高考数学 第十一篇 第3讲 随机事件的概率限时训练 新人教A版
- 格式:doc
- 大小:103.50 KB
- 文档页数:6
2018-2019学年高中数学第三章概率3.1 随机事件的概率3.1.3 概率的基本性质检测新人教A版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第三章概率3.1 随机事件的概率3.1.3 概率的基本性质检测新人教A版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第三章概率3.1 随机事件的概率3.1.3 概率的基本性质检测新人教A版必修3的全部内容。
3。
1.3 概率的基本性质A级基础巩固一、选择题1.下列各组事件中,不是互斥事件的是()A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班级数学期中考试成绩,平均分数低于90分与平均分数高于90分C.播种菜籽100粒,发芽90粒与至少发芽80粒D.检查某种产品,合格率高于70%与合格率为70%答案:C2.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,已知事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡解析:结合对立事件可知所求事件是“2张全是移动卡”的对立事件,即至多有一张移动卡.答案:A3.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为( )A.60%B.30%C.10% D.50%解析:甲不输棋包含甲获胜或甲、乙两人下成和棋,则甲、乙两人下成和棋的概率为90%-40%=50%。
答案:D4.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一弹击中飞机},D={至少有一弹击中飞机},下列关系不正确的是( )A.A⊆D B.B∩D=∅C.A∪C=D D.A∪C=B∪D解析:“恰有一弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,A∪C=D =(至少有一弹击中飞机),不是必然事件;“至少有一弹击中”包含两种情况:一种是恰有一弹击中,一种是两弹都击中,B∪D为必然事件,所以A∪C≠B∪D.答案:D5.对一批产品的长度(单位:毫米)进行抽样检测,如图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为( )A.0.09 B.0.20C.0。
第三章概率3.1 随机事件的概率3.1.1 随机事件的概率1.抛掷一枚骰子,落地时出现数字1的概率是( )A. B.C. D.解析:骰子共有六个面,所以出现数字1的概率为.答案:A2.若在同等条件下进行n次重复试验得到某个事件A发生的频率f(n),则随着n的逐渐增大,有( )A.f(n)与某个常数相等B.f(n)与某个常数的差逐渐减小C.f(n)与某个常数的差的绝对值逐渐减小D.f(n)在某个常数的附近摆动并趋于稳定解析:对于一个事件而言,概率是一个常数,而频率则随着试验次数的变化而变化,试验次数越多,频率就越接近于事件的概率,但并不是试验次数越多,所得频率就一定更接近于概率值.答案:D3.下列说法:(1)频率反映事件发生的频繁程度,概率反映事件发生的可能性的大小;(2)做n次随机试验,事件A发生的频率就是事件的概率;(3)百分率是频率,但不是概率;(4)频率是不能脱离具体的n次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;(5)频率是概率的近似值,概率是频率的稳定值.其中正确的是.解析:概率是可以通过频率来“测量”的,或者说频率是概率的一个近似值,概率是一个稳定值,因此(1)(4)(5)正确.答案:(1)(4)(5)4.从100个同类产品中(其中有2个次品)任取3个.(1)三个正品;(2)两个正品,一个次品;(3)一个正品,两个次品;(4)三个次品;(5)至少一个次品;(6)至少一个正品.以上六个事件,哪些是必然事件,哪些是随机事件?解:(6)是必然事件,(1)(2)(3)(5)是随机事件,(4)是不可能事件.5.用一台自动机床加工一批螺母,从中抽出100个逐个进行直径检验,结果如下表:直径个数直径个数d∈(6.88,6.89] 1 d∈(6.93,6.94] 26 d∈(6.89,6.90] 2 d∈(6.94,6.95] 15 d∈(6.90,6.91] 10 d∈(6.95,6.96] 8d∈(6.91,6.92] 17 d∈(6.96,6.97] 2d∈(6.92,6.93] 17 d∈(6.97,6.98] 2从这100个螺母中,任意抽取一个,求事件A〔d∈(6.92,6.94]〕,事件B〔d∈(6.90,6.96]〕,事件C(d>6.96)的频率.解:∵n=100,事件A,B,C发生的次数分别为m A=17+26=43,m B=10+17+17+26+15+8=93,m C=2+2=4,∴事件A的频率为=0.43,事件B的频率为=0.93,事件C的频率为=0.04.6.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来的学生考试成绩分布:成绩人数90分以上4380~89分18270~79分26060~69分9050~59分6250分以下8经济学院一年级的学生王小慧下学期将修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留三位小数):(1)90分以上;(2)60~69分;(3)60分以上.解:总人数为43+182+260+90+62+8=645,根据公式可计算出修李老师的高等数学课的人数考试成绩在各个段上的频率依次为≈0.067,≈0.282,≈0.403,≈0.140,≈0.096,≈0.012.用已有的信息可以估计出王小慧下学期修李老师的高等数学课得分的概率如下:(1)将“90分以上”记为事件A,则P(A)≈0.067;(2)将“60~69分”记为事件B,则P(B)≈0.140;(3)将“60分以上”记为事件C,则P(C)≈≈0.891.7.从存放号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:卡1 2 3 4 5 6 7 8 9 10 片号码取13 8 5 7 6 13 18 10 11 9 到的次数则取到号码为奇数的频率是( )A.0.53B.0.5C.0.47D.0.37解析:取到卡片的号码为奇数的次数为13+5+6+18+11=53,则所求的频率为=0.53.答案:A8.已知某产品的次品率为1%,有下列四种说法:①从产品中任取100件,其中一定有1件次品;②从产品中依次抽取100件产品,若前面99件均为合格品,则第100件一定为次品;③从产品中任意抽取100件,则这100件产品不可能全为合格品;④从产品中任取一件,为次品的可能性为1%.其中正确的是.解析:因为次品率即出现次品的概率,次品率为1%,是指产品为次品的可能性为1%,所以从产品中任意抽取100件,其中可能有1件次品,而不是一定有1件次品.①不正确;随机事件每次发生的概率是相等的,并不受前后试验的影响,故第100件产品为次品的可能性仍为1%.②不正确;抽100件产品相当于做100次试验.因为每次试验结果都是随机的,也就是每次抽取可能抽到合格品也可能抽到次品.事实上,这100件产品有101种可能,即可能是100件合格品,也可能是99件合格品1件次品,或是98件合格品2件次品,……或是1件合格品99件次品,或是100件次品.故③不正确.只有④正确.答案:④9.指出下列事件是必然事件、不可能事件,还是随机事件.(1)我国东南沿海某地明年将受到3次冷空气的侵袭.(2)若a为实数,则|a|≥0.(3)中国体操运动员将在2016年奥运会上获得全能冠军.(4)天上有云朵,下雨.(5)一个三角形的三边长分别为1,2,3.解:根据“在一定条件下可能发生,也可能不发生的事件叫做随机事件”可知(1)(3)(4)为随机事件.根据“在一定条件下不可能发生的事件叫做不可能事件”可知(5)为不可能事件.根据“一定条件下,一定会发生的事件叫做必然事件”可知(2)为必然事件.10.某厂生产的比赛专用球的质量检查结果如下表:抽取50 100 200 500 1000 7000数优等45 91 181 454 890 6301品数优等品率(1)完成上面表格;(2)该批产品的优等品的概率约是多少?解:(1)填入表中的数据依次为0.90,0.91,0.905,0.908,0.89,0.9001.(2)当抽查的球数很多时,抽到优等品的频率接近于常数0.90,在它附近摆动,这时我们就可以说这批产品中优等品的概率约为0.90.11.盒中装有4只白球,5只黑球共9只球,从中任意取出一只球.(1)“取出的球是黄球”是什么事件?它的概率是多少?(2)“取出的球是白球”是什么事件?它的概率是多少?(3)“取出的球是白球或是黑球”是什么事件?它的概率是多少?解:(1)“取出的球是黄球”在题设条件下根本不可能发生,因此,它是不可能事件,它的概率是0.(2)“取出的球是白球”是随机事件,它的概率是.(3)“取出的球是白球或是黑球”在题设条件下必然要发生,因此它是必然事件,它的概率为1.12.某教授为了测试贫困地区和发达地区的同龄儿童的智力,出了10道智力题,每道题10分.然后做了统计,下表是统计结果:贫困地区参加30 50 100 200 500 800测试的人数得6016 27 52 104 256 402分以上的人数得60分以上的频率发达地区参加30 50 100 200 500 800测试的人数得6017 29 56 111 276 440分以上的人数得60分以上的频率(1)利用计算器计算两地区参加测试的儿童中得60分以上的频率;(2)求两个地区参加测试的儿童得60分以上的概率;(3)分析贫富差距为什么会引起人的智力的差别.解:(1)贫困地区参加测试30 50 100 200 500 800的人数得60分16 27 52 104 256 402 以上的人数得60分0.533 0.540 0.520 0.520 0.512 0.503 以上的频率发达地区参加测试30 50 100 200 500 800的人数得60分17 29 56 111 276 440 以上的人数得60分0.567 0.580 0.560 0.555 0.552 0.550 以上的频率(2)两个地区参加测试的儿童得60分以上的概率分别约为0.50和0.550.(3)经济上的贫困导致该地区群众生活水平落后,儿童的健康和发育会受到一定的影响;另外,经济落后也会使教育事业发展落后,这都是贫富差距引起智力差别的原因.。
随机事件的概率(30分钟60分)一、选择题(每小题5分,共40分)1.给出关于满足A⊆B的非空集合A,B的四个命题:①若任取x∈A,则x∈B是必然事件;②若任取x∉A,则x∈B是不可能事件;③若任取x∈B,则x∈A是随机事件;④若任取x∉B,则x∉A是必然事件.其中真命题的个数为( )A.1B.2C.3D.4【解析】选C.由真子集的定义可知:①③④是真命题,②是假命题.2.(2016·新乡高一检测)在掷一枚硬币的试验中,共掷了100次,“正面向上”的频率为0.49,则“正面向下”的次数为( )A.0.49B.49C.0.51D.51【解析】选D.“正面向上”的次数为100×0.49=49.故“正面向下”的次数为100-49=51.3.下列说法正确的是( )A.概率是随机的,在试验前不能确定B.在标准大气压下,水加热到90℃时会沸腾是必然事件C.频率是客观存在的与试验次数无关D.随着试验次数的增加,频率一般会越来越接近概率【解析】选D.A选项不正确,概率是客观存在,是确定的;B选项不正确,在标准大气压下,水加热到90℃时,不会沸腾.因此这是不可能事件;C选项不正确,频率是某项试验的结果,它是随试验次数的变化而变化的,不是客观存在的,故不正确;D选项正确,因为随着试验次数的增加,频率会逐渐稳定于某一个确定的常数附近,一般认为此常数即为所研究事件的概率.4.(2016·成都高一检测)下列说法中,不正确的是( )A.某人射击10次,击中靶心8次,则他击中靶心的频率是0.8B.某人射击10次,击中靶心7次,则他击中靶心的概率是0.7C.某人射击10次,击中靶心的频率是,则他应击中靶心5次D.某人射击10次,击中靶心的频率是0.6,则他击不中靶心的次数应为4次【解析】选B.根据频率=知A、C、D正确,B中应为频率为0.7并不一定是概率.【易错警示】频率不一定是概率,只有当试验次数很大时频率才可近似看成概率.5.“连续抛掷两枚质地均匀的骰子,记录朝上的点数”,该试验的结果共有( ) A.6种 B.12种 C.24种 D.36种【解析】选 D.试验的全部结果为(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3)(6,4),(6,5),(6,6),共36种.6.(2016·广州高一检测)从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的频率是( )A.0.53B.0.5C.0.47D.0.37【解析】选A.取到号码为奇数的频率是=0.53.7.某人将一枚均匀的正方体骰子,连续抛掷了100次,出现6点的次数为19,则( )A.出现6点的概率为0.19B.出现6点的频率为0.19C.出现6点的频率为19D.出现6点的概率接近0.19【解析】选B.频率==0.19,频数为19.8.已知α,β,γ是平面,a,b是两条不重合的直线,下列命题正确的是( )A.“若a∥b,a⊥α,则b⊥α”是随机事件B.“若a∥b,a⊂α,则b∥α”是必然事件C.“若α⊥γ,β⊥γ,则α⊥β”是必然事件D.“若a⊥α,a∩b=P,则b⊥α”是不可能事件【解题指南】以立体几何为背景考查随机事件,对四个选项中涉及的空间中线面关系进行判断,由随机事件的定义确定其是否为随机事件.【解析】选D.A选项中,a∥b,a⊥α,则b⊥α一定成立,故这是一个必然事件,命题不正确; B选项中,若a∥b,a⊂α,则b∥α不一定正确,因为b可能在平面α内,命题不正确;C选项中,若α⊥γ,β⊥γ,则α⊥β不一定成立,垂直于同一个平面的两个平面其位置关系可以相交,也可以平行,还可以垂直,故命题不正确;D选项中,若a⊥α,a∩b=P,则b⊥α,不可能成立,故是不可能事件,命题正确.故选D.二、填空题(每小题5分,共10分)9.从3双鞋子中,任取4只,其中至少有两只鞋是一双,这个事件是________(填“必然”,“不可能”或“随机”)事件.【解析】由题意知该事件为必然事件.答案:必然10.在必修2的立体几何课上,小明同学学完了简单组合体的知识后,动手做了一个不规则形状的五面体,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为________.【解析】落在桌面的数字不小于4,即4,5的频数共13+22=35.所以频率==0.35.答案:0.35三、解答题11.(10分)指出下列事件是必然事件、不可能事件,还是随机事件?(1)如果a,b都是实数,那么a+b=b+a.(2)从分别标有号数1,2,3,4,5,6,7,8,9,10的10张号签中任取一张,得到4号签.(3)没有水分,种子发芽.(4)某电话总机在60秒内接到至少15次呼叫.(5)在标准大气压下,水的温度达到50℃时沸腾.【解析】结合必然事件、不可能事件、随机事件的定义可知(1)是必然事件;(3),(5)是不可能事件;(2),(4)是随机事件.【补偿训练】某人做试验“从一个装有标号为1,2,3,4的小球的盒子中,无放回地取小球两次,每次取一个,构成有序数对(x,y),x为第一次取到的小球上的数字,y为第二次取到的小球上的数字”.(1)求这个试验结果的种数.(2)写出“第一次取出的小球上的数字是2”这一事件.【解析】(1)当x=1时,有(1,2),(1,3),(1,4)三种结果.当x=2时,有(2,1),(2,3),(2,4)三种结果.当x=3时,有(3,1),(3,2),(3,4)三种结果.当x=4时,有(4,1),(4,2),(4,3)三种结果.故这个试验共有3×4=12种结果.(2)记“第一次取出的小球上的数字是2”为事件A,则A={(2,1),(2,3),(2,4)}.。
(30分钟 50分)一、选择题(每小题4分,共16分)1.下列试验能够构成事件的是()(A)掷一次硬币(B)射击一次(C)标准大气压下,水烧至100 ℃(D)摸彩票中头奖2.在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是()(A)必然事件(B)不可能事件(C)随机事件(D)以上选项均不正确3.下面事件是必然事件的有()①如果a,b∈R,那么a·b=b·a;②某人买彩票中奖;③3+5>10.(A)①(B)②(C)③(D)①②4.下列说法正确的是()(A)任何事件的概率总是在(0,1)之间(B)频率是客观存在的,与试验次数无关(C)随着试验次数的增加,频率一般会越来越接近概率(D)概率是随机的,在试验前不能确定二、填空题(每小题4分,共8分)5.下列事件是随机事件的有_________.①连续两次掷一枚硬币,两次都出现正面朝上;②异性电荷,相互吸引;③在标准大气压下,水在1 ℃时结冰.6.(易错题)某个地区从某年起几年内的新生婴儿数及其中男婴数如表(结果保留两位有效数字):(1)填写表中的男婴出生频率;(2)这一地区男婴出生的概率约是__________.三、解答题(每小题8分,共16分)7.掷一枚硬币三次,观察正反面出现的情况,可能出现的结果有几种情况?8.某水产试验厂实行某种鱼的人工孵化,10 000个鱼卵能孵出8 513尾鱼苗,根据概率的统计定义解答下列问题:(1)求这种鱼卵的孵化概率(孵化率);(2)30 000个鱼卵大约能孵化多少尾鱼苗?(3)要孵化5 000尾鱼苗,大概要准备多少鱼卵(精确到百位)?【挑战能力】(10分)已知α,β,γ是不重合的平面,a ,b 是不重合的直线,判断下列说法是否正确.(1)“若a ∥b ,a ⊥α,则b ⊥α”是随机事件;(2)“若a ∥b ,a ⊂α,则b ∥α”是必然事件;(3)“若α⊥γ,β⊥γ,则α⊥β”是必然事件;(4)“若a ⊥α,a ∩b =P ,则b ⊥α”是不可能事件.答案解析1.【解析】选D.事件必须有条件和结果,A ,B ,C 只有条件,没有结果,构不成事件,D 既有条件又有结果,可以构成事件.2.【解析】选C.若取1,2,3,则和为6,否则和大于6,所以“这三个数字的和大于6”是随机事件.3.【解析】选A.当 a ,b ∈R 时,a ·b=b ·a 一定成立,①是必然事件,②是随机事件,③是不可能事件.4.【解题指南】利用频率与概率的含义及两者的关系进行判断.【解析】选C.概率是频率的稳定值,是常数,不会随试验次数的变化而变化.5.【解析】①是随机事件,②是必然事件,③是不可能事件.答案:①6.【解析】频率A n ,n=可以利用频率来求近似概率. (1)中各频率为0.49,0.54,0.50,0.50.(2)由(1)得概率约为0.50.答案:(1)0.49 0.54 0.50 0.50 (2)0.50【误区警示】概率不是频率的平均值在求概率时,应该根据“随试验次数的增多,频率会逐渐稳定在某一常数,这一常数称为事件发生的概率”来求解,不能够把若干次试验所得的频率求平均值作为概率.7.【解析】可能出现8种情况:正、正、正;正、正、反;正、反、正;正、反、反;反、正、正;反、正、反;反、反、正;反、反、反.8.【解析】(1)这种鱼卵的孵化频率为8 51310 000=0.851 3,它近似地为孵化的概率. (2)设能孵化x 尾鱼苗,则x 8 51330 00010 000=,∴x=25 539,即30 000个鱼卵大约能孵化25 539尾鱼苗.(3)设需备y 个鱼卵,则5 0008 513y 10 000=,∴y ≈5 873,即大概要准备5 873个鱼卵. 【挑战能力】【解析】(1)错误,因为a bba⎫⇒⊥α⎬⊥α⎭,故是必然事件,不是随机事件.(2)错误,因为a bba⎫⇒α⎬⊂α⎭或b⊂α,故是随机事件,不是必然事件.(3)错误,因为当α⊥γ,β⊥γ时,α与β可能平行,也可能相交(包括垂直),故是随机事件,不是必然事件.(4)正确,因为如果两条直线垂直于同一个平面,则此两直线必平行,故此是不可能事件.。
高中数学 第三章 概率 3.1 随机事件的概率教材习题点拨 新人教A 版必修3练习1.解:(1)试验可能出现的结果有3个,两个均为正面,一个正面一个反面,两个均为反面.(2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右.由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25.2.点拨:自己动手通过做试验填表,填表之后分析结果.3.解:(1)如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖等.(2)在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数中任选一个数,选到的数大于1.练习1.解:例如,计算机键盘上各键位置的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率.2.解:通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的.而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3.解:这种说法是错误的.因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生,掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能2一次都不出现,也可能出现1次,2次,…,6次.练习1.P =1-0.3=0.7.2.615.0200123==P . 3.4.03012==P . 4.D 点拨:事件“至少有一次中靶”的含义为“两次都中靶”或“有一次中靶”,显然与事件“两次都不中靶”对立,而对立必互斥,所以选D.5.B 点拨:每人分得一张“红牌”的事件分别是“甲分得红牌”“乙分得红牌”“丙分得红牌”“丁分得红牌”,所以事件“甲分得红牌”与事件“乙分得红牌”是互斥而不对立事件.习题3.1A 组1.D2.(1)0;(2)0.2;(3)1.3.(1)067.064543≈;(2)140.064590≈;(3)891.0645701≈-. 4.点拨:P (“预测下一页中字母E”)本页中的字母总数出现的频数本页中字母E ≈,实际数出后计算所得概率应该非常接近预测值,因为一页英文书中的字母会有很多个,相当于做大量重复试验,而大量重复试验下的频率值非常接近概率值,此时可以把该频率值当作概率的近似值. 一般情况下,按频率大小顺序的结论为E >A >O >I >U.5.0.136.解:(1)有放回和无放回摸球时第4次摸到红球的频率应该相差不大,概率应该相等,都为101;(2)第4次摸到红球的频率和第1次摸到红球的频率也相差不大,大约都是101,因为不管是哪一种摸法,摸到红球的频率与摸的先后顺序无关.B 组1.D2.点拨:通过大量试验,调查同学的生日情况,从而体会每个人的生日的随机性与等可能性.。
第三章概率3.1 随机事件的概率3.1.1 随机事件的概率课后篇巩固提升基础巩固①若任取x∈A,则x∈B是必然事件;②若任取x∉A,则x∈B是不可能事件;③若任取x∈B,则x∈A是随机事件;④若任取x∉B,则x∉A是必然事件.A.1个B.2个C.3个D.4个A是集合B的真子集,∴A中的任意一个元素都是B中的元素,而B中至少有一个元素不在A中,因此①正确,②错误,③正确,④正确.2.从含有8件正品、2件次品的10件产品中,任意抽取3件,则必然事件是( )A.3件都是正品B.至少有1件次品C.3件都是次品D.至少有1件正品8件正品2件次品的10件产品中,任意抽取3件, 在A中,3件都是正品是随机事件,故A错误;在B中,至少有1件次品是随机事件,故B错误;在C中,3件都是次品是不可能事件,故C错误;在D中,至少有1件正品是必然事件,故D正确.3.某人将一枚硬币连续抛掷了10次,正面朝上的情形出现了6次,则( )A.正面朝上的概率为0.6B.正面朝上的频率为0.6C.正面朝上的频率为6D.正面朝上的概率接近于0.6是正面朝上的频率不是概率.4.一个家庭前后育有两个小孩儿,则可能的结果为( )A.{(男,女),(男,男),(女,女)}B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}.两小孩儿有大小之分,所以(男,女)与(女,男)是不同的结果,故选C.5.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( )A.49B.51C.0.49D.0.510.49,所以摸到白球的频率为0.51,从而摸到白球的次数为100×0.51=51.6.我国古代数学有“米谷粒分”题:发仓募粮,所募粒中秕不百三则收之(不超过3%).现抽样取米一把,取得235粒米中夹秕n粒,若这批米合格,则n不超过( )A.6B.7C.8D.9,n≤3%,解得n≤7.05,所以若这批米合格,则n不超过7.2357.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是.=0.03.P=6008.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为.4,即4,5的频数为13+22=35.所以频率为35=0.35.100①集合{x||x|<0}为空集是必然事件;②y=f(x)是奇函数,则f(0)=0是随机事件;③若log a(x-1)>0,则x>1是必然事件;④对顶角不相等是不可能事件.恒成立,∴①正确;奇函数y=f(x)只有当x=0有意义时才有f(0)=0,∴②正确;由log a(x-1)>0知,当a>1时,,(a,b)是一个基本事件.(1)“a+b=5”这一事件包含哪几个基本事件?“a<3且b>1”呢?(2)“ab=4”这一事件包含哪几个基本事件?“a=b”呢?(3)“直线ax+by=0的斜率k>-1”这一事件包含哪几个基本事件?Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2) ,(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}.(1)“a+b=5”这一事件包含以下4个基本事件:(1,4),(2,3),(3,2),(4,1).“a<3且b>1”这一事件包含以下6个基本事件:(1,2),(1,3),(1,4),(2,2),(2,3),(2,4).(2)“ab=4”这一事件包含以下3个基本事件:(1,4),(2,2),(4,1);“a=b”这一事件包含以下4个基本事件:(1,1),(2,2),(3,3),(4,4).(3)直线ax+by=0的斜率k=-ab>-1,即a<b,所以包含以下6个基本事件:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).能力提升1.随机事件A的频率mn满足( )A.mn =0 B.mn=1 C.mn>1 D.0≤mn≤1n次试验中,事件A不发生时,频率mn=0;当事件A发生n次时,频率m n =1;当发生次数为m,0<m<n时,频率mn满足0<mn<1,故D正确.2.从存放号码分别为1,2,…,10的卡片的盒子里,有放回地取100次,每次取一张卡片,并记下号码,统计结果如下:卡1 2 3456 7 8 9 10则取到号码为奇数的频率是( ) A.0.53 B.0.5 C.0.47 D.0.37=53100=0.53.3.某个地区从某年起n 年内的新生婴儿数及其中男婴数如表所示(单位:个):时间范围 1年内 2年内 3年内 4年内(1)填写表中的男婴出生频率(结果精确到0.01); (2)这一地区男婴出生的概率约是 . 频率f(A)=nA n ,各频率为0.49,0.54,0.50,0.50.(2)可以利用频率来求近似概率.由(1)得概率约为0.50. 0.54 0.50 0.50 (2)0.504.某公司有5万元资金用于投资开发项目,如果成功,一年后可获收益12%,一旦失败,一年后将丧失全部资金的50%,下表是去年200例类似项目开发的实施结果:投资成功 投资失败 192次8次则该公司一年后估计可获收益的平均数是 元.x,如果成功,x 的取值为5×12%,如果失败,x 的取值为-5×50%,一年后公司成功的概率为192200=2425,失败的概率为8200=125,所以一年后公司收益的平均数是(5×12%×2425-5×50%×125)×10000=4760(元).5.为了估计某自然保护区中天鹅的数量,可以使用以下方法:先从该保护区中捕出一定数量的天鹅,例如200只,给每只天鹅做上不影响其存活的记号,然后放回保护区,经过适当的时间,让其和保护区中其余的天鹅充分混合,再从保护区中捕出一定数量的天鹅,例如150只,查看其中有记号的天鹅,设有20只,试根据上述数据,估计该自然保护区中天鹅的数量.n,假定每只天鹅被捕到的可能性是相等的,从保护区中任捕一只,设事件A={带有记号的天鹅},则P(A)=200n, ①第二次从保护区中捕出150只天鹅,其中有20只带有记号,由概率的统计定义可知P(A)=20150, ②由①②两式,得200n =20150,解得n=1500,所以该自然保护区中天鹅的数量约为1500只.6.李老师在某大学连续3年主讲经济学院的《高等数学》,下表是李老师统计的这门课3年来的学生考试成绩分布:经济学院一年级的学生王小慧下学期将选修李老师的《高等数学》,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位).(1)90分以上;(2)60分~69分;(3)60分以上.43+182+260+90+62+8=645,根据公式可计算出选修李老师的《高等数学》的人的考试成绩在各个段上的频率依次为:43645≈0.067,182645≈0.282,260645≈0.403,90645≈0.140,62645≈0.096,8645≈0.012.用已有的信息,可以估计出王小慧下学期选修李老师的《高等数学》得分的概率如下:(1)将“90分以上”记为事件A,则P(A)≈0.067.(2)将“60分~69分”记为事件B,则P(B)≈0.140.(3)将“60分以上”记为事件C,则P(C)≈0.067+0.282+0.403+0.140=0.892.。
专题十一 概率与统计11.1 随机事件、古典概型基础篇 固本夯基考点一 随机事件的概率1.(2022届江苏百校联考,6)一次劳动实践活动中,某同学不慎将两件次品混入三件正品中,它们形状、大小完全相同,该同学采用技术手段进行检测,恰好三次检测出两件次品的概率为( ) A.15B.14C.25D.310答案 D2.(2019课标Ⅰ理,6,5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516 B.1132 C.2132 D.1116答案 A3.(2018课标Ⅱ理,8,5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 ( ) A.112 B.114 C.115 D.118答案 C4.(2021广东韶关一模,5)假设某射手每次射击命中率相同,且每次射击之间相互没有影响.若在两次射击中至多命中一次的概率是1625,则该射手每次射击的命中率为( ) A.925 B.25 C.35 D.34答案 C5.(2020广州番禺检测,10)中国古代“五行”学说认为:物质分“金、木、水、火、土”五种属性,并认为:“金生水、水生木、木生火、火生土、土生金”.从五种不同属性的物质中随机抽取2种,则抽到的两种物质不相生的概率为( ) A.15 B.14 C.13 D.12答案 D6.(多选)(2022届河北张家口宣化一中考试,11)甲、乙两人进行围棋比赛,共比赛2n(n ∈N *)局,且每局甲获胜的概率和乙获胜的概率均为12,如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为P(n),则( ) A.P(2)=18B.P(3)=1132C.P(n)=12(1−C 2nn 22n )D.P(n)的最大值为14答案 BC7.(2022届广东茂名五校联考,16)田忌赛马的故事出自司马迁的《史记》.齐王,田忌分别有上、中、下等马各一匹.赛马规则:一场比赛需要比赛三局,每匹马都要参赛,且只能参赛一局.最后以获胜局数多者为胜.记齐王、田忌的马匹分别为A 1,A 2,A 3和B 1,B 2,B 3.每局比赛之间都是相互独立的,而且不会出现平局.用P A i B j (i,j ∈{1,2,3})表示马匹A i 与B j 比赛时齐王获胜的概率,若P A 1B 1=0.8,P A 1B 2=0.9,P A 1B 3=0.95,P A 2B 1=0.1,P A 2B 2=0.6,P A 2B 3=0.9,P A 3B 1=0.09,P A 3B 2=0.1,P A 3B 3=0.6,则一场比赛共有 种不同的比赛方案;在所有的方案中,有一种方案田忌获胜的概率最大,此概率为 . 答案 6;0.8198.(2022届河北唐山十一中9月月考,17)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12. (1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率. 解析 (1)甲连胜四场的概率为116.(2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛. 比赛四场结束,共有三种情况: 甲连胜四场的概率为116;乙连胜四场的概率为116;丙上场后连胜三场的概率为18.所以需要进行第五场比赛的概率为1-116-116-18=34. (3)丙最终获胜,有两种情况:比赛四场结束且丙最终获胜的概率为18;比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负轮空胜,负轮空胜胜,概率分别为116,18,18. 因此丙最终获胜的概率为18+116+18+18=716. 考点二 古典概型1.(2022届广东省级联测,6)十进制的算筹计数法是中国数学史上一个伟大的创造,算筹实际上是一根根同长短的小木棍.下图是利用算筹表示数字1~9的一种方法.例如:3可表示为“”,26可表示为“”,现用6根算筹表示不含0的无重复数字的三位数,算筹不能剩余,则这个三位数能被3整除的概率为( )A.14B.16C.512D.724答案 A2.(2021全国甲理,10,5分)将4个1和2个0随机排成一行,则2个0不相邻的概率为( ) A.13B.25C.23D.45答案 C3.(2020课标Ⅰ文,4,5分)设O 为正方形ABCD 的中心,在O,A,B,C,D 中任取3点,则取到的3点共线的概率为( )A.15B.25C.12D.45答案 A4.(2021广东汕头一模,8)在新的高考改革方案中规定:每位考生的高考成绩是按照3(语文、数学、英语)+2(物理、历史)选1+4(化学、生物、地理、政治)选2的模式设置的,则在选考的科目中甲、乙两位同学恰有两科相同的概率为( ) A.14B.13C.512D.12答案 C5.(2017天津文,3,5分)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( ) A.45B.35C.25D.15答案 C6.(2022届河北邢台入学考试,14)小华、小明、小李、小章去A,B,C 三个工厂参加社会实践,要求每个工厂都有人去,且这四人都在这三个工厂实践,则小华和小李都没去B 工厂的概率是 . 答案718 7.(2020江苏,4,5分)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是 . 答案198.(2018上海,9,5分)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是 (结果用最简分数表示). 答案15综合篇 知能转换考法一 古典概型概率的求法1.(2021湖南岳阳一模,5)“华东五市游”作为中国一条精品旅游路线,一直受到广大旅游爱好者的欢迎.现有4名高三学生准备2021年高考后到“华东五市”中的上海市、南京市、苏州市、杭州市四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游,则恰有一个地方未被选中的概率为( ) A.716 B.916 C.2764 D.81256答案 B2. (2021湖南长郡十五校第二次联考,4)十二生肖作为中国民俗文化的代表,是中国传统文化的精髓,很多人把生肖作为春节的吉祥物,以此来表达对新年的祝福.某课外兴趣小组制作了一个正十二面体模型(如图),并在十二个面上分别雕刻了十二生肖的图案,作为春节的吉祥物.2021年春节前,兴趣小组的2个成员将模型随机抛出,希望能抛出牛的图案朝上(即牛的图案在最上面),2人各抛一次,则恰好出现一次牛的图案朝上的概率为( )A.112 B.143144 C.1172 D.23144答案 C3.(2019课标Ⅱ文,4,5分)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23B.35C.25D.15答案 B4.(2019课标Ⅲ文,3,5分)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A.16B.14C.13D.12答案 D5.(2022届河北邢台9月联考,16)从3名男生、2名女生中选出2人参加数学竞赛,则选出的这2人性别不一样的概率为 . 答案35 6.(2022届江苏第一次月考,14)一只口袋内装有4个白球,5个黑球,若将球不放回地随机一个一个摸出来,则第4次摸出的是白球的概率为 . 答案497.(2018江苏,6,5分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 . 答案3108.(2021辽宁百校联盟调研,14)某中学为了解学生学习物理的情况,抽取了100名物理成绩在60~90分(满分为100分)之间的学生进行调查,将这100名学生的物理成绩分成了六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90],绘成频率分布直方图,如图所示.从成绩在[70,80)的学生中任意抽取2人,则成绩在[75,80)的学生中恰好有一人的概率为 .答案2449考法二 求复杂的互斥事件的概率1.(2018课标Ⅲ文,5,5分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( ) A.0.3 B.0.4 C.0.6 D.0.7 答案 B2.(2021沈阳期末,5)已知某药店只有A,B,C 三种不同品牌的N95口罩,甲、乙两人到这个药店各购买一种品牌的N95口罩,若甲,乙买A 品牌口罩的概率分别为0.2,0.3,买B 品牌口罩的概率分别为0.5,0.4,则甲,乙两人买相同品牌的N95口罩的概率为( ) A.0.7 B.0.65 C.0.35 D.0.26 答案 C3.(2020湖南衡阳一模)我国古代有着辉煌的数学研究成果,《周髀算经》《九章算术》《海岛算经》《孙子算经》《缉古算经》等10部专著是了解我国古代数学的重要文献,这10部专著中5部产生于魏晋南北朝时期,某中学拟从这10部专著中选择2部作为“数学文化”课外阅读教材,则所选2部专著中至少有一部是魏晋南北朝时期专著的概率为( ) A.79B.29C.49D.59答案 A4.(多选)(2022届江苏新高考第一次月考,10)从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,下列结论正确的是( ) A.2个球都是红球的概率为16B.2个球中恰有1个红球的概率为12C.至少有1个红球的概率为56D.2个球不都是红球的概率为13 答案 AB创新篇 守正出奇创新 生活中的概率问题1.(2021湖南衡阳联考,3)衡阳市在创建“全国卫生文明城市”活动中,大力加强垃圾分类投放宣传.某居民小区设有“厨余垃圾”“可回收垃圾”“其他垃圾”三种不同的垃圾桶,一天,居民小贤提着上述分好类的垃圾各一袋,随机每桶投一袋,则恰好有一袋垃圾投对的概率为( ) A.19B.16C.13D.12答案 D2.(2022届山东济宁第一中学开学考试,13)为庆祝建党100周年,讴歌中华民族伟大复兴的奋斗历程,增进全体党员干部职工对党史知识的了解,某单位组织开展党史知识竞赛活动,共有50道党史题,其中35道单选题、10道多选题和5道判断题,其中小王每道单选题答对的概率为0.8,多选题答对的概率为0.7,判断题答对的概率为0.9,则他随机抽取一道题,答对的概率为 . 答案 0.793.(2021重庆二模,14)已知某信号传送网络由信号源甲和三个基站乙、丙、丁共同构成,每次信号源甲等可能地向三个基站中的一个发送信号,乙基站接收到的每条信号等可能地传送给丙基站和丁基站中的一个,丙基站接收到的每条信号只会传送给丁基站,丁基站只接收信号.对于信号源甲发出的一条信号,丙基站能接收到的概率为 . 答案12 4.(2022届江苏百校联考,19)冬奥会的全称是冬季奥林匹克运动会,是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在中国北京和张家口举行,为了弘扬奥林匹克精神,增强学生的冬奥会知识,某市多所中小学学校开展了模拟冬奥会各项比赛的活动.为了了解学生在越野滑轮和旱地冰壶两项中的参与情况,在全市中小学学校中随机抽取了10所学校,10所学校的参与人数如下:(1)现从这10所学校中随机选取2所学校进行调查,求选出的2所学校参与旱地冰壶人数在30人以下的概率;(2)某校聘请了一名越野滑轮教练,对高山滑降、转弯、八字登坡滑行这3个动作进行技术指导.规定:这3个动作中至少有2个动作达到“优”,总考核记为“优”.在指导前,该校甲同学3个动作中每个动作达到“优”的概率为0.1.在指导后的考核中,甲同学总考核成绩为“优”.能否认为甲同学在指导后总考核达到“优”的概率发生了变化?请说明理由.解析 (1)记“选出的2所学校参与旱地冰壶人数在30人以下”为事件A,参与旱地冰壶人数在30人以下的学校共6所,所以P(A)=C 62C 102=13.因此选出的2所学校参与旱地冰壶人数在30人以下的概率为13.(2)答案不唯一.答案示例1:可以认为甲同学在指导后总考核为“优”的概率发生了变化.理由如下:指导前,甲同学总考核为“优”的概率为C 32·0.12·0.9+C 33·0.13=0.028.指导前,甲同学总考核为“优”的概率非常小,所以有理由认为指导后总考核达到“优”的概率发生了变化.答案示例2:无法确定.理由如下:指导前,甲同学总考核为“优”的概率为C 32·0.12·0.9+C 33·0.13=0.028.虽然概率非常小,但是也可能发生,所以无法确定指导后总考核达到“优”的概率发生了变化.。
【全程复习方略】(广西专用)2013版高中数学 11.1随机事件的概率课时提能训练 理 新人教A 版(45分钟 100分)一、选择题(每小题6分,共36分) 1.下列事件中,随机事件的个数为( ) ①物体在只受重力的作用下会自由下落; ②方程x 2+2x +8=0有两个实数根;③某信息台每天的某段时间收到信息咨询的请求次数超过10次; ④下周六会下雨.(A)1 (B)2 (C)3 (D)42.从12个同类产品(其中10个是正品,2个是次品)中任意抽取3个的必然事件是( ) (A)3个都是正品 (B)至少有1个是次品 (C)3个都是次品 (D)至少有1个是正品3.(2011·新课标全国卷)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ) (A)13 (B)12 (C)23 (D)344.停车场可把12辆车停放在一排上,当有8辆车已停放后,恰有4个空位在一起,这样的事件发生的概率是( )(A)745 (B)849 (C)155 (D)94595.(2012·钦州模拟)甲从空间四边形的四个顶点中任意选择两点连成直线,乙也从该四边形的四个顶点中任意选择两点连成直线,则所得的两条直线互为异面直线的概率为( ) (A)12 (B)14 (C)16 (D)1126.从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( ) (A)59 (B)49 (C)1121 (D)1021 二、填空题(每小题6分,共18分)7.曲线C 的方程为x 2m 2+y 2n 2=1,其中m 、n 是将一枚骰子先后投掷两次所得的点数,事件A ={方程x 2m 2+y2n 2=1表示焦点在x 轴上的椭圆},那么P(A)= .8.(预测题)已知集合A ={12,14,16,18,20},B ={11,13,15,17,19},在A 中任取一个元素用a 表示,在B 中任取一个元素用b 表示,则所取两数满足a >b 的概率为 .9.在三角形的每条边上各取三个分点(如图),以这9个分点为顶点可画出若干个三角形.若从中任意抽取一个三角形,则其三个顶点分别落在原三角形的三条不同边上的概率为 .(用数字作答)三、解答题(每小题15分,共30分)10.(2012·南宁模拟)用红、黄、蓝三种不同颜色给下图中3个矩形随机涂色,每个矩形只涂一种颜色,求:(1)3个矩形颜色都相同的概率; (2)3个矩形颜色都不同的概率.11.(易错题)将甲、乙两颗骰子先后各抛一次,a 、b 分别表示抛掷甲、乙两颗骰子所出现的点数. (1)若点P(a ,b)落在不等式组⎩⎪⎨⎪⎧x>0y>0x +y≤4表示的平面区域内的事件记为A ,求事件A 的概率;(2)若点P(a ,b)落在直线x +y =m(m 为常数)上,且使此事件的概率最大,求m 的值. 【探究创新】(16分)甲、乙两袋有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n 个白球.现从甲、乙两袋中各任取2个球.(1)若n =3,求取到的4个球全是红球的概率; (2)若取到的4个球中至少有2个红球的概率为34,求n.答案解析1.【解析】选B.①必定发生,是必然事件;②中方程的判别式Δ=22-4×8=-28<0,方程有实数根是不可能事件;③和④可能发生也可能不发生,是随机事件.2.【解析】选D.因为12个产品中只有2个是次品,其余都是正品,故抽取3个产品至少有一个是正品.故选D.3.【解析】选A.甲、乙两名同学参加小组的情况共有9种,参加同一小组的情况有3种,所以参加同一小组的概率为39=13.4.【解析】选C.12个位置上停放8辆车的基本事件总数为C 812,“恰有4个空位在一起”相当于在8辆车的9个空当中插入这4个空位,其基本事件数为C 19,故所求概率为P =C 19C 812=155.【方法技巧】排列组合中的“相邻”与“不相邻”问题的解题技巧(1)相邻问题常用“捆绑法”.将必须相邻的元素“捆绑”在一起,当作一个元素进行排列.(2)不相邻问题常用“插空法”.先把无位置要求的元素进行排列,再把规定不相邻的元素插入已排列好的元素形成的空中,用“插空法”时要注意两端的位置. 5.【解析】选C.甲可以连成24C =6条直线, 乙也可以连成24C =6条直线,其中甲每连一条直线乙中都有一条直线与其构成异面直线. 故所得的两条直线互为异面直线的概率为22446C C ⋅=16. 6.【解题指南】根据3个数的和为偶数分类,抽取的3个数全为偶数,或有2个奇数1个偶数. 【解析】选C.基本事件总数为39C ,设抽取的3个数的和为偶数为事件A ,则A 事件数包括两类:抽取的3个数全为偶数,或抽取的3个数中2个为奇数1个为偶数,前者34C ,后者1245C C . ∴A 中基本事件数为34C +1245C C .∴所求概率为31244539C C C C +=1121.7.【解题指南】先求基本事件总数,再求符合要求的基本事件个数,从而得出所求概率.【解析】试验中所含基本事件的个数为36;若想表示椭圆,则前后两次的骰子点数不能相同,则去掉6种可能;既然椭圆焦点在x 轴上,则m >n ,又只剩下一半情况,即15种,因此P(A)=1536=512.答案:5128.【解题指南】本题考查一个等可能性事件的概率,试验发生包含的基本事件数是5×5,满足条件的事件是a >b 的情况,可以通过列举得到,列举时,a 的值需从小到大,要注意不要漏掉,最后根据等可能性事件的概率公式得到结果.【解析】由题意知,试验发生包含的基本事件数是5×5=25,满足条件的事件是a >b 的情况,可以通过列举得到当a =12,b =11; a =14,b =11,13; a =16,b =11,13,15; a =18,b =11,13,15,17; a =20,b =11,13,15,17,19; 一共有1+2+3+4+5=15种结果,∴根据等可能性事件的概率公式得到P =1525=35.答案:359.【解析】共作三角形数为C 39-3=81,三顶点在三边上的三角形数为C 13×C 13×C 13=27. ∴所求概率为2781=13.答案:1310.【解析】所有可能的基本事件共有27个,如图所示.(1)记“3个矩形都涂同一颜色”为事件A ,由图知,事件A 的基本事件有1×3=3个,故P(A)=327=19.(2)记“3个矩形颜色都不同”为事件B,由图可知,事件B的基本事件有2×3=6个,故P(B)=627=2 9.【变式备选】(2011·山东高考)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率. 【解析】 (1)甲校两名男教师分别用A、B表示,女教师用C表示;乙校男教师用D表示,两名女教师分别用E、F表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A,D)、(A,E)、(A,F)、(B,D)、(B,E)、(B,F)、(C,D)、(C,E)、(C,F)共9种.从中选出两名教师性别相同的结果有:(A,D)、(B,D)、(C,E)、(C,F)共4种.选出的两名教师性别相同的概率为P=4 9 .(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A,B)、(A,C)、(A,D)、(A,E)、(A,F)、(B,C)、(B,D)、(B,E)、(B,F)、(C,D)、(C,E)、(C,F)、(D,E)、(D,F)、(E,F)共15种. 从中选出两名教师来自同一学校的结果有:(A,B)、(A,C)、(B,C)、(D,E)、(D,F)、(E,F)共6种,选出的两名教师来自同一学校的概率为P=615=25.11.【解析】(1)基本事件总数为6×6=36. 当a=1时,b=1,2,3;当a=2时,b=1,2;当a=3时,b=1.共有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)6个点落在条件区域内,∴P(A)=636=16.(2)因为抛掷两颗骰子,出现的最小点数为1,最大为6,又结合“出现的概率最大”,可知当m=7时符合题意,当m=7时,共有(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)6个点满足条件,此时P=636=16最大.【探究创新】【解析】 (1)记“取到的4个球全是红球”为事件A.P(A)=22222245C C C C ⋅⋅=1×16×10=160. (2)记“取到的4个球至多有1个红球”为事件B ,“取到的4个球只有1个红球”为事件B 1,“取到的4个球全是白球”为事件B 2. 由题意,得P(B)=1-34=14.P(B 1)=11222n 224n 2C C C C C +⋅⋅+21122n 224n 2C C CC C +⋅⋅=2n23(n +2)(n +1); P(B 2)=222n224n 2C C C C +⋅⋅=n(n -1)6(n +2)(n +1);所以P(B)=P(B 1)+P(B 2)=2n 23(n +2)(n +1)+n(n -1)6(n +2)(n +1)=14, 化简,得7n 2-11n -6=0, 解得n =2,或n =-37(舍去),故n =2.。
第三章 概 率 3.1.1 随机事件的概率课时目标 在具体情境中,了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.1.事件的概念及分类2.在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中______________为事件A 出现的频数,称______________________为事件A 出现的频率. 3.概率(1)含义:概率是度量随机事件发生的________的量.(2)与频率联系:对于给定的随机事件A ,事件A 发生的频率f n (A)随着试验次数的增加稳定于________,因此可以用__________来估计概率P(A).一、选择题 1.有下列事件:①连续掷一枚硬币两次,两次都出现正面朝上; ②异性电荷相互吸引;③在标准大气压下,水在1℃结冰; ④买了一注彩票就得了特等奖. 其中是随机事件的有( )A .①②B .①④C .①③④D .②④ 2.下列事件中,不可能事件是( ) A .三角形的内角和为180°B .三角形中大角对大边,小角对小边C .锐角三角形中两内角和小于90°D .三角形中任两边之和大于第三边 3.有下列现象:①掷一枚硬币,出现反面;②实数的绝对值不小于零;③若a>b ,则b<a.其中是随机现象的是( ) A .② B .① C .③ D .②③4.先后抛掷一枚均匀硬币三次,至多有一次正面向上是( ) A .必然事件 B .不可能事件 C .确定事件 D .随机事件 5.下列说法正确的是( )A .某厂一批产品的次品率为5%,则任意抽取其中20件产品一定会发现一件次品.B .气象部门预报明天下雨的概率是90%,说明明天该地区90%的地方要下雨,其余10%的地方不会下雨.C .某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一定能治愈.D .掷一枚均匀硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为50%.6.在进行n 次重复试验中,事件A 发生的频率为m n ,当n 很大时,事件A 发生的概率P(A)与mn 的关系是( )A .P(A)≈m nB .P(A)<mn C .P(A)>m n D .P(A)=mn7.将一根长为a 的铁丝随意截成三段,构成一个三角形,此事件是________事件. 8.在200件产品中,有192件一级品,8件二级品,则下列事件: ①“在这200件产品中任意选9件,全部是一级品”; ②“在这200件产品中任意选9件,全部都是二级品”; ③“在这200件产品中任意选9件,不全是一级品”.其中________是随机事件;________是不可能事件.(填上事件的编号)9.在一篇英文短文中,共使用了6 000个英文字母(含重复使用),其中字母“e ”共使用了900次,则字母“e ”在这篇短文中的使用的频率为________. 三、解答题10.判断下列事件是否是随机事件.①在标准大气压下水加热到100℃,沸腾;②在两个标准大气压下水加热到100℃,沸腾;③水加热到100℃,沸腾.11.某射手在同一条件下进行射击,结果如下表所示:(1)(2)这个射手射击一次击中靶心的概率约是多少?能力提升12.将一骰子抛掷1 200次,估计点数是6的次数大约是______次;估计点数大于3的次数大约是______次.13.用一台自动机床加工一批螺母,从中抽出100个逐个进行直径检验,结果如下:从这100(1)事件A(6.92<d ≤6.94)的频率; (2)事件B(6.90<d ≤6.96)的频率; (3)事件C(d>6.96)的频率; (4)事件D(d ≤6.89)的频率.1.随机试验如果一个试验满足以下条件:(1)试验可以在相同的条件下重复进行; (2)试验的所有结果是明确可知的,但不止一个;(3)每次试验总是出现这些结果中的一个,但在试验之前却不能确定会出现哪一个结果. 则这样的试验叫做随机试验. 2.频数、频率和概率之间的关系:(1)频数是指在n 次重复试验中事件A 出现的次数,频率是频数与试验总次数的比值,而概率是随机事件发生的可能性的规律体现.(2)随机事件的频率在每次试验中都可能会有不同的结果,但它具有一定的稳定性,概率是频率的稳定值,是频率的科学抽象,不会随试验次数的变化而变化.3.辩证地看待“确定事件”、“随机事件”和“概率”.一个随机事件的发生,既有随机性(对一次试验来说),又存在着统计规律性(对大量重复试验来说),这是偶然性和必然性的统一.就概率的统计定义而言,必然事件U 的概率为1,P(U)=1;不可能事件V 的概率为0,P(V)=0;而随机事件A 的概率满足0≤P(A)≤1.从这个意义上讲,必然事件和不可能事件可以看作随机事件的两个极端情况. 答案:3.1.1 随机事件的概率知识梳理1.一定不会发生 一定会发生 可能发生也可能不发生 2.事件A 出现的次数n A 事件A 出现的比例f n (A)=n An 3.(1)可能性 (2)概率P(A) 频率f n (A)作业设计1.B [①、④是随机事件,②为必然事件,③为不可能事件.] 2.C [锐角三角形中两内角和大于90°.] 3.B [①是随机现象;②③是必然现象.] 4.D 5.D 6.A 7.随机 8.①③ ②解析 因为二级品只有8件,故9件产品不可能全是二级品,所以②是不可能事件. 9.0.15解析 频率=9006 000=0.15.10.解 在①、②、③中“沸腾”是试验的结果,称为事件,但在①的条件下是必然事件,在②的条件下是不可能事件,在③的条件下则是随机事件.11.解 (1)由公式可算得表中击中靶心的频率依次为0.8,0.95,0.88,0.92,0.89,0.91.(2)由(1)可知,射手在同一条件下击中靶心的频率虽然各不相同,但都在常数0.9左右摆动,所以射手射击一次,击中靶心的概率约是0.9. 12.200 600解析 一粒骰子上的6个点数在每次掷出时出现的可能性(即概率)都是16,而掷出点数大于3包括点数为4,5,6三种.故掷出点数大于3的可能性为36=12,故N 1=16×1 200=200,N 2=12×1 200=600. 13.解 (1)事件A 的频率f(A)=17+26100=0.43. (2)事件B 的频率f(B)=10+17+17+26+15+8100=0.93. (3)事件C 的频率f(C)=2+2100=0.04. (4)事件D 的频率f(D)=1100=0.01.。
课时提升作业(五十四)随机事件的概率一、选择题(每小题5分,共25分)1.把颜色分别为红、黑、白的3个球随机地分给甲、乙、丙3人,每人分得1个球.事件“甲分得白球”与事件“乙分得白球”是( )A.对立事件B.不可能事件C.互斥事件D.必然事件【解析】选C.由于甲、乙、丙3人都可能持有白球,故事件“甲分得白球”与事件“乙分得白球”不是对立事件.又事件“甲分得白球”与事件“乙分得白球”不可能同时发生,故两事件的关系是互斥事件.【加固训练】已知α,β,γ是不重合平面,a,b是不重合的直线,下列说法正确的是( )A.“若a∥b,a⊥α,则b⊥α”是随机事件B.“若a∥b,a⊂α,则b∥α”是必然事件C.“若α⊥γ,β⊥γ,则α⊥β”是必然事件D.“若a⊥α,a∩b=P,则b⊥α”是不可能事件【解析】选D.a ba⎫⎬⊥α⎭P⇒b⊥α,故A错;a ba⎫⎬⊂α⎭P⇒b∥α或b⊂α,故B错;当α⊥γ,β⊥γ时,α与β可能平行,也可能相交(包括垂直),故C错;如果两条直线垂直于同一个平面,则两直线必平行,故D正确.2.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是( )A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶【解析】选D.射击两次有四种可能:(中,不中)、(不中,中)、(中,中)、(不中,不中),其中“至少有一次中靶”含有前三种情况,选项A,B,C中都有与其重叠的部分,只有选项D为其互斥事件.【加固训练】某入伍新兵在打靶练习中,连续射击两次,则事件“至少有1次中靶”的对立事件是( )A.至多有1次中靶B.两次都中靶C.两次都不中靶D.只有1次中靶【解析】选C.事件“至少有1次中靶”包括“中靶1次”和“中靶两次”两种情况,由对立事件的定义,可知“两次都不中靶”与之对立.3.在5件产品中,有3件一等品和2件二等品,从中任取2件,以710为概率的事件是( )A.都不是一等品B.恰有1件一等品C.至少有1件一等品D.至多有1件一等品【解析】选D.从5件产品中任取2件有10种取法,设3件一等品为1,2,3,2件二等品为4,5.这10种取法是(1,2),(1,3),(2,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5),其中2件均为一等品的取法有(1,2),(1,3),(2,3),共3种.所以至多有1件一等品的概率37P11010 =-=.4.(2015·绍兴模拟)从1,2,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个数都是奇数;③至少有一个奇数和两个数都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是( )A.①B.②④C.③D.①③【解析】选C.从9个数字中取两个数有三种取法:一奇一偶,两奇,两偶,故只有③中两事件是对立事件.5.(2015·厦门模拟)口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为( )A.0.45B.0.67C.0.64D.0.32【解析】选 D.摸出红球的概率为0.45,摸出白球的概率为0.23,故摸出黑球的概率P=1-0.45-0.23=0.32.二、填空题(每小题5分,共15分)6.给出下列命题:①对立事件一定是互斥事件;②若A,B是两个事件,则P(A+B)=P(A)+P(B);③若事件A,B,C两两互斥,则P(A)+P(B)+P(C)=1;④若事件A,B满足P(A)+P(B)<1,则事件A,B是互斥但不对立事件.其中所有不正确命题的序号为.【解析】对立一定互斥,但互斥未必对立,①正确;仅当A,B互斥时,②成立,故②不正确;因为两两互斥的三个事件A,B,C,其概率和不一定等于1,也可能小于1,③不正确;对于④,两个事件A,B,满足P(A)+P(B)<1,不能推出A,B 互斥,更不能说A,B 对立,所以④错误. 答案:②③④【加固训练】甲:A 1,A 2是互斥事件;乙:A 1,A 2是对立事件,那么甲是乙的条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”). 【解析】两个事件是对立事件,则它们一定互斥,反之不一定成立. 答案:必要不充分7.(2015·合肥模拟)在数学考试中,小明的成绩在90分以上的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,60分以下的概率是0.07,小明考试及格(60分及以上)的概率为 . 【解析】小明考试及格的概率是 0.18+0.51+0.15+0.09=0.93. 答案:0.93【一题多解】本题还可用以下解法:小明考试不及格的概率是0.07,所以小明考试及格的概率是1-0.07=0.93. 答案:0.938.某城市2014年的空气质量状况如表所示:其中污染指数T ≤50时,空气质量为优;50<T ≤100时,空气质量为良;100<T ≤150时,空气质量为轻微污染,则该城市2013年空气质量达到良或优的概率为 . 【解析】由题意可知2014年空气质量达到良或优的概率为1113P 10635=++=. 答案:35三、解答题9.(10分)已知射手甲射击一次,命中9环(含9环)以上的概率为0.56,命中8环的概率为0.22,命中7环的概率为0.12.(1)求甲射击一次,命中不足8环的概率.(2)求甲射击一次,至少命中7环的概率.【解析】记“甲射击一次,命中7环以下”为事件A,则P(A)=1-0.56-0.22-0.12=0.1,“甲射击一次,命中7环”为事件B,则P(B)=0.12,由于在一次射击中,A与B不可能同时发生,故A与B是互斥事件,(1)“甲射击一次,命中不足8环”的事件为A+B,由互斥事件的概率加法公式,P(A+B)=P(A)+P(B)=0.1+0.12=0.22.答:甲射击一次,命中不足8环的概率是0.22.(2)记“甲射击一次,命中8环”为事件C,“甲射击一次,命中9环(含9环)以上”为事件D,则“甲射击一次,至少命中7环”的事件为B+C+D,所以P(B+C+D)=P(B)+P(C)+P(D)=0.12+0.22+0.56=0.9.答:甲射击一次,至少命中7环的概率为0.9.【加固训练】袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,取到红球的概率为,取到黑球或黄球的概率是,取到黄球或绿球的概率也是,试求取到黑球、黄球、绿球的概率各是多少.【解析】从袋中任取一球,记事件“取到红球”“取到黑球”“取到黄球”“取到绿球”分别为A,B,C,D,则有P(A)=,P(B∪C)=P(B)+P(C)=,P(C∪D)=P(C)+P(D)=,P(B∪C∪D)=1-P(A)=1-=,解得P(B)=,P(C)=,P(D)=.故取到黑球、黄球、绿球的概率分别是,,.(20分钟40分)1.(5分)(2015·广州模拟)某射手在一次射击中,射中10环,9环,8环的概率分别是0.2,0.3,0.1,则此射手在一次射击中不够8环的概率为( )A.0.4B.0.3C.0.6D.0.9【解析】选A.一次射击不够8环的概率为1-0.2-0.3-0.1=0.4.2.(5分)(2015·成都模拟)某产品分甲、乙、丙三级,其中乙、丙两级均属次品.若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为 . 【解析】记“生产中出现甲级品、乙级品、丙级品”分别为事件A,B,C,则A,B,C 彼此互斥,由题意可得P(B)=0.03,P(C)=0.01,所以P(A)=1-P(B+C)=1-P(B)- P(C)=1-0.03-0.01=0.96. 答案:0.963.(5分)若随机事件A,B 互斥,A,B 发生的概率均不等于0,且分别为P(A)=2-a,P(B)=3a-4,则实数a 的取值范围为 .【解题提示】由随机事件A,B 互斥,A,B 发生的概率均不等于0,且分别为P(A)=2-a,P(B)=3a-4,知()()()()0P A 1,0P B 1,P A P B 1,<<⎧⎪<<⎨⎪+≤⎩由此能求出实数a 的取值范围. 【解析】因为随机事件A,B 互斥,A,B 发生的概率均不等于0,且分别为P(A)=2-a,P(B)=3a-4,()()()()0P A 1,02a 1,0P B 1,03a 41,2a 21.P A P B 1,43a .32<<⎧<-<⎧⎪⎪<<<-<⎨⎨⎪⎪-≤+≤⎩⎩<≤所以即解得 答案:43(,]32【方法技巧】互斥事件的概率的应用 1.互斥事件的概率加法公式(1)求一个事件的概率问题:将一个事件分拆为若干个互斥事件,分别求出各事件的概率,然后用加法公式求出结果.(2)运用互斥事件的概率加法公式解题时,首先要分清事件间是否互斥,同时要学会把一个事件分拆为几个互斥事件,且做到无重无漏. 2.对立事件的概率公式(1)事件A,B 互斥,A,B 中必有一个发生,其中一个易求、另一个不易求时常用P(A)+P(B)=1解题.(2)常适用于直接计算符合条件的事件个数较多时,可间接地先计算对立事件的概率,再由公式求出符合条件的事件的概率.(3)应用此公式时,一定要分清事件的对立事件到底是什么事件,不能重复或遗漏.该公式常用于“至多”“至少”型问题的探究.4.(12分)(2015·黄冈模拟)一盒中共装有除颜色外其余均相同的小球12个,其中5个红球、4个黑球、2个白球、1个绿球.从中随机取出1个球,求:(1)取出1球是红球或黑球的概率.(2)取出1球是红球或黑球或白球的概率.【解析】记事件A1={任取1球为红球},A2={任取1球为黑球},A3={任取1球为白球},A4={任取1球为绿球},则P(A1)=512,P(A2)=412,P(A3)=212,P(A4)=112.据题意知事件A1,A2,A3,A4彼此互斥,由互斥事件的概率公式,得(1)取出1球是红球或黑球的概率为P(A1∪A2)=P(A1)+P(A2)=543 12124+=.(2)取出1球是红球或黑球或白球的概率为P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)=54211 12121212++=.【一题多解】本题的第二问还可以用如下的方法解决:P(A1∪A2∪A3)=1-P(A4)= 1111.1212-=5.(13分)(能力挑战题)黄种人人群中各种血型的人所占的比例见下表:已知同种血型的人可以互相输血,O型血的人可以给任一种血型的人输血,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若他因病需要输血,问(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?【解析】(1)对任一人,其血型为A,B,AB,O型血分别记为事件A′,B′,C′,D′,它们是互斥的.由已知,有P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35.因为B,O型血可以输给B型血的人,故“任找一个人,其血可以输给小明”为事件B′∪D′,根据概率加法公式,得P(B′∪D′)=P(B′)+P(D′)=0.29+0.35=0.64.(2)由于A,AB型血不能输给B型血的人,故“任找一个人,其血不能输给小明”为事件A′∪C′,且P(A′∪C′)=P(A′)+P(C′)=0.28+0.08=0.36.。
第3讲 随机事件的概率A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是( ).A .对立事件B .不可能事件C .互斥但不对立事件D .以上答案都不对解析 由于甲和乙有可能一人得到红牌,一人得不到红牌,也有可能甲、乙两人都得不到红牌,故两事件为互斥但不对立事件. 答案 C2.(2013·日照模拟)从一箱产品中随机抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的不是一等品”的概率为( ). A .0.7B .0.65C .0.35D .0.3解析 由对立事件可得P =1-P (A )=0.35. 答案 C3.(2013·海口模拟)盒中装有10个乒乓球,其中6个新球,4个旧球.不放回地依次取出2个球使用,在第一次取出新球的条件下,第二次也取到新球的概率为( ).A.35B.110 C.59 D.25解析 第一次结果一定,盒中仅有9个乒乓球,5个新球4个旧球,所以第二次也取到新球的概率为59.答案 C4.(2013·揭阳二模)把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ).A.12B.14C.16D.18解析 法一 P (B |A )=P ABP A =1412=12.法二 A 包括的基本事件为{正,正},{正,反},AB 包括的基本事件为{正,正},因此P (B |A )=12.答案 A二、填空题(每小题5分,共10分)5.对飞机连续射击两次,每次发射一枚炮弹.设A ={两次都击中飞机},B ={两次都没击中飞机},C ={恰有一次击中飞机},D ={至少有一次击中飞机},其中彼此互斥的事件是________,互为对立事件的是________.解析 设I 为对飞机连续射击两次所发生的所有情况,因为A ∩B =∅,A ∩C =∅,B ∩C =∅,B ∩D =∅.故A 与B ,A 与C ,B 与C ,B 与D 为彼此互斥事件,而B ∩D =∅,B ∪D =I ,故B 与D 互为对立事件.答案 A 与B 、A 与C 、B 与C 、B 与D B 与D6.(2013·成都模拟)某产品分甲、乙、丙三级,其中乙、丙两级均属次品.若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为________.解析 记“生产中出现甲级品、乙级品、丙级品”分别为事件A ,B ,C .则A ,B ,C 彼此互斥,由题意可得P (B )=0.03,P (C )=0.01,所以P (A )=1-P (B +C )=1-P (B )-P (C )=1-0.03-0.01=0.96. 答案 0.96 三、解答题(共25分)7.(12分)某战士甲射击一次,问:(1)若事件A (中靶)的概率为0.95,事件A -(不中靶)的概率为多少?(2)若事件B (中靶环数大于6)的概率为0.7,那么事件C (中靶环数不大于6)的概率为多少?解 (1)∵事件A (中靶)的概率为0.95,根据对立事件的概率公式得到A -的概率为1-0.95=0.05.(2)由题意知中靶环数大于6与中靶环数不大于6是对立事件,∵事件B (中靶环数大于6)的概率为0.7,∴事件C (中靶环数不大于6)的概率为1-0.7=0.3.8.(13分)某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3,0.2,0.1,0.4,且只乘一种交通工具去开会.(1)求他乘火车或乘飞机去开会的概率;(2)求他不乘轮船去开会的概率;(3)如果他乘某种交通工具去开会的概率为0.5,请问他有可能是乘何种交通工具去开会的?解(1)记“他乘火车去开会”为事件A1,“他乘轮船去开会”为事件A2,“他乘汽车去开会”为事件A3,“他乘飞机去开会”为事件A4,这四个事件不可能同时发生,故它们是彼此互斥的.故P(A1+A4)=P(A1)+P(A4)=0.3+0.4=0.7.(2)设他不乘轮船去开会的概率为P,则P=1-P(A2)=1-0.2=0.8.(3)由于0.3+0.2=0.5,0.1+0.4=0.5,1-(0.3+0.2)=0.5,1-(0.1+0.4)=0.5,故他有可能乘火车或轮船去开会,也有可能乘汽车或飞机去开会.B级能力突破(时间:30分钟满分:45分)一、选择题(每小题5分,共10分)1.甲:A1,A2是互斥事件;乙:A1,A2是对立事件.那么( ).A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件,也不是乙的必要条件解析根据互斥事件和对立事件的概念可知互斥事件不一定是对立事件,对立事件一定是互斥事件.答案 B2.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( ).A.110B.310C.35D.910解析从装有3个红球、2个白球的袋中任取3个球通过列举知共有10个基本事件;所取的3个球中至少有1个白球的反面为“3个球均为红色”,有1个基本事件,所以所取的3个球中至少有1个白球的概率是1-110=910.答案 D二、填空题(每小题5分,共10分)3.某中学部分学生参加全国高中数学竞赛取得了优异成绩,指导老师统计了所有参赛同学的成绩(成绩都为整数,试题满分120分),并且绘制了条形统计图(如下图所示),则该中学参加本次数学竞赛的人数为________,如果90分以上(含90分)获奖,那么获奖的概率大约是________.解析 由题图可知,参加本次竞赛的人数为4+6+8+7+5+2=32;90分以上的人数为7+5+2=14,所以获奖的频率为1432=0.437 5,即本次竞赛获奖的概率大约是0.437 5.答案 32 0.437 54.(2013·浙江五校联考)在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次再次取到不合格品的概率为________.解析 设A ={第一次取到不合格品},B ={第二次取到不合格品},则P (AB )=C 25C 2100,所以P (B |A )=P ABP A =5×4100×995100=499答案499三、解答题(共25分)5.(12分)(2013·长春模拟)黄种人群中各种血型的人所占的比如下表所示:AB 型血的人,其他不同血型的人不能互相输血.小明是B 型血,若小明因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少? (2)任找一个人,其血不能输给小明的概率是多少?解 (1)对任一人,其血型为A ,B ,AB ,O 型血的事件分别记为A ′,B ′,C ′,D ′,它们是彼此互斥的.由已知,有P (A ′)=0.28,P (B ′)=0.29,P (C ′)=0.08,P (D ′)=0.35.因为B,O型血可以输给B型血的人,故“可以输给B型血的人”为事件B′+D′.根据互斥事件的概率加法公式,有P(B′+D′)=P(B′)+P(D′)=0.29+0.35=0.64.(2)法一由于A,AB型血不能输给B型血的人,故“不能输给B型血的人”为事件A′+C′,且P(A′+C′)=P(A′)+P(C′)=0.28+0.08=0.36.法二因为事件“其血可以输给B型血的人”与事件“其血不能输给B型血的人”是对立事件,故由对立事件的概率公式,有P(B′+D′])=1-P(B′+D′)=1-0.64=0.36.即:任找一人,其血可以输给小明的概率为0.64,其血不能输给小明的概率为0.36. 6.(13分)(2011·陕西)如图,A地到火车站共有两条路径L1和L2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:30~4040~5050~60(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?(2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望.解(1)A i表示事件“甲选择路径L i时,40分钟内赶到火车站”,B i表示事件“乙选择路径L i时,50分钟内赶到火车站”,i=1,2.用频率估计相应的概率可得P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,∵P(A1)>P(A2),∴甲应选择L1;P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,∵P(B2)>P(B1),∴乙应选择L2.(2)A,B分别表示针对(1)的选择方案,甲、乙在各自允许的时间内赶到火车站,由(1)知P(A)=0.6,P(B)=0.9,又由题意知,A,B独立,∴P(X=0)=P(AB)=P(A)P(B)=0.4×0.1=0.04,P(X=1)=P(A B+A B)=P(A)P(B)+P(A)P(B)=0.4×0.9+0.6×0.1=0.42,P(X=2)=P(AB)=P(A)P(B)=0.6×0.9=0.54.∴X的分布列为∴E(X)。