离子色谱
- 格式:ppt
- 大小:5.56 MB
- 文档页数:73
离子色谱(ion Chromatography)是高效液相色谱的一种,是分析离子的一种液相色谱方法。
根据分离机理,离子色谱可分为高效离子交换色谱(HPLC)、离子排斥色谱(HPIEC)和离子对色谱(MPIC)。
离子色谱-用途离子色谱主要是利用离子交换基团之间的交换,也即利用离子之间对离子交换树脂的亲和力差异而进行分离。
离子交换色谱柱的填料是阴、阳离子交换树脂,是在有机高聚物或硅胶上接枝有机季铵或磺酸基团。
常用的检测器是电导检测器。
离子色谱主要用于阴阳离子的分析,特别是阴离子的分析。
离子色谱的检出限在μg/L?mg/L,而且多种离子同时测定,简便,快速。
到目前为止,离子色谱仍然是测定阴离子最佳的方法。
离子色谱是高效液相色谱的一种,故又称高效离子色谱(HPIC)或现代离子色谱,其有别于传统离子交换色谱柱色谱的主要是树脂具有很高的交联度和较低的交换容量,进样体积很小,用柱塞泵输送淋洗液通常对淋出液进行在线自动连续电导检测。
分离的原理是基于离子交换树脂上可离解的离子与流动相中具有相同电荷的溶质离子之间进行的可逆交换和分析物溶质对交换剂亲和力的差别而被分离。
适用于亲水性阴、阳离子的分离。
例如几个阴离子的分离,样品溶液进样之后,首先与分析柱的离子交换位置之间直接进行离子交换(即被保留在柱上),如用NaOH作淋洗液分析样品中的F-、Cl-和SO42-,保留在柱上的阴离子即被淋洗液中的OH-基置换并从柱上被洗脱。
对树脂亲和力弱的分析物离子先于对树脂亲和力强的分析物离子依次被洗脱,这就是离子色谱分离过程,淋出液经过化学抑制器,将来自淋洗液的背景电导抑制到最小,这样当被分析物离开进入电导池时就有较大的可准确测量的电导信号。
离子色谱主要用于环境样品的分析,包括地面水、饮用水、雨水、生活污水和工业废水、酸沉降物和大气颗粒物等样品中的阴、阳离子,与微电子工业有关的水和试剂中痕量杂质的分析。
另外在食品、卫生、石油化工、水及地质等领域也有广泛的应用。
离子色谱简介离子色谱简介一、概述离子色谱(Ion Chromatography,简称IC)是一种基于离子交换原理的分离技术,其主要应用于分离,鉴别和定量离子样品中的主要组分和微量成分。
二、原理离子色谱是利用离子交换色谱柱、离子色谱系统和检测器联用的方法。
色谱柱通常由高度交联的阳离子交换树脂和阴离子交换树脂组成。
样品通过色谱柱时,被分离成不同的离子,其分离形式有树脂洗脱法和满载洗脱法等。
最终,通过检测器检测到分离的离子,并定量分析测定目标离子的含量。
三、应用领域离子色谱在环境、农业、食品、制药、生物医学、化工等领域的分析应用非常广泛。
例如,在环境领域,离子色谱可用于污水中阴离子的测定;在食品领域,可用于食品添加剂和污染物的检测。
在制药领域,离子色谱可用于药物成分的鉴定等。
四、设备构成离子色谱由注射器、色谱柱、检测器和计算机等部分构成。
其中色谱柱是整个离子色谱系统的核心部分,不同的离子需要使用不同的柱剂和不同的色谱柱进行分离。
检测器通常使用电导率检测器或荧光检测器。
五、优点和局限性离子色谱具有分离速度快、分离效率高、检测灵敏度高等优点。
但离子色谱在分离无机离子的情况下,对有机物的排除效果较差,同时离子色谱法在分离分子量大于500的有机物质分离效果也较差,局限性比较明显。
六、发展趋势在仪器设备技术不断更新改进的情况下,离子色谱仪器在后期的发展趋势会越发智能化、高速化、更加简单方便等方面取得更多的进步。
同时,总体而言,离子色谱仪器的应用领域还有很大的扩展空间,可以更广泛的应用于冶金、石油、化学工业中,有着极大的前景。
离子色谱是高效液相色谱的一种,故又称高效离子色谱(HPIC)或现代离子色谱。
特点:离子交换树脂具有很高的交联度和较低的交换容量,进样体积很小。
工作原理:离子交换树脂上可离解的离子与流动相中具有相同电荷的溶质离子之间进行的可逆交换和分析物溶质对交换剂亲和力的差别而被分离。
工作过程:1.进样→2.离子交换→3.淋洗→4.分离→5.检测注:2.溶质离子与离子交换树脂上的阴离子进行交换3.淋洗液淋洗色谱柱4. 对树脂亲和力弱的分析物离子先被分离5.根据被分离的先后不同进行检测经常检测的常见离子有阴离子:F-, Cl-, Br-, NO2-, PO43-, NO3-, SO42-,甲酸,乙酸,草酸等。
阳离子:Li+, Na+, NH4+, K+, Ca2+, Mg2+, Cu2+, Zn2+, Fe2+, Fe3+等。
离子色谱仪的使用一、开机1.确认淋洗液和再生液的储量是否满足需要;2.将压缩气瓶的输出压力调节至0.2Mpa,淋洗液瓶的压力调节至5psi;3.打开ICS-90后面板的电源开关。
接通电源后,ICS-90的泵处于OFF状态,进样阀处于LOAD状态,DS5显示当前读数;二、启动Peaknet 6.4工作站1.点击Start > Programs > PeakNet > PeakNet,进入以上界面;2.在浏览器中,点击Dionex Templates > Panel > Dionex IC > Dionex ICS-90 System;3.点击Control > Connect to Timebase三、运行前的准备工作1.在ICS-90的控制面板中开泵;2.清洗泵头;3.平衡系统约30分钟,点击Autozero,补偿背景电导,调节零点。
注意:如果ICS-90开机后6小时未进行采样,泵将进入低流速模式。
4.在浏览器中,点击File > New,选择Program File,按OK键,根据提示编辑程序文件;5.在浏览器中,点击File > New,选择Sequence(Using wizard),按OK键,根据提示编辑样品表;6.在浏览器中,点击Batch > Start > Add,选择需要运行的样品表,按Start键;四、进样注射器进样五、注意事项及维护1.未经培训不能私自上机操作。
离子色谱法原理
离子色谱法是一种常用的分析技术,它是基于离子在固定相和流动相之间的相互作用而实现离子分离和检测的方法。
离子色谱法原理的核心是利用离子在固定相和流动相中的不同迁移速度来实现离子的分离。
在进行离子色谱分析时,样品中的离子会通过固定相和流动相之间的相互作用而被分离开来,然后通过检测器进行检测和定量分析。
离子色谱法的原理主要包括离子交换、离子吸附和离子排斥等几种机制。
离子交换是指固定相表面上的功能基团与溶液中的离子发生置换反应,从而实现离子的分离。
离子吸附是指离子在固定相表面上被吸附,并在流动相的作用下进行迁移,从而实现离子的分离。
离子排斥是指固定相表面上的功能基团与离子之间发生静电作用,使得离子在固定相中排斥,从而实现离子的分离。
离子色谱法原理的应用范围非常广泛,可以用于分析水质中的无机阴离子和阳离子、生物样品中的氨基酸和离子代谢产物、食品中的添加剂和污染物等。
离子色谱法在环境监测、食品安全、生物医药等领域都有着重要的应用价值。
离子色谱法的原理虽然简单,但在实际应用中需要考虑很多因素,如固定相的选择、流动相的配制、检测器的选择和样品前处理等。
只有综合考虑这些因素,才能实现对样品中离子的准确分离和检测。
总之,离子色谱法原理是一种基于离子在固定相和流动相之间的相互作用而实现离子分离和检测的方法。
它通过离子交换、离子吸附和离子排斥等机制来实现离子的分离,应用范围广泛,具有重要的应用价值。
在实际应用中,需要综合考虑固定相、流动相、检测器和样品前处理等因素,才能实现对样品中离子的准确分离和检测。
离子色谱法的原理和应用将在分析化学领域继续发挥重要作用。
离子色谱操作规程离子色谱是一种常用的分离和检测电解质和离子物质的方法。
为了确保离子色谱分析结果的准确性和稳定性,需要遵守以下操作规程。
一、实验前的准备工作1.检查离子色谱仪的各个部件,确保其正常运转。
2.检查溶液的浓度和配制方法,以确保其准确性。
3.准备好所需要的试剂、溶剂和标准品,确保其质量和纯度。
二、仪器操作1.打开离子色谱仪的电源,并按照仪器说明书的要求进行操作。
2.在使用之前,进行必要的保养和清洁工作,以保证仪器的长期稳定性。
3.根据样品的需求,选择合适的柱子,并进行柱子的装填和平衡工作。
4.调整注射器的注射量和流速,根据需要选择合适的检测方式(阳离子检测器或阴离子检测器)。
三、样品处理1.选择合适的样品处理方法,如预处理、离子交换处理等。
2.严格控制样品中的离子浓度,避免过高或过低浓度对结果的干扰。
3.对于复杂样品,如环境水样、血液样品等,需要进行前处理,以消除其他组分对离子分析结果的干扰。
四、数据分析1.使用合适的离子色谱软件进行数据分析,按照分析要求进行样品浓度的计算。
2.将分析结果进行合理的数据处理和解释,以得出准确的结论。
3.进行质量控制,包括重复测定、标准曲线校正等,以确保分析结果的准确性和可靠性。
五、实验后的处理1.关闭离子色谱仪,清理仪器,包括柱子的冲洗和保养。
2.清除实验室中使用的杂物和废弃物,保持实验室的整洁和清洁。
六、安全操作1.在实验过程中,遵守好实验室安全规定,采取好相应的安全防护措施。
2.注意溶液的浓度和稀释程度,避免对人体和设备造成损害。
3.引起刺激的试剂如硫酸、氢氟酸等要小心操作,避免可能的伤害。
4.要了解离子色谱仪的寿命,以免过度使用导致设备故障或不准确。
通过遵守上述操作规程,能够确保离子色谱分析的准确性和稳定性,同时也能够保护实验人员的安全。
此外,实验前的充分准备和实验后的仔细处理,对于仪器的长期稳定运行和实验室的整洁与安全也非常重要。
离子色谱法(IC)一、离子色谱(IC)基本原理离子色谱就是高效液相色谱(HPLC)的一种,其分离原理也就是通过流动相与固定相之间的相互作用,使流动相中的不同组分在两相中重新分配,使各组分在分离柱中的滞留时间有所区别,从而达到分离的目的。
二、离子色谱仪的结构离子色谱仪一般由四部分组成,即输送系统、分离系统、检测系统、与数据处理系统。
输送系统由淋洗液槽、输液泵、进样阀等组成;分离系统主要就是指色谱柱;检测系统(如果就是电导检测器)由抑制柱与电导检测器组成。
离子色谱的检测器主要有两种:一种就是电化学检测器,一种就是光化学检测器。
电化学检测器包括电导、直流安培、脉冲安培、与积分安培;光化学检测器包括紫外-可见与荧光。
电导检测器就是IC的主要检测器,主要分为抑制型与非抑制型(也称为单柱型)两种。
抑制器能够显著提高电导检测器的灵敏度与选择性,其发展经历了四个阶段,从最早的树脂填充的抑制器到纤维膜抑制器,平板微膜抑制器与先进的只加水的高抑制容量的电解与微膜结合的自动连续工作的抑制器。
三、离子色谱基本理论离子色谱主要有三种分离方式:离子交换离子排斥与反相离子对。
这三种分离方式的柱填料树脂骨架基本上都就是苯乙烯/二乙烯苯的共聚物,但就是树脂的离子交换容量各不相同,以下就主要介绍离子交换色谱的分离机理。
在离子色谱中应用最广的柱填料就是由苯乙烯-二乙烯基苯共聚物制得的离子交换树脂。
这类树脂的基球就是用一定比例的苯乙烯与二乙烯基苯在过氧化苯酰等引发剂存在下,通过悬浮物聚合制成共聚物小珠粒。
其中二乙烯基苯就是交联剂,使共聚物称为体型高分子。
典型的离子交换剂由三个重要部分组成:不溶性的基质,它可以就是有机的,也可以就是无机的;固定的离子部位,它或者附着在基质上,或者就就是基质的整体部分;与这些固定部位相结合的等量的带相反电荷离子。
附着上去的集团常被称作官能团。
结合上去的离子被称作对离子,当对离子与溶液中含有相同电荷的离子接触时,能够发生交换。