【VIP专享】频谱分析仪动态范围与信号测量精度
- 格式:pdf
- 大小:1.01 MB
- 文档页数:9
频谱分析仪基础知识性能指标及实用技巧频谱分析仪是用来显示频域信号幅度的仪器,在射频领域有“射频万用表”的美称。
在射频领域,传统的万用表已经不能有效测量信号的幅度,示波器测量频率很高的信号也比较困难,而这正是频谱分析仪的强项。
本讲从频谱分析仪的种类与应用入手,介绍频谱分析仪的基本性能指标、操作要点和使用方法,供初级工程师入门学习;同时深入总结频谱分析仪的实用技巧,对频谱分析仪的常见问题以Q/A的形式进行归纳,帮助高级射频的工程师和爱好者进一步提高。
频谱分析仪的种类与应用频谱分析仪主要用于显示频域输入信号的频谱特性,依据信号处理方式的差异分为即时频谱分析仪和扫描调谐频谱分析仪两种。
完成频谱分析有扫频式和FFT两种方式:FFT适合于窄分析带宽,快速测量场合;扫频方式适合于宽频带分析场合。
即时频谱分析仪可在同一时间显示频域的信号振幅,其工作原理是针对不同的频率信号设置相对应的滤波器与检知器,并经由同步多工扫瞄器将信号输出至萤幕,优点在于能够显示周期性杂散波的瞬时反应,但缺点是价格昂贵,且频宽范围、滤波器的数目与最大多工交换时间都将对其性能表现造成限制。
扫瞄调谐频谱分析仪是最常用的频谱分析仪类型,它的基本结构与超外差式接收器类似,主要工作原理是输入信号透过衰减器直接加入混波器中,可调变的本地振荡器经由与CRT萤幕同步的扫瞄产生器产生随时间作线性变化的振荡频率,再将混波器与输入信号混波降频后的中频信号放大后、滤波与检波传送至CRT萤幕,因此CRT萤幕的纵轴将显示信号振幅与频率的相对关系。
基于快速傅立叶转换(FFT)的频谱分析仪透过傅立叶运算将被测信号分解成分立的频率分量,进而达到与传统频谱分析仪同样的结果。
新型的频谱分析仪采用数位方式,直接由类比/数位转换器(ADC)对输入信号取样,再经傅立叶运算处理后而得到频谱分布图。
频谱分析仪透过频域对信号进行分析,广泛应用于监测电磁环境、无线电频谱监测、电子产品电磁兼容测量、无线电发射机发射特性、信号源输出信号品质、反无线窃听器等领域,是从事电子产品研发、生产、检验的常用工具,特别针对无线通讯信号的测量更是必要工具。
频谱分析仪检测电路信号质量频谱分析仪有许多功能,能察觉元件在电路中的变化,分析其频率响应来说明电路特性;也能测量信号强度,对信号失真有帮助;也能测量频率占有率,防范邻近信号干扰;并且是兼具计频器与功率计的仪器。
日常生活里充斥频谱(Spectrum)的概念,各种不同频率信号以机率分配方式存在。
在一般时域分析(Time-domain Analysis)中,很容易从时间轴上观察到任何信号波形变化事件,只要用示波器测量,就能看出任何具有时间函数的电子信号事件的瞬间物理量。
频谱分析仪的发展起源,从早期通信系统上频率测量开始,为实现以频率为基准点,在频域上检测信号而研发的仪器,广泛用于测量通信系统的各种重要参数,如平均噪声位准(Average Noise Level)、动态范围(Dynamic Range)、频率范围(Frequency Range)等。
此外还可用在时域测量,如测量传输输出功率等。
从功能面看,一般计频器只能测量信号频率,功率计能测量信号功率,频谱分析仪可视为兼具计频器与功率计的测量仪器(表1,*:指模拟解调)。
频谱分析与时域分析相辅相成如要理清信号特性,除使用示波器从时域(Time Domain)观察信号外,需从频率的角度,简称频域(Frequency Domain)去分析信号。
用示波器观察信号无法一窥全貌,只能看到组成后的波形。
法国数学家傅立叶(Jean-Baptiste-Joseph Fourier)认为,任何时域上的电子信号现象,皆由多组适当的频率、振幅与相位的弦波信号(Sine Wave)组成。
因此,任何有适当滤波功能的电子系统,必可将信号波形分解成多个分别不同的弦波或频率,不同弦波则由其所具有的振幅与相位来决定信号特性。
换言之,借由这种组成分析,可将弦波信号由时域转为频域。
对无线射频(RF)与微波信号而言,不加入分析要素时,保留相位信息往往会使转换过程变得复杂,因此要设法隔离相位信息。
频谱分析仪检定规程目录:1 范围 (2)2 概述 (2)3 计量器具控制 (2)3.1 首次检定、后续检定和使用中检验 (2)3.2 检定条件 (2)3.3 检定用设备 (2)4 检定项目和检定方法 (6)4.1 外观及工作正常性检查 (6)4.2 参考频率的检定 (6)4.3 频率读数准确度的检定 (7)4.4 游标计数准确度的检定 (8)4.5 扫频宽度的检定 (9)4.6 噪声边带的检定 (11)4.7 系统相关边带的检定 (13)4.8 剩余调频的检定 (14)4.9 扫描时间的检定 (17)4.10 显示刻度保真度的检定 (19)4.11 输入衰减器开关/切换不确定度的检定 (23)4.12 参考电平准确度的检定 (25)4.13 分辨率带宽转换不确定度的检定 (27)4.14 绝对幅度准确度(参考设置)的检定 (29)4.15 完整的绝对幅度准确度的检定 (31)4.16 分辨率带宽准确度的检定 (33)4.17 频率响应的检定 (34)4.18 其他输入相关杂散相应的检定 (38)4.19 杂散响应(包括三阶交调失真与二次谐波失真)的检定 (42)4.20 增益压缩的检定 (48)4.21 平均显示噪声电平的检定 (50)4.22 剩余响应的检定 (55)4.23 快速时域幅度准确度的检定 (56)4.24 跟踪发生器绝对幅度和游标准确度的检定(只针对选件1DN/1DQ) (57)4.25 跟踪发生器电平平坦度的检定 (58)1 范围本规程适用于新制造、使用中和修理调整后,频率分析范围在30H z-26.5G Hz的频谱分析仪的检定。
本规程以Angilent ESA系列为例,其它型号的频谱分析仪可参照执行。
2 概述频谱分析仪是一种带有显示装置的超外差接收设备,由预选器、扫频本振、混频、中放、滤波、检波、放大、显示等部分组成。
主要用于频谱分析,也可用于测量频率、电平、增益、衰减、调制、失真、抖动等,是通信、广播、电视、雷达、宇航等技术领域中不可缺少的仪器。
是德科技信号分析测量基础原理优化本底噪声、分辨率带宽等应用指南引言对射频工程师来说,在其产品生命周期的各个阶段,都会用到一种基本而又不可或缺的测量工具:频谱分析仪或信号分析仪。
仪器的关键指标,比如性能、精度和速度等,可协助研发工程师提升设计质量,并有助于制造工程师提高测试效率和产品质量。
本文提供了多种技术方法,旨在帮助您轻松驾驭各种应用场景中的信号分析。
重点是在保证速度和效率的前提下,协助您优化测量本底噪声、分辨率带宽、动态范围、灵敏度等属性。
“信号分析仪”通常是指具有以下特征的仪器:采用频谱分析仪架构和全数字中频(IF)区段,以复杂矢量方式处理信号,实现数字调制分析与时间捕获等多域操作。
关于频谱分析仪、信号分析仪,以及它们的使用方法,可参阅是德科技应用指南 150:《频谱分析基础》。
提升测量精度的各种设置了解信号分析仪的固有精度和鉴别被测器件(DUT )连接通道中的误差源,对于优化测量精度非常重要。
良好的测量方法和实用的分析仪功能可以减少错误的发生,并且缩短测试时间。
利用数字中频技术,特别是在经过内部校准和校正的改进之后,可以实现高水平的基本精度。
例如自带的修正功能和可高度重复的数字滤波器可以让用户在测量期间自由的更改设置,并且基本上不会影响到测试的可重复性。
典型的示例包括分辨率带宽、量程、参考电平,中心频率和扫宽。
当 DUT 连接至经过校准的分析仪后,信号传递网络(图 1)可能会出现减损,或者致使被测信号发生改变。
只有对这些效应进行适当修正或补偿,才能确保最佳精度。
您可以通过一种方便、有效的方法来实现,那就是利用分析仪的内置幅度修正功能,并且与信号源和功率计结合使用。
DUT- Cables- Adapters- NoiseShift reference planeSignal-delivery networkSpectrum analyzer图 1. DUT 与分析仪的连接质量对测量精度和可重复性有很大影响。
频谱分析仪基础知识一、频谱分析仪概述频谱分析仪是一种用于测量信号频率和功率的仪器。
它可以将输入信号转换为频率谱,以图形方式显示信号的频率成分。
频谱分析仪广泛应用于电子、通信、雷达、声音和医疗等领域。
二、频谱分析仪工作原理频谱分析仪的工作原理是将输入信号通过混频器与本振信号进行混频,得到中频信号,再经过中频放大器放大后送入检波器进行解调,最后通过显示器将频率谱显示出来。
三、频谱分析仪主要技术指标1、频率范围:指频谱分析仪能够测量的频率范围。
2、分辨率带宽:指能够分辨出的最小频率间隔。
3、扫描时间:指从低频到高频一次扫描所需的时间。
4、灵敏度:指能够检测到的最小信号幅度。
5、非线性失真:指由于仪器内部非线性元件所引起的信号失真。
6、动态范围:指能够同时测量到的最大和最小信号幅度。
7、抗干扰能力:指仪器对外部干扰信号的抵抗能力。
四、频谱分析仪使用注意事项1、使用前应检查仪器是否正常,如发现异常应立即停止使用。
2、避免在强电磁场中使用,以免影响测量结果。
3、使用过程中应注意避免信号源与仪器之间的干扰。
4、使用完毕后应关闭仪器,并妥善保管。
五、总结频谱分析仪是电子、通信等领域中非常重要的测量仪器之一。
它可以将输入信号转换为频率谱,以图形方式显示信号的频率成分。
在使用频谱分析仪时,应注意检查仪器是否正常、避免在强电磁场中使用、避免信号源与仪器之间的干扰以及使用完毕后应关闭仪器等事项。
了解频谱分析仪的工作原理及主要技术指标,对于正确使用它进行测量和调试具有重要意义。
随着科技的快速发展,频谱分析在电子、通信、航空航天等领域的应用越来越广泛。
频谱分析仪作为频谱分析的核心工具,在科研和工业生产中发挥了重要的作用。
本文将介绍频谱分析原理、频谱分析仪使用技巧,以及如何根据输入的关键词和内容撰写文章。
频谱分析是指将信号分解成不同频率的正弦波成分,并分析这些成分的幅度、相位、频率等特性的一种方法。
频谱分析可以用于测量信号的频率范围、识别信号中的谐波成分、了解信号的调制方式和判断信号的来源等。
频谱分析是观察和测量信号幅度和信号失真的一种快速方法,其显示结果可以直观反映出输入信号的傅立叶变换的幅度。
信号频域分析的测量范围极其宽广,超过140dB,这使得频谱分析仪成为适合现代通信和微波领域的多用途仪器。
频谱分析实质上是考察给定信号源,天线,或信号分配系统的幅度与频率的关系,这种分析能给出有关信号的重要信息,如稳定度,失真,幅度以及调制的类型和质量。
利用这些信息,可以进行电路或系统的调试,以提高效率或验证在所需要的信息发射和不需要的信号发射方面是否符合不断涌现的各种规章条例。
现代频谱分析仪已经得到许多综合利用,从研究开发到生产制造,到现场维护。
新型频谱分析仪已经改名叫信号分析仪,已经成为具有重要价值的实验室仪器,能够快速观察大的频谱宽度,然后迅速移近放大来观察信号细节已受到工程师的高度重视。
在制造领域,测量速度结合通过计算机来存取数据的能力,可以快速,精确和重复地完成一些极其复杂的测量。
有两种技术方法可完成信号频域测量(统称为频谱分析)。
1.FFT分析仪用数值计算的方法处理一定时间周期的信号,可提供频率;幅度和相位信息。
这种仪器同样能分析周期和非周期信号。
FFT 的特点是速度快;精度高,但其分析频率带宽受ADC采样速率限制,适合分析窄带宽信号。
2.扫频式频谱分析仪可分析稳定和周期变化信号,可提供信号幅度和频率信息,适合于宽频带快速扫描测试。
v1.0 可编辑可修改图1 信号的频域分析技术快速傅立叶变换频谱分析仪快速傅立叶变换可用来确定时域信号的频谱。
信号必须在时域中被数字化,然后执行FFT算法来求出频谱。
一般FFT分析仪的结构是:输入信号首先通过一个可变衰减器,以提供不同的测量范围,然后信号经过低通滤波器,除去处于仪器频率范围之外的不希望的高频分量,再对波形进行取样即模拟到数字转换,转换为数字形式后,用微处理器(或其他数字电路如FPGA,DSP)接收取样波形,利用FFT计算波形的频谱,并将结果记录和显示在屏幕上。
频谱分析仪校准指南频谱分析仪的校准是保证其准确性和可靠性的关键。
频谱分析仪校准的目的是调整仪器的参数,使其输出符合已知的标准,同时消除仪器自身的误差。
本文将提供一份频谱分析仪校准的指南,帮助您正确进行频谱分析仪的校准。
第一步:准备工作首先,您需要查看频谱分析仪的用户手册,了解校准的具体步骤和要求。
确保您具备所有必要的校准设备,如标准信号源、功率计、频率计等。
确保仪器和校准设备处于稳定的温度和湿度环境下。
第二步:校准前的检查在进行校准之前,您需要进行仪器的基本检查。
确保仪器无损坏或磨损的零件,并清洁仪器的显示屏和控制面板。
检查仪器的电源线是否连接良好,并检查所有的连接器和接口。
第三步:校准输入信号首先,您需要校准频谱分析仪的输入信号。
连接标准信号源和频谱分析仪,将标准信号源的输出调整到所需的频率和功率水平。
然后,使用频率计和功率计来测量标准信号源的频率和功率,确保其与频谱分析仪显示的数值一致。
第四步:校准频率响应频谱分析仪的频率响应是指仪器对不同频率的响应程度。
为了校准频率响应,您需要使用一系列的标准信号源,在不同的频率下进行测量。
将标准信号源的输出调整到不同的频率,然后使用频谱分析仪测量输出信号的幅度。
将测量值与标准值进行比较,如果存在差异,则进行相应的调整,直到仪器的频率响应符合标准要求。
第五步:校准幅度响应频谱分析仪的幅度响应是指仪器在不同功率水平下的响应程度。
为了校准幅度响应,您需要使用一系列的标准功率源,在不同功率水平下进行测量。
将标准功率源的输出调整到不同的功率,然后使用频谱分析仪测量输出信号的幅度。
将测量值与标准值进行比较,如果存在差异,则进行相应的调整,直到仪器的幅度响应符合标准要求。
第六步:校准分辨率带宽频谱分析仪的分辨率带宽是指仪器分辨信号频率的能力。
为了校准分辨率带宽,您需要使用一系列的标准信号源,在不同的频率下进行测量。
将标准信号源的输出调整到不同的频率,然后使用频谱分析仪测量输出信号的幅度。
频谱分析仪的主要性能指标不同品种的频谱仪其技术参数不完全相同。
对于使用者来说,主要了解频率范围、扫描宽度、扫描时间、测量范围、灵敏度、分辨率及动态范围等。
1、频率范围频率范围指频谱仪能达到规定性能的频率区间。
现代频谱仪的频率范围通常从低频段到射频段、微波段,如0.15?1050MHz、30Hz?26.5GHz。
频率指中心频率,即位于显示频谱宽度中心的频率。
2、扫描宽度扫描宽度又称分析谱宽、扫宽、频率量程、频谱跨度等,指频谱仪在一次分析过程中所显示的频率范围,扫描宽度与分析时间之比就是扫频速度。
3、扫描时间扫描时间也称分析时间,指进行一次全频率范围的扫描并完成测量所需要的时间。
一般都希望测量速度越快越好,即扫描时间越短越好,但扫描时间与许多因素有关,过小会影响测量精度。
目前很多频谱仪有多挡扫描时间可选择,应选择适当的扫描时间进行测量。
4、测量范围测量范围指在任何环境下可以测量的信号与小信号的间隔。
可以测量的信号上限由安全输入电平决定(参考值30dBm(1W)),可以测量的信号下限由灵敏度决定(参考值-135?-115dBm),且和频谱仪的小分辨带宽有关,由此推断,测量范围参考值在145?-165dBm。
5、灵敏度灵敏度指频谱仪测量微弱信号的能力,定义为显示幅度满度时,输入信号的小电平值。
灵敏度与扫速有关,扫速越快,动态幅频特性峰值越低,灵敏度越低6、分辨率分辨率指分辨频谱中两个相邻分量之间的小谱线间隔,表征仪器能够把靠得很近的两个谱线区分开来的能力。
频谱仪显示的每条谱线实际是窄带滤波器的动态幅频特性曲线,故频谱仪的分辨率主要取决于窄带滤波器的通频带宽度,因此定义窄带滤波器幅频特性的3dB带宽为频谱仪的分辨率。
很明显,若窄带滤波器的3dB带宽过宽,可能使两条谱线都落入滤波器的通频带,此时,频谱仪无法分辨这两个分量。
7、动态范围动态范围指能以规定的准确度测量同时出现在输入端的两个信号之间的差值。
动态范围上限受非线性失真的制约。
频谱分析仪的七大性能指标
频谱分析仪是一种用于在频域中显示信号幅度的仪器。
它在射频领域有“射频万用表”的绰号。
在射频领域,传统的万用表无法有效测量信号的幅度,示波器很难测量高频信号,这是频谱分析仪的优势所在。
下面则对频谱分析仪的七大性能指标进行讲解。
1、输入频率范围
它指的是频谱分析仪可以正常工作的最大频率范围。
该范围的上限和下限由HZ表示,HZ由扫描本地振荡器的频率范围确定。
现代频谱分析仪的频率范围通常从低频段到射频频段,甚至微波频段,如1KHz到4GHz。
这里的频率是指中心频率,它是显示频谱宽度中心的频率。
2、分辨率带宽
光谱中两个相邻分量之间的最小行间距定义为HZ。
它表示光谱仪在指定的低点区分两个幅度相等的信号的能力。
在频谱分析仪的屏幕上看到的测量信号的频谱线实际上是窄带滤波器的动态幅频特性图(类似于钟形曲线)。
因此,分辨率取决于幅频带宽的带宽。
为窄带滤波器的幅度频率特性定义的。
频谱分析仪的七大性能指标频谱分析仪是一种用于在频域中显示信号幅度的仪器。
它在射频领域有“射频万用表”的绰号。
在射频领域,传统的万用表无法有效测量信号的幅度,示波器很难测量高频信号,这是频谱分析仪的优势所在。
下面则对频谱分析仪的七大性能指标进行讲解。
1、输入频率范围它指的是频谱分析仪可以正常工作的最大频率范围。
该范围的上限和下限由HZ表示,HZ由扫描本地振荡器的频率范围确定。
现代频谱分析仪的频率范围通常从低频段到射频频段,甚至微波频段,如1KHz到4GHz。
这里的频率是指中心频率,它是显示频谱宽度中心的频率。
2、分辨率带宽光谱中两个相邻分量之间的最小行间距定义为HZ。
它表示光谱仪在指定的低点区分两个幅度相等的信号的能力。
在频谱分析仪的屏幕上看到的测量信号的频谱线实际上是窄带滤波器的动态幅频特性图(类似于钟形曲线)。
因此,分辨率取决于幅频带宽的带宽。
为窄带滤波器的幅度频率特性定义的3dB带宽是频谱分析仪的分辨率带宽。
3、敏感性频谱分析仪在给定分辨率带宽,显示模式和其他因素下显示最小信号电平的能力以dBm,dBu,dBv,V等表示。
超外差光谱仪的灵敏度取决于仪器的内部噪声。
测量小信号时,信号线显示在噪声频谱上。
为了从噪声频谱中轻松看到信号线,一般信号电平应比内部噪声电平高10 dB。
此外,灵敏度还与扫描速度有关。
扫描速度越快,动态幅频特性的峰值越低,灵敏度越低,产生幅度差。
4、动态范围可以以指定的精度测量输入端同时出现的两个信号之间的最大差异。
动态范围的上限受到非线性失真的约束。
有两种方法可以显示频谱分析仪的幅度:线性对数。
对数显示的优点在于它可以在屏幕的有限有效高度范围内获得大的动态范围。
频谱分析仪的动态范。
周林频谱仪板式和管式1.引言1.1 概述概述部分的内容可以介绍周林频谱仪板式和管式的基本概念和功能。
具体内容如下:周林频谱仪是一种用于测量和分析信号频谱的仪器,它通过对输入信号的频率进行快速傅里叶变换,将信号在频域上的分布情况转换为幅度-频率图谱。
板式和管式则是常见的周林频谱仪的两种形式。
板式周林频谱仪是将信号转换为频谱图的一种常见方式。
它由一个宽频带的输入信号源、一个功率放大器和一个频谱分析仪组成。
在信号源产生的感兴趣频段内,功率放大器将信号放大到足够的水平,然后频谱分析仪对信号进行频谱分析,生成对应的频谱图。
板式周林频谱仪具有频率范围广、动态范围大、测量精度高等特点,广泛应用于通信、无线电、噪声分析等领域。
管式周林频谱仪是另一种常见的测量信号频谱的方式。
它由一根封装有多个微波元器件的导线构成,该导线按一定间隔布置在一个圆环上。
当输入信号通过管式周林频谱仪时,不同频率的信号将在导线上产生不同的电流分布,从而形成一个频谱图。
相比于板式周林频谱仪,管式周林频谱仪结构简单、体积小巧,且可实现更高的频率分辨率。
因此,管式周林频谱仪被广泛应用于射频通信、天线测试等领域。
总之,周林频谱仪板式和管式是常见的测量信号频谱的工具。
它们分别以不同的方式实现了信号频谱的测量和分析。
在具体的应用领域中,我们可以选择适合的型号和形式,以满足不同的需求和要求。
1.2 文章结构文章结构部分的内容:本文主要介绍了周林频谱仪板式和管式两种类型。
文章分为引言、正文和结论三个部分。
引言部分主要概述了周林频谱仪板式和管式的重要性和应用领域,并说明了本文的目的。
接下来的正文部分将详细介绍周林频谱仪板式和管式的特点和应用领域。
2.1节将重点介绍周林频谱仪板式的特点和适用场景,包括其工作原理、功能特点和应用领域。
2.2节将专门介绍周林频谱仪管式的特点和适用场景,包括其结构特点、使用方法和应用领域。
最后的结论部分将对比分析板式和管式的优缺点,并总结出两种类型的适用情况。
频谱仪如何选择合适的带宽频谱仪如何操作频谱分析仪是一种应用广泛的信号分析仪器。
它可用来测量信号的频率、电平、波形失真、噪声电平、频谱特性等,加上标准天线还可用来测量场强。
它的紧要特点是:能频谱分析仪是一种应用广泛的信号分析仪器。
它可用来测量信号的频率、电平、波形失真、噪声电平、频谱特性等,加上标准天线还可用来测量场强。
它的紧要特点是:能宽频带连续扫描,并将测得的信号在CRT屏上直观地显示出来。
在整个频段内,电平显示范围大于70dB,在无线电电波测量中可以很便利地看出频谱占用和信号活动情况,所以在很多场合,频谱仪正在替代场强仪成为电波测量中一种新的被广泛应用的仪器。
但必竟二者设计上有差异,因此使用侧重面应有全部同,否则将会带来很大的测量误差。
现代频谱仪多接受微机处理,显示刻度可以自动转换。
在实际测量中要特别注意天线阻抗与测试系统的匹配问题,避开产生失配误差。
由于频谱仪在使用中是进行宽带扫描,所以所用天线要求也都是宽带天线,而宽带天线的VSWR一般都较大,假如与频谱仪联接的不是匹配天线,则要对所用天线的天线系数重新校对。
在实际测量中,输入衰减器不宜放在0dB的位置,假如衰减器置0,输入信号直接接到混频器上,则阻抗特性变差,造成较大的失配误差。
二、防止频谱分析仪过载一般测试接收机的输入端都有带有调谐式高放电路,以抑制带外信号,提高灵敏度。
而频谱分析仪由于其宽带连续快速扫描的特性,输入端一般都直接接到第一混频器上。
当信号电平较高时,混频器工作在非线性变频状态,将产生高阶互调和混频增益压缩,而且过高的电平(一般大于5dBm)将烧坏混频器,故在使用中要合理地选择射频衰减器以确保线性工作状态。
为使混频器进行线性变频,中频放大器进行线性放大,使示波屏上显现的假响应电平缩至最小,这就要求加在混频器上的输入信号功率越小越好;而为了扩大测量电平的动态范围,则要求输入功率越大越好。
为此对输入信号电平的选择有如下三个规定:(1)较佳输入信号电平在频谱仪输入混频器上输入信号时,使所产生的失真电平小于某个规定电平常的输入信号电平叫较佳输入电平。
一、概述频谱分析仪是观察和测量信号幅度及信号失真的一种快速方法。
其显示结果可以直观反映出输入信号的傅里叶变换的幅度。
傅里叶变换将时域信号作为正弦和余弦的集合映射到频域内。
信号频谱分析的测量范围及其宽广,超过了140dB。
这些能力使频谱分析仪成为特别适于现代通讯领域的多用途仪器。
频谱分析实质上是考察给定信号源、天线或信号分配系统的幅度于频率的关系。
这种分析能给出有关信号的重要信息,如稳定度、失真、幅度以及调制的类型和质量。
利用这种信息,可以进行电路或系统调节,以提高效率或验证在所需的信号发射和不需要的信号发射方面是否符合不断涌现的各种规章条例。
现代频谱分析仪已经得到许多综合应用,其范围从研发实验室到生产制造和现场维护。
频谱分析仪已经成为具有重要价值的实验仪器。
能快速观察大的频谱宽度,然后迅速移近放大来仔细考察所关心的的信号已受到研发工程师们的高度重视。
在制造领域,测量速度结合通过计算机来存取数据的能力,可以快速、精确和重复地完成一些极其复杂的测量。
(1)、应用许多因素正影响着对信号分析仪的利用和需要,例如,高速计算机的急剧增多需要宽频率范围的诊断仪器。
射频电信的快速发展导致更多的测试,以检验对传输模式的管理要求。
当今对于移动无线电话的要求是相当严格的,这些要求包括测量频谱占用、功率电平、时域响应和其它杂散发射。
有线电视和广播电视也为利用信号分析仪提供了机会,调制带宽、信噪比、载波电平和谐波便是例子。
射频和微波应用领域持续不断地对最终使用的设备和测试设备提出越来越高的要求。
正如对每个最终用户的设备在变化一样,对相关信号分析仪的要求也在变化。
因此,在选择合适的频谱分析仪之前,需要对既定应用有全面了解。
随着特殊类型的测量变得更为迫切,寻找专门适合有关应用项目的信号分析仪也成为可能。
由于已设计出用于特殊应用领域的信号分析仪,故它们不仅显示原始的频率和幅度测量结果,而且要将那些测量变换为更全面的解决方案。
目前,频谱分析仪已经能够帮助数字设计师诊断和改进他们的高速数字系统的射频干扰性能。
第十章名词解释频谱:一组频率和幅度不同、且有适当相位关系的正弦波。
作为一个整体,它们构成特定的时域信号。
频谱分量:组成频谱的正弦波之一。
频谱分析仪:一种能进行有效傅立叶变换并显示出构成时域信号的各个频谱分量(正弦波)的设备。
相位信息是否保留取决于分析仪的类型和设计。
FFT (快速傅立叶变换):对时域信号进行数学运算,从而产生构成信号的各个独立的频谱分量。
参见“频谱”。
输入阻抗:分析仪对信号源呈现的终端阻抗。
射频和微波分析仪的额定阻抗通常是50 ? 。
对于某些系统(如有线电视),标准阻抗是75 ? 。
额定输入阻抗与实际输入阻抗之间的失配程度由电压驻波比(VSWR )给出。
隔直电容:一个阻止低频信号(包括直流)对电路造成破坏的滤波器,隔直电容限制了频谱仪能准确测量的最低频率。
输入衰减器:位于频谱分析仪输入连接器与第一混频器之间的步进衰减器,也叫做射频衰减器。
输入衰减器用来调节输入到第一混频器上的信号电平。
衰减器用来防止由高电平和(或)宽带信号引起的增益压缩,以及通过控制内部产生的失真程度来设定动态范围。
在某些分析仪中,当改变输入衰减器设置时,被显示信号的垂直位置会发生变化,参考电平也相应地改变。
在新型安捷伦频谱分析仪中,通过改变中频增益来补偿输入衰减器的变化,所以,信号可以在显示器上保持恒定,参考电平也保持不变。
预选器:一个可调的带通滤波器。
位于频谱分析仪的输入混频器之前并使用合适的混频模式。
预选器一般只应用在2 GHz 以上。
使用预选器能基本消除多重响应和镜像响应,在某些情况下还能扩大动态范围。
前置放大器:一个外部低噪声系数放大器。
改善了系统(前置放大器和频谱分析仪)灵敏度,使之超过分析仪自身的灵敏度。
混频模式:对在频谱分析仪上建立给定响应的特殊环境的描述。
混频模式(如1+)表示输入信号是高于(+)还是低于(-)在混频过程中所使用的本振谐波。
外部混频器:一个通常是与波导输入端口相连接的独立混频器。
史上最好的频谱分析仪基础知识(收藏必备)前言频谱分析是观察和测量信号幅度和信号失真的一种快速方法,其显示结果可以直观反映出输入信号的傅立叶变换的幅度。
信号频域分析的测量范围极其宽广,超过140dB,这使得频谱分析仪成为适合现代通信和微波领域的多用途仪器。
频谱分析实质上是考察给定信号源,天线,或信号分配系统的幅度与频率的关系,这种分析能给出有关信号的重要信息,如稳定度,失真,幅度以及调制的类型和质量。
利用这些信息,可以进行电路或系统的调试,以提高效率或验证在所需要的信息发射和不需要的信号发射方面是否符合不断涌现的各种规章条例。
现代频谱分析仪已经得到许多综合利用,从研究开发到生产制造,到现场维护。
新型频谱分析仪已经改名叫信号分析仪,已经成为具有重要价值的实验室仪器,能够快速观察大的频谱宽度,然后迅速移近放大来观察信号细节已受到工程师的高度重视。
在制造领域,测量速度结合通过计算机来存取数据的能力,可以快速,精确和重复地完成一些极其复杂的测量。
有两种技术方法可完成信号频域测量(统称为频谱分析)。
1.FFT分析仪用数值计算的方法处理一定时间周期的信号,可提供频率;幅度和相位信息。
这种仪器同样能分析周期和非周期信号。
FFT 的特点是速度快;精度高,但其分析频率带宽受ADC采样速率限制,适合分析窄带宽信号。
2.扫频式频谱分析仪可分析稳定和周期变化信号,可提供信号幅度和频率信息,适合于宽频带快速扫描测试。
图1 信号的频域分析技术快速傅立叶变换频谱分析仪快速傅立叶变换可用来确定时域信号的频谱。
信号必须在时域中被数字化,然后执行FFT算法来求出频谱。
一般FFT分析仪的结构是:输入信号首先通过一个可变衰减器,以提供不同的测量范围,然后信号经过低通滤波器,除去处于仪器频率范围之外的不希望的高频分量,再对波形进行取样即模拟到数字转换,转换为数字形式后,用微处理器(或其他数字电路如FPGA,DSP)接收取样波形,利用FFT计算波形的频谱,并将结果记录和显示在屏幕上。
简介频谱分析仪是对无线电信号进行测量的必备手段,是从事电子产品研发、生产、检验的常用工具。
因此,应用十分广泛,被称为工程师的射频万用表。
1、传统频谱分析仪传统的频谱分析仪的前端电路是一定带宽内可调谐的接收机,输入信号经变频器变频后由低通滤器输出,滤波输出作为垂直分量,频率作为水平分量,在示波器屏幕上绘出坐标图,就是输入信号的频谱图。
由于变频器可以达到很宽的频率,例如30Hz-30GHz,与外部混频器配合,可扩展到100GHz以上,频谱分析仪是频率覆盖最宽的测量仪器之一。
无论测量连续信号或调制信号,频谱分析仪都是很理想的测量工具。
但是,传统的频谱分析仪也有明显的缺点,它只能测量频率的幅度,缺少相位信息,因此属于标量仪器而不是矢量仪器。
2、现代频谱分析仪基于快速傅里叶变换(FFT)的现代频谱分析仪,通过傅里叶运算将被测信号分解成分立的频率分量,达到与传统频谱分析仪同样的结果,。
这种新型的频谱分析仪采用数字方法直接由模拟/数字转换器(ADC)对输入信号取样,再经FFT处理后获得频谱分布图。
在这种频谱分析仪中,为获得良好的仪器线性度和高分辨率,对信号进行数据采集时ADC的取样率最少等于输入信号最高频率的两倍,亦即频率上限是100MHz的实时频谱分析仪需要ADC有200MS/S的取样率。
目前半导体工艺水平可制成分辨率8位和取样率4GS/S的ADC或者分辨率12位和取样率800MS/S的ADC,亦即,原理上仪器可达到2GHz的带宽,为了扩展频率上限,可在ADC前端增加下变频器,本振采用数字调谐振荡器。
这种混合式的频谱分析仪可扩展到几GHz以下的频段使用。
FFT的性能用取样点数和取样率来表征,例如用100KS/S的取样率对输入信号取样1024点,则最高输入频率是50KHz和分辨率是50Hz。
如果取样点数为2048点,则分辨率提高到25Hz。
由此可知,最高输人频率取决于取样率,分辨率取决于取样点数。
FFT运算时间与取样,点数成对数关系,频谱分析仪需要高频率、高分辨率和高速运算时,要选用高速的FFT硬件,或者相应的数字信号处理器(DSP)芯片。