2009年广东省清远市中考数学试题含答案
- 格式:doc
- 大小:331.00 KB
- 文档页数:8
2008年清远市初中毕业生学业考试试题说明:1.全卷共6 页,满分120 分,考试时间为120 分钟。
2.所有答案必须写在答题卡上,写在试题卷上的答案无效。
考试结束时,试题卷和答题卡都要上交。
3.本试卷设有附加题,共10 分;该题得分作为补偿分计入总分,但全卷最后得分不得超过120 分。
4.答题可用黑色字迹的钢笔、签字笔,不能用铅笔或红色字迹的笔。
一、基础(28 分)(一)( 14 分)1.根据课文默写古诗文名句(在6 小题中选做5 题,若6 题全做则按前5 题给分,每题2 分,共10 分)( l)子曰:"默而识之,口口口口,口口口口,何有于我哉?" (《论语》六则)( 2 )客路青山外,行舟绿水前。
口口口口口,口口口口口。
(王湾《次北固山下》)(3)故人具鸡黍,邀我至田家。
口口口口口,口口口口口。
(孟浩然《过故人庄》)(4)人有悲欢离合,月有阴晴圆缺,此事古难全。
口口口口口,口口口口口。
(苏轼《水调歌头》)(5)忽逢桃花林,夹岸数百步,中无杂树,口口口口,口口口口。
(陶渊明《桃花源记》)( 6)蒹葭苍苍,白露为霜,口口口口,口口口口。
(《诗经·蒹葭》)2.下列各组中,加点词语意思不相同的两项是()( ) ( 4 分)A、(1)悉以咨之(2)宣悉以班诸吏B、(1)然而禽鸟知山林之乐(2)欣然起行C、(1)若儿戏耳(2)若毒之乎D、(1)宜乎众矣(2)宜多应者(二)阅读下面的一段文字,完成3 -- 5 题。
(7 分)月光如流水一般,静静地泻在这一片叶子和花上,薄薄的青雾浮起在荷塘里,叶子和花仿佛在牛乳中洗过一样;又像笼着轻纱的梦。
虽然是满月,天上有一层的云,所以不能朗照;但我以为这恰是到了好处-- 酣眠固不可少,小睡也别有风味的。
月光是隔了树照过来的,高处丛生的灌木,落下参差的斑驳的黑影,峭楞楞如鬼一般;的杨柳的稀疏的qiànyǐng ( ) ,却又像是画在荷叶上。
★机密·启用前2009年广东省初中毕业生学业考试语文说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号,姓名、试室号、座位号.用2B铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、基础(28分)1.根据课文默写古诗文。
(10分)(1)子曰:“其恕乎!□□□□,□□□□。
”(《论语》)(1分)(2)阿爷无大儿,木兰无长兄,□□□□□,□□□□□。
(《木兰诗》)(2分)(3)凝望着故乡的方向,凝望着渐渐坠入大海的夕阳,老人哽咽着吟诵起崔颢《黄鹤楼》中的诗句:“□□□□□□□?□□□□□□□。
”闻者无不潸然泪下。
(2分)(4)四面边声连角起,千嶂里,□□□□□□□。
(范仲淹《渔家傲•秋思》)(1分)(5)把杜甫《春望》默写完整。
(4分)国破山河在,城春草木深。
□□□□□,□□□□□。
□□□□□,□□□□□。
白头搔更短,浑欲不胜簪。
2.下列各组中,加点词语意思不同的两项是(4分)A.鸣之而不能通其意/博古通今B.有朋自远方来/今齐地方千里C.可远观而不可亵玩焉/此则岳阳楼之大观也D.征于色发于声而后喻/于是宾客无不变色离席读下面文字,完成第3~5题。
北风在kōngkuàng()寂寥的大地上呼啸肆虐,冰雪冷酷无情地封冻了一切扎根于泥土的植物,无数生命用消极的冬眠躲避严寒。
这时候,腊梅,你却清醒着,毫无畏惧地伸展出光秃秃的枝干,并且把毕生的心血都凝聚在这些光秃秃的枝干上,凝结成无数个小小的蓓蕾,一任寒风把它们摇撼,一任_______,没有一星半瓣绿叶为你遮挡风寒!你能忍受这种jian’āo()么?也许,任何欢乐和美都源自痛苦,都经历了殊死的拼搏,但是,世人未必都懂得这个道理。
数学九年级中考广东试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 4x + 3,则f(2)的值为:A. -1B. 0C. 1D. 32. 下列函数中,奇函数是:A. y = x³B. y = x²C. y = |x|D. y = x⁴3. 已知一组数据2, 3, 5, 7, 11, x,其平均数为6,则x的值为:A. 4B. 6C. 8D. 104. 若直线y = 2x + 1与y轴的交点为(0, b),则b的值为:A. 0B. 1C. 2D. 35. 二项式展开式(1 + x)⁵的系数和为:A. 1B. 2C. 32D. 64二、判断题(每题1分,共5分)6. 若a > b,则a² > b²。
()7. 一元二次方程ax² + bx + c = 0(a ≠ 0)的判别式Δ = b² 4ac。
()8. 对角线互相垂直平分的四边形一定是菱形。
()9. 函数y = 2x + 3的图像是一条直线。
()10. 两个相互垂直的向量一定是零向量。
()三、填空题(每题1分,共5分)11. 已知三角形ABC中,∠A = 60°,AB = AC,则三角形ABC是____三角形。
12. 若函数f(x) = 3x 2,则f(-1) = ______。
13. 平方差公式:a² b² = _______。
14. 若一组数据2, 3, 5, 7, 11的平均数为6,则这组数据的方差是______。
15. 二项式定理中,(a + b)⁵展开后的项数为______。
四、简答题(每题2分,共10分)16. 解释什么是函数的单调性,并举一个例子。
17. 简述平行线的性质。
18. 什么是二次函数的顶点式?如何用顶点式求二次函数的最值?19. 简述等差数列和等比数列的定义。
20. 什么是坐标轴?如何用坐标轴表示一个点的位置?五、应用题(每题2分,共10分)21. 已知一元二次方程x² 5x + 6 = 0,求方程的解。
★机密·启用前2009年广东省初中毕业生学业考试数学(时间:100分钟满分:120分)一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(2009•广东•1•3′)4的算术平方根是()A.±2 B.2 C.±2D.22.(2009•广东•2•3′)计算(a3)2的结果是()A.a5B.a6C.a8D.a-13.(2009•广东•3•3′)如图所示,几何体的主(正)视图是()A.B.C.D.4.(2009•广东•4•3′)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是()A.7.26×1010元B.72.6×109元C.0.726×1011元D.7.26×1011元5.(2009•广东•5•3′)如图所示的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个()A.B.C.D.二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(2009•广东•6•4′)分解因式2x3﹣8x= .7.(2009•广东•7•4′)已知⊙O的直径AB=8cm,C为⊙O上的一点,∠BAC=30°,则BC= cm.8.(2009•广东•8•4′)一种商品原价120元,按八折(即原价的80%)出售,则现售价应为元.9.(2009•广东•9•4′)在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是,则n= .10.(2009•广东•10•4′)用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖块,第n个图形中需要黑色瓷砖块(用含n的代数式表示).三、解答题(一)(本大题5小题,每小题6分,共30分)11.(2009•广东•11•6′)计算:|﹣|+﹣sin30°+(π+3)0.12.(2009•广东•12•6′)解方程13.(2009•广东•13•6′)如图所示,在平面直角坐标系中,一次函数y=kx+1的图象与反比例函数y=的图象在第一象限相交于点A,过点A分别作x轴、y轴的垂线,垂足为点B、C.如果四边形OBAC是正方形,求一次函数的关系式.14.(2009•广东•14•6′)如图所示,△ABC是等边三角形,D点是AC的中点,延长BC到E,使CE=CD.(1)用尺规作图的方法,过D点作DM⊥BE,垂足是M(不写作法,保留作图痕迹);(2)求证:BM=EM.15.(2009•广东•15•6′)如图所示,A、B两城市相距100km,现计划在这两座城市间修建一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:≈1.732,≈1.414)四、解答题(二)(本大题4小题,每小题7分,共28分)16.(2009•广东•16•7′)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?17.(2009•广东•17•7′)某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图1,图2要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度?(3)补全频数分布折线统计图.18.(2009•广东•18•7′)在菱形ABCD中,对角线AC与BD相交于点O,AB=5,AC=6.过D点作DE∥AC交BC的延长线于点E.(1)求△BDE的周长;(2)点P为线段BC上的点,连接PO并延长交AD于点Q.求证:BP=DQ.19.(2009•广东•19•7′)如图所示,在矩形ABCD中,AB=12,AC=20,两条对角线相交于点O.以OB、OC为邻边作第1个平行四边形OBB1C,对角线相交于点A1;再以A1B1、A1C为邻边作第2个平行四边形A1B1C1C,对角线相交于点O1;再以O1B1、O1C1为邻边作第3个平行四边形O1B1B2C1…依此类推.(1)求矩形ABCD的面积;(2)求第1个平行四边形OBB1C,第2个平行四边形A1 B1 C1 C和第6个平行四边形的面积.五、解答题(三)(本大题3小题,每小题9分,共27分)20.(2009•广东•20•9′)(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,求证:阴影部分四边形OFCG的面积是△ABC的面积的.(2)如图2,若∠DOE保持120°角度不变,求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的.21.(2009•广东•21•9′)小明用下面的方法求出方程2﹣3=0的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.,,22.(2009•广东•22•9′)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)证明:Rt△ABM∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN 的面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.★机密·启用前2009年广东省初中毕业生学业考试数学(时间:100分钟满分:120分)参考答案与试题解析一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(2009•广东•1•3′)4的算术平方根是()A.±2 B.2 C.±2D.2考点:算术平方根。
2009年广州市初中毕业生九年级数学学业考试满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题3分,满分30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 将图1所示的图案通过平移后可以得到的图案是( A )2. 如图2,AB ∥CD ,直线l 分别与AB 、CD 相交,若∠1=130°,则∠2=( C )(A )40° (B )50° (C )130° (D )140°3. 实数a 、b 在数轴上的位置如图3所示,则a 与b 的大小关系是( C )(A )b a < (B )b a =(C )b a > (D )无法确定4. 二次函数2)1(2+-=x y 的最小值是( A )(A )2 (B )1 (C )-1 (D )-25. 图4是广州市某一天内的气温变化图,根据图4,下列说法中错误..的是( D ) (A )这一天中最高气温是24℃(B )这一天中最高气温与最低气温的差为16℃(C )这一天中2时至14时之间的气温在逐渐升高(D )这一天中只有14时至24时之间的气温在逐渐降低6. 下列运算正确的是( B )(A )222)(n m n m -=- (B ))0(122≠=-m mm (C )422)(mn n m =⋅ (D )642)(m m =7. 下列函数中,自变量x 的取值范围是x ≥3的是( D )(A )31-=x y (B )31-=x y(C )3-=x y (D )3-=x y8. 只用下列正多边形地砖中的一种,能够铺满地面的是( C )(A )正十边形 (B )正八边形(C )正六边形 (D )正五边形9. 已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图5)所示),则sin θ的值为( B )(A )125 (B )135 (C )1310 (D )131210. 如图6,在ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=24,则ΔCEF 的周长为( A )(A )8 (B )9.5 (C )10 (D )11.5二、填空题(本大题共6小题,每小题3分,满分18分)11. 已知函数xy 2=,当x =1时,y 的值是________2 12. 在某校举行的艺术节的文艺演出比赛中,九位评委给其中一个表演节目现场打出的分数如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3,9.5,9.3,则这组数据的众数是________9.313. 绝对值是6的数是________+6,-614. 已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题:________________________________略15. 如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________2n+516. 如图8是由一些相同长方体的积木块搭成的几何体的三视图,则此几何体共由________块长方体的积木搭成4三、解答题(本大题共9小题,满分102分。
5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
遗憾,每个遗憾都有它的青春美。
4.方茴说:“可能人总有点什么事,是想忘也忘不了的。
”5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
2008年清远市初中毕业生学业考试数学科试题说明:1.全卷共4页,考试时间为100分钟,满分120分。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,再用黑色字迹的钢笔或签字笔描黑.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域。
代数式测试题及参考答案练习代数式测试题及参考答案练习代数式测试题及参考答案练习1、下列式子书写正确的有( )①2②m③ ;④ ;⑤90-cA、1个B、2个C、3个D、4个2、已知某商场打7折后的价格为a元,则原价为( )A、元B、元C、元D、元3、m箱苹果的质量为a千克,则3箱苹果的质量为。
4、甲乙两地相距x千米,某人原计划t小时到达,后因故提前1小时到达,则他每小时应比原计划多走千米。
5、说出下列代数式的意义(1) (2)◆典例分析例:托运行李p千克(p为整数)的费用标准:已知托运第1个1千克需付2元,以后每增加1千克(不足1千克按1千克计)需增加费用5角。
若某人托运p千克(p1)的行李,则托运费用为多少?解:若某人托运p千克(p1)的行李,则托运费用为[2+0.5(p1)]元。
评析:本例的关键是理解清楚托运第1个1千克需付2元,以后每增加1千克(不足1千克按1千克计)需增加费用5角其中的意思。
那么托运p千克(p1)的行李,其托运费用应该就是[2+0.5(p1)]元。
◆课下作业●拓展提高1、下列结论中正确的是( )A、字母a表示任意数B、不是代数式C、是代数式D、a不是代数式2、一件工作,甲独做a天完成,乙独做b天完成,甲乙合做3天后,还剩下全部工作的没完成。
3、某工厂第一年的产值为a万元,第二年产值增加了,第三年又比第二年增加了,则第三年的产值为万元。
4、甲乙两列火车分别从相距s千米的'A、B两地同时出发,相向而行,甲的速度为a千米/时,乙的速度为b千米/时,则甲乙两列火车经过小时相遇。
5、某商场对所销售的茶叶进行促销活动:每购买一包装为50克的袋装茶叶则送小包装5克的茶叶2袋,某顾客获得小包装茶叶有2m 袋,则他共得到的茶叶(包括所购买的茶叶与所赠送茶叶的总和)为克。
6、有一串代数式:,,,,,,,(1)观察特点,用自己的语言叙述这串代数式的规律。
(2)写出第2009个代数式。
(3)写出第n个,第n+1个代数式。
2009年广东省清远市中考数学试题一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母涂在相应题号的答题卡上. 1.(09清远)5-等于( ) A .5 B .5- C .15-D .152.(09清远)不等式20x -≤的解集在数轴上表示正确的是( )A .B .C .D .3.(09清远)今年我国参加高考人数约为10200000,将10200000用科学记数法表示为( ) A .710.210⨯ B .71.0210⨯ C .70.10210⨯ D .710210⨯4.(09清远)某物体的三视图如图1所示,那么该物体形状可能是( ) A .圆柱 B .球 C .正方体 D .长方体 5.(09清远)小明记录某社区七次参加“防甲型H1N1流感活动”的人数分别如下:33,32,32,31,32,28,26.这组数据的众数是( ) A .28 B .31 C .32 D .33 6.(09清远)方程216x =的解是( )A .4x =±B .4x =C .4x =-D .16x = 7.(09清远)已知O ⊙的半径r ,圆心O 到直线l 的距离为d ,当d r =时,直线l 与O ⊙的位置关系是( )A .相交B .相切C .相离D .以上都不对 8.(09清远)计算:()23ab=( )A .22a b B .23a b C .26a b D .6ab9.(09清远)如图2,AB CD ∥,EF AB ⊥于E EF ,交CD 于F ,已知160∠=°,则2∠=( )A .20°B .60°C .30°D .45°图1主视图 左视图 俯视图C D B A EF1 2图2 A B 图310.(09清远)如图3,AB 是O ⊙的直径,弦CD AB ⊥于点E ,连结OC ,若5OC =,8CD =,则tan COE ∠=( ) A .35 B .45 C .34 D .43二、填空题(本大题共6小题,每小题3分,共18分)请把下列各题的正确答案填写在相应题号的答题卡上.11.(09清远)计算:3(2)⨯-= . 12.(09清远)当x = 时,分式12x -无意义. 13.(09清远)已知反比例函数ky x=的图象经过点(23),,则此函数的关系式是 . 14.(09清远)如果a 与5互为相反数,那么a = . 15.(09清远)如图4所示,转盘平面被等分成四个扇形,并分别填上红、黄两种颜色,自由转动这个转盘,当它停止转动时,指针停在黄色区域的概率为 .16.(09清远)如图5,若111A B C A B C△≌△,且11040A B ∠=∠=°,°,则1C ∠= .三、解答题(本大题共5小题,每小题5分,共25分) 17.(09清远)在“我喜欢的体育项目”调查活动中,小明调查了本班30人,记录结果如下:(其中喜欢打羽毛球的记为A ,喜欢打乒乓球的记为B ,喜欢踢足球的记为C ,喜欢跑步的记为D )A A C B A D C C B C A D D C C B B B B C B D B D B A B C A B求A的频率.18.(09清远)计算:201(1)π3--++19.(09清远)已知图形B 是一个正方形,图形A 由三个图形B 构成,如右图所示,请用图形A 与B合拼成一个轴对称图形,并把它画在答题卡的表图4 A B C C 1A 1B 1 图5AB格中.20.(09清远)解分式方程:132x x=-21.(09清远)如图6,某飞机于空中A 处探测到地平面目标B ,此时从飞机上看目标B 的俯角为α,若测得飞机到目标B 的距离AB 约为2400米,已知sin 0.52α=,求飞机飞行的高度AC 约为多少米?四、解答题(本大题共4小题,每小题6分,共24分)22.(09清远)化简:222692693x x x x x x-+-÷-+23.(09清远)如图7,已知正方形ABCD ,点E 是AB 上的一点,连结CE ,以CE 为一边,在CE 的上方作正方形CEFG ,连结DG .求证:CBE CDG △≌△24.(09清远)在一个不透明的口袋中装有红球2个、黑球2个,它们只有颜色不同,若从口袋中一次摸出两个球,求摸到两个都是红球的概率.(要求画出树状图)25.(09清远)已知二次函数2y ax bx c =++中的x y ,满足下表:B C A α图6E BC GDF A 图7五、解答题(本大题共3小题,第26小题7分,第27、28小题各8分,共23分) 26.(09清远)如图8,已知AB 是O ⊙的直径,过点O 作弦BC 的平行线,交过点A 的切线AP 于点P ,连结AC .(1)求证:ABC POA △∽△; (2)若2OB =,72OP =,求BC 的长.27.(09清远)某饮料厂为了开发新产品,用A 种果汁原料和B 种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x 千克,两种饮料的成本总额为y 元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y 与x 之间的函数关系式.(2)若用19千克A 种果汁原料和17.2千克B 种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y 值最小,最小值是多少?28.(09清远)如图9,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在A M N △中,设MN 的长为x ,MN 上的高为h .(1)请你用含x 的代数式表示h .(2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A ,1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少?2009年清远市初中毕业生学业考试BCNM A 图9数学试题参考答案及评分标准一、选择题:(每小题3分,共30分)1.A 2.B 3.B 4.A 5.C 6.A 7.B 8.C 9.C 10.D 二、填空题:(每小题3分,共18分) 11.6-; 12.2; 13.6y x =; 14.5-; 15.14; 16.30° 三、解答题:(每小题5分,共25分)17.解:A 的频率=61305= ··································································································· 5分 18.解:原式=11123++- ···································································································· 4分=13··········································································································································· 5分 19.解:拼成正确图形之一的给5分,例如20.解:去分母,得36x x =- ····························································································· 2分 解得:3x = ···························································································································· 3分 检验:把3x =代入原方程得:左边=右边 ············································································ 4分 所以3x =是原方程的解 ········································································································· 5分 21.解:由题意得:90B C α∠=∠∠=,° sin sin 0.52B α∴=≈ ········································································································· 2分sin ACB AB=s i n 24000.5212A C A B B ∴==⨯=·(米) ··································· 5分答:飞机飞行的高度约为1248米. 四、解答题:(每小题6分,共24分)22.解:原式=2(3)(3)(3)(3)2(3)x x x x x x -+⨯+-- ··············································································· 4分 =(3)(3)22x x xx --⨯=-- ·············································································································· 6分23.证明:四边形ABCD 和四边形CEFG 都是正方形 90CB CD CE CG BCD ECG ∴==∠=∠=,,° ····························································· 3分 90BCE DCE ∴∠=∠°- 90DCG DCE ∠=∠°- BCE DCG ∴∠=∠ ··············································································································· 5分 CBE CDG ∴△≌△ ·············································································································· 6分 24.解:画出树状图为:开始························································· 4分摸到两个都是红球的概率P =21126= ····················································································· 6分 25.解:把点(02)-,代入2y ax bx c =++得2c =- ························································· 2分 再把点(10)(20)-,,,分别代入22y ax bx =+-204220a b a b --=⎧⎨+-=⎩ ···················································································································· 4分 解得11a b =⎧⎨=-⎩∴这个二次函数的关系式为:22y x x =-- ······································································· 6分 (说明:其它解法可参照上述给分)五、解答题:(本大题共3小题,26题7分,27、28题各8分,共23分) 26.(1)证明:BC OP ∥ AOP B ∴∠=∠ ·························································· 1分 AB 是直径 90C ∴∠=° ······························································· 2分 PA 是O ⊙的切线,切点为A90OAP ∴∠=°C OAP ∠=∠ ····························································· 3分 ABC POA ∴△∽△ ·················································· 4分 (2)ABC POA △∽△BC ABOA PO∴= ·························································································································· 5分 722OB PO ==,24OA AB ∴==, 4722BC ∴= ······························································································································ 6分 716827BC BC ∴==, ····································································································· 7分 27.解:(1)依题意得:43(50)150y x x x =+-=+ ······················································· 3分(2)依题意得:0.50.2(50)19(1)0.30.4(50)17.2(2)x x x x +-⎧⎨+-⎩≤…………≤……… ···················································· 5分解不等式(1)得:30x ≤ 解不等式(2)得:28x ≥∴不等式组的解集为2830x ≤≤ ······················································································· 7分 150y x =+,y 是随x 的增大而增大,且2830x ≤≤∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y 最小,28150178y =+=最小(元) ································································· 8分28.解:(1)MN BC ∥AMN ABC ∴△∽△ 68h x ∴= 34x h ∴= ····································································· 3分(2)1AMN A MN △≌△1A MN ∴△的边MN 上的高为h ,①当点1A 落在四边形BCNM 内或BC 边上时,1A MN y S =△=211332248MN h x x x ==··(04x <≤) ························································ 4分 ②当1A 落在四边形BCNM 外时,如下图(48)x <<, 设1A EF △的边EF 上的高为1h , 则132662h h x =-=- 11EF MNA EF A MN ∴∥△∽△11AMN ABC A EF ABC ∴△∽△△∽△ 1216A EF S h S ⎛⎫= ⎪⎝⎭△△ABC168242ABC S =⨯⨯=△ 22363224122462EFx S x x ⎛⎫- ⎪∴==⨯=-+ ⎪⎪⎝⎭1△A BCNM AM NCBEFAA 11122233912241224828A MN A EF y S S x x x x x ⎛⎫=-=--+=-+- ⎪⎝⎭△△所以 291224(48)8y x x x =-+-<< ············································································ 6分 综上所述:当04x <≤时,238y x =,取4x =,6y =最大 当48x <<时,2912248y x x =-+-, 取163x =,8y =最大 86>∴当163x =时,y 最大,8y =最大 ······················································································ 8分。
2008年清远市初中毕业生学业考试数学科试题说明:1.全卷共4页,考试时间为100分钟,满分120分。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,再用黑色字迹的钢笔或签字笔描黑.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域。
不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的清洁,考试结束后,将本试卷和答题卡一并交回。
一.选择题(本大题共l0小题,每小题3分.共30分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母涂在相应题号的答题卡上.1.-2的相反数是( )A .2-B .12-C .12D .2 2. 四川汶川地震发生后,我市市民发扬“一方有难,八方支援”的爱心行动。
积极捐款、捐物,到5月28日止,累计捐款达6012万元人民币,将60l2用科学记数法表示为( )A .26.01210⨯B .36.01210⨯C .360.1210⨯D .30.601210⨯ 3.下列运算正确的是( )A .336555+= B. 33550÷= C .7749555⨯= D .9918555⨯=4. 点(2,3)在( )象限A .第一B .第二 c .第三 D .第四5.方程(3)(2)0x x -+=的解是( )A .1232x x ==, B.1232x x =-=, C. 1232x x ==-, D.1232x x =-=-,6.如图,几何体的俯视图...是( ).7.下列图形中既是轴对称图形又是中心对称图形的是( )8.如图,矩形ABCD 中,对角线Ac 与BD 相交于点O ,已知∠AOB=60°,则∠ACB 的度数是( ).A.60° B .30°C. 80° D.20°9.己知矩形的面积为l0,则它的长y 与宽x 之间的关系用图象大致可表示为( ).10如图,在Rt△ABC 中,∠ACB=90°.C D⊥AB 于D .已知BC=8,AC=6,则斜边AB 上的高是( )A.10 B .5 C .245 D.125二.填空题(本大题共6小题,每小题3分,共18分)请把下列各题的正确答案填写在相应题号的答题卡上.11.____________。
第7题图BADCBADCBA2009年广东省初中毕业生数学学业考试考试用时100分钟,满分120分一、选择题(本大题5小题,每小题3分,共15分)。
1. 4的算术平方根是( )A.±2B.2C.2±D.22. 计算()23a 结果是( )A.6aB.9aC.5aD.8a 3. 如图所示几何体的主(正)视图是( )4. 《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿 元,用科学计数法表示正确的是( )A.元101026.7⨯ B.9106.72⨯元 C.1110726.0⨯元 D.111026.7⨯元 5. 如图所示的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下 一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个( )二、填空题(本大题5小题,每小题4分,共20分)。
6. 分解因式x x 823-=_______________________.7. 已知⊙O 的直径AB=8cm ,C 为⊙O 上的一点,∠BAC=30°, 则BC=_________cm.8. 一种商品原价120元,按八折(即原价的80%)出售,则现售价应为__________元.9. 在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同,若 从中随机摸出一球,摸到黄球的概率是54,则n=__________________. 10. 用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖________块,第n 个图形中需要黑色瓷砖___________块(用含n 的代数式表示).三、解答题(一)(本大题5小题,每小题6分,共30分) 11. 计算-+-921sin30°+()03+π.12. 解方程11122--=-x x第14题图EDCBA13. 如图所示,在平面直角坐标系中,一次函数y=kx+1的图像与反比例函数xy 9的图像在第一象限相交于点A ,过点A 分别作x 轴、y 轴的垂线,垂足为点B 、C.如果四边形OBAC 是正方形,求一次函数的关系式.14. 如图所示,△ABC 是等边三角形,D 点是AC 的中点,延长BC 到E ,使CE=CD. (1) 用尺规作图的方法,过D 点作DM ⊥BE ,垂足是M (不写作法,保留作图痕迹); (2)求证:BM=EM.第15题图45°30°FEPBA15. 如图所示,A 、B 两城市相距100km.现计划在这两座城市间修筑一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上.已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内.请问计划修筑的这条高速公路会不会穿越保护区.为什么?(参考数据:414.12,732.13≈≈)四、解答题(二)(本大题4小题,每小题7分,共28分)16. 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?第17题图图2足球乒乓球20%篮球40%排球17. 某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查地方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图1、图2,要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少位学生?(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度? (3)补全频数分布折线统计图.第18题图QPOEDCBA第19题图C 2C 1A 2B 2B 1O 1OA 1DCB A18. 在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB=5,AC=6.过D点作DE ∥AC 交BC的延长线于点E. (1)求△BDE 的周长;(2)点P为线段BC 上的点,连接PO 并延长交AD 于点Q.求证:BP=DQ.19. 如图所示,在矩形ABCD 中,AB=12,AC=20,两条对角线相交于点O.以OB 、OC 为邻边作第1个平行四边形C OBB 1,对角线相交于点1A ;再以C A B A 111、为邻边作第2个平行四边形C C B A 111,对角线相交于点1O ;再以1111C O B O 、为邻边作第3个平行四边形1211C B B O ……依此类推.(1)求矩形ABCD 的面积;(2)求第一个、第二个、第六个平行四边形的面积。
全国免费客户服务电话:400-715-6688地址:西安经济技术开发区凤城一路8号御道华城A 座10层2009年中考试题专题之1-有理数试题及答案 一、选择题1.(2009年福建省泉州市)计算:=-0)5(( ). A .1 B .0 C .-1 D .-5 【答案】A2.(2009年梅州市)12-的倒数为( ) A .12B .2C .2-D .1-【答案】C3.(2009年抚顺市)某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为( )A .72.5810⨯元 B .70.25810⨯元 C .62.5810⨯元 D .625.810⨯元 【答案】C4.(2009年抚顺市)2-的相反数是( ) A .2 B .12- C .2- D .12【答案】A5.(2009年绵阳市)2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是A .0.156³10-5B .0.156³105C .1.56³10-6D .1.56³106【答案】C6.(2009年绵阳市)如果向东走80 m 记为80 m ,那么向西走60 m 记为 A .-60 m B .︱-60︱m C .-(-60)m D .601m【答案】A 7.(2009呼和浩特)2-的倒数是( ) A .12-B .12C .2D .2-答案:A8.(2009年龙岩)-2的相反数是( )A .-2B .2C .21 D .-21【答案】B 9.(2009年铁岭市)目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为( )A .111.4810⨯元 B .90.14810⨯元C .101.4810⨯元D .914.810⨯元【答案】C10.(2009年黄石市)12-的倒数是( )A .2B .12C .12- D .2-【答案】D 11.(2009年广东省)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( ) A .107.2610⨯ 元 B .972.610⨯ 元 C .110.72610⨯ 元D .117.2610⨯元【答案】A 12.(2009年枣庄市)实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( )A .0a b >B .0a b +<C .1a b <D .0a b -<【答案】C 13.(2009年枣庄市)-12的相反数是( )A .2B .2-C .12D .12-【答案】C14.(2009年赤峰市)景色秀美的宁城县打虎石水库,总库容量为119600000立方米,用科学计数法表示为 ( )A 、1.196³108立方米B 、1.196³107立方米C 、11.96³107立方米D 、0.1196³109立方米 【答案】A15.(2009年赤峰市)3(3)-等于( ) A 、-9 B 、9 C 、-27 D 、2716.(2009贺州)计算2)3(-的结果是( ).A .-6B .9C .-9D .6【答案】B17.(2009年浙江省绍兴市)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为( ) A .8.1³190-米 B .8.1³18-米 C .81³19-米 D .0.81³17-米【答案】Bab 018.(2009年江苏省)2-的相反数是( ) A .2 B .2-C .12D .12-【答案】A 19.(2009贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【答案】B20.(2009年淄博市)如果2()13⨯-=,则“”内应填的实数是( D )A .32B .23C .23- D .32-21.(2009襄樊市)通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( B ) A .53.110-⨯ B .63.110-⨯ C .73.110-⨯ D .83.110-⨯解析:本题考查科学记数法,0.0000031=63.110-⨯,故选B 。
1有理数一、选择题1.(2009年福建省泉州市)计算:=-0)5(( ).A .1B .0C .-1D .-5【答案】A2.(2009年梅州市)12-的倒数为( ) A .12B .2C .2-D .1-【答案】C3.(2009年抚顺市)某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为( )A .72.5810⨯元 B .70.25810⨯元 C .62.5810⨯元 D .625.810⨯元 【答案】C4.(2009年抚顺市)2-的相反数是( ) A .2 B .12-C .2-D .12【答案】A5.(2009年绵阳市)2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是 A .0.156×10-5 B .0.156×105 C .1.56×10-6 D .1.56×106 【答案】C 6.(2009年绵阳市)如果向东走80 m 记为80 m ,那么向西走60 m 记为 A .-60 m B .︱-60︱m C .-(-60)m D .601m 【答案】A 7.(2009呼和浩特)2-的倒数是( ) A .12-B .12C .2D .2-答案:A8.(2009年龙岩)-2的相反数是( )A .-2B .2C .21D .-21 【答案】B 9.(2009年铁岭市)目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为( ) A .111.4810⨯元 B .90.14810⨯元C .101.4810⨯元D .914.810⨯元【答案】C10.(2009年黄石市)12-的倒数是( ) A .2 B .12 C .12- D .2-【答案】D11.(2009年广东省)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元B .972.610⨯ 元C .110.72610⨯ 元 D .117.2610⨯元 【答案】A 12.(2009年枣庄市)实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -< 【答案】C13.(2009年枣庄市)-12的相反数是( ) A .2 B .2- C .12 D .12-【答案】C14.(2009年赤峰市)景色秀美的宁城县打虎石水库,总库容量为119600000立方米,用科学计数法表示为 ( ) A 、1.196×108立方米 B 、1.196×107立方米 C 、11.96×107立方米 D 、0.1196×109立方米 【答案】A15.(2009年赤峰市)3(3)-等于( ) A 、-9 B 、9 C 、-27 D 、2716.(2009贺州)计算2)3(-的结果是( ).A .-6B .9C .-9D .6 【答案】B 17.(2009年浙江省绍兴市)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为( )A .8.1×190-米 B .8.1×180-米 C .81×190-米 D .0.81×170-米 【答案】B 18.(2009年江苏省)2-的相反数是( ) A .2 B .2-C .12D .12-【答案】A 19.(2009贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【答案】B20.(2009年淄博市)如果2()13⨯-=,则“”内应填的实数是( D )A . 32B . 23C .23-D .32-21.(2009襄樊市)通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( B ) A .53.110-⨯ B .63.110-⨯ C .73.110-⨯ D .83.110-⨯ 解析:本题考查科学记数法,0.0000031=63.110-⨯,故选B 。
2009年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集U R =,集合{}212M x x =--和{}21,1,2N x x k k ==-=的关系的韦恩(V enn )图如图所示,则阴影部分所示的集合的元素共有 ( )第1题图A. 3个B. 2个C. 1个D. 无穷多个 【测量目标】集合的表示方法(描述法),集合的并集.【考查方式】给出2个集合,通过并集运算求出集合的元素共有几个. 【难易程度】容易 【参考答案】B【试题解析】由{}212M x x =--得{|13}M x x =-,{1,3,5,}N =则{1,3}M N =,有2个,选B.2.设z 是复数,()a z 表示满足1nz =的最小正整数n ,则对虚数单位i ,()i a = ( ) A. 8 B. 6 C. 4 D. 2 【测量目标】复数的基本概念.【考查方式】给出相关信息,求解出满足i 1n=最小正整数n 【难易程度】容易 【参考答案】C【试题解析】()i i 1na ==,则最小正整数n 为4,选C.3.若函数()y f x =是函数(0,xy aa =>且)1a ≠的反函数,其图象经过点),,a a 则()f x = ( )A.2log xB. 12log x C.12x D. 2x 【测量目标】反函数.【考查方式】给出反函数的原函数的方程和其图象经过点(),a a ,求解出反函数的方程.【难易程度】容易 【参考答案】B【试题解析】()log ,a f x x =代入(),,a a 解得1,2a =所以()12log ,f x x =选B.4.已知等比数列{}n a 满足0,1,2,n a n >=且()252523,n n a a n -=则当1n 时,2123221log log log n a a a -+++= ( )A.()21n n -B. ()21n + C. 2n D.()21n - 【测量目标】已知递推关系求通项.【考查方式】给出相关信息,先求出通项n a ,再利用对数函数化简,求解. 【难易程度】中等 【参考答案】C【试题解析】由()252523nn a a n -=得222,0,n nn a a =>(步骤1) 则2,nn a = ()22123221log log log 1321,n a a a n n -+++=+++-=选C.(步骤2)5.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是( )A. ①和②B. ②和③C. ③和④D. ②和④ 【测量目标】平行与垂直关系的综合问题.【考查方式】给出4个命题,通过直线与直线、面,面与面之间的位置关系判断其真假. 【难易程度】容易【参考答案】D【试题解析】显然 ①和③是假命题,故否定A,B,C,选D.6.一质点受到平面上的三个力123,,F F F (单位:牛顿)的作用而处于平衡状态.已知12,F F 成60角,且12,F F 的大小分别为2和4,则3F 的大小为 ( )A. 6B. 2C. 25D. 27【测量目标】余弦定理.【考查方式】给出物理学相关信息,通过余弦定理求解. 【难易程度】容易 【参考答案】D【试题解析】()222312122cos 1806028,F F F F F =+--=所以327F =,选D.7.2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有 ( )A. 36种B. 12种C. 18种D. 48种 【测量目标】排列组合及其应用..【考查方式】给出相关信息,考查了排列组合的公式. 【难易程度】中等 【参考答案】A【试题解析】分两类:若小张或小赵入选,则有选法113223C C A 24,=若小张、小赵都入选,则有选法2223A A 12,=共有选法36种,选A.8.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的0t 和1t ,下列判断中一定正确的是 ( )第8题图A.在1t 时刻,甲车在乙车前面B.1t 时刻后,甲车在乙车后面C.在0t 时刻,两车的位置相同D.0t 时刻后,乙车在甲车前面 【测量目标】函数图象的应用. 【考查方式】给出相关图象,再求解. 【难易程度】中等 【参考答案】A【试题解析】由图象可知,曲线v 甲比v 乙在0100t t ~、~与x 轴所围成图形面积大,则在01t t 、时刻,甲车均在乙车前面,选A.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9 ~ 12题)9.随机抽取某产品n 件,测得其长度分别为12,,,,n a a a 则如图所示的程序框图输出的s = ,s 表示的样本的数字特征是 .(注:框图中的赋值符号“=”也可以写成“←”“:=”)第9题图【测量目标】循环结构的程序框图.【考查方式】给出算法流程图,阅读框图,运行程序,得出结果. 【难易程度】容易 【参考答案】12na a a n+++ 平均数【试题解析】第一次当i =1时,1;s a =第二次当i =2时,12;2a a s +=最后输出12+;na a a s n++=s =平均数.10.若平面向量,a b 满足1,+=+a b a b 平行于x 轴,()2,1,=-b 则=a .【测量目标】向量的坐标运算.【考查方式】考查向量的基本概念及向量的坐标运算. 【难易程度】中等【参考答案】()1,1-或()3,1-【试题解析】设(,)x y =a ,则(2,1)x y +=+-a b ,依题意,得⎪⎩⎪⎨⎧=-=-++011)1()2(22y y x ,(步骤1)解得⎩⎨⎧=-=11y x 或⎩⎨⎧=-=13y x ,所以(1,1)=-a 或(3,1)=-a .(步骤2) 11.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为 . 【测量目标】椭圆的标准方程.【考查方式】给出相关信息,通过离心率公式,长短轴间的关系,求解出标准方程. 【难易程度】中等【参考答案】221369x y += 【试题解析】3,212,6,3,2e a a b ====则所求椭圆方程为22 1.369x y += 12.已知离散型随机变量X 的分布列如右表.若0,1,EX DX ==则a = ,b = .第12题图【测量目标】离散型随机变量的分布列.【考查方式】给出离散型随机变量的分布列,通过公式求解. 【难易程度】中等 【参考答案】51,124【试题解析】由题知2221111,0,1121,12612a b c a c a c ++=-++=⨯+⨯+⨯= 解得51,124a b ==. (二)选做题(13 ~ 15题,考生只能从中选做两题) 13.(坐标系与参数方程选做题)若直线112,:2,x t l y kt =-⎧⎨=+⎩(t 为参数)与直线2,:12,x s l y s =⎧⎨=-⎩(s 为参数)垂直,则k = . 【测量目标】坐标系与参数方程.【考查方式】给出两条直线的参数方程,且两条直线垂直,求解. 【难易程度】较难 【参考答案】1-【试题解析】直线112,:2,x t l y kt =-⎧⎨=+⎩(t 为参数)化为普通方程是)1(22--=-x ky ,该直线的斜率为2k-,(步骤1)直线2,:12,x s l y s =⎧⎨=-⎩(s 为参数)化为普通方程是12+-=x y ,该直线的斜率为2-,(步骤2)则由两直线垂直的充要条件,得()212k ⎛⎫--=- ⎪⎝⎭, 1.k =-(步骤3) 14.(不等式选讲选做题)不等式112x x ++的实数解为 .【测量目标】解一元二次不等式【考查方式】给出不等式方程,先求定义域,再把它换成整数不等式求解. 【难易程度】中等 【参考答案】{x |32x-且2-≠x }【试题解析】112xx++1220x xx⎧++⎪⇔⎨+≠⎪⎩22(1)(2)2x xx⎧++⇔⎨≠-⎩2302xx+⎧⇔⎨≠-⎩解得32x-且2-≠x.所以原不等式的解集为{x|32x-且2-≠x}. 15.(几何证明选讲选做题)如图,点,,A B C是圆O上的点,且4,45AB ACB=∠=,则圆O的面积等于.第15题图【测量目标】几何证明选讲.【考查方式】给出圆上线段长,角度大小,求解圆的面积.【难易程度】容易【参考答案】8π【试题解析】解法一:连结,,OA OB则902,AOB ACB∠==∠(步骤1)所以AOB△为等腰直角三角形,又4AB=,(步骤2)所以,圆O的半径22R=O的面积等于22ππ(22)8πR=⨯=(步骤3)解法二:设圆O的半径为R,在ABC△中,由正弦定理,得42sin45R=,解得22R=(步骤1)所以,圆O的面积等于22ππ(22)8πR=⨯=.(步骤2)三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知向量(sin,2)θ=-a与(1,cos)θ=b互相垂直,其中π(0,)2θ∈.(1)求sinθ和cosθ的值;(2)若10πsin()102θϕϕ-=<<,求cosϕ的值.【测量目标】余弦定理.【考查方式】利用两向量垂直公式、诱导公式、余弦定理求解.【难易程度】中等【试题解析】(1)∵向量()sin,2θ=-a与()1cosθ,b=互相垂直,∴ sin 2cos 0θθ=-=a b ,即θθcos 2sin =①,(步骤1)又 1cos sin 22=+θθ ② ① 代入②,整理,得51cos 2=θ,(步骤2) 由π0,2θ⎛⎫∈ ⎪⎝⎭,可知0cos >θ, ∴55cos =θ,(步骤3)代入①得552sin =θ. 故55cos =θ, 552sin =θ.(步骤4)(2)ππππ0,0,,2222ϕθθϕ<<<<∴-<-<(步骤5)则()()2310cos 1sin ,10θϕθϕ-=--=(步骤6)()()()2cos cos cos cos sin sin .2ϕθθϕθθϕθθϕ∴=--=-+-=⎡⎤⎣⎦(步骤7) 17.(本小题满分12分)根据空气质量指数API (为整数)的不同,可将空气质量分级如下表:API0~50 51~100 101~150 151~200 201~250 251~300 >300 级别 I II 1III2III1IV2IVV状况 优 良轻微污染 轻度污染 中度污染 中度重污染 重度污染xy67 xy68xy69xy70xy71对某城市一年(365天)的空气质量进行监测,获得的API 数据按照区间[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]进行分组,得到频率分布直方图如图所示. (1)求直方图中x 的值;(2)计算一年中空气质量分别为良和轻微污染的天数;(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率. (结果用分数表示.已知77578125,2128,==32738123,18253651825182591259125++++=365735=⨯)第17题图 【测量目标】频率分布直方图.【考查方式】给出直方图,阅读,从图中找到相关信息,利用公式定理求解. 【难易程度】中等【试题解析】(1)因为,在频率分布直方图中,各个小矩形的面积之和等于1,依题意,得327385011825365182518259125x ⎛⎫+++++=⎪⎝⎭(步骤1)又 9125123912581825318257365218253=++++ 所以 182501199125123501=-=x .(步骤2) (2)一年中空气质量为良的天数为 1195018250119365=⨯⨯(天);(步骤3) 一年中空气质量为轻微污染的天数为 100503652365=⨯⨯(天);(步骤4) (3)由(2)可知,在一年之中空气质量为良或轻微污染的天数共有119+100=219(天) 所以,在一年之中的任何一天空气质量为良或轻微污染的概率是21933655P ==,(步骤5) 设一周中的空气质量为良或轻微污染的天数为ξ,则ξ~B (7,53) 7733()C 155kkk P k ξ-⎛⎫⎛⎫==- ⎪⎪⎝⎭⎝⎭,(k =0,1,2,…,7)(步骤6)设“该城市某一周至少有2天的空气质量为良或轻微污染”为事件A ,则)1()0(1)(=-=-=ξξP P A P =-1070733C 155⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭161733C 155⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=6752537521⎪⎭⎫ ⎝⎛⨯⨯-⎪⎭⎫⎝⎛-=78125766537812513441281522121767=+-=⨯+-.(步骤7) 18.(本小题满分14分)如图,已知正方体1111ABCD A B C D -的棱长为2,点E 是正方形11BCC B 的中心,点F G 、分别是棱111,C D AA 的中点.设点1,1E G 分别是点,E G 在平面11DCC D 内的正投影.(1)求以E 为顶点,以四边形FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积;(2)证明:直线1FG ⊥平面1FEE ; (3)求异面直线11E G EA 与所成角的正弦值.第18题图【测量目标】锥的体积、空间直角坐标系.【考查方式】考查了锥的体积、线面垂直的判定、异面直线所成的角,建立空间直角坐标系求解【难易程度】较难【试题解析】(1)依题得所求为四棱锥11FG DE E -的体积,其底面11FG DE 面积为111111Rt Rt E FG DG E DE FG S S S =+△△四边形221212221=⨯⨯+⨯⨯=,(步骤1) 又⊥1EE 面11FG DE ,11=EE ,∴111111233E DE FG DE FG V S EE -==四边形.(步骤2)(2)以D 为坐标原点,DA 、DC 、1DD 所在直线分别作x 轴,y 轴,z 轴,得)1,2,0(1E ,)1,0,0(1G ,又因为)1,0,2(G ,)2,1,0(F ,)1,2,1(E ,则)1,1,0(1--=FG ,)1,1,1(-=FE ,)1,1,0(1-=FE ,(步骤3) ∴10(1)10FG FE =+-+=,110(1)10FG FE =+-+=, 即FE FG ⊥1,11FE FG ⊥,(步骤4) 又1FE FE F =,∴⊥1FG 平面1FEE .(步骤5)第18(2)题图(3))0,2,0(11-=G E ,)1,2,1(--=EA , 则111111cos ,6E G EA E G EA E G EA<>==(步骤6) 设异面直线11E G EA 与所成角为θ,则33321sin =-=θ.(步骤7)19.(本小题满分14分)已知曲线2:C y x =与直线:20l x y -+=交于两点(,)A A A x y 和(,)B B B x y ,且A B x x <.记曲线C 在点A 和点B 之间那一段L 与线段AB 所围成的平面区域(含边界)为D .设点(,)P s t 是L 上的任一点,且点P 与点A 和点B 均不重合.(1)若点Q 是线段AB 的中点,试求线段PQ 的中点M 的轨迹方程;(2)若曲线22251:24025G x ax y y a -+-++=与D 有公共点,试求a 的最小值. 【测量目标】直线与抛物线的位置关系,圆锥曲线中的探索性问题. 【考查方式】给出了抛物线方程与直线方程,利用公式、定理求解. 【难易程度】较难【试题解析】曲线C 与直线l 的联立方程组⎩⎨⎧=+-=022y x x y ,得⎩⎨⎧=-=1111y x ,⎩⎨⎧==4222y x ,(步骤1)又A B x x <,所以点,A B 的坐标分别为)4,2(),1,1(B A -(步骤2) ∵点Q 是线段AB 的中点∴点Q 的坐标为⎪⎭⎫⎝⎛25,21Q (步骤3)∵点(,)P s t 是L 上的任一点,且点P 与点A 和点B 均不重合.∴2s t = ,即),(2s s P ,且21<<-s (步骤4) 设线段PQ 的中点为(),M x y ,则点M 的轨迹的参数方程为⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=2252212s y s x (s 为参数,且21<<-s );消去s 整理,得454122+⎪⎭⎫ ⎝⎛-=x y ,且⎪⎭⎫ ⎝⎛<<-4541x所以,线段PQ 的中点M 的轨迹方程是454122+⎪⎭⎫ ⎝⎛-=x y ,⎪⎭⎫ ⎝⎛<<-4541x ;(步骤5)(2)曲线22251:24025G x ax y y a -+-++=可化为()()222572⎪⎭⎫ ⎝⎛=-+-y a x , 它是以(),2G a 为圆心,以57为半径的圆,(步骤6)设直线:20l x y -+=与y 轴相交于点E ,则E 点的坐标为()0,2E ; 自点A 做直线:20l x y -+=的垂线,交直线2y =于点F ,在Rt △EAF 中,45,AEF ∠=2=AE ,所以2=AF ,∵257<, ∴当0<a 且圆G 与直线l 相切时,圆心G 必定在线段FE 上,且切点必定在线段AE 上,(步骤7) 于是,此时的a 的值就是所求的最小值. 当圆G 与直线:20l x y -+=相切时 571122=++-a , 解得527-=a ,或者527=a (舍去) 所以,使曲线G 与平面区域D 有公共点的a 的最小值是527-.(步骤8)第19(2)题图20.(本小题满分14分)已知二次函数()y g x =的导函数的图象与直线2y x =平行,且()y g x =在1x =-处取得极小值1(0)m m -≠.设()()g x f x x=. (1)若曲线()y f x =上的点P 到点()0,2Q 2,求m 的值; (2)()k k ∈R 如何取值时,函数()y f x kx =-存在零点,并求出零点.【测量目标】函数零点的应用.【考查方式】利用导数求函数的极值、两点间距离公式、函数零点的判断等求解. 【难易程度】较难【试题解析】设二次函数()y g x =的解析式为)0()(2≠++=a c bx ax x g则它的导函数为)0(2)(≠+='a b ax x g ,(步骤1)∵函数)0(2)(≠+='a b ax x g 的图象与直线x y 2=平行, ∴22a = ,解得1a =,所以c bx x x g ++=2)(,b x x g +='2)((步骤2)∵()y g x =在1x =-处取得极小值1(0)m m -≠∴⎩⎨⎧-=-=-'1)1(0)1(m g g ,即⎩⎨⎧-=+-=+-1102m c b b ,解得⎩⎨⎧==mc b 2.所以m x x x g ++=2)(2,()()g x f x x ==2++xm x (0≠x )(步骤3)(1)设点P ⎪⎭⎫⎝⎛++2,x m x x (0≠x ,0≠m )为曲线()y f x =上的任意一点则点P 到点(0,2)Q 的距离为m x m x x m x x PQ 2222222++=⎪⎭⎫ ⎝⎛++=(步骤4)22m当且仅当222m x =时,等号成立,此时min PQ =m m 222+(步骤5)又已知点P 到点(0,2)Q 2222=+m m两边平方整理, 得12=+m m当0>m 时,12=+m m ,解得12-=m当0<m 时,12=+-m m ,解得12--=m 所以m 的值为12-或者12--;(步骤6)(2)函数令kx x f x h -=)()(=2)1(2++-=-++xmx k kx x m x (0≠x )令0)(=x h ,即02)1(=++-xmx k (0≠x ),整理,得02)1(2=++-m x x k (0≠x ),①(步骤7)函数kx x f x h -=)()(存在零点,等价于方程①有非零实数根,由0≠m 可知,方程①不可能有零根,当1k =时,方程①变为02=+m x ,解得02≠=mx ,方程①有唯一实数根, 此时, 函数kx x f x h -=)()(存在唯一的零点2mx =;(步骤8)当1k ≠时,方程①根的判别式为)1(44k m --=∆,0≠m令)1(44k m --=∆=0,解得mk 11-=,方程①有两个相等的实数根m x x -==21,(步骤9)此时,函数kx x f x h -=)()(存在唯一的零点m x -=; 令44(1)0m k ∆=-->,得()11m k -<,当0m >时,解得mk 11->,当0m <时,解得mk 11-<, 以上两种情况下,方程①都有两个不相等的实数根kk m x ---+-=1)1(111,k k m x -----=1)1(112此时, 函数kx x f x h -=)()(存在两个零点k k m x ---+-=1)1(111,kk m x -----=1)1(112(步骤10)综上所述,函数()y f x kx =-存在零点的情况可概括为当1k =时,函数kx x f x h -=)()(存在唯一的零点2mx =;当mk 11-=时,函数kx x f x h -=)()(存在唯一的零点m x -=; 当0m >且m k 11->,或者0m <且mk 11-<时,函数kx x f x h -=)()(存在两个零点 k k m x ---+-=1)1(111,kk m x -----=1)1(112.(步骤11)21.(本小题满分14分)已知曲线22:20(1,2,)n C x nx y n -+==,从点(1,0)P -向曲线n C 引斜率为(0)n n k k >的切线n l ,切点为(,)n n n P x y .(1)求数列{}{}n n x y 与的通项公式;(2)证明:13521n n nxx x x x y -<< 【测量目标】数列的实际应用,间接证明.【考查方式】利用圆锥曲线性质求通项公式,放缩法等求解. 【难易程度】较难【试题解析】曲线22:20(1,2,)n C x nx y n -+==可化为222)(n y n x =+-,所以,它表示以)0,(n C n 为圆心,以n 为半径的圆, 切线n l 的方程为)1(+=x k y n ,联立⎩⎨⎧=+-+=02)1(22y nx x x k y n ,消去y 整理,得 0)22()1(2222=+-++n n n k x n k x k ,①(步骤1)222222)12(44)1(4)22(n n n n k n n k k n k +-=+--=∆,0>n k 令0=∆,解得1222+=n n k n, 12+=n n k n (步骤2)此时,方程①化为012)2122()121(2222=++-++++n n x n n n x n n整理,得[]0)1(2=-+n x n ,解得1+=n n x x ,(步骤3) 所以121)11(12++=+++=n n n n n n ny n∴数列}{n x 的通项公式为1+=n nx x数列}{n y 的通项公式为121++=n n ny n .(步骤4)(2)证明:∵121111111+=+++-=+-n n n n n x x n n ,212n n -=<=135211352113521246235721n n n x x x x n n ---∴=⨯⨯⨯⨯<⨯⨯⨯⨯+ =121+n =nn x x +-11(步骤5)∵121+=n y x nn=n n x x +-11,又因为π043<< 令x y x n n =,则π04x <<, 要证明n n n n y x y x sin 2<,只需证明当π04x <<时,x x sin 2<恒成立即可. (步骤6)设函数x x x f sin 2)(-=,π04x <<则x x f cos 21)(-=',π04x <<(步骤7)∵在区间π0,4⎛⎫⎪⎝⎭上x x f cos 21)(-='为增函数,∴当π04x <<时,π()1104f x x '=<=,(步骤8)∴x x x f sin 2)(-=在区间π0,4⎛⎫⎪⎝⎭上为单调递减函数,∴ x x x f sin 2)(-=0)0(=<f 对于一切π04x <<恒成立,(步骤9)∴x x sin 2<,即n n x x +-11=n n nny x y x sin 2< 综上,得13521n n nxx x x x y -<<(步骤10)。
2009年普通高等学校招生全国统一考试(广东卷)数学(理科)参考答案一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-=的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有 A. 3个 B. 2个 C. 1个 D. 无穷多个【解析】由{212}M x x =-≤-≤得31≤≤-x ,则{}3,1=⋂N M ,有2个,选B. 2. 设z 是复数,()a z 表示满足1nz =的最小正整数n ,则对虚数单位i ,()a i = A. 8 B. 6 C. 4 D. 2 【解析】()a i =1=ni ,则最小正整数n 为4,选C.3. 若函数()y f x =是函数(0,1)xy a a a =>≠且的反函数,其图像经过点(,)a a ,则()f x =A. 2log xB. 12log x C.12xD. 2x 【解析】x x f a log )(=,代入(,)a a ,解得21=a ,所以()f x =12log x ,选B. 4.已知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)nn a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++=A. (21)n n -B. 2(1)n + C. 2n D. 2(1)n - 【解析】由25252(3)nn a a n -⋅=≥得n n a 222=,0>n a ,则n n a 2=, +⋅⋅⋅++3212log log a a2122)12(31log n n a n =-+⋅⋅⋅++=-,选C.5. 给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是A. ①和②B. ②和③C. ③和④D. ②和④ 【解析】选D.6. 一质点受到平面上的三个力123,,F F F (单位:牛顿)的作用而处于平衡状态.已知1F ,2F 成060角,且1F ,2F 的大小分别为2和4,则3F 的大小为A. 6B. 2C. 25D. 27【解析】28)60180cos(20021222123=--+=F F F F F ,所以723=F ,选D.7.2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有A. 36种B. 12种C. 18种D. 48种【解析】分两类:若小张或小赵入选,则有选法24331212=A C C ;若小张、小赵都入选,则有选法122322=A A ,共有选法36种,选A.8.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v v 乙甲和(如图2所示).那么对于图中给定的01t t 和,下列判断中一定正确的是 A. 在1t 时刻,甲车在乙车前面 B. 1t 时刻后,甲车在乙车后面 C. 在0t 时刻,两车的位置相同 D. 0t 时刻后,乙车在甲车前面【解析】由图像可知,曲线甲v 比乙v 在0~0t 、0~1t 与x 轴所围成图形面积大,则在0t 、1t 时刻,甲车均在乙车前面,选A.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9 ~ 12题)9. 随机抽取某产品n 件,测得其长度分别为12,,,n a a a ,则图3所示的程序框图输出的s = ,s 表示的样本的数字特征是 .(注:框图中的赋值符号“=”也可以写成“←”“:=”) 【解析】s =na a a n+⋅⋅⋅++21;平均数10. 若平面向量a ,b 满足1=+b a ,b a +平行于x 轴,)1,2(-=b ,则=a .【解析】)0,1(=+b a 或)0,1(-,则)1,1()1,2()0,1(-=--=a 或)1,3()1,2()0,1(-=---=a . 11.巳知椭圆G 的中心在坐标原点,长轴在x 3,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为 .【解析】23=e ,122=a ,6=a ,3=b ,则所求椭圆方程为193622=+y x . 12.已知离散型随机变量X 的分布列如右表.若0EX =,1DX =,则a = ,b = .【解析】由题知1211=++c b a ,061=++-c a ,1121211222=⨯+⨯+⨯c a ,解得125=a ,41=b . (二)选做题(13 ~ 15题,考生只能从中选做两题) 13.(坐标系与参数方程选做题)若直线⎩⎨⎧+=-=.2,21:1kt y t x l (t 为参数)与直线2,:12.x s l y s =⎧⎨=-⎩(s为参数)垂直,则k = . 【解析】1)2(2-=-⨯-k,得1-=k . 14.(不等式选讲选做题)不等式112x x +≥+的实数解为 .【解析】112x x +≥+2302)2()1(022122-≤⇔⎩⎨⎧≠++≥+⇔⎩⎨⎧≠++≥+⇔x x x x x x x 且2-≠x . 15.(几何证明选讲选做题)如图4,点,,A B C 是圆O 上的点, 且04,45AB ACB =∠=,则圆O 的面积等于 .【解析】解法一:连结OA 、OB ,则090=∠AOB ,∵4=AB ,OB OA =,∴22=OA ,则ππ8)22(2=⨯=圆S ;解法二:222445sin 420=⇒==R R ,则ππ8)22(2=⨯=圆S .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知向量)2,(sin -=θa 与)cos ,1(θ=b 互相垂直,其中(0,)2πθ∈.(1)求θsin 和θcos 的值; (2)若10sin(),0102πθϕϕ-=<<,求cos ϕ的值. 解:(1)∵a 与b 互相垂直,则0cos 2sin =-=⋅θθb a ,即θθcos 2sin =,代入1cos sin 22=+θθ得55cos ,552sin ±=±=θθ,又(0,)2πθ∈,∴55cos ,552sin ==θθ. (2)∵20πϕ<<,20πθ<<,∴22πϕθπ<-<-,则10103)(sin 1)cos(2=--=-ϕθϕθ,∴cos ϕ22)sin(sin )cos(cos )](cos[=-+-=--=ϕθθϕθθϕθθ. 17.(本小题满分12分)根据空气质量指数API (为整数)的不同,可将空气质量分级如下表:对某城市一年(365天)的空气质量进行监测,获得的API 数据按照区间]50,0[,]100,50(,]150,100(,]200,150(,]250,200(,]300,250(进行分组,得到频率分布直方图如图5.(1)求直方图中x 的值;(2)计算一年中空气质量分别为良和轻微污染的天数;(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率. (结果用分数表示.已知7812557=,12827=,++3652182531825791251239125818253=++,573365⨯=) 解:(1)由图可知-=150x ++365218253(182********123150)9125818253⨯-=⨯++,解得18250119=x ;(2)219)5036525018250119(365=⨯+⨯⨯;(3)该城市一年中每天空气质量为良或轻微污染的概率为533652195036525018250119==⨯+⨯,则空气质量不为良且不为轻微污染的概率为52531=-,一周至少有两天空气质量为良或轻微污染的概率为7812576653)53()52()53()52(116670777=--C C .18.(本小题满分14分)如图6,已知正方体1111ABCD A B C D -的棱长为2,点E 是正方形11BCC B 的中心,点F 、G 分别是棱111,C D AA 的中点.设点11,E G 分别是点E ,G 在平面11DCC D 内的正投影.(1)求以E 为顶点,以四边形FGAE 在平面11DCC D 内的正投zy xE 1G 1影为底面边界的棱锥的体积;(2)证明:直线⊥1FG 平面1FEE ; (3)求异面直线11E G EA 与所成角的正弦值.解:(1)依题作点E 、G 在平面11DCC D 内的正投影1E 、1G ,则1E 、1G 分别为1CC 、1DD 的中点,连结1EE 、1EG 、ED 、1DE ,则所求为四棱锥11FG DE E -的体积,其底面11FG DE 面积为111111E DG Rt FG E Rt FG DE S S S ∆∆+= 221212221=⨯⨯+⨯⨯=, 又⊥1EE 面11FG DE ,11=EE ,∴323111111=⋅=-EE S V FG DE FG DE E .(2)以D 为坐标原点,DA 、DC 、1DD 所在直线分别作x 轴,y 轴,z 轴,得)1,2,0(1E 、)1,0,0(1G ,又)1,0,2(G ,)2,1,0(F ,)1,2,1(E ,则)1,1,0(1--=FG ,)1,1,1(-=FE ,)1,1,0(1-=FE ,∴01)1(01=+-+=⋅FE FG ,01)1(011=+-+=⋅FE FG ,即FE FG ⊥1,11FE FG ⊥, 又F FE FE =⋂1,∴⊥1FG 平面1FEE .(3))0,2,0(11-=G E ,)1,2,1(--=EA,则62,cos 11=>=<EA G E EA G E ,设异面直线11E G EA 与所成角为θ,则33321sin =-=θ. 19.(本小题满分14分)已知曲线2:C y x =与直线:20l x y -+=交于两点(,)A A A x y 和(,)B B B x y ,且A B x x <.记曲线C 在点A 和点B 之间那一段L 与线段AB 所围成的平面区域(含边界)为D .设点(,)P s t 是L 上的任一点,且点P 与点A 和点B 均不重合.(1)若点Q 是线段AB 的中点,试求线段PQ 的中点M 的轨迹方程;(2)若曲线22251:24025G x ax y y a -+-++=与D 有公共点,试求a 的最小值. 解:(1)联立2x y =与2+=x y 得2,1=-=B A x x ,则AB 中点)25,21(Q ,设线段PQ 的中点M 坐标为),(y x ,则225,221ty s x +=+=,即252,212-=-=y t x s ,又点P 在曲线C 上, ∴2)212(252-=-x y 化简可得8112+-=x x y ,又点P 是L 上的任一点,且不与点A 和点B 重合,则22121<-<-x ,即4541<<-x ,∴中点M 的轨迹方程为8112+-=x x y (4541<<-x ).(2)曲线22251:24025G x ax y y a -+-++=, 即圆E :2549)2()(22=-+-y a x ,其圆心坐标为)2,(a E ,半径57=r由图可知,当20≤≤a 时,曲线22251:24025G x ax y y a -+-++=与点D 有公共点;当0<a 时,要使曲线22251:24025G x ax y y a -+-++=与点D 有公共点,只需圆心E 到直线:20l x y -+=的距离572||2|22|≤=+-=a a d ,得0527<≤-a ,则a 的最小值为527-. 20.(本小题满分14分)已知二次函数()y g x =的导函数的图像与直线2y x =平行,且()y g x =在1x =-处取得极小值1(0)m m -≠.设()()g x f x x=. (1)若曲线()y f x =上的点P 到点(0,2)Qm 的值; (2)()k k R ∈如何取值时,函数()y f x kx =-存在零点,并求出零点.解:(1)依题可设1)1()(2-++=m x a x g (0≠a ),则a ax x a x g 22)1(2)('+=+=; 又()g x '的图像与直线2y x =平行 22a ∴= 1a = m x x m x x g ++=-++=∴21)1()(22, ()()2g x mf x x x x ==++, 设(),o o P x y ,则202020202)()2(||x m x x y x PQ ++=-+=当且仅当202202x m x =时,2||PQ 取得最小值,即||PQ 取得最小值2当0>m 时,2)222(=+m 解得12-=m 当0<m 时,2)222(=+-m 解得12--=m(2)由()()120my f x kx k x x =-=-++=(0≠x ),得()2120k x x m -++= ()* 当1k =时,方程()*有一解2m x =-,函数()y f x kx =-有一零点2mx =-;当1k ≠时,方程()*有二解()4410m k ⇔∆=-->,若0m >,11k m>-, 函数()y f x kx =-有两个零点)1(2)1(442k k m x ---±-=,即1)1(11---±=k k m x ;若0m <,11k m<-, 函数()y f x kx =-有两个零点)1(2)1(442k k m x ---±-=,即1)1(11---±=k k m x ;当1k ≠时,方程()*有一解()4410m k ⇔∆=--=, 11k m=-, 函数()y f x kx =-有一零点m k x -=-=11综上,当1k =时, 函数()y f x kx =-有一零点2m x =-; 当11k m >-(0m >),或11k m<-(0m <)时, 函数()y f x kx =-有两个零点1)1(11---±=k k m x ;当11k m =-时,函数()y f x kx =-有一零点m k x -=-=11. 21.(本小题满分14分)已知曲线22:20(1,2,)n C x nx y n -+==.从点(1,0)P -向曲线n C 引斜率为(0)n n k k >的切线n l ,切点为(,)n n n P x y .(1)求数列{}{}n n x y 与的通项公式;(2)证明:1352112sin 1n n n n nx xx x x x x y --⋅⋅⋅⋅<<+. 解:(1)设直线n l :)1(+=x k y n ,联立0222=+-y nx x 得)22()1(2222=+-++n n n k x n k x k ,则)1(4)22(2222=+--=∆n n n k k n k ,∴12+=n n k n (12+-n n 舍去)22222)1(1+=+=n n k k x n n n,即1+=n n x n ,∴112)1(++=+=n n n x k y n n n (2)证明:∵121111111+=+++-=+-n n n n nx x nn∴nnn x x x x x x +-<⋅⋅⋅⋅⋅⋅⋅-1112531 由于nn n n x x n y x +-=+=11121,可令函数x x x f sin 2)(-=,则x x f cos 21)('-=,令0)('=x f ,得22cos =x ,给定区间)4,0(π,则有0)('<x f ,则函数)(x f 在)4,0(π上单调递减,∴0)0()(=<f x f ,即x x sin 2<在)4,0(π恒成立,又4311210π<≤+<n ,则有121sin 2121+<+n n ,即nn n n y x x x sin 211<+-.。
2009年广东省初中毕业生学业考试数学说明:全卷共4页,考试用时100分钟,满分120分.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.4的算术平方根是()A.±2B.2C.D.2.计算结果是()A. B. C. D.3.如图所示几何体的主(正)视图是()4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学计数法表示正确的是()A. B.元 C.元 D.元5.如图所示的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个()A B C D二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填在答题卡相应的位置上.6.分解因式=_______________________.7.已知⊙O的直径AB=8cm,C为⊙O上的一点,∠BAC=30°,则BC=_________cm.8.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为__________元.9.在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一球,摸到黄球的概率是,则n=__________________.10.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖________块,第n个图形中需要黑色瓷砖_______________块(用含n的代数式表示).三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算sin30°+.12.解方程13.如图所示,在平面直角坐标系中,一次函数的图像与反比例函数的图像在第一象限相交于点A,过点A分别作x轴、y轴的垂线,垂足为点B、C.边形OBAC是正方形,求一次函数的关系式.14.如图所示,△ABC是等边三角形,D点是AC延长BC到E,使CE=CD.(1)用尺规作图的方法,过D点作DM⊥BE,垂足是M(不写作法,保留作图痕迹);(2)求证:BM=EM.B第14题图15.如图所示,A、B两城市相距100km.现计划在这两座城市间修筑一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上.已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内.请问计划修筑的这条高速公路会不会穿越保护区.为什么?(参考数据:)四、解答题(二)(本大题4小题,每小题7分,共28分)16.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?17.某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查地方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图1、图2,要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少位学生?(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度?B 1 阴影部分四边形 OFCG 的面积是△ABC 的面积的.2 (2)如图 2,若∠DOE 保持 120°角度不变,求证:当∠DOE 绕着 O 点旋转时,由两条半径和△C ABC 的两条边 A 2(3)补全频数分布折线统计图.18. 在菱形 ABCD 中,对角线 AC 与 BD 相交于点 O ,AB=5,AC=6.过D点作 DE∥AC 交BC的延长线于点E. (1)求△BDE 的周长;(2)点P为线段 BC 上的点,连接 PO 并延长交 AD 于点 Q.求证:BP=DQ. AQOD BPCE第18题图19. 如图所示,在矩形 ABCD 中,AB=12,AC=20,两条对角线相交于点 O.以 OB 、OC 为邻边作第 1 个平行四边 形,对角线相交于点;再以为邻边作第 2 个平行四边形,对角线相交于点;再以为 邻边作第 3 个平行四边形……依此类推.(1)求矩形 ABCD 的面积;(2)求第 1 个平行四边形 OBB 1C 、第 2 个 AD平行四边形 和第 6 个平行四边形的面积.O五、解答题(三)(本大题 3 小题,每小题 9 分,共 27 分)B A 1O 1C20.(1)如图 △1,圆内接 ABC 中,AB=BC=CA ,OD 、OE 为⊙O 的半径,OD ⊥BC 于点 F ,OE ⊥AC 于点 G ,求证: C 1 B 2围成的图形(图中阴影部分)面积始终是△ABC 的面积的.第19题图A图1图2第20题图21. 小明用下面的方法求出方程的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.22. 正方形 ABCD 边长为 4,M 、N 分别是 BC 、CD 上的两个动点,当 M 点在 BC 上运动时,保持 AM 和 MN 垂直, (1)证明:△R t ABM ∽△R t MCN ;(2)设 BM=x ,梯形 ABCN 的面积为 y ,求 y 与 x 之间的函数关系式;当 M 点运动到什么位置时,四边形 ABCN 的面积最大,并求出最大面积;(3)当 M 点运动到什么位置时 △R t ABM ∽△R t AMN , 求此时 x 的值.2009 年广东省初中毕业生学业考试数学参考答案一、选择题1.B2.A3.B4.A5.C 二、填空题6.2x(x+2)(x-2);7.4;8.96;9.8;10.10,3n+1. 三、解答题(一) 11. 解:12.解:去分母得:2=-(x+1)解得:x=-3检验:当 x=-3 时,分母 所以原方程的解是:x=-3.13.解:,∴OB=AB=3, ∴点A的坐标为(3,3)∵点A在一次函数y=kx+1的图像上, ∴3k+1=3,解得:k=∴一次函数的关系式是:14.(1)作图(略)3 t 02x 2 x 3 0(2)证明:∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=60°∵AD=CD,∴∠CBD=∠ABD=30°∵CD=CE,∠ACB=∠E+∠CDE=60°,∴∠E=30°∴∠E=∠CBD,∴BD=DE∵DM⊥BE,∴BM=EM.15.解:过点P作PQ⊥AB于Q,则有∠APQ=30°,∠BPQ=45°设PQ=x,则PQ=BQ=x,AP=2AQ=2(100-x).R t APQ中,在△∵tan∠APQ=tan30º=,即.∴又∵>50,∴计划修筑的这条高速公路会穿越保护区。
★機密·启用前2011年清远市初中毕业生学业考试数 学 科 试 题说明:1.全卷共4页,考試時間為100分鐘,满分120分.2.选择题每小題选出答案后,用2B 铅笔把答题卡上对应题的标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,再用黑色字迹的钢笔或签字笔描黑.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效. 4.考生务必保持答题卡的整洁.考试结束时,将本试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母涂在相应题号的答题卡上. 1.(11·清远)—3的倒数是 A .3 B .—3C .13D .— 13【答案】D2.(11·清远)数据2、2、3、4、3、1、3的众数是 A .1 B .2C .3D .4【答案】C3.(11·清远)图1中几何体的主视图是【答案】C4.(11·清远)据媒体报道,我国因环境问题造成的经济损失每年高达680 000 000元,这个数用科学记数法可表示为 A .0.68×109B .6.8×108C .6.8×107D .68×107【答案】B5.(11·清远)下列选项中,与xy 2是同类项的是 A .—2xy 2B .2x 2yC .xyD .x 2y 2【答案】AB . A .C .D .C BOA图26.(11·清远)已知∠α=35°,则∠α的余角是 A .35° B .55°C .65°D .145°【答案】B7.(11·清远)不等式x —1>2的解集是 A .x >1 B .x >2C .x >3D .x <3【答案】C8.(11·清远)如图2,点A 、B 、C 在⊙O 上,若∠BAC =20º,则∠BOC 的度数为 A .20º B .30ºC .40ºD .70º【答案】C9.(11·清远)一次函数y =x +2的图象大致是【答案】A10.(11·清远)如图3,若要使平行四边形 ABCD 成为菱形,则需要添加的条件是 A .AB =CDB .AD =BC C .AB =BCD .AC =BD【答案】C二、填空题(本大题共6小题,每小题3分,共18分)请把下列各题的正确答案填写在相应师号的答题卡.11.(11·清远)计算:2x 2·5x 3= _ ▲ .【答案】10x 712.(11·清远)分解因式:2x 2-6x =_ ▲ .【答案】2x (x -3)13.(11·清远)反比例函数y =k x的图象经过点P(-2,3),则k 的值为 _ ▲ .【答案】y =- 6x14.(11·清远)已知扇形的圆心角为60°,半径为6,则扇形的弧长为_ ▲ .(结果保留π)xy O xy O xy O x y O D .AB CD图3【答案】2π15.(11·清远)为了甲、乙、丙三位同学中选派一位同学参加环保知识竞赛,老师对他们的五次环保知识测验成绩进行了统计,他们的平均分均为85分,方差分别为S 2甲=18,S 2乙=12,S 2丙=23.根据统计结果,应派去参加竞赛的同学是 _ ▲ .(填“甲”、乙、“丙”中的一个) 【答案】(填)16.(11·清远)如图4,在□ABCD 中,点E 是CD 的中点,AE 、BC 的延长线交于点F .若△ECF 的面积为1,则四边形ABCE 的面积为 _ ▲ .【答案】三、解答题(本大题共5小题,每小题6分,共30分) 17.(11·清远)计算:9+2cos60º+(12)-1-20110.【答案】原式=3+1+2-1=5 18.(11·清远)解方程:x 2-4x -1=o .【答案】【答案】方法一:由原方程,得(x -2)2=5 x +2=± 5∴x =-2± 5方法一:△=20,x =-4±202∴x =-2± 519.(11·清远)△ABC 在方格纸中的位置如图5所示,方格纸中的每个小正方形的边长为1个单位.(1)△A 1B 1C 1与△ABC 关于纵轴 (y 轴) 对称,请你在图5中画出△A 1B 1C 1; (2)将△ABC 向下平移8个单位后得到△A 2B 2C 2,请你在图5中画出△A 2B 2C 2.AB D 图4EF【答案】20.(11·清远)先化简、再求值:(1-1x +1)÷xx 2-1,其中x =2+1. 【答案】原式=(x +1x +1-1x +1)÷x x 2-1=x x +1×x 2-1x =x x +1×(x -1)( x +1)x=x -121.(11·清远)如图6,小明以3米/秒的速度从山脚A 点爬到山顶B 点,已知点B 到山脚的垂直距离BC 为24米,且山坡坡角∠A 的度数为28º,问小明从山脚爬上山顶需要多少时间?(结果精确到0.1).(参考数据:sin28º=0.46,cos28º=0.87,tan28º=0.53)xy OACBB 1B 2C 2C 1xy OACB【答案】在Rt △ABC 中,BC =24,∠A =28º,AB =BC ÷sin ∠A =24÷0.46≈52.18 ∴小明从山脚爬上山顶需要时间=52.183÷3≈17.4 (秒) 答:小明从山脚爬上山顶需要17.4秒四、解答题(本大题共3小题,每小题8分,共24分)22.(11·清远)如图2,AB 是⊙O 的直径,AC 与⊙O 相切,切点为A ,D 为⊙O 上一点,AD与OC 相交于点E ,且∠DAB =∠C . (1)求证:OC ∥BD ;(2)若AO =5,AD =8,求线段CE 的长.【答案】(1)∵AB 是⊙O 的直径,∴∠ADB =90º,∵AC 与⊙O 相切,∴∠CAB =90º, ∵∠DAB =∠C ∴∠AOC =∠B ∴OC ∥BD(2)∵AO =5,∴AB =10,又∵AD =8,∴BD =6 ∵O 为AB 的中点,OC ∥BD , ∴OE =3,∵∠DAB =∠C ,∠AOC =∠B∴△AOC ∽△DBA∴CO AB =AO DB ∴CO 10=56 ∴CO =253∴CE =CO -OE =253-3=16323.(11·清远)在一个不透明的口袋中装有白、黄两种颜色的乒乓球(除颜色外其余相同),A图6CO A图7CD E其中黄球有1个,从袋中任意摸出一个球是黄球的概率为13.(1)求袋中白球的个数;(2)第一次摸出一个球,做好记录后放回袋中,第二次再摸出一个球,请用列表或画状图的方法求两次都摸到黄球的概率.【答案】(1)1÷13=3(个)∴白球的个数=3-1=2(2)列表如下:黄白1白2 黄 (黄,黄) (黄,白1) (黄,白2) 白1 (白1,黄) (白1,白1) 白1,白2) 白2(白2,黄) (白2,白1)(白2,白2)∴共有16种不同的情况,两次都摸出黄球只有一种情况,故两次都摸到黄于的概率是1924.(11·清远)如图8,在矩形ABCD 中,E 是BC 边上的点,AE =BC ,DF ⊥AE ,垂足为F ,连接DE . (1)求证:AB =DF ;(2)若AD =10,AB =6,求tan ∠EDF 的值.【答案】(1)在矩形ABCD 中,AD ∥BC ,AD =BC ,∠ABE =90º ∴∠DAE =∠AEB , 又∵AE =BC ∴AE =AD ∵DF ⊥AE ∠AFD =90º ∴∠AFD =∠ABE∴△ABE ≌△DFA ∴AB =DF(2)∵△ABE ≌△DFA ∴AB =DF =6 AE =AD =10在Rt △ADF 中,AD =10 DF =6 ∴AF =8 ∴EF =2 在Rt △DFE 中,tan ∠EDF =EF DF =13B图8C DEF五、解答题(本大题共2小题,每小题9分,共18分)25.(11·清远)某电器城经销A 型号彩电,今年四月份每台彩电售价为2000元,与去年同期相比,结果卖出彩电的数量相同,但去年销售额为5万元,今年销售额只有4万元. (1)问去年四月份每台A 型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B 型号彩电.已知A 型号彩电每台进货价为1800元,B 型号彩电每台进货价为1500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,问有哪几种进货方案?(3)电器城准备把A 型号彩电继续以原价每台2000元的价格出售,B 型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获得最大?最大利润是多少?【答案】(1)设去年四月份每台A 型号彩电售价是x 元 50000x =400002000 ∴x =2500经检验x =2500 满足题意答:去年四月份每台A 型号彩电售价是2500元≤≥ (2)设购进A 型号彩电y 台,则购进B 型号彩电(20-y )台根据题意可得:⎩⎨⎧1800y +1500(20-y )≥320001800y +1500(20-y )≤33000解得203≤y ≤10∵y 是整数∴y 可取的值为7,8,9,10共有以下四种方案:购进A 型号彩电7台,则购进B 型号彩电13台 购进A 型号彩电8台,则购进B 型号彩电12台 购进A 型号彩电9台,则购进B 型号彩电11台 购进A 型号彩电10台,则购进B 型号彩电10台 (3)设利润为W 元,则W =(2000-1800) y +(1800-1500) (20-y )=6000-100 y ∵W 随y 的增大而减小 ∴y 取最小值7时利润最大 W =6000-100 y =6000-100×7=5300(元)购进A 型号彩电7台,则购进B 型号彩电13台时,利润最大,最大利润是5300元26.(11·清远)如图9,抛物线y =(x +1)2+k 与x 轴交于A 、B 两点,与y 轴交于点C (0,-3).(1)求抛物线的对称轴及k 的值;(2)抛物线的对称轴上存在一点P ,使得PA +PC 的值最小,求此时点P 的坐标;x yO CAB Px yO CA B M(3)点M 是抛物线上一动点,且在第三象限.① 当M 点运动到何处时,△AMB 的面积最大?求出△AMB 的最大面积及此时点M 的坐标;② 当M 点运动到何处时,四边形AMCB 的面积最大?求出四边形AMCB 的最大面积及此时点M 的坐标.【答案】(1)抛物线的对称轴为直线x =-1,把C (0,-3)代入y =(x +1)2+k 得 -3=1+k ∴k =-4 (2)连结AC ,交对称轴于点P∵y =(x +1)2-4 令y =0 可得(x +1)2-4=0∴x 1=1 x 2=-3 ∴A (-3,0) B (1,0) 设直线AC 的关系式为:y =m x +b把A (-3,0),C (0,-3)代入y =m x +b 得, -3m +b =0 b =-3 ∴m =-1 ∴线AC 的关系式为y =-x -3 当x =-1时,y =1-3=-2 ∴P (-1,-2)② 当M 点运动到何处时,四边形AMCB 的面积最大?求出四边形AMCB 的最大面积及此时点M 的坐标.(3)① 设M 的坐标为(x , (x +1)2-4)∴S △AMB =12×AB ×|y m |=12×4×[4-(x +1)2]=8-2(x +1)2当x =-1时,S 最大,最大值为S =8M 的坐标为(-1,-4)② 过M 作x 轴的垂线交于点E ,连接OM ,x yO CABS 四边形AMCB =S △AMO +S △CMO +S △CBO =12×AB ×|y m |+12×CO ×|x m |+12×OC ×BO=6-32 (x +1)2+12×3×(-x )+12×3×1=-32x 2-92 x +6=-32(x 2+3x -9)=-32(x +32)2-818当x =-32 时,S 最大,最大值为818。
2009年清远市初中毕业生学业考试数 学 科 试 题说明:1.全卷共4页,考试时间为100分钟,满分120分.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,再用黑色字迹的钢笔或签字笔描黑.答案必须写在答题卡各题指字区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的清洁,考试结束后,将本试卷和答题卡一半交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母涂在相应题号的答题卡上. 1.5-等于( ) A .5 B .5- C .15-D .152.不等式20x -≤的解集在数轴上表示正确的是( )A .B .C .D .3.今年我国参加高考人数约为10200000,将10200000用科学记数法表示为( ) A .710.210⨯ B .71.0210⨯ C .70.10210⨯ D .710210⨯ 4.某物体的三视图如图1所示,那么该物体形状可能是( ) A .圆柱 B .球 C .正方体 D .长方体5.小明记录某社区七次参加“防甲型H1N1流感活动”的人数分别如下:33,32,32,31,32,28,26.这组数据的众数是( ) A .28 B .31 C .32 D .33 6.方程216x =的解是( )A .4x =±B .4x =C .4x =-D .16x =7.已知O ⊙的半径r ,圆心O 到直线l 的距离为d ,当d r =时,直线l 与O ⊙的位置关系是( )A .相交B .相切C .相离D .以上都不对 8.计算:()23ab=( )A .22a b B .23a bC .26a b D .6ab3-3-3-3-图1主视图 左视图 俯视图9.如图2,AB CD ∥,E F A B ⊥于E EF ,交CD 于F ,已知160∠=°,则2∠=( ) A .20° B .60° C .30° D .45°10.如图3,A B 是O ⊙的直径,弦CD AB ⊥于点E ,连结OC ,若5OC =,8CD =,则tan COE ∠=( ) A .35B .45C .34D .43二、填空题(本大题共6小题,每小题3分,共18分)请把下列各题的正确答案填写在相应题号的答题卡上.11.计算:3(2)⨯-= . 12.当x = 时,分式12x -无意义.13.已知反比例函数k y x=的图象经过点(23),,则此函数的关系式是 . 14.如果a 与5互为相反数,那么a = .15.如图4所示,转盘平面被等分成四个扇形,并分别填上红、黄两种颜色,自由转动这个转盘,当它停止转动时,指针停在黄色区域的概率为 . 16.如图5,若111A B C ABC △≌△,且11040A B ∠=∠=°,°,则1C ∠= .三、解答题(本大题共5小题,每小题5分,共25分)17.在“我喜欢的体育项目”调查活动中,小明调查了本班30人,记录结果如下:(其中喜欢打羽毛球的记为A ,喜欢打乒乓球的记为B ,喜欢踢足球的记为C ,喜欢跑步的记为D )A A C B A DC C B C A D D C CB B B B C B D B D B A B C A B求A的频率.18.计算:21(1)π3--++-图4 A B C C 1 A 1 B 1 图5C D B A EF1 2 图2 A B 图319.已知图形B 是一个正方形,图形A 由三个图形B 构成,如右图所示,请用图形A 与B 合拼成一个轴对称图形,并把它画在答题卡的表格中.20.解分式方程:132x x=-21.如图6,某飞机于空中A 处探测到地平面目标B ,此时从飞机上看目标B 的俯角为α,若测得飞机到目标B 的距离A B 约为2400米,已知sin 0.52α=,求飞机飞行的高度AC 约为多少米?四、解答题(本大题共4小题,每小题6分,共24分) 22.化简:222692693x x x xx x-+-÷-+23.如图7,已知正方形ABCD ,点E 是A B 上的一点,连结C E ,以C E 为一边,在C E 的上方作正方形CEFG ,连结DG .求证:CBE CDG △≌△24.在一个不透明的口袋中装有红球2个、黑球2个,它们只有颜色不同,若从口袋中一次摸出两个球,求摸到两个都是红球的概率.(要求画出树状图)A BB C A α图6E BC GDFA 图725.已知二次函数2y ax bx c =++中的x y ,满足下表:求这个二次函数关系式.五、解答题(本大题共3小题,第26小题7分,第27、28小题各8分,共23分)26.如图8,已知A B 是O ⊙的直径,过点O 作弦BC 的平行线,交过点A 的切线A P 于点P ,连结AC .(1)求证:ABC POA △∽△; (2)若2OB =,72O P =,求BC 的长.27.某饮料厂为了开发新产品,用A 种果汁原料和B 种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x 千克,两种饮料的成本总额为y 元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y 与x 之间的函数关系式.(2)若用19千克A 种果汁原料和17.2千克B 种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x 且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y 值最小,最小值是多少?28.如图9,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为A B 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在A M N △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h .(2)将A M N △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A ,1A M N△与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少?BCNM A 图92009年清远市初中毕业生学业考试 数学试题参考答案及评分标准一、选择题:(每小题3分,共30分)1.A 2.B 3.B 4.A 5.C 6.A 7.B 8.C 9.C 10.D 二、填空题:(每小题3分,共18分) 11.6-; 12.2; 13.6y x=; 14.5-; 15.14; 16.30°三、解答题:(每小题5分,共25分) 17.解:A 的频率=61305= ··································································································· 5分18.解:原式=11123++- ···································································································· 4分=13··········································································································································· 5分19.解:拼成正确图形之一的给5分,例如20.解:去分母,得36x x =- ····························································································· 2分 解得:3x = ···························································································································· 3分 检验:把3x =代入原方程得:左边=右边 ············································································ 4分 所以3x =是原方程的解 ········································································································· 5分 21.解:由题意得:90B C α∠=∠∠=,°sin sin 0.52B α∴=≈ ········································································································· 2分 sin AC B AB=s i n 24000.521A C AB B ∴==⨯=·(米) ··································· 5分 答:飞机飞行的高度约为1248米.四、解答题:(每小题6分,共24分) 22.解:原式=2(3)(3)(3)(3)2(3)x x x x x x -+⨯+-- ··············································································· 4分=(3)(3)22x x x x --⨯=-- ·············································································································· 6分23.证明: 四边形ABCD 和四边形CEFG 都是正方形90CB CD CE CG BCD ECG ∴==∠=∠=,,° ····························································· 3分 90BCE DCE ∴∠=∠°- 90DCG DCE ∠=∠°-BCE DCG ∴∠=∠ ··············································································································· 5分 CBE CDG ∴△≌△ ·············································································································· 6分24.解:画出树状图为:························································· 4分摸到两个都是红球的概率P =21126= ····················································································· 6分25.解:把点(02)-,代入2y ax bx c =++得2c =- ························································· 2分再把点(10)(20)-,,,分别代入22y ax bx =+- 204220a b a b --=⎧⎨+-=⎩···················································································································· 4分 解得11a b =⎧⎨=-⎩∴这个二次函数的关系式为:22y x x =-- ······································································· 6分(说明:其它解法可参照上述给分) 五、解答题:(本大题共3小题,26题7分,27、28题各8分,共23分) 26.(1)证明:BC OP ∥AOP B ∴∠=∠ ·························································· 1分 A B 是直径90C ∴∠=° ······························································· 2分 P A 是O ⊙的切线,切点为A90OAP ∴∠=°C OAP ∠=∠ ····························································· 3分 ABC POA ∴△∽△ ·················································· 4分 (2)ABC POA △∽△B C A B O AP O∴= ·························································································································· 5分722O B PO == ,24OA AB ∴==,4722B C ∴=······························································································································ 6分716827BC BC ∴==, ················································ (7)分开始 红 红 红 红红红红红黑黑黑 黑 黑 黑 黑 黑27.解:(1)依题意得:43(50)150y x x x =+-=+ ······················································· 3分(2)依题意得:0.50.2(50)19(1)0.30.4(50)17.2(2)x x x x +-⎧⎨+-⎩≤…………≤……… ···················································· 5分解不等式(1)得:30x ≤解不等式(2)得:28x ≥∴不等式组的解集为2830x ≤≤ ······················································································· 7分150y x =+ ,y 是随x 的增大而增大,且2830x ≤≤ ∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y 最小,28150178y =+=最小(元) ································································· 8分 28.解:(1)MN BC ∥ AMN ABC ∴△∽△68h x ∴=34x h ∴=····································································· 3分(2)1AM N A M N △≌△1A M N ∴△的边MN 上的高为h ,①当点1A 落在四边形BCNM 内或BC 边上时, 1A M N y S =△=211332248M N h x x x ==··(04x <≤) ························································ 4分②当1A 落在四边形BCNM 外时,如下图(48)x <<,设1A EF △的边E F 上的高为1h , 则132662h h x =-=-11EF M NA EF A M N ∴ ∥△∽△11A M N ABC A EF ABC ∴ △∽△△∽△1216A E F S h S ⎛⎫= ⎪⎝⎭△△ABC168242A B C S =⨯⨯= △ 22363224122462E Fx S x x ⎛⎫- ⎪∴==⨯=-+ ⎪⎪⎝⎭1△A BCNM AMNCBEFAA 11122233912241224828A M N A EF y S S x x x x x ⎛⎫=-=--+=-+- ⎪⎝⎭△△ 所以 291224(48)8y x x x =-+-<< ············································································ 6分 综上所述:当04x <≤时,238y x =,取4x =,6y =最大当48x <<时,2912248y x x =-+-,取163x =,8y =最大86>∴当163x =时,y 最大,8y =最大 ······················································································ 8分。