2018年江苏省九年级数学中考模拟试题二
- 格式:doc
- 大小:445.00 KB
- 文档页数:17
江苏省南京市建邺区2018年中考数学二模试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.﹣的相反数是()A.﹣2 B.2 C.﹣D.2.下列运算正确的是()A.a3+a4=a7B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a4A.3,3 B.3,3.5 C.3.5,3.5 D.3.5,34.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“一”相对的字是()A.态B.度C.决D.切5.如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是()A.42° B.48° C.52° D.58°6.如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,连接CE,作BF⊥CE,垂足为F,则tan∠FBC的值为()A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分,请在答题卡指定区域内作答.)7.代数式有意义,则x的取值范围是.8.因式分解:a3﹣4a= .9.计算﹣2cos30°﹣|1﹣|= .10.反比例函数y=的图象经过点(1,6)和(m,﹣3),则m= .11.如图,在菱形ABCD中,AC=2,∠ABC=60°,则BD= .12.如图,在⊙O中,AO∥CD,∠1=30°,弧AB的长为3300π千米,则⊙O的半径用科学记数法表示为千米.13.某商品原价100元,连续两次涨价后,售价为144元.若平均增长率为x,则x= .14.直角坐标系中点A坐标为(5,3),B坐标为(1,0),将点A绕点B逆时针旋转90°得到点C,则点C的坐标为.15.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象可知:方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围为.16.如图,在半径为2的⊙O中,两个顶点重合的内接正四边形与正六边形,则阴影部分的面积为.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.内作答,解答时应写出文字说明、证明过程或演算步骤)17.解方程组:.18.化简:(﹣x)÷.19.为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练.物理、化学各有3个不同的操作实验题目,物理用番号①、②、③代表,化学用字母a、b、c表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定.(1)小张同学对物理的①、②和化学的b、c实验准备得较好.请用树形图或列表法求他两科都抽到准备得较好的实验题目的概率;(2)小明同学对物理的①、②、③和化学的a实验准备得较好.他两科都抽到准备得较好的实验题目的概率为.20.据报道,历经一百天的调查研究,南京PM 2.5源解析已经通过专家论证.各种调查显示,机动车成为PM 2.5的最大来源,一辆车每行驶20千米平均向大气里排放0.035千克污染物.校环保志愿小分队从环保局了解到南京100天的空气质量等级情况,并制成统计图和表:(1)表中a=,b=,图中严重污染部分对应的圆心角n= °.(2)请你根据“2018年南京市100天空气质量等级天数统计表”计算100天内重度污染和严重污染出现的频率共是多少?(3)小明是社区环保志愿者,他和同学们调查了机动车每天的行驶路程,了解到每辆车每天平均出行25千米.已知南京市2018年机动车保有量已突破200万辆,请你通过计算,估计2018年南京市一天中出行的机动车至少要向大气里排放多少千克污染物?21.如图,在▱ABCD中,E、F、G、H分别为AB、BC、CD、AD的中点,AF与EH交于点M,FG 与CH交于点N.(1)求证:四边形MFNH为平行四边形;(2)求证:△AMH≌△CNF.22.端午节期间,某食堂根据职工食用习惯,购进甲、乙两种粽子260个,其中甲种粽子花费300元,乙种粽子花费400元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?23.如图,小明欲利用测角仪测量树的高度.已知他离树的水平距离BC为10m,测角仪的高度CD为1.5m,测得树顶A的仰角为33°.求树的高度AB.(参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)24.小林家、小华家与图书馆依次在一条直线上.小林、小华两人同时各自从家沿直线匀速步行到图书馆借阅图书,已知小林到达图书馆花了20分钟.设两人出发x(分钟)后,小林离小华家的距离为y(米),y与x的函数关系如图所示.(1)小林的速度为米/分钟,a= ,小林家离图书馆的距离为米;(2)已知小华的步行速度是40米/分钟,设小华步行时与家的距离为y1(米),请在图中画出y1(米)与x(分钟)的函数图象;(3)小华出发几分钟后两人在途中相遇?25.施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明.26.如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C,且与OA交于点E、与OB交于点F,连接CE、CF.(1)AB与⊙O相切吗,为什么?(2)若∠AOB=∠ECF,试判断四边形OECF的形状,并说明理由.27.如图1,在四边形ABCD的AB边上任取一点E(点E不与点A、点B重合),分别连接ED、EC,可以把四边形ABCD分成3个三角形.如果其中有2个三角形相似,我们就把点E叫做四边形ABCD的AB边上的相似点;如果这3个三角形都相似,我们就把点E叫做四边形ABCD 的AB边上的强相似点.(1)若图1中,∠A=∠B=∠DEC=50°,说明点E是四边形ABCD的AB边上的相似点;(2)①如图2,画出矩形ABCD的AB边上的一个强相似点.(要求:画图工具不限,不写画法,保留画图痕迹或有必要的说明.)②对于任意的一个矩形,是否一定存在强相似点?如果一定存在,请说明理由;如果不一定存在,请举出反例.(3)在梯形ABCD中,AD∥BC,AD<BC,∠B=90°,点E是梯形ABCD的AB边上的一个强相似点,判断AE与BE的数量关系并说明理由.2018年江苏省南京市建邺区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.﹣的相反数是()A.﹣2 B.2 C.﹣D.考点:相反数.分析:根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.解答:解:根据相反数的含义,可得﹣的相反数是:﹣(﹣)=.故选:D.点评:此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.下列运算正确的是()A.a3+a4=a7B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a4考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.分析:根据合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法分别求出每个式子的值,再判断即可.解答:解:A、a3和a4不是同类项不能合并,故本选项错误;B、2a3•a4=2a7,故本选项正确;C、(2a4)3=8a12,故本选项错误;D、a8÷a2=a6,故本选项错误;故选:B.点评:本题考查了合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法的应用,主要考查学生的计算能力和判断能力.A.3,3 B.3,3.5 C.3.5,3.5 D.3.5,3考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.解答:解:因为3出现的次数最多,所以众数是:3元;因为第十和第十一个数是3和4,所以中位数是:3.5元.故选B.点评:本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错4.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“一”相对的字是()A.态B.度C.决D.切考点:专题:正方体相对两个面上的文字.专题:应用题.分析:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此可得和“一”相对的字.解答:解:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以和“一”相对的字是:态.故选A.点评:注意正方体的空间图形,从相对面入手,分析及解答问题.5.如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是()A.42° B.48° C.52° D.58°考点:圆周角定理.分析:首先连接OC,由等腰三角形的性质,可求得∠OCB的度数,继而求得∠BOC的度数,然后利用圆周角定理求解,即可求得答案.解答:解:连接OC,∵OB=OC,∠OBC=42°,∴∠OCB=∠OBC=42°,∴∠BOC=180°﹣∠OBC﹣∠OCB=96°,∴∠A=∠BOC=48°.故选B.点评:此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.6.如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,连接CE,作BF⊥CE,垂足为F,则tan∠FBC的值为()A.B.C.D.考点:勾股定理;等腰三角形的判定与性质;矩形的性质;锐角三角函数的定义.分析:首先根据以B为圆心BC为半径画弧交AD于点E,判断出AE=BC=5;然后根据勾股定理,求出AE的值是多少,进而求出DE的值是多少;再根据勾股定理,求出CE的值是多少,再根据BC=BE,BF⊥CE,判断出点F是CE的中点,据此求出CF、BF的值各是多少;最后根据角的正切的求法,求出tan∠FBC的值是多少即可.解答:解:∵以B为圆心BC为半径画弧交AD于点E,∴AE=BC=5,∴AE=,∴DE=AD﹣AE=5﹣4=1,∴CE=,∵BC=BE,BF⊥CE,∴点F是CE的中点,∴CF=,∴BF==,∴tan∠FBC=,即tan∠FBC的值为.故选:D.点评:(1)此题主要考查了勾股定理的应用,要熟练掌握,解答此题的关键是要明确:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.(2)此题还考查了等腰三角形的判定和性质的应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(3)此题还考查了锐角三角函数的定义,要熟练掌握,解答此题的关键是要明确一个角的正弦、余弦、正切的求法.(4)此题还考查了矩形的性质和应用,以及直角三角形的性质和应用,要熟练掌握.二、填空题(本大题共10小题,每小题2分,共20分,请在答题卡指定区域内作答.)7.代数式有意义,则x的取值范围是x>1 .考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式和分式有意义的条件可得x﹣1>0,再解不等式即可.解答:解:由题意得:x﹣1>0,解得:x>1,故答案为:x>1.点评:此题主要考查了二次根式和分式有意义的条件,关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.8.因式分解:a3﹣4a= a(a+2)(a﹣2).考点:提公因式法与公式法的综合运用.专题:因式分解.分析:首先提取公因式a,进而利用平方差公式分解因式得出即可.解答:解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.9.计算﹣2cos30°﹣|1﹣|= +1 .考点:实数的运算;特殊角的三角函数值.分析:分别利用绝对值的性质以及特殊角的三角函数值、算术平方根化简各数进而求出即可.解答:解:﹣2cos30°﹣|1﹣|=3﹣2×﹣(﹣1)=+1.故答案为:+1.点评:此题主要考查了绝对值的性质以及特殊角的三角函数值、算术平方根等知识,正确化简各数是解题关键.10.反比例函数y=的图象经过点(1,6)和(m,﹣3),则m= ﹣2 .考点:反比例函数图象上点的坐标特征.分析:先把点(1,6)代入反比例函数y=,求出k的值,进而可得出反比例函数的解析式,再把点(m,﹣3)代入即可得出m的值.解答:解:∵反比例函数y=的图象经过点(1,6),∴6=,解得k=6,∴反比例函数的解析式为y=.∵点(m,﹣3)在此函数图象上上,∴﹣3=,解得m=﹣2.故答案为:﹣2.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.如图,在菱形ABCD中,AC=2,∠ABC=60°,则BD= 2.考点:菱形的性质.分析:由题可知,在直角三角形BOA中,∠ABO=30°,AO=AC=1,根据勾股定理可求BO,BD=2BO.解答:解:在菱形ABCD中,AC、BD是对角线,设相交于O点.∴AC⊥BD,∵AC=2,∴AO=2.∵∠ABC=60°,∴∠ABO=30°.由勾股定理可知:BO=.则BD=2.故答案为:2.点评:本题考查了菱形的性质,同时还考查了直角三角形的边角关系及勾股定理的灵活运用,熟悉菱形对角线互相垂直平分和对角线平分一组对角是解决问题的关键.12.如图,在⊙O中,AO∥CD,∠1=30°,弧AB的长为3300π千米,则⊙O的半径用科学记数法表示为 1.98×104千米.考点:弧长的计算.分析:根据弧长公式求出半径,然后用科学计数法表示.解答:解:∵∠1=30°,AO∥CD,∴∠O=30°,∵L=,∴R==19800=1.98×104.故答案为:1.98×104.点评:本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L=.13.某商品原价100元,连续两次涨价后,售价为144元.若平均增长率为x,则x= 20% .考点:一元二次方程的应用.专题:增长率问题.分析:根据原价为100元,连续两次涨价x后,现价为144元,根据增长率的求解方法,列方程求x.解答:解:依题意,有:100(1+x)2=144,1+x=±1.2,解得:x=20%或﹣2.2(舍去).故答案为:20%.点评:此题主要考查了一元二次方程的应用,解题关键是根据增长率的求解公式列出方程.14.直角坐标系中点A坐标为(5,3),B坐标为(1,0),将点A绕点B逆时针旋转90°得到点C,则点C的坐标为(﹣2,4).考点:坐标与图形变化-旋转.分析:根据题意画出图形,易证△ADB≌△BEC,求出CE、OE的长即可求出C的坐标.解答:解:如图所示,点A绕点B逆时针旋转90°到点C,∵A坐标为(5,3),B坐标为(1,0),∴AD=3,BD=4,∴AB=5,根据旋转的性质,AB=BC,∵∠ABC=90°,∴∠EBC+∠ABD=90°,∵∠DAB+∠ABD=90°,∴∠EBC=∠DAB.在△EBC和△BAD中,∴△EBC≌△BAD,∴CE=BD=4,BE=AD=3,∵OB=1,∴OE=2,∴C(﹣2,4).故答案为:(﹣2,4).点评:本题主要考查了旋转变换和三角形全等的判定与性质,证明△EBC≌△BAD是解决问题的关键.15.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象可知:方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围为k<2 .考点:抛物线与x轴的交点.分析:先由交点式求出二次函数的解析式,再由方程的根的情况得出判别式△>0,解不等式即可得出k的取值范围.解答:解:根据题意得:二次函数的图象与x轴的交点为:(1,0)、(3,0),设二次函数y=a(x﹣1)(x﹣3),把点(2,2)代入得:a=﹣2,∴二次函数的解析式为:y=﹣2(x﹣1)(x﹣3)即y=﹣2x2+8x﹣6;∵方程﹣2x2+8x﹣6=k有两个不相等的实数根,∴﹣2x2+8x﹣6﹣k=0,△=82﹣4×(﹣2)×(﹣6﹣k)>0,解得:k<2;故答案为:k<2.点评:本题考查了抛物线与x轴的交点、二次函数解析式的求法、不等式的解法;熟练掌握二次函数图象的有关性质,并能进行推理计算是解决问题的关键.16.如图,在半径为2的⊙O中,两个顶点重合的内接正四边形与正六边形,则阴影部分的面积为6﹣2.考点:正多边形和圆.分析:如图,连接OB,OF,根据题意得:△BFO是等边三角形,△CDE是等腰直角三角形,求得△ABC的高和底即可求出阴影部分的面积.解答:解:如图,连接OB,OF,根据题意得:△BFO是等边三角形,△CDE是等腰直角三角形,∴BF=OB=2,∴△BFO的高为;,CD=2(2﹣)=4﹣2,∴BC=(2﹣4+2)=﹣1,∴阴影部分的面积=4S△ABC=4×()•=6﹣2.故答案为:6﹣2.点评:本题考查了正多边形和圆,三角形的面积,解题的关键是知道阴影部分的面积等于4个三角形的面积.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.内作答,解答时应写出文字说明、证明过程或演算步骤)17.解方程组:.考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:,①×2得:4x+6y=﹣10③,②×3得:9x﹣6y=36④,③+④得:13x=26,解得:x=2,把x=2代入①得y=﹣3,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.化简:(﹣x)÷.考点:分式的混合运算.分析:先算括号里面的,分母要因式分解,再算除法即可.解答:解:原式=[﹣]÷,=×,=×,=×,=﹣x(x﹣1),=﹣x2+x.点评:本题考查了分式的混合运算,通分、因式分解和约分是解答的关键.19.为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练.物理、化学各有3个不同的操作实验题目,物理用番号①、②、③代表,化学用字母a、b、c表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定.(1)小张同学对物理的①、②和化学的b、c实验准备得较好.请用树形图或列表法求他两科都抽到准备得较好的实验题目的概率;(2)小明同学对物理的①、②、③和化学的a实验准备得较好.他两科都抽到准备得较好的实验题目的概率为.考点:列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小张同学两科都抽到准备得较好的实验题目的情况,再利用概率公式即可求得答案;(2)首先由(1)中的树状图求得小明同学两科都抽到准备得较好的实验题目的情况,然后直接利用概率公式求解即可求得答案.解答:解:(1)画树状图得:∵共有9种等可能结果,他两科都抽到准备得较好的实验题目的有4种情况,∴他两科都抽到准备得较好的实验题目的概率为:;(2)∵小明同学两科都抽到准备得较好的实验题目的有3种情况,∴他两科都抽到准备得较好的实验题目的概率为:=.故答案为:.点评:此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.20.据报道,历经一百天的调查研究,南京PM 2.5源解析已经通过专家论证.各种调查显示,机动车成为PM 2.5的最大来源,一辆车每行驶20千米平均向大气里排放0.035千克污染物.校环保志愿小分队从环保局了解到南京100天的空气质量等级情况,并制成统计图和表:2018年南京市100天空气质量等级天数统计表a= 25 ,b= 20 ,图中严重污染部分对应的圆心角n=72 °.(2)请你根据“2018年南京市100天空气质量等级天数统计表”计算100天内重度污染和严重污染出现的频率共是多少?(3)小明是社区环保志愿者,他和同学们调查了机动车每天的行驶路程,了解到每辆车每天平均出行25千米.已知南京市2018年机动车保有量已突破200万辆,请你通过计算,估计2018年南京市一天中出行的机动车至少要向大气里排放多少千克污染物?考点:扇形统计图;用样本估计总体;频数与频率;统计表.分析:(1)根据优的天数和所占的百分比求出总天数,再乘以良和严重污染所占的百分比,求出a,b,再用360°乘以严重污染所占的百分比求出严重污染部分对应的圆心角的度数;(2)用重度污染和严重污染所占的百分比相加即可得出答案;(3)根据题意和用样本估计总体的方法,列出算式,求解即可.解答:解:(1)根据题意得:=100(天),a=100×25%=25(天),严重污染所占的百分比是:1﹣10%﹣25%﹣12%﹣8%﹣25%=20%,b=100×20%=20(天),n=360°×20%=72°;故答案为:25,20,72;(2)100天内重度污染和严重污染出现的频率共是20%+25%=45%;(3)根据题意得:200×0.035×10000×=87500(千克),答:2018年南京市一天中出行的机动车至少要向大气里排放87500千克污染物.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.如图,在▱ABCD中,E、F、G、H分别为AB、BC、CD、AD的中点,AF与EH交于点M,FG 与CH交于点N.(1)求证:四边形MFNH为平行四边形;(2)求证:△AMH≌△CNF.考点:平行四边形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:(1)利用三角形中位线的性质得出EH∥FG,进而得出AH FC,再求出EH∥FG,即可得出答案;(2)利用平行四边形的性质以及平行线的性质得出∠AMH=∠CNF,进而利用AAS得出即可.解答:证明:(1)连接BD,∵E、F、G、H分别为AB、BC、CD、AD的中点,∴EH为△ABD的中位线,∴EH∥BD.同理FG∥BD.∴EH∥FG,在▱ABCD中,∴AD BC,∵H为AD的中点AH=AD,∵F为BC的中点FC=BC,∴AH FC,∴四边形AFCH为平行四边形,∴AF∥CH,又∵EH∥FG∴四边形MFNH为平行四边形;(2)∵四边形AFCH为平行四边形∴∠FAD=∠HCB,∵EH∥FG,∴∠AMH=∠AFN,∵AF∥CH,∴∠AFN=∠CNF,∴∠AMH=∠CNF,在△AMH和△CNF中∵∴△AMH≌△CNF(AAS).点评:此题主要考查了平行四边形的判定与性质以及全等三角形的判定等知识,熟练应用平行四边形的判定方法是解题关键.22.端午节期间,某食堂根据职工食用习惯,购进甲、乙两种粽子260个,其中甲种粽子花费300元,乙种粽子花费400元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?考点:分式方程的应用.分析:设乙种粽子的单价是x元,则甲种粽子的单价为(1+20%)x元,根据甲粽子比乙种粽子少用100元,可得甲粽子用了300元,乙粽子400元,根据共购进甲、乙两种粽子260个,列方程求解.解答:解:设乙种粽子的单价是x元,则甲种粽子的单价为(1+20%)x元,由题意得,+=260,解得:x=2.5,经检验:x=2.5是原分式方程的解,(1+20%)x=3,则买甲粽子为:=100(个),乙粽子为:=160(个).答:乙种粽子的单价是2.5元,甲、乙两种粽子各购买100个、160个.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.23.如图,小明欲利用测角仪测量树的高度.已知他离树的水平距离BC为10m,测角仪的高度CD为1.5m,测得树顶A的仰角为33°.求树的高度AB.(参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)考点:解直角三角形的应用-仰角俯角问题.分析:过D作DE⊥AB于E,在直角三角形中运用正切函数计算.解答:解:如图,过点D作DE⊥AB,垂足为E.在Rt△ADE中,DE=BC=10m,∠ADE=33°,tan∠ADE=,∴AE=DE•tan∠ADE≈10×0.65=6.5(m).(5分)∴AB=AE+BE=AE+CD=6.5+1.5=8(m).答:树的高度AB约为8m.(7分)点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.24.小林家、小华家与图书馆依次在一条直线上.小林、小华两人同时各自从家沿直线匀速步行到图书馆借阅图书,已知小林到达图书馆花了20分钟.设两人出发x(分钟)后,小林离小华家的距离为y(米),y与x的函数关系如图所示.(1)小林的速度为60 米/分钟,a= 960 ,小林家离图书馆的距离为1200 米;(2)已知小华的步行速度是40米/分钟,设小华步行时与家的距离为y1(米),请在图中画出y1(米)与x(分钟)的函数图象;(3)小华出发几分钟后两人在途中相遇?考点:一次函数的应用.专题:综合题;压轴题.分析:(1)本题需先根据小林到小华家所走的路程和时间即可求出小林的速度和离图书馆的距离.(2)本题需先根据题意求出y1(米)与x(分钟)的函数关系式,再画出图象即可.(3)本题需求出两个函数图象的交点坐标即可求出小华出发几分钟后两人在途中相遇.解答:解:(1)240÷4=60(米/分钟)(20﹣4)×60=960(米)60×20=1200(米).故答案为60,960,1200.(2)y1(米)与x(分钟)的函数关系式是:y1=40x函数的图象是线段m.(3)∵小林的速度为 60米/分钟,小华的步行速度是40米/分钟,根据题意得:,得:.所以小华出发12分钟后两人在途中相遇.点评:本题主要考查了一次函数的应用,在解题时要能根据题意求出函数的解析式,再根据函数的图象求出答案.25.施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明.考点:二次函数的应用.分析:(1)根据所建坐标系知顶点P和与X轴交点M的坐标,可设解析式为顶点式形式求解,x的取值范围是0≤x≤12;(2)根据对称性当车宽2.5米时,x=3或9,求此时对应的纵坐标的值,与车高5米进行比较得出结论.解答:解:(1)∵M(12,0),P(6,6).∴设这条抛物线的函数解析式为y=a(x﹣6)2+6,∵抛物线过O(0,0),∴a(0﹣6)2+6=0,解得a=﹣,∴这条抛物线的函数解析式为y=﹣(x﹣6)2+6,即y=﹣x2+2x.(0≤x≤12);(2)当x=6﹣0.5﹣2.5=3(或x=6+0.5+2.5=9)时y=4.5<5故不能行驶宽2.5米、高5米的特种车辆.点评:本题考查了二次函数的应用,解题的关键是通过建模把实际问题转化为数学模型,这充分体现了数学的实用性.26.如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C,且与OA交于点E、与OB交于点F,连接CE、CF.(1)AB与⊙O相切吗,为什么?(2)若∠AOB=∠ECF,试判断四边形OECF的形状,并说明理由.考点:切线的判定;菱形的判定.分析:(1)根据等腰三角形的性质由OA=OB,C是边AB的中点得到OC⊥AB,然后根据切线的判定方法即可得到AB与⊙O相切;(2)根据等腰三角形的性质得∠AOC=∠BOC,再利用“SAS”可判断△EOC≌△FOC,则CE=CF,∠ECO=∠FCO,于是∠AOB=2∠EOC,∠ECF=2∠ECO,而∠AOB=∠ECF,所以∠EOC=∠ECO,则CE=OE,得到CE=OE=OF=CF,然后利用菱形的判定方法得到四边形OECF为菱形.解答:解:(1)AB与⊙O相切.理由如下:连结OC,∵OA=OB,C是边AB的中点,∴OC⊥AB,而OC为⊙O的半径,∴AB与⊙O相切于C;(2)四边形OECF为菱形.理由如下:。
数学试卷(满分140分,120分钟)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,有且只有一项是正确的)1.2-的值是 A .-2 B .2 C .12D .-122.我市各类全日制学校在校学生172.70万人,该数据用科学记数法表示为A .1.727×106 人B .1.727×105 人C .1.727×104 人D .1.727×103人 3.函数11-=x y 中,自变量x 的取值范围是A . x <1B . x = 1C .x > 1D .x ≠1 4.下列运算正确的是 A .()11a a --=-- B .()23624a a -= C.()222a b a b -=-D .3252a a a +=5.有9位同学参加歌咏比赛,所得的分数互不相同,取得分前5位同学进入决赛. 某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这9位同学的A .平均数B .众数C .中位数D .方差6.在平面直角坐标系中,下列直线中与直线23y x =-平行的是 A .3y x =- B .23y x =-+ C .32y x =- D . 23y x =+ 7.随机掷一枚质地均匀的硬币两次,两次落地后反面都朝上的概率为 A .21 B .31 C .41 D .328.如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别 EDBC′F CD ′ A(第8题)落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′等于A . 70°B . 65°C . 50°D . 25°9A .mn m 212+ B.22m mn - C .22mn m + D 102A .抛物线开口向上B .抛物线与y 轴交于负半轴C .当x =4时,y >0D .方程02=++c bx ax 的正根在3与4之间二、填空题(本大题共8小题,每小题3分,共24分) 11.写出一个比0小的无理数 . 12. 因式分解:2x 2 – 8 = . 13. 若3520x y x y +=⎧⎨-=⎩,则2x y += .14. 当1-=x 时,代数式122++x x 的值等于 .15.小强和小明去测量一座古塔的高度,他们在离古塔米的A 处,用测角仪器测得塔顶的仰角为30BE 的高为 米.(第9题)(第15题)(第17题)CDOA16.如图,在△ABC 中,∠A = 90°,∠C = 45°,AB = 6㎝,∠ABC 的平分线交AC 于点D ,DE ⊥BC ,垂足为E ,则DC +DE = ㎝.17.如图,扇形OAB 的圆心角为90︒,正方形OCDE 的顶点C 、E 、D 分别在OA 、OB 、AB 上,AF ED ⊥,交ED 的延长线于点F .如果正方形的边长为1,则图中阴影部分的面积为 .18. 在Rt △ABC 中,∠A <∠B ,CM 是斜边AB 上的中线,将△ACM 沿直线CM A 落在D 处,若CD 恰好与AB.三、解答题(本大题共10小题,共86分) 19.(本题10分) (1)计算:0113(()3---.(2)解方程:13)1(2=+-x .20.(本题10分) (1)解不等式组:⎩⎨⎧->>+.42-21x x ,(2)化简:)(2)2(2222y x yx y xy x y x y y x y x -÷-+-++++-.21.(本题7分)在一个不透明的袋子中装有白色、黄色和蓝色三种颜色的小球,这些球除颜色外都相同,其中白球有2个,蓝球有1个.现从中任意摸出一个小球是白球的概率是12.(1)袋子中黄色小球有____________个;第18题C B(2)如果第一次任意摸出一个小球(不放回),第二次再摸出一个小球,请用画树状图或列表格的方法求两次都摸出白球的概率.22.(本题7分)今年3月12日,某校九年级部分学生参加植树节活动,参加植树学生植树情况的部分统计结果如图所示.请根据统计图形所提供的有关信息,完成下列问题: (1)求参加植树的学生人数;(2)求学生植树棵数的平均数;(精确到1) (3)请将该条形统计图补充完整.23. (本题满分8分)已知:如图,在ABC △中, E 、F 、D 分别是各边的中点,BD 是角平分线.求证:(1)EBD EDB ∠=∠; (2)BE CF =.24. (本题满分8分)某网店以每件40元的价格购进一批商品,若以单价60元销售,每月可售出300件.调查表明:单价每上涨1元,每月的销量就减少10件.(第23题)(1)该店在11月份售出此种商品280件,单价上涨了元;(2)写出每月销售该商品的利润y(元)与单价x(元)间的函数关系式,并求出单价为多少元时,每月销售该商品的利润最大?(第25题)25. (本题满分8分)如图,已知反比例函数k y x=与一次函数y x b =+的图象在第一象限相交于点(1,4)A k -+. (1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围. 26.(本题满分8分)如图,在直角梯形ABCD 中,AD ∥BC ,90A B ∠=∠=︒,4BC AD =.AB 为⊙O 的直径,2OA =,CD与⊙O 相切于点E .求CD 的长.27. (本题8分)如图1,一副直角三角板满足AB BC=,AC DE=,90ABC DEF ∠=∠= ,30EDF ∠= .【实验操作】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板....DEF ...绕点..E .旋转..,并使边DE 与边AB 交于点P ,边EF 与边BC 交于点Q .【探究一】在旋转过程中,(1)如图2,当1CE EA=时,EP EQ 与的数量关系为 (直接写出答案);(2)如图3,当2CE EA=时,EP EQ 与的数量关系为 (直接写出答案);(3)根据你对⑴、⑵的探究结果,试写出当CE m EA=时,EP EQ 与满足的数量关系式为 ,其中m 的取值范围是 (直接写结论).【探究二】若2CE EA=且30AC =cm ,连P Q ,设△EPQ 的面积为S (2cm ),在旋转过程中,S 是否存在最大值或最小值?若存在,求出最大值或最小值;若(第26题)(图2)(图3)FFF(图1)(第27题)不存在,说明理由.28.(本题12分)如图,已知抛物线221=-++-与x轴相交于A、B两点,y x x m与y轴相交于点C,其中点C的坐标是(0,3),顶点为点D,联结CD,抛物线的对称轴与x轴相交于点E.(1)求m的值;(2)求∠CDE的度数;(3)在抛物线对称轴的右侧部分上是否存在一点P,使得△PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.初三第二次模拟考试数学参考答案11.略;12. )2)(2(2-+x x ;13.5;14 .0;15 . 5.1320+;16. 6;17. 12-;18 .30. 19. (1)=13123-=-+-.……………………………………………………………5分(2)1322=+-x ,0=x . ……………………………………………………………10分 20.(1)12>>x ;………………………………………………………………………5分 (2)=yx yx y x +++=++111. ……………………………………………………………10分 21. (1) 1;…………………………………………………………………………………2分(2)解法一:用树状图分析如下解法二:用列表法分析如下:白1白2 黄 蓝开始白1 白2黄蓝白2 黄 蓝 黄 蓝 白1 蓝 白1 白2 1 2 黄白1白2、白1黄、白1 蓝、白1 白2白1、白2黄、白2 蓝、白2 黄 白1、黄 白2、黄蓝、黄 蓝 白1、蓝 白2、蓝 黄、蓝 ∴P(两次都摸到白球)=61122=. …………………………………………………………………7分 22.(1)依据题意,得165032%=(人).……………………………………………………2分 答:参加植树的学生有50人. (2)由 5010168412----=(人), 得植树4棵的学生有12人.…………………………………………………… 3分 学生植树株数的平均数1011621248546350x ⨯+⨯+⨯+⨯+⨯=≈(棵).………………… 4分答:学生植树株数的平均数为3棵. (3)画图正确,得2分;结论正确,得1分. 23.∵BD 是角平分线.∴EBD DBC ∠=∠. (1)分∵E 、D 是中点,∴ED 是中位线,ED ∥BC ,12ED BC =.∴EDB DBC ∠=∠.……………4分∴EBD EDB ∠=∠. (5)分 ∴12BE ED BC ==.…………………………6分∵F 分别是BC 中点,12CF BC =,……………7分∴BE CF =.……………………………8分 24. (1)2;………………………………………………………………………………………2分 (2)[30010(60)](40)y x x =---.……………………………………………………………4分210(90)(40)10(65)6250y x x x =---=--+.…………………………………………………6分当65x =即单价为65元时,每月销售该商品的利润最大.…………………………………8分直接运用公式参照给分25.解:(1)∵已知反比例函数k y x =经过点(1,4)A k -+, ∴41k k -+=,即4k k -+= ∴2k =,∴A(1,2) ……………………………………………………………2分∵一次函数y x b =+的图象经过点A(1,2),∴21b =+,∴1b =∴反比例函数的表达式为2y x=,一次函数的表达式为1y x =+.……4分 (2)由12y x y x =+⎧⎪⎨=⎪⎩消去y ,得220x x +-=.即(2)(1)0x x +-=,∴2x =-或1x =. ∴1y =-或2y =.∴21x y =-⎧⎨=-⎩或12x y =⎧⎨=⎩,∵点B 在第三象限, ∴点B 的坐标为(21)--,.…………………………………………………………………6分 由图象可知,当反比例函数的值大于一次函数的值时,x 的取值范围是2x <-或01x <<.………………………………………………………8分26.作梯形的高DF .∵AB 为⊙O 的直径,90A B ∠=∠=︒,∴AD 、CB 均为⊙O 的切线,………………1分C 又CD 与⊙O 相切于点E ,∴DE DA =,CE CB =.CD AD BC =+.………………3分设AD x =,则4BC x =,5CD x =.……………………………………………………4分在 Rt △CDF 中,24DF AB OA ===,3CF CB BF CB AD x =-=-=,5CD x =. ∴222DF FC CD +=,2224(3)(5)x x +=.………………6分21x =,11x =,21x =-(舍去).………………………分 ∴55CD x ==.……………………………………………8分 27. [探究一】(1)EP EQ =.1分(2) 12EP EQ =.-------------------------------------------------------------------------------------3分(3)1EP EQ m =, --------5分 02m <≤+(结论正确但未化简,算对).--------6分【探究二】(1)设EQ = x ,则S △EPQ =22111244EP EQ EQ x ⋅==,其中x≤. ∴当x EN ==时,S △EPQ 取得最小值50 cm 2; 当x EF ==cm 时,S △EPQ 取得最大值75 cm 2.-----------------------------------8分28.解:(1)根据题意,点C (0,3)在抛物线221y x x m =-++-上,∴1– m = 3.解得 m = –2.…………………………………………………2分(2)过点C 作CF ⊥DE ,垂足为点F .∵CF ⊥DE ,∴∠DFC = 90°.………………………………………………3分由m = –2,得抛物线的函数解析式为322++-=x x y .又4)1(3222+--=++-=x x x y ,所以,抛物线的顶点坐标为D(1,4).…………………………………………………4分又C(0,3),∴DF = CF = 1.又由∠DFC = 90°,得△CDF是等腰直角三角形.∴∠CDE = 45°. (6)分(3)存在.…………………………………………………………………………7分设P(x,y).根据题意,当△PDC是等腰三角形时,由点P在抛物线对称轴的右侧部分上,得PC≠CD,只有PD = CD或PC = PD两种情况.又抛物线的对称轴是直线x = 1.①如果PD = CD,即得点C和点P关于直线x = 1对称,所以,点P的坐标为(2,3).…………………………………………………………………9分②如果PC = PD,,得。
2018年中考模拟考试数学试题(满分:150分 考试时间:120分钟)友情提醒:本卷中的所有题目均在答题卷上作答,在本卷中作答无效。
一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1. 下列运算中不正确的是A.325a a a +=B. 523a a a =⋅ C 。
32a a a ÷= D 。
326()a a = 2.如图,数轴的单位长度为1,若点A ,B 表示的数的绝对值相等,则点A 表示的数是 A 。
4 B. 0C. -2 D 。
—4 3.下列根式中,能与8合并的二次根式是A .12B .18C .20D .27 4.如图是某几何体的三视图,该几何体是A .三棱柱B 。
长方体 C. 圆锥 D. 圆柱 5.如图A ,D 是⊙O 上两点,BC 是直径.若∠D =35︒,则∠OAB 的度数是 ( ▲ )A .70︒B .65︒C .55︒D .35︒.6.如图,在△ABC 中,∠CAB =55°,将△ABC 在平面内绕点A 逆时针旋转到△AB ′C′的位置,使CC ′∥AB ,则旋转角的度数至少为 A .15°B .55°C .60°D .70°7.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中正确的是研发组 管理组 操作组(第6题)C ′ B ′ACB(第4题)D O CBA(第5题)xA(第2题)日工资(元/人) 300 280 260 人数(人)345A .团队平均日工资增大B. 日工资的方差不变C. 日工资的中位数变小 D 。
日工资的众数变大 8.如图,在平面直角坐标系xOy 中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,顶点C 的坐标为(-3,4), 反比例函数ky x =的图象与菱形对角线AO 交于D 点,连接BD , 当BD ⊥x 轴时,k 的值是 A .350- B .225-C .12-D .425-二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.据统计,2018年扬州春节黄金周共接待游客约806 000人次,数据“806 000"用科学记数法可表示为 ▲ 。
2019届初中毕业暨升学考试第二次模拟试卷数 学一、 选择题( 本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上) 1. 63a a ÷结果是 ( )A .3aB .2aC . 9aD .3a -2.在函数y =x 的取值范围 ( ) A .1x ≤ B .1x ≥ C .1x < D . 1x >3.江苏省占地面积约为107200平方公里.将107200用科学记数法表示应为( )A .0.1072×106B .1.072×105C .1.072×106D .10.72×1044.如图,∠1=50°,如果AB ∥DE ,那么∠D 的度数为( ) A . 40° B . 50° C . 130° D . 140°5、若一个多边形的内角和与它的外角和相等,则这个多边形是( )A .三角形B .四边形C .五边形D .六边形6. 若1=x 是方程052=+-c x x 的一个根,则这个方程的另一个根是 ( )A .-2B .2C .4D .-57. 已知一个圆锥的侧面积是10πcm 2,它的侧面展开图是一个圆心角为144°的扇形,则这个圆锥的底面半径为 ( )A . 45cm BC . 2 cm D.8. 如图,在楼顶点A 处观察旗杆CD 测得旗杆顶部C 的仰角为30°,旗杆底部D 的俯角为45°. 已知楼高9AB = m ,则旗杆CD 的高度为( )A.(9+m B.(9+m C.mD. C(第4题)1ABDE第10题9. 如图,在矩形ABCD 中,AB =3,BC =5,以B 为圆心BC 为半径画弧交AD 于点E ,连接CE ,作BF ⊥CE ,垂足为F ,则tan ∠FBC 的值为( )10. 如图,△ABC 是边长为4cm 的等边三角形,动点P 从点A 出发,以2cm /s 的速度沿A →C →B 运动,到达B 点即停止运动,过点P 作PD ⊥AB 于点D ,设运动时间为x (s ),△ADP 的面积为y (cm 2),则能够反映y 与x 之间函数关系的图象大致是( )A .B .C .D .二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应的位置上) 11.在实数范围内分解因式:1642-m = .12. 已知a -2b =-5,则8-3a +6b 的值为 . 13. 一组数据2、3、4、5、6的方差等于 .14.抛物线241y x x =-+的顶点坐标为 第15题 15.如图,A 、B 、C 是⊙O 上的三点,∠AOB =100°,则∠ACB = 度.16. 如图,在△ABC 中,AC >AB ,点D 在BC 上,且BD =BA ,∠ABC 的平分线BE 交AD 于点E ,点F 是AC 的中点,连结EF .若四边形DCFE 和 △BDE 的面积都为3,则△ABC 的面积为 .(第9题)BADCEF17. 如图,在边长为10 的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧, 交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是第16题 第17题 第18题18. 如图,一次函数与反比例函数的图像交于A (1,12)和B (6,2)两点,点P 是线段AB 上一动点(不与点A 和B 重合),过P 点分别作x 、y 轴的垂线PC 、PD 交反比例函数图像于点M 、N ,则四边形PMON 面积的最大值是 .三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的 计算过程、推演步骤或文字说明)19.(本题满分5分)计算:101()2cos60(2)2π-+-︒+-20.(本题满分5分)解不等式组:1123(2)4x x x ⎧-<⎪⎨⎪--≤⎩21.(本题满分6分) 先化简,再求值:121a a a a a --⎛⎫÷- ⎪⎝⎭,其中a.22.(本题满分6分) 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F .(1)求证:AB =AC ;(2)若AD =DAC =30°,求△ABC 的周长.23.(7分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题: (1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A 种支付方式所对应的圆心角为 度.(3)若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名? ABDCF E24.(本题满分8分)在地铁入口处检票进闸时,3个进闸通道A、B、C中,可随机选择其中的一个通过.(1)如果你经过此进闸口时,选择A通道通过的概率是;(2)求两个人经过此进闸口时,选择不同通道通过的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程.)25. (本题满分8分) 如图1,线段AB=12厘米,动点P从点A出发向点B运动,动点Q从点B出发向点A运动,两点同时出发,到达各自的终点后停止运动.已知动点Q运动的速度是动点P运动的速度的2倍.设两点之间的距离为s(厘米),动点P的运动时间为t(秒),图2表示s与t之间的函数关系.(1) 求动点P、Q运动的速度;(2) 图2中,a= ,b= ,c= ;≤≤时,求s与t之间的函数关系式(即线段MN对应的函数关系式).(3) 当a t c26. (本题满分10分) 如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,使得∠EBD=∠CAB.2,AC=6.(1)如图1,若BD=5①求证:BE是⊙O的切线;②求DE的长;2,CF=3,求⊙O的半径.(2)如图2,连结CD,交AB于点F,若BD=527. (本题满分10分)如图1,在平面直角坐标系中,点O 为坐标原点,点A 的坐标为(-8,0), 直线BC 经过点B (-8,6)、C (0,6).将四边形OABC 绕点O 按顺时针方向旋转α度得到四 边形OA ’B ’ C ’ ,此时直线OA ’、 直线B ’ C ’分别与直线BC 相交于点P 、Q . (1)四边形OABC 的形状是 ,当α=90°时,的值是 ;(2)①如图2,当四边形OA ’B ’ C ’的顶点B ’落在y 轴正半轴上时,求的值;②如图3,当四边形OA ’B ’ C ’的顶点B ’落在直线BC 上时,求△OPB ’的面积; (3)在四边形OABC 旋转过程中,当0°<α≤180°时,是否存在这样的点P 和点Q ,使得BP = BQ ,若存在,请直接写出点P 的坐标;若不存在,请说明理由.图1图2 图328. (本题满分11分) 抛物线y =ax 2+bx +c 经过▱ABCD 的顶点A (0,3),B (-1,0),D (2,3),抛物线与x 轴的另一交点为E .经过点E 的直线l 将▱ABCD 分割为面积相等的两部分,与抛物线交于另一点F .点P 为直线l 上方抛物线上一动点,设点P 的横坐标为t . (1) 求抛物线的表达式;(2) 当t 为何值时,△PFE 的面积最大?(3) 是否存在点P 使△P AE 为直角三角形?若存在,求出t 的值;若不存在,说明理由.参考答案1-10:ADBCBCCBDB11:4(m-2)(m+2)12:2313:214:(2,-3)15:5016:1017:π918318:12.519.20.21.22.23.24.25.26.。
最大最全最精的教育资源网2018 年立达中学初三教课第二次调研试卷数学一、选择题 (本大题共 10小题,每题 3 分,共 30 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的 )1. 2的绝对值是 ()1 1C.2D. 2 A.B.222.如图,由 4 个同样的小正方体构成的几何体,其俯视图是()3.以下各式计算正确的选项是A. ( x 2 )3x 5 B. x 8 x 4 x 2 C. x 3 x 3 2x 3 D. ( xy)3 xy 34.有 9 名同学参加歌唱竞赛,他们的初赛成绩各不同样,现取此中前4 名参加决赛,小红同学知道自己的成绩,要判断自己可否进入决赛,还需要知道这9 名同学成绩的 ( )A. 众数B.中位数C.均匀数D. 极差5.点 A(1, y 1 ) , B( 2, y 2 ) 在反比率函数 y4的图象上,则 y 1 , y 2 大小关系是 ()xA.y 1 y 2B. y 1 y 2C. y 1 y 2D.不可以确立6.我国领土面积约为 960 万平方千米,用科学记数法表示我国西部地域的面积约为()A. 9.6 10×6 平方千米B. 9.6 10×5 平方千米C. 9.6 10×4 平方千米D. 9.6 10×7 平方千米7.在四边形 ABCD 中,若 A 、B 、C 、D 的度数之比为2:3:4:3 ,则D 等于()A. 60°B. 75°C. 90°D. 120 ° 8.如图,直线 l 1// l 2 ,若 1 40 ,2 75 ,则3等于 ()A. 55°B.60 °C.65°D.70°9.如图,轮船在A处观察灯塔C位于北偏西70°方向上,轮船从A处以每小时20 海里的速度沿南偏西50°方向匀速航行, 1 小时后抵达码头B处,此时,观察灯塔C位于北偏西 25°方向上,则灯塔 C 与码头B的距离(结果保存根号)是()A. 10 6海里B.10 3 海里C. 10 2海里D.(10 210) 海里10.如图,在ABC 中, ACB90 ,AB6, AC 4 , CD 是中线,将BCD 沿直线CD 翻折,点 B ' 是点 B 的对应点,若点 E 在线段CD上,且CAE BAB ' ,则CE ()7B.4C. 5D.16A.52二、选择题 (本大题共 8 小题,每题 3 分,共 24 分 .把答案直接填在答题卷相应的地点上..........)11.函数y x2中自变量 x 的取值范围是.12.因式分解 :2a28.13.为了预计湖中有多少条鱼.先从湖中捕获 50 条鱼作记号,而后放回湖里,经过段时间,等带记号的鱼完好混于鱼群中以后再捕捞,第二次打鱼共20条,有 2 条做了记号,则预计湖里有鱼条 .14.如图,在平行四边形纸片上作随机扎针实验,则针头扎在暗影地区内的概率为.15.如图,在ABC 中, AB AC, A 40,以 B 为圆心,BC为半径作弧,分别交AC、AB 于点 D、 E,连结 DE ,则 ADE°.16.一圆锥的母线长为3,它的侧面睁开图的圆心角为120°,则这个圆锥的底面半径r为.17.如图,若图中 6 个小正方形的边长均为1,则ABC 的面积为.18.如图,平面直角坐标系xOy 中,点 A 是直线 y3 x4 3 上一动点,将点 A 向右平3 3移 1 个单位获得点 B ,点 C (1,0) ,则 OB CB 的最小值为.三、解答题 (本大题共 10 小题,共 76 分.把解答过程写在答题卷相应的地点上,解答时应写出必需的计算过程、推演步骤或文字说明.)19.(此题满分 5分)计算: 16 ( 3 1)0(1) 1.3x 2 y 820. (此题满分 5 分 )解对于 x 、 y 的方程组 :3y.2x 521.(此题满分 6 分 )先化简,再求值 : (11 ) x2 6x 9,此中 x3 3 .x 2 x 222.(此题满分 6 分 )“端午节”是我国的传统佳节,民间向来有吃“粽子”的风俗 .我市某食品厂为认识市民对昨年销量较好的肉馅粽、 豆沙馅粽、红枣馅粽、蛋黄馅粽 (以下分别用 A 、 B 、C 、D 表示 )这四种不一样口胃粽子的喜欢状况,在节前对某居民区市民进行了抽样调查,并将检查状况绘制成以下两幅统计图 (尚不完好 ).请依据以上信息回答:(1) 本次参加抽样检查的居民有 人 ;(2) 在扇形统计图中,C 种类所占的圆心角的度数是 °;(3) 如有外型完好同样的 A 、 B 、 C 、 D 粽各一个,煮熟后,小王吃了一个,准备吃第二个 .用列表或画树状图的方法,求他第二个吃到的恰巧是 C 粽的概率 .23.(此题满分8 分 )如图,ACB 90 , AC BC ,点 E 是 BC 中点,连结 AE ,过 C 作CF AE,垂足为F,过B作 BD BC交CF 的延伸线于D.(1)求证: AE CD ;(2)若AC 12,求BD的长.24.(此题满分 8 分 )某社区计划对面积为 1800m 2 的地区进行绿化。
2018年中考模拟检测(一)九年级数学试题注意事项:1.全卷满分150分.考试时间为120分;2.考生答题全部答在答题纸上,答在本试卷上无效.一、选择题(本大题共8小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是( ▲ )A . 0ab >B . 0a b -=C . a b <D . 0a b +=2.我国质检总局规定:针织内衣、被套、床上用品等直接接触皮肤的制品,每千克的衣物上甲醛含量应在 075千克以下,将 075用科学记数法表示为 ( ▲ ),A .40.7510-⨯B .47.510-⨯ C .57.510-⨯D .67510-⨯3.下列计算正确的是( ▲ )A .235a b ab +=B .236()a a -=C .222()a b a b +=+ D .8220-=4劳动时间(小时) 2 34 人 数3#21) A. 中位数是2 B. 众数是2 C. 平均数是3 D. 方差是0 5.如图所示几何体的俯视图是 ( ▲ )A .B .C .D .6.折叠一张正方形纸片,按如下折法不一定能折出45°角的是 ( ▲ ))A .B .C .D .7.如图,已知菱形ABCD 的顶点A (3-,0),∠DAB =60°,若动点P 从点A 出发,沿A →B →C →D →A →B →…路径,在菱形的边上以每秒个单位长度的速度移动,则第2017秒时,点P 的坐标为 ( ▲ ) A .(334,14-) B .(334-,14-) C .(3-,0) D .(3,0)¥8.如图,在Rt △ABC 中,∠A=90°,AB=3,AC=4,以O 为圆心的半圆分别与AB 、AC 边相切于D 、E 两点,且O 点在BC 边上,则图中阴影部分面积S 阴等于 ( ▲ ) A .12 B .3πC .354π-D .150364949π- 二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接写在答题纸相应的位置上)9.已知m n mn +=,(1)(1)m n --= ▲ . 10. 一个正多边形的一个外角等于30°,则这个正多边形的边数为 ▲ . 11.若(7x ﹣a )2=49x 2﹣bx+9,则|a+b|的值为________.12.如图,在⊙O 的内接四边形ABCD 中,∠BAC =30°,∠CBD =80°,则∠BCD 的度数为 ▲ . 13.如图,点A 在双曲线y=3x 上,点B 在双曲线y=kx(k ≠0)上,AB ∥x 轴,过点A 作 AD ⊥x 轴于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为 ▲ .y xABC D第7题图第8题图D BO CA第12题图频数(人数)6818151296、14.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB=90°,BC=5,点A 、B 的坐标分别为 (1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y=2x ﹣6上时,线段BC 扫过的面积为 ▲ cm 2.15.如图,点A 、B 的坐标分别为(1,1)和(5,4),抛物线y=ax 2+bx+c (a≠0)的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),当抛物线的顶点为A 时,点C 的横坐标为O ,则点D 的横坐标最大值为 ▲ .】16.如图,在圆心角为90°的扇形AOB 中,半径OA=3,OC=AC ,OD=12BD ,F 是弧AB 的中点.将△OCD 沿CD 折叠,点O 落在点E 处,则图中阴影部分的面积为 ▲ .三、解答题(本大题共11小题,共102分.请在答题纸指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.(本题共6分)计算:3120172sin 60132-⎛⎫-+-+ ⎪⎝⎭18.(本题共6分)解不等式组()3210312x x x -⨯->⎧⎪⎨+-≤⎪⎩19.(本题共6分)解方程:221211x x x =--+、20.(本题共8分)某校为了了解九年级学生(共450人)的身体素质情况,体育老师对九(1)班的50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制了如下部分频数分布表和部分频数分步直方图.ACE F第15题图第16题图组别次数频数(人数)A80≤x<1006B100≤x<120{8C120≤x<140mD140≤x<16018E160≤x<1806请结合图表解答下列问题:(1)表中的m=______;(2)请把频数分布直方图补完整;(3)这个样本数据的中位数落在第________组;(4)若九年级学生一分钟跳绳次数(x)合格要求是x≥120,请估计九年级学生中一分钟跳绳成绩不合格的人数.21.(本题共8分)小明有一个呈等腰直角三角形的积木盒,现在积木盒中只剩下如图1所示的九个空格,图2是可供选择的A、B、C、D四块积木.(1)小明选择把积木A和B放入图3,要求积木A和B的九个小圆恰好能分别与图3中的九个小圆重合,请在图3中画出他放入方式的示意图(温馨提醒:积木A和B的连接小圆的小线段还是要画上哦!);\(2)现从A、B、C、D四块积木中任选两块,请用列表法或画树状图法求恰好能全部不重叠放入的概率.22.(本题共10分)如图,四边形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于点E.(1)求证:△ABD≌△EBD;(2)过点E作EF∥DA,交BD于点F,连接AF.求证:四边形AFED是菱形.&23.(本题共10分)如图1是“东方之星”救援打捞现场图,小红据此构造出一个如图2所示的数学模型,已知:A、B、D三点在同一水平线上,CD⊥AD,∠A=30°,∠CBD=75°,AB=60m.(1)求点B到AC的距离;(2)求线段CD的长度.(24.(本题共10分)已知:如图1,在平面直角坐标系中,A(2,﹣1),以M(﹣1,0)为圆心,以AM为半径的圆交y轴于点B,连结BM并延长交⊙M于点C,动点P在线段BC上运动,长为的线段PQ∥x轴(点Q在点P右侧),连结AQ.(1)求⊙M的半径长和点B的坐标;(2)如图2,连结AC,交线段PQ于点N,①求AC所在直线的解析式;②当PN=QN时,求点Q的坐标.\25.(本题共12分)灌南县2017年双城同创中,计划购买甲、乙两种树苗共8 000株用于道路绿化,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去210 000元,则甲、乙两种树苗各购买多少株(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低并求出最低费用.26.(本题共12分)如图,已知等边三角形ABC的边长为2,点D在边AB上,若∠CDE=60°,且DE交⊿ABC的外角的平分线BE于点E.(1)如图1,若点D是边AB的中点,我们可以构造两个三角形全等来证明CD=DE,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)若点D在边AB上滑动(不与点A,B重合).CD=DE是否总成立若成立,请给出证明过程;若不成立,请说明理由;(3)如图2,在直角坐标系中,点D在边AB上滑动(不与点A,B重合)到某处时,点E恰好落在抛物线y=-x 2+4x-47上,求此时点E 的坐标.|27.(本题共14分)如图,在平面直角坐标系xOy 中,直线y=x ﹣3与x 轴相交于点B 、y 轴相交于点C ,过点B 、C 的抛物线y=﹣x 2+bx+c 与x 轴交于另一点A ,顶点为D 点. (1)求tan ∠OCA 的值;(2)若点P 为抛物线上x 轴上方一点,且∠DAP=∠ACB ,求点P 的坐标;(3)若点Q 为抛物线y=﹣x 2+bx+c 对称轴上一动点,试探究当点Q 为何位置时∠OQC 最大,请求出点Q 的坐标及sin ∠OQC 的值.—第27题图2018学年度中考模拟检测九年级数学答题纸一、选择题(本大题共8小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的)二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接写在答题纸相应的位置上)9. 10. 11. 12.13. 14. 15. 16. 三、解答题(本大题共11小题,共102分.请在答题纸指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.(本题共6分)计算:300120172sin 6012-⎛⎫-+-+ ⎪⎝⎭18.(本题共6分)解不等式组()3210312x x x -⨯->⎧⎪⎨+-≤⎪⎩跳绳次数频数(人数)1801601401201008068618151296319.(本题共6分)解方程:221211x x x =--+20.(本题共8分)组别 次数 频数 (人数)A 80≤x <100 6B 100≤x <120 8C 120≤x <140 mD 140≤x <160 18 E160≤x <1806(1)表中的m=______;(2)请把频数分布直方图补完整;(3)这个样本数据的中位数落在第________组; (4)21.(本题共8分)(1)在图3中画出示意图 (2)22.(本题共10分)(1)(2)23.(本题共10分)(1)(2)24.(本题共10分)(1)(2)第22题图第23题图25.(本题共12分) (1) (2) (3)26.(本题共12分) (1) (2) (3)27.(本题共14分)(1)第27题图图1图2第26题图(2)(3)\。
九年级模拟试卷 试第1页 共6页 九年级模拟试卷 第2页 共6页学校 班级 姓名 考号密 封 线 内 不 要 答 题2018年中考模拟试卷(二)科目 数学满分:120分 考试时间:120分钟一、单项选择题:本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填入题后的括号内.1.下列图形中,既是中心对称图形,又是轴对称图形的个数是( )A .1B . 2C .3D .42.一种新病毒的直径约为0.00000043毫米,用科学记数法表示为( ) A .0.43×10﹣6B .0.43×106C .4.3×107D .4.3×10﹣73.已知不等式组,其解集在数轴上表示正确的是( )A .B .C .D .4.下列运算正确的是( )A .x 2•x 3=x 6B .x 6÷x 5=xC .(﹣x 2)4=x 6D .x 2+x 3=x 5 5.如图所示,该几何体的俯视图是( )A .B .C .D .6.下列二次分式中,与是同类二次根式的是( )A .B .C .D .7.若分式方程2+=有增根,则k 的值为( )A .﹣2B .﹣1C .1D .28.从边长为a 的正方形内去掉一个边长为b 的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是( )A .(a ﹣b )2=a 2﹣2ab +b 2B .a 2﹣b 2=(a +b )(a ﹣b )C .(a +b )2=a 2+2ab +b 2D .a 2+ab=a (a +b )9.如图,在▱ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,若EF :AF=2:5,则S △DEF :S 四边形EFBC 为( )A .2:5B .4:25C .4:31D .4:35第8题图 第9题图 第10题图 10.已知如图,等腰三角形ABC 的直角边长为a ,正方形MNPQ 的边为b (a <b ),C 、M 、A 、N 在同一条直线上,开始时点A 与点M 重合,让△ABC 向右移动,最后点C 与点N 重合.设三角形与正方形的重合面积为y ,点A 移动的距离为x ,则y 关于x 的大致图象是( )A .B .C .D .二、填空题(本大题共8小题,每小题3分,共24分.把答案写在答题卡中的横线上.)11.多项式2x 3﹣8x 2y +8xy 2分解因式的结果是 . 12.计算:﹣= .13.若等腰三角形的顶角为120°,腰长为2cm ,则它的底边长为 cm .14.关于x 的一元二次方程mx 2+(m ﹣2)x +m ﹣2=0有两个不相等的实数根,则m 的取值范围是 .15.如图,△ABC 中,点D 、E 在BC 边上,∠BAD=∠CAE 请你添加一对相等的线段或一对相等九年级模拟试卷 第3页 共6页 九年级模拟试卷 第4页 共6页密 封 线 内 不 要 答 题的角的条件,使△ABD ≌△ACE .你所添加的条件是 .第15题图 第16题图 第17题图 16.在Rt △ABC 中,∠C=90°,D 为BC 上一点,∠DAC=30°,BD=2,,则AC 的长是 .17.在开展“全民阅读”活动中,某校为了解全校1500名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1500名学生一周的课外阅读时间不少于7小时的人数是 .18.正整数按如图所示的规律排列,则第29行第30列的数字为 .三、解答题(一):本大题共5小题,共26分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(5分)计算:﹣22﹣+|1﹣4sin60°|+(π﹣)0.20.(5分)解分式方程:+=3.21.(6分)如图,在△ABC 中,AB=AC ,AD ⊥BC ,AE ∥BC .(1)作∠ADC 的平分线DF ,与AE 交于点F ;(用尺规作图,保留作图痕迹,不写作法) (2)在(1)的条件下,若AD=2,求DF 的长.22.(5分)如图,山区某教学楼后面紧邻着一个土坡,坡面BC 平行于地面AD ,斜坡AB 的坡比为i=1:,且AB=26米.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53°时,可确保山体不滑坡. (1)求改造前坡顶与地面的距离BE 的长.(2)为了消除安全隐患,学校计划将斜坡AB 改造成AF (如图所示),那么BF 至少是多少米?(结果精确到1米)(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75).23.(5分)如图,在平面直角坐标系xOy 中,一次函数y=﹣ax +b 的图象与反比例函数y=的图象相交于点A (﹣4,﹣2),B (m ,4),与y 轴相交于点C . (1)求反比例函数和一次函数的表达式; (2)求点C 的坐标及△AOB 的面积.九年级模拟试卷 试第1页 共6页 九年级模拟试卷 第6页 共6页学校 班级 姓名 考号密 封 线 内 不 要 答 题四、解答题(二):本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.24.(7分)如图,转盘被平均分成三块扇形,转动转盘,转动过程中,指针保持不动,转盘停止后,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止. (1)转动转盘两次,用画树状图或列表的方法求两次指针所指区域数字不同的概率;(2)在第(1)题中,两次转到的区域的数字作为两条线段的长度,如果第三条线段的长度为5,求这三条线段能构成三角形的概率.25.(8分)“世界那么大,我想去看看”一句话红遍网络,随着国际货币基金组织正式宣布人民币2016年10月1日加入SDR (特别提款权),以后出国看世界更加方便.为了解某区6000名初中生对“人民币加入SD R”知晓的情况,某校数学兴趣小组随机抽取区内部分初中生进行问卷调查,将问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不了解”四个等级,并将调查结果整理分析,得到下列图表:某区抽取学生对“人民币加入SDR”知晓情况频数分布表(1)本次问卷调查抽取的学生共有 人,其中“不了解”的学生有 人;(2)在扇形统计图中,学生对“人民币加入SDR”基本了解的区域的圆心角为 °;(3)根据抽样的结果,估计该区6000名初中生对“人民币加入SDR”了解的有多少人(了解是指“非常了解”、“比较了解”和“基本了解”)?26.(7分)如图,在菱形ABCD 中,AB=2,∠DAB=60°,点E 是AD 边的中点,点M 是AB 边上的一个动点(不与点A 重合),延长ME 交CD 的延长线于点N ,连接MD ,AN . (1)求证:四边形AMDN 是平行四边形.(2)当AM 的值为何值时,四边形AMDN 是矩形?请说明理由.27.(8分)如图,在Rt △ABC 中,∠ACB=90°,以AC 为直径的⊙O 与AB 边交于点D ,点E 是边BC 的中点.(1)求证:BC 2=BD•BA ;(2)判断DE 与⊙O 位置关系,并说明理由.28.(10分)如图,已知抛物线与x 轴交于A (﹣1,0)、B (4,0)两点,与y 轴交于点C (0,3). (1)求抛物线的解析式; (2)求直线BC 的函数解析式;(3)在抛物线上,是否存在一点P ,使△PAB 的面积等于△ABC 的面积?若存在,求出点P 的坐标;若不存在,请说明理由.。
中考九年级数学模拟试卷(满分150分,考试时间100分钟)考生注意:考生务必按答题要求在答题纸规定的位置上作答,.本试卷含三个大题,共25题.答题时,1在草稿纸、本试卷上答题一律无效..除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或2计算的主要步骤.24分)题,每题4分,满分一、选择题(本大题共6a.下列二次根式中,与1是同类二次根式的是(▲)2a?4a42a a(;(CD)(A.));;(B)名学生报名参加班级选拔赛,他们72.某班要推选学生参加学校的“诗词达人”比赛,有名参加学校比赛.小红要判断自己能否参加学校3的选拔赛成绩各不相同,现取其中前名学生成绩的(▲)比赛,在知道自己成绩的情况下,还需要知道这7)方差.(D)平均数;(B)中位数;(C(A)众数;所示,这个13.下列四个不等式组中,其中一个不等式组的解集在数轴上的正确表示如图不等式组是(▲),?2?2,xx?2,x?2,x????)(DC(B)()(A)????.3;x???3;x??3xx??3;?????1图那么下列平移过程正确的是(▲)l:,4.如果将直线l:平移后得到直线x2?2y?y?2x21个单位;l向右平移2向左平移2个单位;(B)将l(A)将11个单位.l向下平移2个单位;(D)将C()将l向上平移211所按如图230°和60°角的三角板ABC5.将一把直尺和一块含BAF的大小为(▲)=40°,那么∠示的位置放置,如果∠CDE(B)15°;(A)10°;.)25°(DC()20°; 2图O不重在射线OM上(点P与点AOD、直线ABCD相交于点O,射线OM平分∠,点P6.的位置关系是(▲)相离,那么圆ABP与直线CD合),如果以点P为圆心的圆与直线)不确定(D.C()相交;)相切;()相离;(A B分)分,满分二、填空题(本大题共12题,每题448共页第九年级数学1 4页11.计算:▲.7??aa222的值是▲.,且,那么8.如果8?a?bb?b?4?aa.方程的根是▲.9 22x?4?k y x10.已知反比例函数,在其图像所在的每个象限内,的值增大而减的值随)?y?0(k x小,那么它的图像所在的象限是第▲象限.2x2y?),那么所得新抛物线.如果将抛物线平移,使平移后的抛物线顶点坐标为(1,211▲.的表达式是如果将这样相同厚度的书叠起来的将12.6本相同厚度的书叠起来,它们的高度是9厘米.厘米,那么这些书有▲本.高度是42这八个数中,任意抽取一个数,这个数恰好是合数的概率84,5,6,7,,13.从12,3,是▲.名学生进行调查,14.某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100并绘成如图3所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的▲(填百分数).a?AD,的中点,设,AD//BCBC=2AD,E、F分别是边AD、BC415.如图,在梯形ABCD中,b?ABEFba 的线性组合表示)等于.▲(结果用,那么、4 ,那么它的一条对角线长是▲.16.如果一个矩形的面积是40,两条对角线夹角的正切值是3AA外,且圆在圆A、C为圆心画圆,如果点B17.已知正方形ABCD,AB=1,分别以点r的取值范围是▲.与圆C外切,那么圆C的半径长??)90????(0'AB绕,边AC,将△18.如图5ABC的边AB绕着点A顺时针旋转得到????)90?(0???'AC??90?′C′得到时,,联结B′着点A逆时针旋转C′.当我们称△A B a,那么它的“双旋三角形”的面.ABC的“双旋三角形”如果等边△ABC的边长为是△a.积是▲(用含的代数式表示)A人数30E DA B′24108′C C CB B F3 2 2.5 1 0.5 1.5 时间(小时)5图 4图图3三、解答题(本大题共7题,满分78分)九年级数学第2页共4页(本题满分10分)19.1312?1.计算:)(8??1)??(2232?3.(本题满分10分)20,?2x?y2?解方程组:?22.1?2xy?y?x?5分)21.(本题满分10分,每小题满分各5BD⊥AC,垂足为点,已知:如图6,在△ABC中,AB=13AC=8,D,,?cos?BAC13AAEBD的中点,联结并延长,交边BC于点F.E是EAD?求(1) 的余切值;BFD (2) 求的值.E CFCB F22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分) 6图某学校要印刷一批艺术节的宣传资料,在需要支付制版费100元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件.甲印刷厂提出:所有资料的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过200份的,超过部分的印刷费可按8折收费.yy xx关于份,支付甲印刷厂的费用为写出(1)设该学校需要印刷艺术节的宣传资料元,的函数关系式,并写出它的定义域;(2)如果该学校需要印刷艺术节的宣传资料600份,那么应该选择哪家印刷厂比较优惠?23.(本题满分12分,每小题满分各6分)已知:如图7,梯形ABCD,DC∥AB,对角线AC平分∠BCD,CDA.EA⊥AC,垂足为点在边点ECB的延长线上,的中点;)求证:B是EC(12,若,相交于点(2)分别延长CD、EAFECAC??DCBA求证:.FC:ACAD:AF?7图 E分,每小题满分各4分)12.24(本题满分九年级数学第共3页4页x22xOy)?mx?3m0(my??x?2轴交于点(如图8)已知平面直角坐标系,抛物线与y,顶点为DB 左侧),与,对称轴轴交于点CA、B(点A在点yl,联结DC为直BC,过点C作直.的垂线,垂足为点E )时,C(0,3(1)当点求这条抛物线的表达式和顶点坐标;①1x;求证:∠②DCE=∠BC1m(2的值.)当CB平分∠DCO时,求8 图分)小题满分4小题满分5分,第(3)分,第25.(本题满分14分,第(1)小题满分5(2)的ACC 在半径OB上,中,∠已知:如图9,在半径为2的扇形AOBAOB=90°,点、CD.于点垂直平分线交OA于点D,交弧ABE,联结BE 的正弦值;(1)若C是半径OB中点,求∠OCD2BC?BO?BE AB是弧的中点,求证:;2()若E 的长.是以DCECD为腰的等腰三角形时,求CD)联结(3CE,当△ AA AEDBBBO OOC备用图备用图9图初三调研考数学卷参考答案九年级数学第4页共4页题,满分24分)一、选择题:(本大题共8 A.4.C;5.A;6.1.C ;2.B;3.D ;分)题,满分二、填空题:(本大题共124814x?.10 8.2;9..一、三;7;;a2322?1)y?2(x?14.28%;;28.;13..11 ;1281122-1?r?2ba?...10;17 .;15 .1816 ;a24 三.(本大题共7题,满分78分)分)(本题满分1019.13121?计算:.)??8?(2(?1)232?3 2解原式分=.……………………………………………各32?3?2?22?3?2 2分.……………………………………………………………………………=2?3 10分)20.(本题满分①2,x?y?2?解方程组:?22②1.?x2xy?y??21??x?y1y?x?1(x?)?y,得分…………………………或3解:将方程②变形为,2?y?y?2,2x2x???由此,原方程组可以化为两个二元一次方程组:分………3??.1;??x?yx?y?1??,?3?1,xx??21分别解这两个二元一次方程组,得到原方程组的解是:4分………??.?4;y?y?0??21分,每小题满分各5分)21. (本题满分10 AC1()∵BD⊥,∴∠ADB=.90°5在Rt△ADB中,,AB=13,cos?BAC?135 分∴.………………………………………………2513???cosAD?AB??BAC1322?ADAB12?BD?. (1)∵E是BD的中点,∴DE=6.AD5.…………………………………………2中,Rt在△ADE分??EAD?cot DE6九年级数学第5页共4页5.即的余切值是EAD?6 1分,………………………………………DQ//AF,交边BC于点Q (2)过点D作=3.∴CD=8,AD=5,∵AC3CQCD 分.………………………………………………………∵DQ//AF ,∴2??5ADFQ 分……………………………………1DQ,∴BF=FQ.∵E是BD的中点,EF//5BF 分.……………………………………………………………………………∴1?8CF分)(2)小题满分6分,第(1)小题满分4分,第22.(本题满分10%903x??100?0.y 分,……………………………………2解:(1)由题意可知,y x x270.y?100?之间的函数关系式是:分,………………………………∴1与x0x?分为整数.…………………………………………………且1它的定义域是:262??600?0.27y?100时,支付甲印刷厂的费用:分.…2(元)(2)当600?x256400??80%?30.?200?0.3100?3支付乙印刷厂的费用为:分(元).………256<262,∵1分∴当该学校需要印刷艺术节的宣传资料600份时,应该选择乙印刷厂比较优惠.…6分).(本题满分12分,每小题满分各23证明:(1)∵DC∥AB,∴∠DCB=∠CAB.……………………………………………1分∵AC平分∠BCD,∴∠DCB=∠BCA.∴∠CAB=∠BCA.………………………………………………………………………1分∴BC=BA.………………………………………………………………………………1分∵EA⊥AC,∴∠CAB+∠BAE=90°,∠BCA+∠E=90°. ∴∠BAE=∠E.…………1分∴BA=BE.…………………………………………………………………………………1分∴BC=BE,即B是EC的中点.………………………………………………………1分2,∴)∵.(2EC??DCACACEC::DC?AC∵∠DCA=∠ACE,∴△DCA∽△ACE.………………………………………………2分∴.……………………………………………………………………1分EC:AE?ACAD:∵∠FCA=∠ECA,AC=AC,∠FAC=∠EAC,∴△FCA≌△ECA.…………………2分∴AE=AF,EC=FC.∴.…………………………………………………………………1分FCAD:AF?AC:24.(本题满分12分,每小题4分)九年级数学第6页共4页22233m?)?m0(my??x?2mx?3)可得:,(0(1)①由抛物线,3经过点C1?m?∴分(负数不符合题意,舍去).......................................................123??2y??xx ∴抛物线的表达式:分. (1)分).…………………………………………………………………2∴顶点坐标D(1,42x3x??x??2y B左侧),A、B(点A与在点轴交于点②由抛物线1x?l是直线,………………………………………………,对称轴1分可得B(3,0)l DE=CE=1.1,3)∵CE⊥直线,即,∴E(DE中,△DEC∴在.Rt???1DCEtan CECO 中,,Rt∵在△BOC1tan?OBC?? BOOBC???DCE2分∴=45°.………………………………………………………………OBC???BCE.∵CE//OB,∴1分BCE.………………………………………………………………………∴∠DCE=∠x22y)0m?2mx?3m?(y??x与在点B左侧)与,轴交于点A、B(点A(2) 由抛物线222l)3mm)(Em,D(m,4)m0C(,3),0B(3m对称轴为直线可得:,,,,.,轴交点C,顶点为D22m?DE?m3COmBO?3?CEm .…………………………………,,1∴分,2mDEm??tan?DCE?在Rt△DEC中,.mCE2m3COm??OBC??tan中,BOC.在Rt△m3BO分OBC.…………………………………1OBC∵∠DCE、∠都是锐角,∴∠DCE=∠OBCBCE???.//OB,∴∵CE∠OBC.∴∠DCB=2∠BCE=2OBC.∠DCB=2∠OCB=∵CB 平分∠DCO,∴∠分OBC=30°.……………………………………………1∵∠OCB+∠OBC=90°,∴∠33?tan?OBC,∴.…………………………………………………1分∴?m333525114.25(本题满分分,第()小题分,第()小题分,第()小题4分)页7 九年级数学第4 共页OC=1.C是半径OB中点,BO=2,∴(1)∵.………………………………………………………1分∵DE垂直平分AC,∴AD=CD a aaDC?DO?2?设AD=,,则,5222222 2解得:在Rt△DOC 中,分.,即….DCOCDO??a12(?a)???a435?2?DO?∴.443DO中,△DOC2分在Rt.……………………………………………??OCDsin?5DC3.即∠OCD的正弦值是5. EO、EC、(2)联结AE 分AE=BE.……………………………………………………1∵E是弧AB的中点,∴分AE=EC.……………………………………………………1∵DE垂直平分AC,∴.EBC=∠ECB∴BE=EC.∴∠分.……………………………………………………1∵OE=OB,∴∠EBC=∠OEB ∠∴∠ECB=OEB.……………………………………………1分=∠EBO,∴△BCE∽△BEO.又∵∠CBEBEBC2BC?BO?BE ……………………………………………………1分∴..∴?BOBE、是以CD3)联结AE为腰的等腰三角形可得:OE,由△DCE(DEA.,∴ED=AD.∴∠DAE=∠①当CD=ED时,∵CD=AD B重合.D与点O重合,点C与点∵OA=OE,∴∠DAE=∠OEA.∴点2分CD=BO=2.…………………………………………………………………………∴.CD=AD=CE=AE时,∵②当CD=CECD=AD,CE=AE,∴∴四边形ADCE是菱形,∴AD//EC..90°,∴∠COE=90°∵∠AOB=2222,在设CD=Rt△COE中,.a?ECEO??4CO?a DOC 中,.在Rt△22222)a?CO??CDDO?(?a22222(负数舍去).∴.整理得,解得08?4?a?a22a??3?)a2aa??(??4 2分CD∴=.………………………………………………………………………2?32或时,△DCE是以CD2综上所述,当CD的长是为腰的等腰三角形.232?九年级数学第8页共4页九年级数学第9页共4页。
数学试卷 第 1 页 (共 6 页)2018 年中考第二次涂卡训练试题九年级数学(满分:150 分 ;考试时间:120 分钟) 2018.5 友情提醒:所有试题的解答请在所提供的答题纸上作答,否则一律无效! 一、选择题 (本大题共有 8 小题,每小题 3 分,共 24 分) 1.下列各数中,绝对值最大的数是(▲) A .1 B . -1 C . 3.14 D . π 2.化简 (-a 2 ) a 3 所得的结果是(▲) A . a 5 B . -a 5 C . a 6 D . -a 6 3.已知甲、乙两同学 1 分钟跳绳的平均数相同,若甲同学 1 分钟跳绳成绩的方差 S 甲 2=0.006, 乙同学 1 分钟跳绳成绩的方差 S 乙 2=0.035,则(▲) A .甲的成绩比乙的成绩更稳定 B .乙的成绩比甲的成绩更稳定 C .甲、乙两人的成绩一样稳定 D .甲、乙两人的成绩稳定性不能比较 4.如图,是一个几何体的三视图,该几何体是(▲) A . 三棱锥 B . 三棱柱 C .圆柱 D .圆锥 5.实数 a ,b在数轴上对应点的位置如图所示,化简b A . a - 2b B . -a C . 2b - a D . a第 4 题 第 6 题 第 7 题 6.如图,半径为1的⊙ O 与正五边形 ABCDE 的边相切于点的 A 、C ,则 AC 的长为(▲)A . 34πB .35πC .45πD .23π7.如图, AB ∥ CD , E 、 F 分别为 BC 、 AD 的中点,若 AB = 1,CD = 4 ,则 EF 长 为(▲)A . 2B .52C .32D . 38 . 若 二 次 函 数 y = ax 2 + bx + c 的 图 象 与 x 轴 交 于 A 和 B 两 点 , 顶 点 为 C , 且 b 2 - 4ac = 4 ,则 ∠ACB 的度数为(▲) A .120°B .90°C .60°D .30°二、填空题 (本大题共有 10 小题,每小题 3 分,共 30 分.) 9.2018 年 4 月 22 日,扬州鉴真国际半程马拉松正式鸣枪,来自世界各地的 35000 名跑35000 用科学记数法表示为 ▲ .10.函数 y x 的取值范围是 ▲ . 11.分解因式: 2m 2 - 8 = ▲ .数学试卷 第 2 页 (共 6 页)12.若 2a 2 - b + 1 = 3 ,则 4 - 4a 2 + 2b = ▲ .13.若231x x -+= A -51x +,则 A = ▲ . 14.四边形 ABCD 是⊙ O 的内接四边形,且 ∠A : ∠B : ∠C = 1 : 2 : 3 ,则 ∠D = ▲ . 15.如图, O 是坐标原点,菱形 OABC 的顶点 A 的坐标为 (-3, 4) ,顶点 C 在 x 轴的负半轴上,函数 y =kx( x < 0) 的图象经过顶点 B ,则 k 为 ▲ .16.若点 P (1,1) 在直线 l 1 : y = kx + 2 上,点 Q (m , 2m -1) 在直线 l 2 上,则直线 l 1 和 l 2 的交 点坐标是 ▲ .17.如图,在边长为 a 的正方形 ABCD 中, M 是边 AD 上一动点(点 M 与点 A 、 D 不 重合), N 是 CD 的中点,且 ∠CBM = ∠NMB ,则 tan ∠ABM = ▲ .第 15 题 第 17 题 第 18 题 18.如图,在矩形 ABCD 中,已知 AB = 2 , BC = 4 ,点 O 、 P 分别是边 AB 、 AD 的中点,点 H 是边 CD 上的一个动点,连接 OH ,将四边形 OBCH 沿 OH 折叠,得到四边形OFEH ,连接 PE ,则 PE 长度的最小值是 ▲ .三.解答题(本大题共有 10 小题,共 96 分.请在答题卡指定区域内作答,解答时应写出 必要的文字说明、解题过程或演算步骤) 19.(本题满分 8 分) (1)计算: (-1)2 - 2 cos 600(2)先化简,再求值:(b + 2a )(b - 2a ) - (a - b ) 2 ,其中 a = 1, b = -1 .20.(本题满分 8 分) 关于 x 的方程 (k -1) x 2 - 4 x -1 = 0 有两个不相等的实数根,求 k 的 取值范围.21.(本题满分8 分) 中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”,某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)请将条形统计图补充完整;(2)本次调查所得数据的众数是▲部,中位数是▲部,扇形统计图中“1 部”所在扇形的圆心角为▲度;(3)若该校共有800个人,那么看完3部以上(包含3部)的有多少人?数学试卷第3页(共6 页)22.(本题满分8 分) 某校举行“厉害了,我的国”为主题的征文比赛,九年级(1)班从甲、乙、丙、丁4 名同学中选出2 名同学参加征文比赛.(1)已确定甲参加比赛,再从其余3 名同学中随机选取1 名,求恰好选中乙的概率;(2)随机选取2名同学,求其中有乙同学的概率.请用列表法或画树状图法分析说明.23.(本题满分10 分)下面是两位同学的一段对话:根据对话内容,请你求出明明骑自行车的速度.24.(本题满分10 分) 如图,在平行四边形ABCD 中,过点D 作DE ⊥AB 于点E ,点F在边CD 上,DF =BE ,连接AF ,BF .(1)求证:四边形BFDE 是矩形;(2)若AF 平分∠DAB ,CF =3,BF = 4 ,求DF 长.25.(本题满分10 分) 在Rt∆ABC 中,∠ACB = 90,点O 在BC上,经过点B 的⊙O 与BC ,AB 分别相交于点D ,E 连接CE ,CE=CA.(1)求证:CE 是⊙O 的切线;(2)若tan ∠ABC =,BD =4,求CD 的长.数学试卷第4页(共6 页)26.(本题满分10 分) 已知,如图1,六边形ABCDEF 的每一个内角都相等.(1)六边形ABCDEF 每一个内角的度数是▲;(2)在图1 中,若AF = 2 ,AB = 4 ,BC =3,CD =1,则DE =▲,EF =▲;(3)如图2,在(2)的条件下,若M 、N 分别为边AF 、AB 的中点,连接CM 、DN数学试卷 第 5 页 (共 6 页)交于点 G ,求MGGC的值.图 1 图 2数学试卷 第 6 页 (共 6 页)27.(本题满分 12 分) 如图 1,在平面直角坐标系中,图形 W 在坐标轴上的投影长度定义 如下:设点 P ( x 1 , y 1 ) ,Q ( x 2 , y 2 ) 是图形 W 上的任意两点,若12x x -的最大值为 m ,则 图形 W 在 x 轴上的投影长度为 l x = m ;若12y y -的最大值为 W 在 y 轴上的 投影长度为 l y = n .如图 1,图形 W 在 x l x =40- = 4 ;在 y 轴上的 投影长度为 l y =30-= 3 . (1)已知点 A (1, 2) , B (2, 3) , C (3,1) ,如图 2 所示,若图形 W 为四边形 OABC , 则 l x = ▲ , l y = ▲ ;(2)已知点 C (-32, 0) ,点 D 在直线 y = 12x - 1(x < 0) 上,若图形 W 为 ∆OCD ,当 l x = l y 时,求点 D 的坐标;(3 )若图形 W 为函数 y = x 2(a ≤ x ≤ b ) 的图象,其中 (0 ≤ a < b ) ,当该图形满足 l x = l y ≤ 1时,请直接写出 a 的取值范围.图 1 图 2数学试卷 第 7 页 (共 6 页)28.(本题满分 12 分)已知,如图,在 ∆ABC 中, ∠ACB = 90 , ∠B = 60 , BC = 2 ,∠MON = 30.(1)如图 1, ∠MON 的边 MO ⊥ AB ,边 ON 过点 C ,求 AO 的长;(2)如图 2,将图 1 中的 ∠MON 向右平移,∠MON 的两边分别与 ∆ABC 的边 AC 、BC相交于点 E 、 F ,连接 EF ,若 ∆OEF 是直角三角形,求 AO 的长;(3)在(2)的条件下,∠MON 与 ∆ABC 重叠部分面积是否存在最大值,若存在,求出 最大值,若不存在,请说明理由.图 1 图 2 备用图2018年中考第二次涂卡训练试题九年级 数学参考答案及评分建议 2018.5数学试卷 第 8 页 (共 6 页)说明:本评分标准每题给出了一种解答供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8小题,每小题3分,共24分)二、填空题(本大题共有10小题,每小题3分,共30分)9.43.510⨯ 10.1x ≥ 11.2(2)(2)m m +-12.0 13.214.90° 15.32- 16.(1,1) 17.1318三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)(1)计算:2(1)2cos 6012--+ .=11-+……………………………3分 =……………………………4分(2)化简2(2)(2)()b a b a a b +---=252a ab -+ ……………………………3分 ∵1,1a b ==-∴252a ab -+=7- ……………………………4分20.(本题满分8分) ∵关于x 的方程2(1)410k x x ---=有两个不相等的实数根∴240,0b ac a ->≠ ……………………………2分 ∴2(4)4(1)(1)0,10k k ---->-≠ ……………………………4分 ∴3k >-且1k ≠ ……………………………8分21. (1)图略 ……………………………2分(2)1,2,126° ……………………………5分 (3)280 ……………………………8分数学试卷 第 9 页 (共 6 页)22.(1)13 ……………………………2分(2)树状图如下 ……………………………6分其中有乙同学的的概率为12……………………………8分23.解:设明明骑自行车的速度为x 千米/小时,则聪聪坐车的速度为3x 千米/小时,根据题意得:151540360x x -= ……………………………5分解之得:15x = ……………………………8分经检验15x =是原方程的根 ……………………………9分 答:明明骑自行车的速度为15千米/小时 ……………………………10分 24.(1)∵四边形ABCD 是平行四边形∴AB ∥DC ∵DF=BE∴四边形BFDE 是平行四边形 ……………………………2分 ∵DE ⊥AB∴四边形BFDE 是矩形 ……………………………4分 (2)∵四边形BFDE 是矩形∴∠BFD =90°∴∠BFC =90° 在Rt △BCF 中,CF=3,BF=4∴BC=5 ……………………………6分∵AF 平分∠DAB ∴∠DAF=∠BAF ∵AB ∥DC ∴∠DFA=∠BAF ∴∠DAF=∠DFA∴AD=DF ……………………………8分 ∵AD=BC ∴DF=BC数学试卷 第 10 页 (共 6页)∴DF=5 ……………………………10分 25.(1) 解:连接OE ∵CE=CA ∴∠A =∠CEA∵OE=OB ∴∠B =∠OEB ……………………………2分 ∵∠A CB =90°∴∠A +∠B=90°∴∠CEA+∠OEB=90°∴∠OEC =90°∴CE 是⊙O 的切线 ……………………………5分 (2)设CD 的长为x , ∵BD =4∴BC=x +4,CO=2+x∵tan ∠ABC=12∴AC =12BC =12(x +4)∵CE=CA ∴CE=12(x +4) ……………………………7分在Rt △CEO 中,222CE OE CO +=∴2221(4)2(2)2x x ⎡⎤++=+⎢⎥⎣⎦ ……………………………8分 ∴1244,3x x =-=∴CD 的长为43……………………………10分 26.(1)120° ……………………………2分(2)5,2 ……………………………6分 (3)延长FA 、DN 交与点P ,延长AB 、DC 交与点Q ,∵∠ABC =∠BCD= 120° ∴∠QBC =∠QCB= 60°∴∠BQC =60°,即△BQC 为等边三角形∵N 为AB 的中点,AB=4 ∴AN=BN=2∴QN=5数学试卷 第11 页 (共 6 页)∵QD=QC +CD ∴QD=4∵∠BAF= 120°∴∠BQC +∠BAF = 180°∴AF ∥QD ……………………………8分 ∴AP AN QD QN =∴245AP = ∴85AP = ……………………………9分 ∵M 为AF 的中点∴AM=1∴MP=AP+AM=135∴135MG MP GC CD == ……………………………10分 27.(1)3,3 ……………………………4分(2)∵点D 在直线11(0)2y x x =-<上 ∴设D 坐标为1(,1)2x x - ①当302x -≤<时,310()0(1)22x --=-- ∴1x =-∴D 坐标为3(1,)2-- ……………………………7分 ②当32x <-时,100(1)2x x -=-- ∴2x =-∴D 坐标为(2,2)-- ……………………………10分 (3) 102a ≤<……………………………12分第 12 页 (共 6页) 28.(1)∴∠MON =30°,MO ⊥AB ∴∠COB =60°∵∠B =60°∴△BOC 是等边三角形∵BC=2∴BO=2 ……………………………2分 在ABC ∆中,90ACB ∠=,60B ∠=,2BC =,∴AB=4. ……………………………3分 ∴ AO=AB-BO=2 ……………………………4分(2)①∠OEF =90°设AO=x ,根据题意得OB=4x -,OE =,4OF x =-, ∴OE OF =125x = ……………………………6分 ②∠OFE =90°设AO=x ,根据题意得OB=4x -,3OE =,4OF x =-, ∴2OF OE = ∴83x = ……………………………8分 ∴OEF ∆是直角三角形时,AO 长为125或83 (3)设AO=x ,根据题意得OB=4x -,3OE =, 设重叠部分的面积为S,根据题意得:S S ABC S AOE S OBF =--∴213)2x S x x =-- ……………………………10分 整理得:2S =+-∵0a =<,∴S 有最大值数学试卷第 13 页 (共 6页) ∴当125x =时,S最大值=……………………………12分。
江苏省南京市玄武2018届中考第二次模拟考试数学试题 一、选择题(本题共6小题,每小题2分,共12分)1.计算2422()a a a ⋅÷-的结果是( ).A .aB .2aC .2a -D .3a2.下列一元二次方程中,两实数根的和为3的是( ).A .22630x x -+=B .2430x x -+=C .2350x x +-=D .22610x x ++=3.如图,正方形ABCD 的边长为2,若a AC b <<,其中a ,b 为两个连续的整数,则ab 的值为( ). A .2 B .5 C .6 D .12第2题图 第5题图 第6题图 4.H7N9禽流感病毒颗粒有多种形状,其中球形直径约为0.0000001m .将0.0000001用科学记数法表示为( ).A .70.110-⨯B .7110-⨯C .60.110-⨯D .6110-⨯5.我们常用“y 随x 的增大而增大(而减小)”来表示两个变量之间的变化关系.有这样一个情境:如图,小王从点A 经过路灯C 的正下方沿直线走到点B ,他与路灯C 的距离y 随他与点A 之间的距离x 的变化而变化.下列函数中y 与x 之间的变化关系,最有可能与上述情境类似的是( ).A .y x =B .3y x =+C .3y x=D .2(3)3y x =-+ 6.如图,半径为1的O e 与正五边形ABCDEF 相切于点A ,C ,则劣弧AC 的长度为( ).A .35πB .45πC .34πD .23π 二、填空题(本题共10小题,每小题2分,共20分)7.在函数12y x=+中,自变量x 的取值范围是 . 8.分解因式:29x y y -= . 9.反比例函数2k y x=(k 为常数,0)k ≠的图像位于第 象限. 10.如果按图中虚线对折可以做成一个上底面为无盖的盒子,那么该盒子的下底面的字母是 .第10题图 第12题图 第13题图 11.2018年南京3月份某周7天的最低气温分别是1C -︒,2C ︒,3C ︒,2C ︒,0C ︒,1C -︒,2C ︒,则这7天最低气温的众数是 C ︒,中位数是 C ︒.12.将三边长为4,5,6的三角形(如图1)分别以顶点为圆心,截去三个半径均为1的扇形,则所得图形(如图2)的周长为 .(结果保留)π13.如图,AB 为O e 的直径,CD 为O e 的弦,25ACD ∠=︒,则BAD ∠的度数为 .14.如图为函数:21y x =-,268y x x =++,268y x x =-+,21235y x x =-+在同一平面直角坐标系中的图像,其中最有可能是268y x x =-+的图像的序号是 .第14题图 第15题图 第16题图 15.如图,A ,B ,C ,D 依次为一直线上4个点,2BC =,△BCE 为等边三角形,O e 过A ,D ,E 三点,且120AOD ∠=︒.设AB x =,CD y =,则y 与x 的函数关系式为 .16.如图为一个半径为4m 的圆形广场,其中放有六个宽为1m 的矩形临时摊位,这些摊位均有两个顶点在广场边上,另两个顶点紧靠相邻摊位的顶点,则每个矩形摊位的长为 m .三、解答题(本题共11小题,共88分)17.(6分)计算:1018(2)2cos 454π-⎛⎫--+︒+ ⎪⎝⎭.18.(6分)解不等式组53182432x x x +>⎧⎪-⎨-⎪⎩≤,并写出不等式组的整数解.19.(7分)如图,在四边形ABCD 中,AC ,BD 交于点O ,AO CO =,BO DO =,ABC DCB ∠=∠.(1)求证:四边形ABCD 是矩形;(2)要使四边形ABCD 是正方形,请直接写出AC ,BD 还需满足的条件.20.(8分)在对某超市销售的价格相当的甲、乙、丙3种大米进行质量检测时,质检部门共抽查大米200袋,质量评定分为A,B两个等级(A级优于B级),相应数据的统计图如下图所示.根据所给信息,解决下列问题:(1)a=,b=;(2)已知该超市现有乙种大米750袋,根据检测结果,估计该超市乙种大米中有多少袋B级大米?;(3)对于该超市的甲种大米和丙种大米,你会选择购买哪一种?简述理由.21.(8分)某中学十分重视中学生的用眼卫生,并定期进行视力检测.某次检测设有A,B两处检测点,甲、乙、丙三名学生各自随机选择其中的一处检测视力.(1)求甲、乙、丙三名学生在同一处检测视力的概率;(2)求甲、乙、丙三名学生中至少有两人在B处检测视力的概率.22.(8分)已知二次函数22242y x mx m m =-++(m 是常数).(1)求该函数图像的顶点C 的坐标(用含m 的代数式表示);(2)当m 为何值时,函数图像的顶点C 在第二、四象限的角平分线上?23.(8分)在某两个时刻,太阳光线与地面的夹角分别为37︒和45︒,树AB 长6m .(1)如图1,若树与地面l 的夹角为90︒,则两次影长的和CD = m ;(2)如图2,若树与地面l 的夹角为α,求两次影长的和CD (用含α的式子表示). (参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)图1 图224.(8分)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x 元销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出.(1)用含x 的代数式表示第二周旅游纪念品销售数量为 个;(2)如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?25.(9分)如图1,一条笔直的公路上有A ,B ,C 三地,B ,C 两地相距150km ,甲汽车从B 地,乙汽车从C 地同时出发,沿公路匀速相向而行,分别驶往C ,B 两地.甲、乙两车到A 地的距离12y y ,(km)与行驶时间x (h)之间的关系如图2所示.根据图像回答下列问题:(1)请在图1中标出A 地的位置,并作简要的文字说明;(2)求图2中点M 的坐标,并解释该点的实际意义;(3)在图2中补全甲车的函数图像,求1y 与x 的函数关系式.图1 图226.(10分)已知二次函数2()()y a x m a x m =---(a m ,为常数,且0a ≠)的图像与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,其顶点为D .(1)求点A ,B 的坐标;(2)过点D 作x 轴的垂线,垂足为E .若△CBO 与△DAE 相似(O 为坐标原点),试讨论m 与a 的关系;(3)在同一直角坐标系中,若该二次函数的图像与二次函数2()()y a x m a x m =--+-的图像组合成一个新的图像,则这个新图形的对称轴为 .27.(10分)在平面直角坐标系中,点A 的坐标是(06),,点M 的坐标是(80),,P 是射线AM 上一点,PB x ⊥轴,垂足为B .设AP a =.(1)AM = ;(2)如图,以AP 为直径作圆,圆心为点C .若C e 与x 轴相切,求a 的值;(3)D 是x 轴上一点,连接AD ,PD .若△OAD ∽△BDP ,试探究满足条件的点D 的个数(直接写出点D 的个数及相应a 的取值范围,不必说明理由).参考答案1.B 2.A3.C 4.B5.D 6.B7.2x ≠- 8.(3)(3)y x x +-9.一、三 10.B11.2,2 12.9π+13.65︒ 14.③15.4y x=(0)x > 1617.3 18.1363x <≤,整数解为5,6 19.(1)略; (2)AC BD ⊥20.(1)55; (2)100;(3)丙21.(1)14; (2)1222.(1)2(2)m m m -+,; (2)0m =或323.(1)14; (2)14sin α24.(1)20050x +; (2)9元25.(1):2:3AB AC =; (2)1.2h ;(3)当01x ≤≤时,16060y x =-+;当1 2.5x <≤时,16060y x =-26.(1)(0)A m ,,(10)B m +,;(2)当12m =±时,a 22a m =±可取一切实数,或,且0a ≠,1m ≠-; (3)直线212m x += 27.(1)10AM =; (2)152a =; (3)①当1502a <<时,满足条件的点D 有2个. ②当152a =时,满足条件的点D 有3个. ③当152a >且10a ≠时,满足条件的点D 有4个.。
2019 届初三年级考前模拟考试数学试题一、选择题(本大题共有 6 小题,每小题 3 分,共 18 分.在每小题所给出的四个选项中,只有一 项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上)1.-4 的相反数是 ( ▲ )A .-4B . 14-C .4D .142.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是 ( ▲ )3.下列计算中,正确的是 ( ▲ )A .a 3+2a =3a4B .a 4÷a =a 3C .a 2•a 3=a 6D .(-a 2)3=a 64.截止 2019 年 3 月,“费尔兹奖”得主中最年轻的8 位数学家获奖时的年龄分别为:29,27,31,31,31,29,29,31,则由年龄组成的这组数据的中位数是 ( ▲ )A.27B.29C.30D.315.如图,在平面直角坐标系中,直线 y =12-x + 1 与 y 轴交于点 A ,与 x 轴交于点 B , 则 tan ∠ABO 的值为 ( ▲ )A .12B .C .2D .2 6.如图,在矩形 ABCD 中,AB=4,AD=5,AD 、AB 、BC 分别与⊙O 相切于点E 、F 、G , 过点 D 作⊙O 的切线交 BC 于点 M ,切点为 N ,则 DM 的长为 ( ▲ )A .92B . 133C .3D .二、填空题(本大题共有 10 小题,每小题 3 分,共 30 分.不需写出解答过程,请将答案直接写在答题纸相应位置上)7.若∠α=35°,则∠α 的补角为 ▲ 度.8.因式分解:2ab -8b = ▲ .9.舌尖上的浪费让人触目惊心!据统计,中国每年浪费的粮食总量约为 50000000 吨,把 50000000用科学记数法表示为 ▲ .10.函数 y 中,自变量 x 的取值范围是 ▲ . 11.用一个圆心角为 120°,半径为 6 的扇形做成一个圆锥的侧面,则这个圆锥的底面圆的半径为 ▲ .12.已知关于 x 的一元二次方程 x 2-5x + 1-m =0 的一个根为 2,则另一个根是 ▲.13.已知一组数据 3,4,6,x ,9 的平均数是 6,那么这组数据的方差等于 ▲ .14.已知□ABCD 的对角线 A C 、BD 相交于点 O ,△OAB 是等边三角形,若 A B =3,则□ABCD 的 面积为 ▲ .15.如图,在 R t △ABC 中,∠C =90°,点 D 是线段 A B 的中点,点 E 是线段 B C 上的一个动点,若 A C =6,BC =8,则 D E 长度的取值范围是 ▲ .16.如图,点 A 在反比例函数 y=3x(x >0)上,以 OA 为边作正方形 OABC ,边 AB 交 y 轴于点P ,若 PA :PB=1:2,则正方形 OABC 的面积= ▲ .三、解答题(本大题共有 11 小题,共 102 分.解答时应写出文字说明、推理过程或演算步骤)17.(本题满分 6 00212sin 60(1)()2-+-+18.(本题满分 6 分)解分式方程:1-1=2x x x- 19.(本题满分 8 分)先化简再求值:22(2)211a a a a a a -÷--+-,其中 a 满足 a 2=1. 20.(本题满分 8 分)某校开展了为期一周的“敬老爱亲”社会活动,为了解情况,学生会随机调查了 部分学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成 5 组,A :0.5≤x <1, B :1≤x <1.5,C :1.5≤x <2,D :2≤x <2.5,E :2.5≤x <3,制作成两幅不完整的统计图(如 图).请根据图中提供的信息,解答下列问题:(1)学生会随机调查了 ▲ 名学生;(2)补全频数分布直方图;(3)若全校有 1800 名学生,估计该校在这次活动中做家务的时间不少于 2.5 小时的学生有多少人?21.(本题满分 8 分)如图,Rt △ABC 中,∠ABC=90°,AB =6,BC =8.(1)利用尺规作图,作出 AC 的垂直平分线,交 AC 于点 D ,交 BC 于点 E ;(2)若(1)中的垂直平分线交 AB 的延长线于点 F ,求 DF 的长.22.(本题满分 10 分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现由 2,3,4 这三个数字组成无重复数字的三位数.(1)请画出树状图并写出所有可能得到的三位数;(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜. 你认为这个游戏公平吗?试说明理由.23.(本题满分 10 分)如图,点 O 在△ABC 的 BC 边上,⊙O 经过点 A 、C ,且与 BC 相交于点 D .点E 是下半圆弧的中点,连接 AE 交 BC 于点 F ,已知 AB=BF .(1)求证:AB 是⊙O 的切线;(2)若 OC=3,OF =1,求 cosB 的值.24.(本题满分 10 分)盐城中学九年级某班数学兴趣小组的活动课题是“测量共青山的高度”.该班 派了两个测量小分队,分别带上高度为 1.6m 的测角仪和皮尺进行现场测量,绘制了如下示意图,并标注了测量结果.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin17°≈0.29,cos17°≈0.96,tan17°≈0.30)(1)请你选择一种测量结果计算出共青山的高度.(精确到个位)(2)若共青山的底部近似的看成圆形,且过点 A 向 CD 作垂线,垂足 O 恰为底部圆心,结合两个 分队的测量数据,计算底部圆形的直径.(精确到个位)25.(本题满分 10 分)2019 年 4 月,盐城外卖市场竞争激烈,美团、滴滴、饿了么等公司订单大量增加,某公司负责招聘外卖送餐员,具体方案如下:每月不超出 750 单,每单收入 4 元;超出 750单的部分每单收入 a 元.(1)若某“外卖小哥”某月送了 600 单,收入 元;(2)若“外卖小哥”每月收入为y(元),每月送单量为x 单,y 与x 之间的关系如图所示,求a 的值及y 与x 之间的函数关系式;(3)若“外卖小哥”甲和乙在半个月内共送单1250 单,且甲送单量低于乙送单量,共收入5100 元,问:甲、乙送单量各是多少?26.(本题满分12 分)如图(1),正方形ABCD 的边长为2,正方形AEFG 的边长为1,若正方形AEFG 可绕点 A 逆时针旋转,设旋转角为α(0≤α≤360°),记直线BE 与DG 的交点为P.(1)如图(2),当α=90°时,线段BE 的长等于,线段DG 的长等于;(2)如图(3),在旋转过程中线段BE 与DG 是何关系?请结合图(3)写出理由;(3)①在旋转的过程中,∠PBA 的最大值为;②从图(1)状态开始,正方形AEFG 绕点A逆时针旋转300°,则点P的运动路径的长为.27.(本题满分14 分)已知抛物线y=ax2+bx 过点A(1,4)、B(-3,0),过点A 作直线AC∥x 轴,交抛物线于另一点C,在x轴上有一点D(4,0),连接C D.(1)求抛物线的表达式;(2)若在抛物线上存在点Q,使得C D 平分∠ACQ,请求出点Q的坐标;(3)在直线C D 的下方的抛物线上取一点N,过点N作N G∥y 轴交C D 于点G,以N G 为直径画圆在直线C D 上截得弦G H,问弦G H 的最大值是多少?(4)一动点P 从C 点出发,以每秒1 个单位长度的速度沿C-A-D 运动,在线段CD 上还有一动点M,问是否存在某一时刻使P M+AM=4?若存在,请直接写出t 的值;若不存在,请说明理由.。
2017~2018学年度初三中考二模数学试卷考试说明:满分130分,考试时间120分钟.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内) 1.3-的值是A .3B .﹣3C .±3 D2.函数y =中自变量x 的取值范围是A .2x ≥-B .2x >-C .2x ≤-D .2x <- 3.下列运算正确的是A .66x x x ⋅=B .236()x x =C .22(2)4x x +=+D .33(2)2x x = 4.下列图形中既是轴对称图形,又是中心对称图形的是ABCD5.一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是 A .平均数B .众数C .中位数D .方差 6.若42m a b -与225n a b +是同类项,则n m 的值是A .2B .0C .4D .17.已知点A(m +1,﹣2)和点B(3,m ﹣1),若直线AB ∥x 轴,则m 的值为 A .2 B .﹣4C .﹣1 D .38.如图,AB 是⊙O 的直径,直线PA 与⊙O 相切于点A ,PO 交⊙O 于点C ,连接BC ,若∠P =50°,则∠ABC 的度数为 A .20°B .25°C .40°D .50°第9题 第8题第10题9.如图,□ABCD 对角线AC 与BD 交于点O ,且AD =3,AB =5,在AB 延长线上取一点E ,使BE =25AB ,连接OE 交BC 于F ,则BF 的长为 A .23B .34C .56D .110.如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为 A.3+B.4+.2+D .10二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)11.在实数范围内分解因式:2232x -=.12.2017年无锡市国内生产总值(GDP)达到10500亿元,成为全国第14个突破万亿元的城市,数据10500亿元用科学记数法可表示为亿元. 13.化简:239m m --=. 14.如果圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积为cm².15.如图,将一张矩形纸片ABCD 沿CE 折叠,B 点恰好落在AD 边上,设此点为F ,若AB :BC =4:5,则tan ∠CFD =.第15题第16题第17题16.如图,点A 是反比例函数ky x=的图象上的一点,过点A 作AB ⊥x 轴,垂足为B ,点C 为y 轴上的一点,连接AC ,BC ,若△ABC 的面积为4,则k 的值是.17.如图,在△ABC 中,CA =CB =4,∠ACB =90°,以AB 中点D 为圆心,作圆心角为90°的扇形DEF ,点C 恰好在弧EF 上,则图中阴影部分面积为. 18.如图,∠AOB =45°,点M ,N 在边OA 上,OM =x ,ON =x +4,点P 是边OB 上的点,若使点P ,M ,N 构 成等腰三角形的点P 恰好有三个,则x 满足的条件是 .第18题三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)(1)计算:02(1(3)2--+-;(2)化简:(1)(1)(2)a a a a +-+-. 20.(本题满分8分)(1)解方程:28x x +=;(2)解不等式组:53165142x x x x ≤+⎧⎪⎨-<+⎪⎩.如图,BD是△ABC的角平分线,点E、F分别在BC,AB上,且DE∥AB,BE=AF.(1)求证:四边形ADEF是平行四边形;(2)若∠ABC=60°,BD=6,求DE的长.22.(本题满分8)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.23.(本题满分8)在一次数学考试中,小明有一道选择题(只能在四个选项A、B、C、D中选一个)不会做,便随机选了一个答案;小亮有两道选择题都不会做,他也随机选了两个答案.(1)小明随机选的这个答案,答对的概率是;(2)通过画树状图或列表法求小亮两题都答对概率是多少?(3)这个班数学老师参加集体阅卷,在阅卷过程中,发现学生的错误率较高,他想:若这10道选择题都是靠随机选择答案,则这10道选择题全对的概率是.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D.(1)在图1中,用直尺和圆规过点D作⊙O的切线DE交BC于点E(保留作图痕迹,不写作法);(2)如图2,如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.图1图225.(本题满分8)2018年4月,无锡外卖市场竞争激烈,美团、滴滴、饿了么等公司订单大量增加,某公司负责招聘外卖送餐员,每月工资:底薪1000元,另外外卖送单补贴(送一次外卖称为一单),具体方案如下:(1)若某“外卖小哥”4月份送餐600单,求他这个月的工资总额;(2)设这个月“外卖小哥”送餐x单,所得工资为y元,求y与x的函数关系式;(3)若“外卖小哥”本月送餐800单,所得工资6400≤y≤6500,求m的取值范围.在平面直角坐标系中,点O 为原点,点A 的坐标为(﹣8,0),如图1,正方形OBCD 的顶点B 在x 轴的负半轴上,点C 在第二象限,现将正方形OBCD 绕点O 顺时针旋转角α得到正方形OEFG .(1)如图2,若α=45°,OE =OA ,求直线EF 的函数表达式;(2)如图3,若α为锐角,且tan α=12,当EA ⊥x 轴时,正方形对角线EG 与OF 相交于点M ,求线段AM 的长;(3)当正方形OEFG 的顶点F 落在y 轴正半轴上时,直线AE 与直线FG 相交于点P ,是否存在△OEP :1?若存在,求出点P 的坐标;若不存在,试说明理由.图1图2图327.(本题满分10)如图,在平面直角坐标系中,抛物线22y ax ax c =-+与x 轴交于A 、B 两点(点A 在点B 的左侧),且AB =4,又P 是第一象限抛物线上的一点,抛物线对称轴交x 轴于点F ,交直线AP 于点E ,AE :EP =1:2.(1)求点A 、点B 的坐标;(2)直线AP 交y 轴于点G ,若CG ,求此抛物线的解析式; (3)在(2)的条件下,若点D 是射线AP 上一动点,沿着DF 翻折△ADF 得到△A ′DF (点A 的对应点为A ′),△A ′DF 与△ADB 重叠部分的面积为△ADB 的14,求此时△ADB 的面积.如图,矩形ABCD,AB=2,BC=10,点E为AD上一点,且AE=AB,点F从点E 出发,向终点D运动,速度为1cm/s,以BF为斜边在BF上方作等腰直角△BFG,以BG,BF为邻边作□BFHG,连接AG,设点F的运动时间为t秒.(1)试说明:△ABG∽△EBF;(2)当点H落在直线CD上时,求t的值;(3)点F从E运动到D的过程中,直接写出HC的最小值.备用图参考答案二、填空题19.(1)﹣6;(2)1﹣2a . 20.(1)1x=,2x =;(2)﹣1<x ≤8. 21.(1)利用一组对边平行且相等即可得证;(2)22.(1)200;(2)生活类数据标30,小说类数据标70;(3)126°;(4)240人.23.(1)14;(2)116;(3)1014. 24.(1)作图略;(2)OG 的长为1511.25.(1)他这个月的工资总额为4800元;(2)y 与x 的函数关系式为6100005008,500102,x x y x x m x m x m +≤≤⎧⎪=<≤⎨⎪->⎩,;(3)750≤m ≤900.26.(1)直线EF 的函数表达式为y x =+;(2)作MN ⊥AM 交x 轴于点N ,此时△AEM ≌△NOM ,得到AE =ON =4,△AMN 是等腰直角三角形,从而AM AN =;(3)点P 的坐标为(0,8),(﹣8,24),(﹣24,48),(﹣8,0)或(﹣24,8). 27.(1)先判断抛物线的对称轴为x =1,再根据AB =4,求得AF =BF =2,从而求出A 、B 两点坐标,其中点A 的坐标为(﹣1,0),点B 的坐标为(3,0);(2)由于C 是抛物线与y 轴交点,从而表示出点C 坐标(0,c ),根据CG ,得到点G 坐标为(0,c ),从而利用A 、G 两点表示出AG :(y c x c =+++,根据AE :EP =1:2判断出点P 横坐标为5,代入直线AG 得到P(5,6c +),将A 、P 两点代入抛物线即可得二次函数解析式为:2y x x =; (3)要使△A ′DF 与△ADB 重叠部分的面积为△ADB 的14,不难判断出四边形A ′BFD 是平行四边形,从而A ′D =BF =2,即AD =2,作DQ ⊥x 轴于点Q ,利用△ADQ ∽△AGO ,求得DQ ,最终求得△ADB . 28.(1)根据SAS 证明△ABG ∽△EBF ;(2)作GI ⊥AD 于点I ,HJ ⊥AD 于点J ,显然EF =t ,由(1)之AG EF ,且∠BAG =∠BEF =135°,从而∠GAE =45°, 则AI =GI =12t , 由△GIF ≌△FJH ,得GI =FJ =12t , 则AJ =AE +EF +FJ =2+t +12t =2+32t , 当点H 在直线CD 上时,AJ =AD =10,求得t =163;(3)HC 的最小值为.。
2018江苏省九年级数学中考模拟试题二一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的。
)1. 2017的相反数是……………………………………………………………………( ) A .2017B .-2017C .20171D .20171-2. 下列计算正确的是 ………………………………………………………………( ) A .a 2+a 2=a 4B .(a 2)3=a 5C .a +2=2aD .(ab )3=a 3b 33. 已知某种纸一张的厚度约为0.0089cm ,用科学计数法表示0.0089为…………( ) A .8.9×103B .8.9×10-4C .8.9×10-3D .89×10-24.若分式1xx +有意义,则x 的取值范围是……………………………………………( ) A .x ≠-1B .x ≠1C .x =-1D .x =15.下列说法正确的是 ……………………………………………………………………( )A .若甲组数据的方差s 2甲=0.39,乙组数据的方差s 2乙=0.25,则甲组数据比乙组数据大;B .从1,2,3,4,5中随机抽取一个数,是偶数的可能性比较大;C .数据3,5,4,1,-2的中位数是3;D .若某种游戏活动的中奖率是30%,则参加这种活动10次必有3次中奖.6. 如图所示,△ABC 中,点D 、E 分别是AC 、BC 边上的点,且DE ∥AB ,CD :CA ﹦2:3,△ABC 的面积是18,则四边形ABED 的面积是…………………………( ) A .6 B .8C .9D .107. 如图,若锐角△ABC 内接于⊙O,点D 在⊙O 外(与点C 在AB 同侧), 则下列三个结论:①D C ∠>∠sin sin ;②D C ∠>∠cos cos ; ③D C ∠>∠tan tan 中,正确的结论为……………………………………………………………………………………( ) A 、①② B 、②③ C 、①②③ D 、①③(第6题)(第7题)8. 如图,平面直角坐标系中,△ABC 的顶点坐标分别是A (1,1),B (3,1),C (2,2),当直线b x y +=21与△ABC 有公共点时,b 的取值范围是………………………………( ) A.-1≤b ≤1 B. -21≤b ≤1 C. -21≤b ≤21 D. -1≤b ≤21 9.一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是…………………………………………………( ) :2:10. 如图,正方形ABCD 的边长为4,点P 、Q 分别是CD 、AD 的中点,动点E 从点A 向点B运动,到点B 时停止运动;同时,动点F 从点P 出发,沿P→D→Q 运动,点E 、F 的运动速度相同.设点E 的运动路程为x ,△AEF 的面积为y ,能大致刻画y 与x 的函数关系的图象是…………………………………………………………( )A .B .C .D .二、填空题(本大题共8小题,每小题2分,共计16分.) 11. 已知m n mn +=,则(1)(1)m n --= .12.一个零件的横截面是正六边形,这个六边形的内角和为 ︒. 13. 某校女子排球队队员的年龄分布如下表:(第9题) (第10题)则该校女子排球队队员的平均年龄是______岁.14. 已知一个正比例函数的图像与一个反比例函数的图像的一个交点坐标为(1,3),则另一个交点坐标是 . 15. 已知一个圆锥的侧面积是π22cm ,它的侧面展开图是一个半圆,则这个圆锥的高为 cm .16.如图,△ABC 的三个顶点都在⊙O 上,AD 是直径,且∠CAD=56°,则∠B 的度数为 °. 17. 如图,在平行四边形ABCD 中,∠BCD=30°,BC=6,CD=M 是AD 边的中点,N 是 AB 边上的一动点,将△AMN 沿MN 所在直线 翻折得到△A ′MN ,连接A ′C ,则A ′C 长度的 最小值是___________.18. 正方形的A 1B 1P 1P 2顶点P 1、P 2在反比例函数y =x2(x >0)的图象上,顶点A 1、B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数y =x2(x >0)的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为.三、解答题(本大题共10小题,共计84分.解答时应写出必要的文字说明、证明过程或演算步骤.) 19.(本小题满分8分)计算:(1112cos3022-⎛⎫︒+- ⎪⎝⎭(2)()()()111x x x x -+-+20.(本小题满分8分)(第18题)第17题(1)解方程:0112=+-xx . (2)解不等式组21514(2)x x x +>⎧⎨+>-⎩,.21.(本小题满分10分)如图,在△ABC 中,AB =AC . (1)作△ABC 的角平分线AD ;(尺规作图,保留痕迹) (2)在AD 的延长线上任取一点E ,连接BE 、CE .①求证:△BDE ≌△CDE ;②当AE =2AD 时,四边形ABEC 是什么图形?请说明理由.22.(本小题满分7分)某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图(注:每组含最小值,不含最大值).甲同学计算出第二组的频率是0.06,乙同学计算出从左至右第一、二、三、四组的频数比为2:4:17:15.结合统计图回答下列问题: (1)这次共抽调了多少人?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少? (3)若该校九年级有800名学生,请估计该校九年级达到优秀的人数是多少.23.(本小题满分7分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用“画树状图”或“列表”等方法求两次都摸到红球的概率.学校_____________ 班级 姓____________ 考试__________ ………………………………………密……………………………封………………………………线……………………………………………24.(本题满分6分)如图,小明在大楼30 m 高(即PH =30 m)的窗口P 处进行观测,测得山坡上A 处的俯角为15°,山脚B 处的俯角为60°,已知该山坡的坡度i 为1点P 、H 、B 、C 、A 在同一个平面上,点H 、B 、C 在同一条直线上,且PH ⊥HC . (1)山坡坡角(即∠ABC)的度数等于_______°; (2)求A 、B 两点间的距离.25.(本小题满分10分) 如图,某个体户购进一批时令水果,20天销售完毕,他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制函数图像,其中日销售量y(kg)与销售时间x(天)之间的函数关系如图①所示,销售单价p(元/kg)与销售时间x (天)之间的函数关系如图②所示.(1)直接写出y 与x 之间的函数关系式; (2)分别求出第10天和第15天的销售金额;(3)若日销售量不低于24 kg 的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?26. (本题满分8分)小明遇到这样一个问题:“如图1,在边长为a (a >2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ 的面积.”分析时,小明发现,分别延长QE 、MF 、NG 、PH 交FA 、GB 、HC 、ED 的延长线于点R 、S 、T 、W ,可得△RQF 、△SMG 、△TNH 、△WPE 是四个全等的等腰直角三角形(如图2) 请回答:(1)若将上述四个等腰直角三角形拼成一个正方形(无缝隙不重叠),则这个正方形的边长为 ; (2)求正方形MNPQ 的面积;(3)参考小明思考问题的方法,解决问题:如图3,在等边△ABC 各边上分别截取AD=BE=CF ,再分别过点D 、E 、F 作BC 、AC 、AB 的垂线,得到等边△RPQ .若S △RPQ=33,则AD 的长为 .27.(本小题满分10分)如图,在直角坐标系中,⊙M 的圆心M 在y 轴上,⊙M 与x 轴交于点A 、B ,与y 轴交于点C 、D ,过点A 作⊙M 的切线AP 交y 轴于点P ,若⊙M 的半径为5,点A 的坐标为(﹣4,0), (1)求证:∠PAC =∠CAO ; (2)求直线PA 的解析式;(3)若点Q 为⊙M 上任意一点,连接OQ 、PQ ,问PQOQ的比值是否发生变化?若不变求出此值;若变化,说明变化规律.28. (本小题满分10分)如图,已知一条直线过点(0,4),且与抛物线y=x2交于A,B两点,其中点A的横坐标是﹣2.(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?参考答案一、选择题1—5:B DCAC ,6—10:DDBAA二、填空题11. 1 12. 720 13.14 14.(-1,-3) 15.3 16.34 17.3193- 18.(13,13-+)三、解答题19.(1)原式=)32(223233--+⨯-..................2 =322333+-+-..............................3 =33 (4)(2)原式=221x x x -+- (2)=1+-x ……………………………………4 20.(1) 0112=+-xx 解:去分母,得0)1(2=-+x x ……………………1 去括号,得022=-+x x移项、合并同类项,得2-=x (3)经检验,2-=x 是原方程的解 (4)(2) 解不等式组21514(2)x x x +>⎧⎨+>-⎩,. 解:由①得:x 2>4x >2 (1)由②得:1+x >84-xx 3->-9x <3 (3)∴不等式组的解集为2<x <3 (4)21.(1)作图略 (2)(2)①∵AB=AC, AD 平分∠BAC, ∴BD=CD ,AD ⊥BC.∴∠BDE=∠CDE=90° . (4)在△BDE 和△CDE 中,∴△BDE ≌△CDE (6)②∵AE=2AD,∴AE=DE.∵BD=CD, ∴四边形ABEC 是平行四边形 (8)∵AD ⊥BC,∴平行四边形ABEC 是菱形 (10)22. (1)12÷0.06=200(人). (2)(2)第一、二、三、四组的总人数为:12÷4×(2+4+17+15)=114(人) (3)∴这次测试成绩的优秀率为:100200114200⨯-%=43%.........................5 (3)800×43%=344(人). (7)23. (1)21 ..................2 (2)列表如下:(树状图也可) (黑,红2) (5)共有12种等可能的情况,其中两次都摸到红球有2种, (6)∴P (两次都摸到红球)==. (7)24.解:(1)30 (1)(2)在中,,∵,∴ (3)在中,,,∴是等腰直角三角形, (5)25.(1) (2)(2)∵第10天和第15天在第10天和第20天之间,∴当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p=mx+n,∵点(10,10),(20,8)在p=mx+n的图象上,∴,解得:.∴. (4)当x=10时,p=10,y=2×10=20,销售金额为:10×20=200(元); (5)当x=15时,,y=2×15=30,销售金额为:9×30=270(元).故第10天和第15天的销售金额分别为200元,270元 (6)(3)若日销售量不低于24千克,则y≥24.当0≤x≤15时,y=2x,解不等式2x≥24,得x≥12;当15<x≤20时,y=﹣6x+120,解不等式﹣6x+120≥24,得x≤16.∴12≤x≤16。