28.2.2 应用举例 人教版数学九年级下册课时3课件(38张)
- 格式:ppt
- 大小:3.14 MB
- 文档页数:38
人教版九年级数学下册: 28.2.2 《应用举例》说课稿2一. 教材分析人教版九年级数学下册28.2.2《应用举例》这一节主要讲述了分式方程的应用。
在学习了分式方程的基本概念和求解方法之后,学生可以通过本节课的学习,将分式方程应用到实际问题中,提高解决实际问题的能力。
教材通过举例的方式,让学生了解分式方程在生活中的应用,培养学生的数学应用意识。
二. 学情分析九年级的学生已经掌握了分式方程的基本知识,对于如何求解分式方程已经有了一定的了解。
但是,将分式方程应用到实际问题中,解决实际问题,这是学生们的弱项。
因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高学生的数学应用能力。
三. 说教学目标1.知识与技能:让学生掌握分式方程在实际问题中的应用,提高学生解决实际问题的能力。
2.过程与方法:通过举例,让学生学会如何将分式方程应用到实际问题中,培养学生的数学应用意识。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的数学思维,使学生感受到数学在生活中的重要性。
四. 说教学重难点1.教学重点:让学生掌握分式方程在实际问题中的应用。
2.教学难点:如何引导学生将分式方程与实际问题相结合,提高学生的数学应用能力。
五. 说教学方法与手段1.教学方法:采用案例教学法,让学生通过分析、讨论实际问题,掌握分式方程在实际问题中的应用。
2.教学手段:利用多媒体课件,展示实际问题,引导学生进行分析、讨论。
六. 说教学过程1.导入:以一个实际问题引入,让学生思考如何用数学知识解决这个问题。
2.新课讲解:讲解分式方程在实际问题中的应用,让学生通过案例学习,掌握解决实际问题的方法。
3.课堂练习:给出几个实际问题,让学生独立解决,巩固所学知识。
4.总结:对本节课的内容进行总结,强调分式方程在实际问题中的应用。
5.作业布置:布置一些相关的实际问题,让学生课后练习。
七. 说板书设计板书设计主要包括以下几个部分:1.分式方程在实际问题中的应用2.案例分析3.解题步骤4.课堂练习八. 说教学评价教学评价主要从学生的课堂表现、作业完成情况、课后练习三个方面进行。
28.2.2应用举例(3)坡度坡角导学案(教师用)学科 数学年级 九年级 备课人 审核人 使用人课题28.2.2应用举例—坡度、坡角课时1上课时间教学目标1、了解测量中坡度、坡角的概念;2、掌握坡度与坡角的关系,能利用解直角三角形的知识,解决与坡度有关的实际问题.【重点】有关方位角及坡度的计算 【难点】构造直角三角形的思路。
教 学 过 程导学内容设计思路【创设情境,引入新课】 什么是仰角,什么是俯角?例如:在山脚C 处测得山顶A 的仰角为45°。
沿着水平地面向前300米到达D 点,在D 点测得山顶A 的仰角为600 , 求山高AB 。
【自主学习,合作探究】 坡度,坡角:在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度。
1.坡度的概念,坡度与坡角的关系。
如右图,坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i ,即i= 坡度通常用l :m 的形式,坡面与水平面的夹角叫做坡角。
从三角函数的概念可以知道,坡度与坡角的关系是i =tana ,显然,坡度越大,坡角越大,坡面就越陡。
例如: 一个钢球沿坡角31 °的斜坡向上滚动了5米,此时钢球距地面的高度是(单位:米)( )A. 5cos31 °B. 5sin31 °C. 5tan31 °D. 5cot31 ° 【例题示范,巩固新知】 2.例题例1.如图,一段路基的横断面是梯形,高为4.2米,上底的宽是12.51米,路基的坡面与地面的倾角分别是32°和28°,求路基下底的宽。
(精确到 0.1米)分析:四边形ABCD 是梯形,通常的辅助线是过上底的两个顶点引下底的垂线,这样,就把梯形分割成直角三角形和矩ABCD 19.4.5lh形,从题目来看,下底AB=AE+EF+BF,EF=CD=12.51米.AE在直角三角形AED中求得,而BF可以在直角三角形BFC中求得,问题得到解决。