《函数的应用(一)》函数的概念与性质PPT教材课件
- 格式:pptx
- 大小:4.33 MB
- 文档页数:39
3.4函数的应用(一)知识解读•必须会知识点1 常见的几种函数模型1.(2022·安徽亳州高一期中)商店出售茶壶和茶杯,茶壶每个定价20元,茶杯每个定价5元,该商店现推出两种优惠方案:①买一个茶壶赠送一个茶杯;②按购买总价的92%付款。
某顾客需购买茶壶4个,茶杯若干个(不少于4个)。
当购买茶杯x个时,付款为y 元,试分别建立两种优惠方案中的y与x之间的函数解析式,并指出如果该顾客需购买茶杯40个,应选择哪种优惠方案。
解析:由优惠方案①,得函数解析式为y1=20×4+5(x-4)=5x+60(x≥4,x∈N*)。
由优惠方案②,得函数解析式为y2=(20×4+5x)×92%=4.6x+73.6(x≥4,x∈N*)。
当该顾客需购买茶杯40个时,采用优惠方案①应付款y1=5×40+60=260(元),采用优惠方案②应付款y2=4.6×40+73.6=257.6(元)。
由于y2<y1,故应选择优惠方案②。
知识点2 用函数模型解决实际问题的方法与步骤2.(2021·山东菏泽23校高一期末联考)为节约能源,倡导绿色环保,某主题公园有60辆电动观光车供租赁使用,管理这些电动观光车的费用是每日120元。
根据经验,若每辆电动观光车的日租金不超过5元,则电动观光车可以全部租出;若超过5元,则每超过1元,租不出的电动观光车就增加2辆。
为了便于结算,每辆电动观光车的日租金x(元)(x只取整数),并且要求出租电动观光车一日的收入必须高于这一日的管理费用,用y(元)表示出租电动观光车的日净收入(即一日出租电动观光车的总收入减去管理费用后的所得)。
(1)求函数y=f(x)的解析式及其定义域;答案:(1)当x≤5时,y=60x-120,令60x-120>0,解得x>2,因为x∈N*,所以3≤x≤5。
当x>5时,y=[60-2(x-5)]x-120=-2x2+70x-120,令-2x2+70x-120>0,有x2-35x+60<0,上述不等式的整数解为2≤x ≤33(x ∈N *),所以5<x ≤33(x ∈N *)。