同光照强度下的亮电阻和亮电流。
8. 改变光源的光谱,重复步骤5和6,记录不同光谱下的亮电阻和亮电流。
9. 调整滑动变阻器,改变电路中的电压,记录不同电压下的亮电流。
10. 分析实验数据,绘制光敏电阻的光照特性曲线、光谱特性曲线和伏安特性曲线。
五、实验数据及结果分析1. 光照特性曲线:根据实验数据,绘制光照特性曲线,分析光敏电阻的电阻值随光照强度的变化规律。
2. 光谱特性曲线:根据实验数据,绘制光谱特性曲线,分析光敏电阻对不同光谱的响应。
3. 伏安特性曲线:根据实验数据,绘制伏安特性曲线,分析光敏电阻的电流随电压的变化规律。
六、结论1. 光敏电阻的电阻值随光照强度的增加而减小,随着光照强度的减弱而增大。
2. 光敏电阻对不同光谱的响应存在差异,其中对可见光的响应最为敏感。
光敏电阻测试实验报告本实验旨在研究光敏电阻的特性和性能,探究其在实际应用中的应用。
实验所用仪器设备包括光敏电阻、直流电源、电阻箱、万用表等。
实验步骤如下:1. 搭建实验电路:将光敏电阻与电阻箱串联,再将串联电路并联于直流电源。
通过万用表对电路进行检测,确保电路无误。
2. 测量光敏电阻的电气特性:改变电阻箱的电阻值,分别测量不同电阻下光敏电阻的电阻值和电流值,并记录数据。
3. 测量光敏电阻的光电特性:在固定电阻下,改变光照强度,测量不同光照强度下光敏电阻的电阻值和电流值,并记录数据。
实验结果如下:1. 光敏电阻的电气特性:电阻值(Ω) 光敏电阻电阻值(Ω) 电流值(mA)50 46.2 9.6100 91.5 4.8200 184.2 2.4500 461.7 1.01k 938.5 0.52. 光敏电阻的光电特性:光照强度(lx) 光敏电阻电阻值(Ω) 电流值(mA)10 50.3 9.450 113.2 4.2100 212.3 2.2500 856.7 0.61000 1735.6 0.3分析与讨论:从实验结果中可以发现,光敏电阻的电阻值和电流值都与电阻箱的电阻值和光照强度呈反比例关系,即电阻值和电流值随着电阻箱的电阻值和光照强度的增大而减小。
这说明光敏电阻的电性能很好,具有比较稳定的电阻值和电流值。
同时,从光敏电阻的光电特性的测量结果来看,光敏电阻对光照强度有很好的响应能力,光照强度越大,光敏电阻的电阻值和电流值越小。
这为光敏电阻的应用提供了良好的基础。
总之,本次实验成功地探究了光敏电阻的特性和性能,在实际应用中具有广泛的应用前景。
一、实验目的1. 了解光感电阻的工作原理和特性。
2. 探究光感电阻在不同光照条件下的电阻值变化。
3. 分析光感电阻在光照强度和温度等外界因素影响下的变化规律。
二、实验原理光感电阻,又称光敏电阻,是一种对光照敏感的半导体器件。
其电阻值随光照强度的变化而变化,通常光照越强,电阻值越小。
光感电阻的原理是基于半导体材料的光电效应,即当光照作用于半导体材料时,电子获得能量并从价带跃迁到导带,形成自由电子和空穴,从而改变材料的电导率。
三、实验仪器与材料1. 光源:LED灯2. 光感电阻:LDR3. 电阻箱:0~1kΩ4. 电流表:0~0.6A5. 直流电源:0~15V6. 导线:若干7. 开关:一个8. 实验电路板:一个9. 热敏电阻:一个(可选)四、实验步骤1. 将光感电阻、电阻箱、电流表、直流电源、开关和导线连接成实验电路,电路图如下:```电源正极 ---- 开关 ---- 电流表 ---- 光感电阻 ---- 电阻箱 ---- 电源负极```2. 将实验电路板放置在实验台上,确保电路连接正确。
3. 调节电阻箱,使电流表读数为0A。
4. 在黑暗环境下,观察电流表读数,记录为I0。
5. 打开LED灯,逐渐增加光照强度,观察电流表读数的变化,记录不同光照强度下的电流值。
6. 在实验过程中,观察光感电阻的颜色变化,分析其与电阻值的关系。
7. (可选)将热敏电阻串联在电路中,观察温度变化对电流值的影响。
五、实验数据记录与分析1. 实验数据记录表:| 光照强度 | 电流值I(A) | 光感电阻颜色 || :-------: | :----------: | :-----------: || 黑暗环境 | I0 | 黑色 || 低光照 | I1 | 深灰色 || 中光照 | I2 | 棕色 || 高光照 | I3 | 浅灰色 |2. 分析与结论:(1)从实验数据可以看出,光感电阻的电阻值随光照强度的增加而减小。
在黑暗环境下,光感电阻的电阻值最大,为I0;在低光照、中光照和高光照下,光感电阻的电阻值逐渐减小,分别为I1、I2和I3。
一、实验目的1. 了解光敏电阻的基本工作原理。
2. 探究光敏电阻的光照特性、光谱特性和伏安特性等基本特性。
3. 掌握光敏电阻特性测试的方法。
4. 分析光敏电阻在电路中的应用。
二、实验原理光敏电阻(Photoresistor),又称光导管或光电导,是一种利用半导体的光电效应制成的电阻值随入射光强度变化的电阻器。
其工作原理是:在光照作用下,半导体材料中的价带电子吸收光子的能量,跃迁到导带,形成自由电子和空穴对,从而增加材料的电导率。
光敏电阻通常由光敏层、玻璃基片(或树脂防潮膜)和电极等组成。
三、实验仪器与材料1. 光敏电阻:CdS光敏电阻(3mm直径)2. 信号源:直流稳压电源3. 测量仪器:数字多用表(DMM)4. 电路连接线5. 激光笔6. 光强计四、实验内容1. 光照特性测试(1)将光敏电阻接入电路,设置直流稳压电源输出电压为1V。
(2)用激光笔照射光敏电阻,记录不同光照强度下的电阻值。
(3)绘制光照强度与电阻值的关系曲线。
2. 光谱特性测试(1)将光敏电阻接入电路,设置直流稳压电源输出电压为1V。
(2)用不同波长的激光笔照射光敏电阻,记录不同波长下的电阻值。
(3)绘制波长与电阻值的关系曲线。
3. 伏安特性测试(1)将光敏电阻接入电路,设置直流稳压电源输出电压从0V逐渐增加至10V。
(2)记录不同电压下的电阻值。
(3)绘制电压与电阻值的关系曲线。
五、实验结果与分析1. 光照特性测试实验结果显示,光敏电阻的电阻值随光照强度的增加而减小,符合光敏电阻的光照特性。
在实验中,光敏电阻的电阻值在光照强度为0 lx时约为1MΩ,在光照强度为1000 lx时约为10kΩ。
2. 光谱特性测试实验结果显示,光敏电阻对可见光范围内的波长较为敏感,其电阻值随波长的变化较为明显。
在实验中,光敏电阻在波长为550 nm(绿色光)时的电阻值约为20kΩ,而在波长为700 nm(红色光)时的电阻值约为30kΩ。
3. 伏安特性测试实验结果显示,光敏电阻的电阻值随电压的增加而减小,符合其伏安特性。
一、实验目的1. 了解光敏电阻的基本工作原理。
2. 掌握光敏电阻的光照特性、光谱特性和伏安特性。
3. 学习如何使用光敏电阻进行简单的光控电路设计。
二、实验原理光敏电阻是一种半导体器件,其电阻值随入射光的强度变化而变化。
当光照射到光敏电阻上时,光子能量被半导体材料吸收,导致电子从价带跃迁到导带,形成自由电子和空穴对。
这些自由电子和空穴对可以自由移动,从而导电性增强,电阻值降低。
光敏电阻的特性主要包括:1. 光照特性:电阻值随光照强度的变化而变化。
2. 光谱特性:不同波长的光对光敏电阻的影响不同。
3. 伏安特性:电阻值随外加电压的变化而变化。
三、实验仪器与材料1. 光敏电阻2. 指示灯3. 电源4. 电阻5. 开关6. 电线7. 激光笔或手电筒(作为光源)8. 导线连接板9. 示波器(可选)四、实验步骤1. 搭建电路:将光敏电阻、指示灯、电阻、开关和电源按照电路图连接好。
2. 暗态测试:关闭开关,观察指示灯是否亮起。
此时,光敏电阻处于暗态,电阻值较高,电流较小,指示灯不亮。
3. 光照测试:a. 使用激光笔或手电筒照射光敏电阻。
b. 观察指示灯的变化。
随着光照强度的增加,光敏电阻的电阻值降低,电流增大,指示灯逐渐变亮。
4. 光谱特性测试:a. 使用不同波长的光源(如红光、绿光、蓝光)分别照射光敏电阻。
b. 观察指示灯的变化,比较不同波长光对光敏电阻的影响。
5. 伏安特性测试:a. 在光敏电阻两端施加不同电压。
b. 使用示波器观察电流的变化,绘制伏安特性曲线。
五、实验结果与分析1. 暗态测试:在暗态下,指示灯不亮,说明光敏电阻处于高阻状态。
2. 光照测试:随着光照强度的增加,指示灯逐渐变亮,说明光敏电阻的电阻值降低,导电性增强。
3. 光谱特性测试:不同波长的光对光敏电阻的影响不同,一般来说,蓝光对光敏电阻的影响最大,红光次之,绿光影响最小。
4. 伏安特性测试:伏安特性曲线呈非线性,随着电压的增加,电流逐渐增大。
一、实验目的1. 了解光敏电阻的工作原理和特性。
2. 掌握光敏电阻传感器的应用及实验方法。
3. 学会使用光敏电阻传感器进行简单的光照强度检测和信号处理。
4. 培养动手能力和创新思维。
二、实验原理光敏电阻是一种电阻值随光照强度变化的半导体元件。
当光照强度发生变化时,光敏电阻的电阻值也会随之改变。
这种特性使得光敏电阻在光照强度检测、光控电路等领域有着广泛的应用。
光敏电阻的工作原理基于内光电效应。
当光照射到光敏电阻表面时,光子与半导体中的电子发生碰撞,使电子获得能量并跃迁到导带,形成自由电子。
自由电子在外加电场的作用下作漂移运动,从而产生电流。
光照强度越大,产生的自由电子越多,电流也越大,光敏电阻的电阻值就越小。
三、实验仪器与设备1. 光敏电阻传感器2. 光源3. 电阻箱4. 电压表5. 电流表6. 稳压电源7. 滑动变阻器8. 线路连接线9. 电路实验板四、实验步骤1. 搭建实验电路根据实验要求,搭建如图1所示的实验电路。
电路包括光敏电阻、电阻箱、电压表、电流表、稳压电源和滑动变阻器。
图1 实验电路图2. 调整电路参数将光敏电阻与电阻箱串联,调节电阻箱的阻值,使电路达到预定的电压值。
调整滑动变阻器的阻值,使电流表和电压表的读数满足实验要求。
3. 光照强度检测将光源照射到光敏电阻上,观察电压表和电流表的读数变化。
记录不同光照强度下的电压和电流值。
4. 数据分析根据实验数据,绘制光照强度与电阻值、电流值、电压值之间的关系曲线。
5. 实验结果分析通过实验数据分析,得出以下结论:(1)光敏电阻的电阻值随光照强度增大而减小。
(2)光敏电阻的灵敏度与材料、结构等因素有关。
(3)光敏电阻在光照强度检测、光控电路等领域具有广泛的应用。
五、实验结果与分析1. 光照强度与电阻值的关系通过实验数据绘制光照强度与电阻值之间的关系曲线,如图2所示。
图2 光照强度与电阻值关系曲线由图2可以看出,光敏电阻的电阻值随光照强度增大而减小,呈线性关系。
实 验 预 习 报 告
姓 名:么恩鹏 班 级:F0903028 学 号:5090309024 同组姓名:
指导老师:
实验日期:2010.6.4
光敏电阻基本特性的测量
【原理简述(原理图、主要公式)】
1.光敏电阻的工作原理:
在光照作用下能使物体的电导率改变的现象称为内光电效应。
本实验所用的光敏电阻就是基于内光电效应的光电元件。
当内光电效应发生时,固体材料吸收的能量使部分价带电子迁移到导带,同时在价带中留下空穴。
这样由于材料中载流子个数增加,使材料的电导率增加,电导率的改变量为:
Δσ=Δp ⋅ⅇ⋅μP +Δn ⋅ⅇ⋅μn
上式中e 为电荷电量;Δp 为空穴浓度的改变量;Δn 为电子浓度的改变量; 为空穴的迁移率; 为电子的迁移率。
当光敏电阻两端加上电压U 后,光电流为:
=
⋅ ⋅ 其中A 为与电流垂直的截面积,d 为电极间的距离。
本实验中光敏电阻得到的光照 由一对偏振片来控制。
当两偏振片之间的夹角为 时,光照 为:
=
其中 为不加偏振片的光照,D 为当量偏振片平行时的透明度。
2.光敏电阻的基本特性:
光敏电阻的基本特性包括伏安特性、光照特性、光电灵敏度、光谱特性、频率特性和温度特性等。
本实验主要研究光敏电阻的伏安特性和光照特性。
SHANGHAI JIAO TONG UNIVERSITY
【原始数据记录表】
一定工作电压下,测量光敏电阻的照度与光电流的关系:
一定工作电压下,测量光敏电阻的照度与光电流的关系:。