ASK调制解调
- 格式:docx
- 大小:47.96 KB
- 文档页数:8
ASK调制和解调原理如下:
ASK(Amplitude Shift Keying,振幅移键调制)是一种数字调制技术,通过改变载波信号的振幅来传输数字信息。
在ASK调制中,只有两个符号,即“0”和“1”,它们对应于载波信号的不同振幅。
当数字信号为“0”时,载波信号的振幅不变;当数字信号为“1”时,载波信号的振幅会发生变化。
ASK调制的过程如下:
1. 数字信号通过一个低通滤波器,以去除高频噪声。
2. 数字信号被转换成模拟信号,并输入到调制器中。
3. 调制器通过改变载波信号的振幅来传输数字信息。
当数字信号为“0”时,载波信号的振幅不变;当数字信号为“1”时,载波信号的振幅会发生变化。
4. 调制后的信号经过一个放大器,以增强信号强度。
ASK解调的过程如下:
1. 接收到调制信号后,先通过一个低通滤波器,以去除高频噪声。
2. 调制信号经过一个放大器,以增强信号强度。
3. 载波信号的振幅变化被分离出来,形成一个与数字信息相关的信号。
4. 通过一个数字信号转换器,将模拟信号转换成数字信号,以获取原始数字信息。
需要注意的是,在ASK调制和解调中,需要使用合适的滤波器和放大器来去除高频噪声和增强信号强度,以保证信号的质量和可靠性。
ASK调制及解调实验报告实验报告:ASK调制及解调实验一、实验目的1.了解ASK调制及解调的原理和方法;2.通过实验掌握ASK信号的调制与解调过程;3.掌握ASK调制与解调在通信系统中的应用。
二、实验原理1. 调制过程:将数字信号作为调制信号,其数学表示为sm(t),调制信号经过调制传输给接收端。
2.解调过程:接收端将接收到的ASK信号进行解调,得到数字信号。
三、实验器材1.信号源(调制信号的产生);2.信号发生器(源载波信号的产生);3.功率放大器(将源载波信号放大以供调制器使用);4.带通滤波器(将调制后的信号进行滤波,去掉多余频率成分);5.示波器(用于观测信号波形);6.解调器(对ASK信号进行解调得到原始数字信号)。
四、实验步骤1.首先,将信号发生器输出的方波信号连接到调制信号的输入端;2.将信号发生器输出的正弦波信号连接到功率放大器的输入端,以产生载波信号;3.将调制信号通过调制器与载波信号相乘,生成ASK调制信号;4.将ASK调制信号经过带通滤波器滤波,去掉多余频率成分;5.将滤波后的ASK信号输入到示波器中,观测ASK调制信号的波形;6.将ASK信号输入到解调器中,解调得到原始数字信号;7.通过示波器观测解调后的信号波形;8.调整调制信号的频率和幅度,观察ASK调制信号和解调后的数字信号的变化。
五、实验结果及分析1.调制信号与载波信号相乘得到ASK调制信号,通过带通滤波器滤波后的ASK信号波形应该与调制信号保持一致;2.解调器将接收到的ASK信号进行解调,得到原始的数字信号;3.调制信号的频率和幅度的改变会影响ASK调制信号的波形,从而影响解调后的数字信号。
六、实验结论通过本次实验,我们了解了ASK调制及解调的原理和方法。
实验结果表明,调制信号的频率和幅度对ASK调制信号和解调后的数字信号有较大影响。
ASK调制与解调在通信系统中具有广泛应用。
七、实验心得通过本次实验,我对ASK调制及解调有了更深入的了解。
基于Simulink的ASK频带传输系统仿真与性能分析实验目的:1)熟悉数字调制系统的的几种基本调制解调方法;2)学会运用Matlab、Simulink设计这几种数字调制方法的仿真模型;3)通过仿真,综合衡量系统的性能指标。
实验原理及分析:数字调制可以分为二进制调制和多进制调制,多进制调制是二进制调制的推广,所以本文主要讨论二进制的调制与解调,最后简单讨论一下多进制调制中的MFSK(M元移频键控)和MPSK(M元移相键控)。
最常见的二进制数字调制方式有二进制振幅键控(2-ASK)、移频键控(2-FSK)和移相键控(2-PSK和2-DPSK)等。
此次实验二进制振幅键控,即——2—ASK。
典型的数字通信系统由信源、编码解码、调制解调、信道及信宿等环节构成,其框图如图3.1所示:数字调制是数字通信系统的重要组成部分,数字调制系统的输入端是经编码器编码后适合在信道中传输的基带信号。
对数字调制系统进行仿真时,我们并不关心基带信号的码型,因此,我们在仿真的时候可以给数字调制系统直接输入数字基带信号,不用再经过编码器。
图3.1 数字通信系统模型根据Simulink提供的仿真模块,数字调制系统的仿真可以简化成如图3.2所示的模型:图3. 2 数字调制系统仿真框图通常,二进制振幅键控信号(2-ASK )的产生方法(调制方法)有两种,如图3.3所示:(a)(b)图3.3 2-ASK 信号产生的两种方法2-ASK 解调的方法也有两种相应的接收系统组成方框如图3.4所示:图3.4 2-ASK 信号接收系统组成框图根据3.3(a )所示方框图产生2-ASK 信号,并用图3.4(b )所示的相干解调法来解调,设计2-ASK 仿真模型如图3.5所示:图3.5 2-ASK模型在该模型中,调制和解调使用了同一个载波,目的是为了保证相干解调的同频同相,虽然这在实际运用中是不可能实现的,但是作为仿真,这样能获得更理想的结果。
仿真波形及分析:ASK调制与解调整个ASK的仿真系统的调制与解调过程为:首先将信号源的输出信号与载波通过相乘器进行相乘,在接收端通过带通滤波器后再次与载波相乘,接着通过低通滤波器、抽样判决器,最后由示波器显示出各阶段波形,并用误码器观察误码率。
新疆师范大学实验报告2020年4月27日课程名称通信原理实验项目实验四:ASK调制及解调实验物理与电子工程学院电子17-5 姓名赵广宇同组实验者指导教师阿地力一、实验目的掌握用键控法产生ASK信号的方法。
掌握ASK非相干解调的原理二、实验器材主控&信号源模块9号数字调制解调模块示波器三、实验原理1、实验原理框图2、实验框图说明ASK调制是将基带信号和载波直接相乘。
已调信号经过半波整流、低通滤波后,通过门限判决电路解调出原始基带信号。
四、实验步骤实验项目一ASK调制概述:ASK调制实验中,ASK(振幅键控)载波幅度是随着基带信号的变化而变化。
在本项目中,通过调节输入PN序列频率或者载波频率,对比观测基带信号波形与调制输出波形,观测每个码元对应的载波波形,验证ASK调制原理实验项目二ASK解调概述:实验中通过对比观测调制输入与解调输出,观察波形是否有延时现象,并验证ASK解调原理。
观测解调输出的中间观测点,如:TP4(整流输出),TP5(LPF-ASK),深入理解ASK解调过程。
若解调出的信号与原基带信号有差别,可调节抽样判决旋钮进行微调观察眼图时,1.位同步信号CLK,2.低通滤波输出信号调整主控模块,16K,PN127五、实验分析●ASK即“幅移键控”又称为“振幅键控”,所以又记作OOK信号。
ASK是一种相对简单的调制方式。
●这次实验首先对输入信号利用相关的模块进行ASK调制,再通过加入高斯白噪声传输信道,接着在接收端对信号进行ASK解调,最后把输出的信号和输入的信号进行比较。
●幅移键控(ASK)相当于模拟信号中的调幅,只不过与载频信号相乘的是二进制数码而已。
●所谓幅移就是把频率、相位作为常量,而把振幅作为变量,信息比特是通过载波的幅度来传递的。
六、实验总结●第一次进行实验时,开始运行后,跳出了如图所示的提示。
在停止运行后,在加入了数字终端模块后,提示消失,在今后进行数字实验时,可引以为戒。
实验七振幅键控(ASK)调制与解调一、概述为使数字信号在带通信道中传输,必须对数字信号进行调制。
在幅移键控中,载波幅度是随着调制信号而变化的。
最简单的形式是载波在二进制调制信号1或0控制下通或断,这种二进制幅度键控方式称为通-断键控(OOK)。
本实验采用这种方式。
二、实验原理1.调制部分:二进制幅度键控的调制器可用一个相乘器来实现。
对于OOK信号,相乘器则可以用一个开关电路来代替。
调制信号为1时,开关电路导通,为0时切断。
OOK信号表达式:s OOK(t) = a(n)A cos(c t)式中:A -载波幅度,c-载波频率,a(n)-二进制数字信号原理框图基带信号a(n) 已调信号s OOK(t)c2.解调部分:解调有相干和非相干两种。
非相干系统设备简单,但在信噪比较小时,相干系统的性能优于非相干系统。
这里采用相干解调。
原理框图低通滤波(t) 解调信号â(n)OOK载波Acos(ωc t)三、实验步骤1.根据ASK调制与解调原理,用Systemview软件建立一个仿真电路,如下图所示:2.元件参数配制Token 0,5:基带信号-PN码序列(频率=10Hz,电平=2,幅度=1V,偏移=1V)Token 1,22:乘法器Token 2, 7,23:载波-正弦波发生器(频率=50Hz,幅度=1V,相位=0deg)Token 14,26:模拟低通滤波器(截止频率=10Hz,阶数=3)Token 15,27:抽样保持器Token 16,28:脉冲(频率=10Hz,幅度=1V,脉宽=0.05s)Token 12,24:比较器(真值=1V,假值=-1V)Token 17,29:门限值(幅度=0.1V)其它为观察点-分析窗3.运行时间设置:采样点数=2048,采样频率=1000Hz4.运行系统:运行该系统后,转到分析窗观察的波形。
5.功率谱:在分析窗绘出该系统调制后的功率谱。
四、实验报告1.观察并记录实验波形:Token 4-基带信号波形,Token 33-调制波形,Token 18-解调波形,并与理论参考波形相比较。
通信原理实验报告姓名学号专业年级电子信息工程实验题目ASK调制与解调实验实验目的1.理解ASK调制的工作原理及电路组成。
2.理解ASK解调的原理及实现方法。
3.了解ASK信号的频谱特性。
实验内容1.观察ASK调制与解调信号的波形。
2.观察ASK信号频谱。
实验器材1.信号源模块2.数字调制模块3.数字解调模块4.同步提取模块5.20M双踪示波器一台6.连接线若干7.频谱分析仪实验原理1.2ASK 调制原理ASK 基带信号经过电压比较器(LM339),输出高/低电平驱动模拟开关(74HC4066)导通/关闭,ASK 载波通过电压跟随电路(TL082)提高带负载能力,然后通过模拟开关电路选择通过/截止,最后得到 ASK 调制信号输出。
2.2ASK 解调原理本实验采用的是包络检波法,ASK 调制信号经过 RC 组成的耦合电路,输出波形可从OUT1观察,然后通过半波整流器(由 1N4148 组成),输出波形可从 OUT2 观察,半波整流后的信号经过低通滤波器(由 TL082 组成),滤波后的波形可从 OUT3 观察,再经过电压比较器(LM339)与参考电位比较后送入抽样判决器(74HC74)进行抽样判决,最后得到解调输出的二进制信号。
标号为“ASK 判决电压调节”的电位器用来调节电压比较器的判决电压。
判决电压过高,将会导致正确的解调结果的丢失;判决电压过低,将会导致解调结果中含有大量错码,因此,只有合理选择判决电压,才能得到正确的解调结果。
抽样判决用的时钟信号就是 ASK 基带信号的位同步信号。
实验步骤1.将信号源模块、数字调制模块、数字解调模块、同步提取模块、频谱分析模块小心地固定在主机箱中,确保电源接触良好。
2.插上电源线,打开主机箱右侧的交流开关,再分别按下五个模块中的开关 POWER1、POWER2,对应的发光二极管 LED01、LED02 发光,按一下信号源模块的复位键,五个模块均开始工作。
(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)3.ASK 调制实验<1>将信号源模块产生的码速率为 15.625KHz 的周期性 NRZ 码和 64KHz 的正弦波(幅度为 3V 左右)分别送入数字调制模块的信号输入点“ASK 基带输入”和“ASK 载波输入”。
实验 8 ASK 调制解调目录一、实验目的 (2)二、实验原理 (2)1.调制与解调 (2)2. 2ASK 调制 (2)3 2ASK 解调 (3)4.实验框图及功能说明 (5)5.框图中各个测量点说明 (5)三、实验任务 (5)四、实验步骤 (6)1.实验准备 (6)2.ASK 调制观测 (6)3.ASK 解调观测 (7)4.ASK 系统性能分析 (11)5.实验结束 (12)五、实验分析 (12)六、实验注意 (13)一、实验目的1.掌握ASK调制器的工作原理及性能测试;2.掌握ASK包络检波法解调原理;3.学习基于软件无线电技术实现ASK调制、解调的实现方法。
二、实验原理1.调制与解调数字信号的传输方式分为基带传输和带通传输。
然而,实际中的大多数信道(如无线信道)因具有带通特性而不能直接传送基带信号,这是因为数字基带信号往往具有丰富的低频分量。
为了使数字信号在带通信道中传输,必须用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。
这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号(已调信号)的过程称为数字调制(digital modulation)。
在接收端通过解调器把带通信号还原成数字基带信号的过程称为数字解调(digital demodulation)。
通常把包括调制和解调过程的数字传输系统叫做数字频带传输系统。
数字信息有二进制和多进制之分,因此,数字调制可分为二进制调制和多进制调制。
在二进制调制中,信号参量只有两种可能的取值;而在多进制调制中,信号参量可能有 M(M>2)种取值。
本章主要讨论二进制数字调制系统的原理。
2. 2ASK 调制振幅键控(Amplitude Shift Keying,ASK)是利用载波的幅度变化来传递数字信号,而其频率和初始相位保持不变。
在2ASK中,载波的幅度只有两种变换状态,分别对应二进制信息“0”或“1”。
2ASK 信号的产生方法通常有两种:数字键控法和模拟相乘法。
实验三ASK调制及解调实验、实验目的1、掌握用键控法产生 ASK信号的方法。
2、掌握ASK非相干解调的原理。
、实验器材1、主控&信号源、9号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、实验原理框图ASK调制及解调实验原理框图2、实验框图说明ASK调制是将基带信号和载波直接相乘。
已调信号经过半波整流、低通滤波后,通过门限判决电路解调出原始基带信号。
四、实验步骤实验项目一 ASK调制概述:ASK调制实验中,ASK (振幅键控)载波幅度是随着基带信号的变化而变化。
在本项目中,通过调节输入PN序列频率或者载波频率,对比观测基带信号波形与调制输出波形,观测每个码元对应的载波波形,验证ASK调制原理。
1、关电,按表格所示进行连线。
2、开电,设置主控菜单,选择【主菜单】T【通信原理】T【ASK数字调制解调】将9号模块的S1拨为0000。
3、此时系统初始状态为: PN序列输出频率32KHZ,调节128KHZ载波信号峰峰值为 3V。
4、实验操作及波形观测。
(1)分别观测调制输入和调制输出信号:以9号模块TH1为触发,用示波器同时观测9号模块TH1和TH4,验证ASK调制原理。
RIGOL-aoooaojocu?T f- 0 a oorvpT…「. 7TpF 口讲(&卫;1二 融 N 』=:41 V 1 _ …fit实验项目二 ASK 解调概述:实验中通过对比观测调制输入与解调输出,观察波形是否有延时现象,并验证 ASK 解调原理。
观测解调输出的中间观测点,如: TP4 (整流输出),TP5( LPF-ASK ),深入理解ASK 解调过程。
1?Ti 小r^ri »><B. ODusfiiv<m 血匚Fr-e(t=Zl Tell(2)将PN 序列输出频率改为 64KHz ,观察载波个数是否发生变化。
1、保持实验项目一中的连线及初始状态。
2、对比观测调制信号输入以及解调输出:以9号模块TH1为触发,用示波器同时观测9号模块TH1和TH6,调节W1直至二者波形相同;再观测TP4(整流输出)、TP5( LPF-ASK ) 两个中间过程测试点,验证ASK 解调原理。
ASK调制及解调实验本实验旨在介绍调制及解调的基本概念,以及掌握ASK调制及解调实验的具体目标。
通过完成这个实验,可以加深对调制和解调技术的理解,并掌握ASK调制及解调的原理与方法。
本实验介绍了ASK(Amplitude Shift Keying,幅度调制)信号的调制和解调过程。
以下是实验的步骤和操作流程:所需设备和材料频率发生器混频器高通滤波器低通滤波器示波器可调衰减器信号发生器调制解调器实验步骤说明将频率发生器连接到混频器的输入端,将高通滤波器连接到混频器的输出端。
将低通滤波器连接到高通滤波器的输出端,将示波器连接到低通滤波器的输出端。
调整频率发生器的频率为所需调制信号的载波频率。
设置可调衰减器以调整调制信号的幅度。
将信号发生器输出的调制信号连接到调制解调器的输入端。
调节示波器以观察解调后的信号。
请根据实验步骤进行操作,注意调整实验中涉及到的参数和设备连接。
完成实验后,可以将观察到的解调信号与原始调制信号进行比较,以评估调制和解调的效果。
在这个段落中,我们将对实验结果进行总结和分析。
我们还可以讨论不同调制和解调方法的优缺点,并根据实验结果进行验证和讨论。
实验结果的总结:针对ASK调制方法,我们观察到。
针对ASK解调方法,我们观察到。
在讨论中,我们可以探讨不同调制和解调方法的优点和缺点。
例如:对于ASK调制,其优点是。
然而,ASK调制的缺点是。
我们可以根据实验结果来验证不同调制和解调方法的有效性,并进行讨论。
通过分析实验数据,我们可以得出结论,例如:基于实验结果,我们可以得出结论。
总而言之,实验结果与讨论部分将提供对ASK调制及解调实验的全面分析和评价。
这将有助于我们理解不同调制和解调方法的优缺点,并为进一步研究和实践提供有价值的参考。
总而言之,实验结果与讨论部分将提供对ASK调制及解调实验的全面分析和评价。
这将有助于我们理解不同调制和解调方法的优缺点,并为进一步研究和实践提供有价值的参考。