300MW锅炉滑压曲线
- 格式:xls
- 大小:22.50 KB
- 文档页数:1
1.1 控制系统1.1.1 炉膛安全监控系统(FSSS)炉膛监控系统(FSSS)是通过一系列的联锁条件,严格按照预定的逻辑顺序对燃烧设备中的有关部件进行操作和控制的系统,以保证锅炉炉膛的安全。
FSSS的主要功能如下:(1) 炉膛吹扫在锅炉启动前及停炉后都要进行炉膛吹扫,炉膛吹扫的许可条件为:a)MFT跳闸继电器柜电源监视正常;b)无火检探测器故障;c)火检冷却风压力不低于5.5KPa;d)无MFT条件;e)炉膛无火焰:无油火焰且无煤火焰;f)磨煤机全停;g)燃油角阀全关;h)至少一台引风机运行;i)至少一台送风机运行;j)所有辅助风挡板未全关;k)风量大于30%(360T/H);l)一次风机全停;m)至少一台炉水泵运行;n)两台空预器运行;o)油泄漏试验完成;p)给煤机全停;q)汽包水位大于-300mm且小于+250mm。
(2)油泄漏试验为防止点火油泄漏进入炉膛,在冷炉点火前必须对油系统进行泄漏试验,在确认合格后才能进行点火,泄漏试验可以独立进行,也可以在炉膛吹扫时自动进行,并作为炉膛吹扫的联锁条件。
(3)油层的启停及监控锅炉采用二级点火,用高能点火装置点燃轻油,控制包括轻油的启停及监控。
(4)制粉系统的投切控制包括给煤机、磨煤机、密封风风机、磨煤机出口挡板、热风门等设备的自动或手动投切,在启运或切除某一层煤粉时,首先必须投入对应的暖炉油枪。
(5)火焰检测单支油枪火焰检测用于暖炉油枪工作时监视每支油枪的火焰,当某一角油喷嘴阀开启而未着火时,对应的火焰检测器发出“无火焰”信号,把油喷嘴关闭。
对于正常运行时煤粉火焰的监视亦采用单只燃烧器火焰检测方式,检测探头布置在相应的燃烧器上方,然后通过适当的逻辑设计,对整个炉膛的火焰信号进行判断,送出必要的“炉膛熄火”信号及正常燃烧信号。
(6)主燃料跳闸(MFT)功能当出现下列情况时,便产生主燃料跳闸动作:a)MFT按钮;b)送风机全停;c)引风机全停;d)火检风机全停延时10秒;e)炉水循环泵全停延时5秒;f)全炉膛熄火;g)全燃料中断;h)一次风机全停且所有油层火焰信号全无;i)汽包水位大于250mm延时2秒;j)汽包水位低于-300mm延时2秒;k)炉膛压力高二值(3240Pa);l)炉膛压力低二值(-2490Pa);m)锅炉总风量小于300T/H(25%);n)汽机跳闸;o)发电机主保护动作;(7)二次风控制根据机组负荷的要求及相应层燃料的输入控制二次风挡板(包括燃料风、辅助风)的开关位置。
300MW锅炉水压试验规章1 作业任务1.1工程概况两台锅炉均为亚临界参数、四角切圆燃烧自然循环汽包炉。
锅炉型号为DG1036/17.5-II12。
其主要参数如下:机组额定功率: 300MW额定蒸发量: 890.5t/h最大连续蒸发量: 1036/h过热蒸汽出口压力(BMCR): 17.5MPa(表压)过热蒸汽出口温度:541℃再热蒸汽流量: 854.8t/h再热蒸汽进/出口压力(BMCR): 3.80/3.62 MPa (表压)再热蒸汽进/出口温度(BMCR): 322/541 ℃给水温度(BMCR):280 ℃根据《电力建设施工及验收技术规范》(锅炉机组篇)的要求确定水压试验压力如下:一次汽系统水压试验压力:汽包工作压力的1.25倍,即18.67MPa×1.25=23.34MPa。
二次汽系统水压试验压力:再热器进口集箱工作压力的1.5倍,即3.80Mpa×1.5=5.7Mpa。
水压试验用水量:锅炉系统水容积:省煤器25m3;锅筒54m3;水冷系统135m3;过热器154m3;再热器157 m3;合计525m3,锅炉附属管道及临时管道等水容积约40m3(估),根据以上水容积水压试验用水量容积约565m3(可按2倍水容积量储备)。
水压试验水温确定:水压试验上水温控制在20℃-70℃之间,环境温度低于5℃时应有防冻措施,上水温度与锅筒壁温差不大于28℃,汽包外壁温度不得小于20℃。
水压试验水质要求:锅炉水压用水为#2机凝结水,并在水中添加200mg/L~300mg/L的联氨,PH值为10~10.5(用氨水调节),氯含量不超过25mg/L,固体粒子含量不超过1PPm。
1.2主要设备简介主要包括:省煤器系统、水循环系统、过热器系统和再热器系统。
省煤器采用悬吊管悬吊结构,布置在尾部烟井低温过热器的下部,顺列逆流布置;省煤器管规格为Φ51×6;给水经过布置在省煤器管排下方的省煤器进口集箱两端进入,经过省煤器管排后,进入布置在省煤器管排上方的2只省煤器中间集箱(省煤器管排通过定位管夹悬吊在中间集箱上),2只中间集箱引出Φ60×9的省煤器悬吊管,省煤器悬吊管在炉顶汇总于省煤器出口集箱,最后经过连通管引入汽包。
300MW锅炉深度调峰运行调整的探索和实践摘要:对锅炉进行深度调峰运行调整,有利于在不改变设备条件水平上,通过优化燃烧方式实现经济效益最大化。
因此,300MW锅炉深度调峰运行调整的探索和实践对优化电力燃烧方式,提升企业经济利润有着重要的现实作用。
本文主要论述了,如何通过锅炉深度调峰运行调整,实现机组低负荷安全运行。
关键词:锅炉深度调峰低负荷运行一、锅炉深度调峰运行存在问题1.1锅炉不稳定燃烧锅炉深度调峰运行存在的主要问题便是锅炉在低负荷的情况下不能稳定燃烧,锅炉的低负荷运行导致了锅炉内的低压,限制了燃料进入锅炉的数量,造成锅炉内的火焰温度不均匀,温度过低,使锅炉内原料不能持续稳定燃烧。
当锅炉的温度不足导致机组功率低于某一数值时,会影响其他机组设备的正常运行,阻碍生产的进度。
1.2降低催化剂效率锅炉在低负荷运行的情况下,容易造成锅炉炉内燃烧温度过低,过低的温度可能导致锅炉内的反应物发生复杂的化学反应,在催化剂表面形成一层顽固的附着物,减少了催化剂与反应物的接触面积,进而减小催化剂的催化活性,降低了生产效率。
并且,温度过低造成的副反应产物也容易附着在锅炉内壁,导致锅炉积灰,引起锅炉污染。
1.3给水事故的发生机组设备的低负荷运行还会造成给水事故的发生,给生产带来严重影响的同时还极易引起生命财产损失。
在实际操作中,锅炉的低负荷运行可能会导致锅炉的燃烧不稳定,而锅炉的燃烧不稳,会造成设备给水流量低,减温水的经常调节更加恶化了水循环系统,水动力体系的异常造成给水泵瞬间开放,如果问题没有被及早发现,及时解决,那么可能会发生严重的给水事故。
二、锅炉深度调峰运行调整方案2.1优化燃烧方式为维持锅炉在低负荷条件下的稳定运行,保证锅炉的稳定燃烧,就必须优化锅炉的燃烧方式,在不改变锅炉设备的情况下,仅通过燃烧方式的优化,完全锅炉深度调峰运行调整,使锅炉在低负荷下正常运行。
优化燃烧方式途径之一便是确保等离子正常使用。
在锅炉燃烧期间,工作人员应该对锅炉燃烧进行监视,通过火焰温度的实时检测,密切关注锅炉内的温度,气压以及水位变化,当发现炉内温度,气压,水位等指标出现异常波动时,并及时根据火焰检测的情况及时往锅炉内加入等离子,稳定锅炉原料的燃烧。
浅谈300MW亚临界锅炉燃烧调整在火力发电厂中,合理的燃烧既能够提高锅炉运行的安全性,又可以使燃料充分燃烧,降低氮氧化物、二氧化硫生成,同时能使锅炉获得较高的热效率,提高机组的经济性。
掌握锅炉的运行特性,确定各种工况下对应的燃烧特性、各种因素对燃烧的影响规律,是保证机组安全、经济运行的前提。
标签:锅炉燃烧热效率燃烧稳定性Abstract:In the thermal power plant,the reasonable combustion not only can improve the safety of boiler operation,but also can make full combustion of fuels and reduce nitrogen oxides,sulfur dioxide generated,and in order to obtain higher boiler thermal efficiency,improve the economy of the unit. To master the operating characteristics of the boiler,to determine the corresponding combustion characteristics under various conditions,the influence of various factors on the combustion of the law,is to ensure the safety of the unit,the premise of economic operation.Key words:Boiler combustion;Thermal efficiency;Combustion stability一、燃烧的条件1.适量的空气燃烧的过程中,提供合适的空气量是保证燃烧充分的前提。
国产首台300MW循环流化床锅炉基建和运行情况介绍(云南大唐国际红河发电有限责任公司)闫绍勇一、工程概况开远电厂2×300MW工程是国家“西电东送”火电建设项目之一,也是国家发改委确定的引进法国300MW大型循环流化床洁净煤发电技术后的第一个国产化项目。
锅炉采用ALSTOM技术,由哈尔滨锅炉厂设计制造的HG-1025/ 17.5-L.HM37型循环流化床锅炉。
开远电厂工程于2004年6月28日正式开工建设,一号机组作为国产化首台300MW循环流化床锅炉机组,于2006年6月3日顺利通过168小时满负荷试运行,平均负荷率98.08%,从首次并网到168小时试运结束历时23天,投产后实现连续安全运行82天;二号机组再创佳绩,机组于2006年8月27日顺利通过168小时满负荷试运行,平均负荷率101%,从首次并网到168小时试运结束历时19天。
一、锅炉整体施工进度和安装中应注意的问题1、工程主要施工进度:#1锅炉是哈尔滨锅炉厂设计制造的首台300MW循环流化床锅炉,设备交货整体推迟了6个月,由于设计和制造等方面的原因,设备不能按照安装顺序到货,到现场的设备不能正常安装,严重影响了施工进度。
汽包8月8日吊装就位,8月19日水冷壁开始吊装。
因高温过热器和外置床壳体没有到货,过热器、再热器、省煤器及相应的连接管均不能安装。
为了提前施工炉膛内部耐磨耐火材料,11月18日将具备条件的水冷壁系统提前进行了水压试验。
由于高温过热器和外置床壳体供货晚,造成锅炉整体水压推迟近2个月。
整体水压结束后,因旋风分离器出口烟道等部位砌筑工作滞后,酸洗和低温烘炉工作推迟了1个月左右。
锅炉安装主要节点工期见下表:2、安装中应注意的问题:2.1 合理安排耐磨耐火材料的施工顺序,做好施工质量的过程控制:锅炉本体布置紧凑,一、二次风和汽水管道多,部件安装的交叉量大,要注意各部位的施工顺序,特别要考虑涉及到耐磨耐火材料施工的关键部件,作到提前筹划合理组织。
300MW循环流化床锅炉运行说明书发布时间:2011-1-20 阅读次数:126 字体大小: 【小】【中】【大】本广告位全面优惠招商!欢迎大家投放广告!广告投放联系方式运行说明书编号:1500.CFB-001(A版)哈尔滨锅炉厂有限责任公司前言循环流化床锅炉采用流态化的燃烧方式,燃烧温度一般在850-920℃。
循环流化床锅炉主要有高脱硫效率、低NOX排放、高碳燃烬率、长燃料停留时间、强烈的颗粒返混、均匀的床温、燃料适应性广等优点。
随着循环流化床锅炉技术的发展,我公司引进了ALSTOM公司200~350MW 等级大型CFB锅炉技术,锅炉造价远低于同种容量煤粉锅炉加脱硫或脱硝设备,是新一代的环保型绿色锅炉。
发电有限责任公司2X300MW开远工程的循环流化床锅炉是由哈尔滨锅炉厂有限责任公司设计制造的HG-1025/17.5-L.HM37型锅炉。
采用引进的Alstom公司的循环流化床锅炉技术进行技术设计,并完全按照引进技术所确定的原则进行施工设计和制造。
本说明书根据该炉的设计特点,介绍锅炉本体的使用要求,运行原则及注意事项。
说明书中的各项内容是对锅炉使用过程中提出的基本要求,目的在于防止损坏锅炉,保证锅炉的使用性能和寿命。
有关锅炉配合整套发电机组运行的详细规程,应由用户自行制定。
本说明书仅作为用户编制锅炉启动和运行规程时的指导性资料,有关启动及运行的具体规定,需由用户参照相关规定编制锅炉操作规程。
目录1. CFB锅炉基本运行原理 ------------------------------- 32. 锅炉概况 ------------------------------------------- 43. 锅炉整体启动前的几项重要调试过程 ------------------- 74. 锅炉整体启动前的准备 ------------------------------- 105. 锅炉冷态启动 --------------------------------------- 136. 锅炉温态启动 --------------------------------------- 177. 锅炉热态启动 --------------------------------------- 178. 锅炉运行调整 --------------------------------------- 199. 锅炉停炉 ------------------------------------------- 2210.锅炉停炉保护 --------------------------------------- 2511.常见事故处理 --------------------------------------- 26锅炉启动曲线 --------------------------------------- 36主要设计参数表: ----------------------------------- 391. CFB锅炉基本运行原理循环流化床锅炉的炉膛接纳经过破碎的煤粒和脱硫所需要的石灰石,与大量强烈扰动的细灰粒混合,在其内以相对较低的温度(约850℃)完成燃烧和脱硫过程。
超临界 350MW供热机组的定滑压曲线试验与优化(陡河发电厂,河北唐山063028)摘要:为了适应新形势电力发展的需要,进一步挖掘机组的节能潜力,在分析滑压曲线存在问题的基础上,通过开展阀门特性试验及不同工况下的滑压优化试验,得出基于电负荷及主汽流量的滑压曲线,通过机组滑压曲线优化调整,机组热耗下降,特别是供热期滑压优化效果明显,改善了机组灵活性调峰的经济性,达到了预期效果。
关键词:超临界机组;滑压优化;调峰0 引言随着新能源发电的迅猛增长,越来越多的大功率高参数火电机组在满足基本用电负荷的情况下都要参与调峰任务,甚至大功率供热机组也要开始参与调峰,机组长时间处于低负荷或变工况状态时,火电机组的设备特性、控制特性以及最佳运行参数都会发生较大变化,造成汽轮机调节级效率降低,机组煤耗、热耗增大。
对调峰经济性影响的首要考虑因素是运行主汽压力,主汽压力的变化会引起汽轮机内效率和循环效率的改变。
本文通过对东汽厂两台350MW超临界供热机组原有的滑压曲线运行中存在的问题进行分析,综合考虑机组调峰、供热及“两个细则”的影响,对定滑压曲线进行优化,实现机组运行的安全性、经济性。
1 机组简介××电厂两台机组采用东方汽轮机厂制造的350MW一次中间再热超临界抽汽凝汽式汽轮机,锅炉为上海锅炉厂有限公司引进的超临界一次再热、单炉膛四角切圆燃烧直流炉。
该电厂两台机组分别于2019年、2020年投产运行,DEH系统采用东方汽轮机厂开发和生产的DEH数字电液控制系统,机组采用复合滑压运行方式即定-滑-定运行方式,负荷低于30%时定压运行,负荷在30%~90%范围内滑压运行,负荷高于90%时定压运行。
配有1套高压主汽调节阀,布置在汽机前方运行层下面,高压主汽调节阀由2个主汽阀和4个调节阀组成,4个调节阀共用一个阀壳,两个主汽阀出口与调节阀壳相连,布置紧凑。
4个调节阀分别控制高压内缸里相对应的4组喷嘴,调节阀分别由各自独立油动机控制,实现机组的配汽要求。
300MW机组锅炉运行优化作者:袁学志来源:《中小企业管理与科技·上旬刊》 2014年第10期袁学志(国电葫芦岛润泽热力有限公司)摘要:为了提高锅炉运行效率,通过分析影响锅炉效率的主要因素、实际运行工况,提出了降低锅炉煤耗的可行对策。
关键词:锅炉效率运行方式热损失某火电厂为2×300MW 机组,锅炉型号为WGZ1025/18.44 型,为单炉膛“Π”型布置,紧身封闭,高强螺栓连接,全钢架悬吊结构,采用四角切向燃烧、摆动燃烧器调温、固态排渣、平衡通风。
配5 台MPS212HP-II 中速磨煤机,正压直吹式制粉系统。
每角燃烧器为5 层一次风喷口。
采用固态连续干式排渣方式,干式排渣系统向炉膛的漏风率小于1%锅炉总风量。
锅炉尾部采用选择性催化还原脱硝工艺(SCR)。
影响锅炉机组效率的因素中,排烟热损失和机械未完全燃烧热损失是最主要的部分,而排烟温度、排烟量往往决定着排烟热损失的多少,也就是说,排烟温度每提高10℃,会相应增加0.6~1%的排烟热损失。
而影响排烟量的主导因素则是过剩空气系数及燃料所含水分的多少。
1 影响排烟温度和排烟量的主要因素及对策1.1 漏风漏风包括炉膛、制粉系统、烟道等部位漏风。
实践证明,炉膛漏风系数每增加0.1,排烟温度将随之增加3~8℃,排烟热损失将增加0.2~0.4%。
采取措施:保持炉膛负压在50Pa 左右,检修期间对所有漏泄部位和预热器漏风进行处理。
1.2 受热面积灰和结渣1.2.1 空预器堵灰。
脱硝产生的硝酸盐粘附预热器换热元件上,造成堵塞。
采取措施:保持吹灰及停炉后的水冲洗。
氨的投入量≤90kg/h,控制氨逃逸率。
1.2.2 炉膛和烟道的积灰和结渣。
炉膛结渣原因主要有煤质与设计偏差大、炉膛燃烧区域热负荷不均、火焰中心偏斜、氧量偏小、一次风速过高等。
采取措施:①在保证煤粉管道不沉积煤粉的前提下,尽可能减小一次风量。
通过调整运行磨煤机风挡板。
开度及调整一次风机偏置方式,使一次风压降至8kPa。
1 引言:衡量锅炉总的经济性的评价指标有三个分别是:热效率,金属材料耗量和单位供热量的运行费用,这三个指标相互制约。
当锅炉房建成投入运行后,此时评价锅炉的经济性就只考虑锅炉的热效率和单位供热量的运行费用。
我们希望锅炉在运行过程中始终处于高效率区,但此时锅炉运行费用如何?锅炉高效率区与经济运行工况区有何关系?作者对此进行了探讨。
本文通过实验测试和理论计算两种方法分别得出了锅炉的两个工作区域:高效运行工况区和经济运行工况区,综合考虑这两种因素最终可确定锅炉的最佳运行工况区。
2 锅炉高效运行工况区的确定确定锅炉的高效运行工况区,首先需要绘制锅炉的效率曲线。
而在该曲线绘制之前先要做热平衡实验(热平衡测试数据见表一),然后根据具体实验数据得出锅炉的g—η曲线。
该数据是在测试工况下得到的,是反映锅炉测试效率与负荷率之间的关系的,是否能够反映锅炉运行工况时运行效率与负荷率的关系,还需要通过运行实验数据加以验证。
即用锅炉正常运行时测取的关于g—η关系的数值为此做修正和补充。
课题的试验地点是哈尔滨嵩山节能小区的锅炉房。
锅炉房内设置型号为SHW4.2-0.7/95/70-AII(H)的热水锅炉三台。
供热系统按连续运行设计,系统采用补给水泵定压。
小区总建筑面积为18.371万平方米。
在测试时由于小区还在建设中只有单台锅炉运行,供暖面积为60713.79平方米。
2.1 锅炉效率曲线的拟合及表达式的求取通过正反平衡测试得到的数据拟合曲线如图1所示。
从图中可以看出在负荷率较低或较高的范围内,锅炉的效率都比较低;而在某一个负荷率变化范围内,热效率可以达到较高值。
现在问题的关键是如何确定这一高效率区。
我们借助于常用数学知识,利用线性回归等手段来拟合这条实验曲线。
考虑到回归多项式既能真实反映所测数据又能便于今后应用,选择了多项式拟合形式,表达式为:η=24.0961+1.2361g-0.0069g2,(式中g的变化范围受到限制)。
1 设备技术规范与热工定值1.1锅炉设备特性1.1.1北京巴·威有限公司为耒阳电厂二期工程生产的二台B﹠WB-1025/17.2-M锅炉为单汽包、单炉膛平衡通风、中间一次再热、固态排渣、“w”火焰燃烧方式、露天戴帽布置、亚临界压力、自然循环燃煤锅炉;1.1.2锅炉为双拱炉膛,炉膛宽度为21m,上炉膛深度为8.4m,下炉膛深度为15.6m,炉高为45.12m(由水冷壁下集箱到顶棚),水冷壁下集箱标高为7.6m,汽包中心线标高为56.99m,炉拱标高为25.37m,.前后拱上各布置8支浓缩型EI-XCL双调风旋流燃烧器,下射式喷射,火焰呈“W”形。
每台燃烧器配备火焰检测器和点火器,火检配备二台探头冷却风机,点火器由高能点火装置和点火油枪组成,其推进机构采用气动驱动方式。
油枪采用机械雾化,燃用轻柴油,16支油枪可带负荷30%MCR以上。
在前后墙上各布置一个分隔风箱,在下炉膛前后墙布置了分级风,二次风调节系统采用推拉式轴向调风结构。
水冷壁为膜式水冷壁,在热负荷较高的区域布置内螺纹管。
有4根集中下降管;1.1.3过热器由顶棚、包墙、一级过热器、屏式过热器及二级过热器组成。
顶棚管处于炉膛和水平烟道上部;包墙管为膜式结构;一级过热器位于后竖井烟道;屏式过热器位于炉膛上部;二级过热器位于折焰角上方;一级喷水减温器布置在一级过热器出口集箱到屏式过热器进口集箱的连接管上,二级喷水减温器布置在屏式过热器出口集箱到二级过热器进口集箱的导管上,一二级减温器均采用文丘里式;1.1.4再热器分低温、高温两部分:低温部分布置在竖井前部,由四个水平管组形成,高温部分布置在水平烟道内;低温再热器进口处有事故喷水,正常调温由烟气挡板调节;1.1.5省煤器位于尾部竖井后烟道下部的低温区,由与烟气成逆流布置的水平管组和悬吊一级过热器水平管组的引出管组成。
给水从锅炉左侧引入省煤器下集箱。
省煤器前后上集箱通过90度弯头和T形管接头连到一起,给水经由左右两根导管引入锅筒;1.1.6配备正压直吹式制粉系统,离心式一次风机和密封风机各二台,四台瑞典SVEDALA双进双出磨煤机,八台沈阳STOCK称重给煤机;1.1.7风烟系统配两台动叶可调轴流式引、送风机、离心式一次风机,二台三分仓回转式空预器;1.1.8五台ATLAS生产的20Nm3/min无油空压机供两台机组仪用和厂用共用;1.1.9二台BE型电除尘器,设计效率为99.68%,除灰渣系统采用就地集中控制,包括:炉底渣灰系统,省煤器水力输送系统,溢流水系统;1.1.10炉膛、水平烟道及尾部受热面配有蒸汽吹灰器;1.1.11锅炉可带基本负荷和带负荷调峰;锅炉能以滑压和定压模式运行;滑压运行范围为30-90%BMCR。
300MW机组滑压运行浅析随着电力改革的不断深入,电力负荷峰谷差的日益增大,致使原来带基本负荷运行的机组不得不参与调峰甚至深度调峰,这就使得其低负荷运行时间增加。
汽轮机长期处于低负荷运行状态,影响了机组的经济性。
故研究汽轮机在变负荷时滑压运行对机组的节能降耗就具有十分重要的意义。
本文分析了滑压运行对300MW机组运行的各种影响,为300WM机组的滑压运行提供了些许参考。
标签:低负荷;滑压运行;节能引言某发电有限公司四台300MW机组为单轴、双缸、高中压合缸、亚临界、中间一次再热、双排汽式、凝汽式汽轮机组,其调峰范围在100%—40%之间。
下图是利用热力试验计算得出的机组最佳滑压运行曲线。
四台机组在调峰运行的时候,采用滑壓运行方式更能提高机组的效率。
1 滑压运行的概念300MW机组的运行方式主要有滑压运行和定压运行两种。
定压运行是指新蒸汽压力和温度保持不变,通过改变调节阀门开度控制机组负荷。
滑压运行也称变压运行,理论上的滑压运行是指所有调节阀门全开,在任何负荷下都是通过调节主汽压力来调节负荷。
实际应用的滑压运行有三种方式,一是将所有调节阀门全开方式,一般应用在滑参数启停机低负荷阶段;二是采取调节阀门不开足,保持一定开度进行滑压运行,这样会带来节流损失,应用情况较少;三是采用不是所有调节阀门全开,而是一部分调节阀门全开,一部分全关,这样在部分负荷时满足进汽量要求,也可以维持一定的主汽压力。
2 滑压运行的意义机组的滑压运行方式对提高机组运行的经济性、安全性有着十分重要的意义。
滑压运行时,主蒸汽的流量和压力与机组负荷基本上成正比变化,而主蒸汽温度不随负荷变化。
此时,随着机组负荷的降低,主蒸汽流量减少,而蒸汽比容增大,所以机组内蒸汽的体积流量基本不变,由于汽轮机调门开度及第一级通汽面积保持一定,大大减少了节流损失。
同时,汽轮机各级速比、压力、焓降以及温度变化很小,从而使各级及整机的内效率基本不变,即在不同负荷时,汽轮机均可处在内效率偏离设计条件很小的范围内运行。
HG-1035/17.5-HM35锅炉锅炉说明书哈尔滨锅炉厂有限责任公司2009.10HG-1035/17.5-HM35型锅炉说明书第Ⅰ卷锅炉本体和构架编号: F0310BT001E321编制:校对审核:审定:批准:哈尔滨锅炉厂有限责任公司二OO九年十月目录一、锅炉设计主要参数及运行条件 (1)1、锅炉容量及主要参数 (1)2、设计依据 (2)3、电厂自然条件 (4)4、主要设计特点 (4)5、锅炉性能计算数据表 (7)二、主要配套设备规范 (8)三、受压部件 (8)1、给水和水循环系统 (8)2、锅筒 (9)3、锅筒内部装置及水位值 (9)4、省煤器 (9)5、过热器和再热器 (10)6、减温器 (14)7、水冷炉膛 (15)四、门孔、吹灰孔、仪表测点孔 (18)五、锅炉膨胀系统 (19)六、锅炉对控制要求 (20)七、锅炉性能设计曲线 (21)八、锅炉构架说明 (22)九、附图目录 (23)一. 锅炉设计主要参数及运行条件大连甘井子2×300MW工程的锅炉为亚临界参数、一次中间再热、自然循环汽包炉,采用平衡通风、四角切圆燃烧方式,设计燃料为褐煤。
锅炉以最大连续负荷(即BMCR工况)为设计参数,在机组电负荷为335.343MW时锅炉的最大连续蒸发量为1035.0t/h;机组电负荷为300MW(TRL工况)时锅炉的额定蒸发量为960.0t/h。
1.锅炉容量及主要参数1.1 BMCR工况过热蒸汽流量t/h 1035过热蒸汽出口压力MPa.g 17.50过热蒸汽出口温度℃540再热蒸汽流量t/h 846.8再热蒸汽进口压力MPa.g 3.996再热蒸汽出口压力MPa.g 3.526再热蒸汽进口温度℃333.5再热蒸汽出口温度℃540给水温度℃282.8锅炉设计压力MPa.g 19.95再热器设计压力MPa.g 4.4761.2 额定工况 (TRL工况)过热蒸汽流量t/h 960过热蒸汽出口压力MPa.g 17.37过热蒸汽出口温度℃540再热蒸汽流量t/h 784.7再热蒸汽进口压力MPa.g 3.693再热蒸汽出口压力MPa.g 3.526再热蒸汽进口温度℃325.3再热蒸汽出口温度℃540给水温度℃277.72. 设计依据2.1 燃料设计煤种和校核煤种都为褐煤点火及助燃用燃料为0号轻柴油,点火及助燃用油质分析如下:2.3 锅炉给水及蒸汽品质 (根据锅炉技术协议)2.3.1 锅炉给水质量标准总硬度~0μmol/l溶解氧≤ 7μg/l铁≤ 20μg/l铜≤ 5μg/l油≤ 0.3mg/lPH值9.0~9.5电导率25℃≤ 0.3μS/cm2.3.2蒸汽品质钠≤ 10μg/kg二氧化硅≤ 20μg/kg电导率25℃≤ 0.3μS/cm铁≤ 20μg/kg铜≤ 5μg/kg 2.电厂自然条件多年平均气温:11.1℃平均最高气温:14.8℃平均最低气温:8.1℃极端最高气温:35.3℃(2004.6.11)极端最低气温:-18.8℃(出现日期1987.3.13)平均气压: 1005.3hPa平均相对湿度:64%平均蒸发量:1605.8mm年平均降水量:578.7mm一日最大降水量:152.5mm平均风速: 4.6m/s最大风速: 30.0m/s,相应风向为NNW常年主导风向: N冬季主导风向: N、NNW夏季主导风向: S、SSE土的标准冻结深度0.8m,最大冻结深度0.90m。
第63卷第2期2021年4月汽 轮 机 技 术TURBINE TECHNOLOGYVol. 63 No.2Apr. 2021300MW 机组高调阀流量特性曲线试验及优化黄 智S 包伟伟2,袁建丽2,李璟涛2,张小晖3(1国家电力投资集团有限公司,北京100033; 2国家电投集团中央研究院,北京102209;3国家电投集团大连发电有限公司,大连116008)摘要:通过高调阀流量特性试验,根据测量的一系列高调阀实际流量特性数据,整定并优化了高调阀流量特性曲 线。
结果表明,优化后的阀门流量特性曲线与机组实际运行特性具有更好的契合度,实现了单、顺序阀控制模式的无扰切换,优化了 AGC 和一次调频调节水平,显著提高了机组控制调节品质,并带来一定的经济性收益。
关键词:汽轮机;高压调节阀;流量特性曲线;优化;调节品质分类号:TK267文献标识码:A 文章编号:1001-5884 (2021 )02-0127-04Optimization of Flow Characteristic Curve of HP Control Valve for 300MW UnitHUANG Zhi 1, BAO Wei-wei 2, YUAN Jian-li 2, LI Jing-tao 2, ZHANG Xiao-hui 3(1 State Power Investment Corporation , Beijing 100033, China; 2 SPIC Central Research Institute ,Beijing 102209, China ; 3 SPIC Dalian Power Co. , Ltd. , Dalian 116008, China )Abstract : The flow characteristic curve of high-pressure regulating valve is set and optimized according to actual flowcharacteristic data of high-pressure regulating valve. The results show that the optimized valve flow characteristic curve has a better fit with the actual operation characteristics of the unit, realizes the undisturbed switching of single valve and sequence valve control mode , optimizes the level of AGC and primary frequency regulation , significantly improves thequality of unit control and regulation , and brings certain economic benefits.Key words : steam turbine ; HP control valve ; flow characteristic curve ; optimization ; regulating quality0 前 言汽轮机高压调节阀(以下简称高调阀)是DEH 系统的主要执行机构,高调阀管理是DEH 的主要内容。