曲线型定线法坐标计算方法
- 格式:ppt
- 大小:1.84 MB
- 文档页数:33
第六章定线【本章学习要点】本章主要学习纸上定线与实地定线的方法;掌握实地放线的几种常用方法。
定线的任务是按照已定的技术标准,在选线布局阶段选定的路线带范围内,结合细部地形、地质条件,综合考虑平、纵、横三方面的合理安排,确定定出公路中线的确切位置。
定线是公路设计过程中关键的一步。
它不仅要解决工程、经济方面的问题,而且对如何使公路与周围环境相协调,以及公路本身线形的美观等问题都要在定线过程中进行充分的考虑。
公路定线除受地形、地质及地物等制约外,还受技术标准、国家政策、社会影响、公路美学以及其他因素的制约,这就要求设计人员必须具有广博的知识和熟练的定线技巧。
一个好的路线方案要经过反复比选、反复试线在众多相互制约的因素中定出来。
公路定线根据公路等级、要求和条件,一般有纸上定线、实地定线、航测定线三种方法。
对技术等级高,地形、地质、地物等条件复杂的路线,必须先进行纸上定线,然后把纸上所定的路线敷设到实地上;实地定线就是省了纸上定线这一步,直接在现场实地定线,一般实用于公路等级较低和地形条件简单的路线;航测定线是利用航摄像片、影像地图等资料,借助于航测仪器建立与实地完全相似的光学模型,在模型上直接定线。
本章重点介绍纸上定线和实地定线。
第一节纸上定线一、纸上确定路线(一)定导向线1.在大比例地形图上研究路线布局,拟定路线可能方案,并详细比较选定合适方案。
2.纸上放坡,根据等高线间距h及平均纵坡i均(5%~5.5%),计算相邻等高线间距:a=h/i均,使卡规开度放到a,进行纸上放坡,如图6-1。
图6-1 纸上放坡示意图图6-2为某回头曲线纸上定线实例,A、B、C为控制点,按上述方法放出坡度线A、a、b、c、d…,D。
若放坡自A点开始,不能到达控制点B附近时,说明路线方案不能成立,应修改方案改动控制点,重新放坡,至放坡后能到达D点附近为止。
3.定导向线分析研究坡度线A、a、b、c、d…,D,检查其利用地形和避让障碍的情况,进一步移动线位确定中间的控制点。
求曲线、曲面积分的方法与技巧一.曲线积分的计算方法与技巧计算曲线积分一般采用的方法有:利用变量参数化将曲线积分转化为求定积分、利用格林公式将曲线积分转化为二重积分、利用斯托克斯公式将空间曲线积分转化为曲面积分、利用积分与路径无关的条件通过改变积分路径进行计算、利用全微分公式通过求原函数进行计算等方法。
例一.计算曲线积分⎰+Lxdy ydx ,其中L 是圆)0(222>=+y x y x 上从原点)0,0(O 到)0,2(A 的一段弧。
本题以下采用多种方法进行计算。
解1:A O 的方程为⎪⎩⎪⎨⎧-==,2,2x x y x x L 由,A O →x 由,20→.212dx xx x dy --=⎰+Lxdy ydx dx xx x x x x ⎰--+-=222]2)1(2[dx xx x x dx xx x x xx x ⎰⎰--+----=20220222)1(2)1(220.00442=--=分析:解1是利用变量参数化将所求曲线积分转化为求定积分进行计算的,选用的参变量为.x 因所求的积分为第二类曲线积分,曲线是有方向的,在这种解法中应注意参变量积分限的选定,应选用对应曲线起点的参数的起始值作为定积分的下限。
解2:在弧A O上取)1,1(B 点,B O 的方程为⎪⎩⎪⎨⎧--==,11,2y x y y L 由,B O →y 由,10→.12dy y y dx -= A B 的方程为⎪⎩⎪⎨⎧-+==,11,2y x y y L 由,A B →y 由,01→.12dy y y dx --= ⎰+Lxdy ydx dy y y y dy y y y ⎰⎰-++--+--+-=012221222)111()111(dy yy ⎰-=102212dy y ⎰--10212dy yy ⎰-=10221210212yy --dyyy ⎰--+102212.0)011(2=---=分析:解2是选用参变量为,y 利用变量参数化直接计算所求曲线积分的,在方法类型上与解1相同。
道路勘测设计总复习第⼀章绪论⼀、基本概念1. 设计速度2. 交通量3. 城市道路红线⼆、道路的分类分级1. 分类:按使⽤特点跟为:公路(按⾏政区划分为国道、声道、县道和乡道),城市道路,⼚矿道路,林区道路,乡村道路按功能分:⼲线公路,集散公路,地⽅公路2. 道路分级:按功能和适应的交通量分为5级:⾼速公路:为专供汽车分向、分车道⾏驶,并应全部控制出⼊的多车道公路⼀级、⼆级、三级、四级公路了解公路等级的选⽤3. 城市道路的分类与分级按在城市道路⽹的地位、交通功能、沿线建筑物的服务功能分为:快速路,主⼲路(Ⅰ、Ⅱ、Ⅲ级),次⼲路(Ⅰ、Ⅱ、Ⅲ级),⽀路(Ⅰ、Ⅱ、Ⅲ级)三、道路勘测设计程序⼀阶段设计:施⼯图设计适⽤条件:⼆阶段设计:初步设计,施⼯图设计适⽤条件:三阶段设计:初步设计、技术设计,施⼯图设计适⽤条件:四、设计依据技术依据,⾃然条件交通条件:设计车辆(⼩客车,载重汽车,鞍式列车,铰接车),设计速度,交通量,通⾏能⼒与服务⽔平五、城市道路⽹1. 城市道路⽹的型式:⽅格⽹式、环形放射式、⾃由式和混合式特点及适⽤条件2. 城市道路红线规划设计的内容第⼆章汽车⾏驶性能⼀、驱动⼒牵引⼒V N M V n T Me M e e ηη3600377.0== 驱动⼒与⾏驶速度成反⽐,⾼速度和⼤驱动⼒不可兼得。
因此,汽车设置了⼏个排挡:低排挡,驱动⼒T ⼤,⾏车速度V ⼩;⾼排挡,驱动⼒T ⼩,⾏车速度V ⼤⼆、⾏驶阻⼒1. 空⽓阻⼒Rw15.212122KAV v KA R W ==ρ2. 道路阻⼒RR由于轮胎弹性变形、道路路⾯及纵坡产⽣的阻⼒。
(1)滚动阻⼒车轮滚动时轮胎与路⾯之间的摩擦阻⼒,是由于轮胎与路⾯变形引起的。
G f R f ?=(2)坡度阻⼒汽车爬坡时,重⼒的分⼒对⾏车的阻⼒。
αsin ?±=G R i 上坡为+,下坡为-道路阻⼒:RR=Rf± Ri=G·(f±i)3.惯性阻⼒RI汽车变速⾏驶时,需克服其质量变速运动所产⽣的惯性⼒和惯性⼒矩。
圆锥曲线中的“三定问题”(定点、定值、定直线)1.定点、定值问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点、定值等问题的证明.解决此类问题的关键是引进参变量表示所求问题,根据等式的恒成立、数式变换等寻找不受参数影响的量.可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.同时,也要掌握巧妙利用特殊值解决相关的定点、定值问题,如将过焦点的弦特殊化,变成垂直于对称轴的弦来研究等.2.定点问题解决步骤:①设直线代入二次曲线方程,整理成一元二次方程;②根与系数关系列出两根和及两根积;③写出定点满足的关系,整体代入两根和及两根积;④整理③所得表达式探求其恒成立的条件.3.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.4.存在型定值问题的求解,解答的一般思路如下:①确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示;②将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.5.求定线问题常见的方法有两种:①从特殊入手,求出定直线,再证明这条线与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定直线.1.在平面直角坐标系xOy 中,已知动点P 到 0,1F 的距离比它到直线2y 的距离小1. (1)求动点P 的轨迹C 的方程;(2)过点F 的直线与曲线C 交于A ,B 两点, 2,1Q ,记直线QA ,QB 的斜率分别为1k ,2k ,求证:1211k k为定值.2.已知抛物线y2=2px(p>0)的焦点F到准线的距离为2.(1)求抛物线的方程;(2)过点P(1,1)作两条动直线l1,l2分别交抛物线于点A,B,C,D.设以AB为直径的圆和以CD为直径的圆的公共弦所在直线为m,试判断直线m是否经过定点,并说明理由.3.已知椭圆22221(0)x y a b a b 的一个焦点到双曲线2212x y 渐近线的距离为3,且点2M 在椭圆上.(1)求椭圆的方程;(2)若四边形ABCD 的顶点在椭圆上,且对角线AC 、BD 过原点O ,直线AC 和BD 的斜率之积-22b a,证明:四边形ABCD 的面积为定值.4.已知点(1,2)P 在抛物线2:2C y px 上,过点(0,1)Q 的直线l 与抛物线C 有两个不同的交点A 、B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO ,QN QO uuu r uuu r ,试判断11+ 是否为定值,若是,求11+ 值;若不是,求11+的取值范围.5.已知双曲线的对称中心在直角坐标系的坐标原点,焦点在坐标轴上,双曲线的一条渐近线的方程为4,6,过双曲线上的一点P(P在第一象限)作斜率不为l,l与直线y ,且双曲线经过点x 交于点Q且l与双曲线有且只有一个交点.1(1)求双曲线的标准方程;(2)以PQ为直径的圆是否经过一个定点?若经过定点,求出定点的坐标;若不经过定点,请说明理由.6.已知双曲线C :22221x y a b 0,0a b 的两条渐近线互相垂直,且过点D.(1)求双曲线C 的方程;(2)设P 为双曲线的左顶点,直线l 过坐标原点且斜率不为0,l 与双曲线C 交于A ,B 两点,直线m 过x 轴上一点Q (异于点P ),且与直线l 的倾斜角互补,m 与直线PA ,PB 分别交于,M N (,M N 不在坐标轴上)两点,若直线OM ,ON 的斜率之积为定值,求点Q 的坐标.7.已知椭圆2222:1x y C a b,离心率为12,过椭圆左焦点1F 作不与x 轴重合的直线与椭圆C 相交于M ,N 两点,直线m 的方程为2x a ,过点M 作ME 垂直于直线m 交直线m 于点E . (1)求椭圆C 的标准方程;(2)①求证线段EN 必过定点P ,并求定点P 的坐标;②点O 为坐标原点,求OEN 面积的最大值.22a b 122一点.(1)求椭圆C 的标准方程;(2)设(,)R s t 是椭圆C 上的一动点,由原点O 向22()()4x s y t 引两条切线,分别交椭圆C 于点,P Q ,若直线,OP OQ 的斜率均存在,并分别记为12,k k ,求证:12k k 为定值.22a b 12221:()1F x c y 与圆222:()9F x c y 相交,两圆交点在椭圆E 上.(1)求椭圆E 的方程;(2)设直线l 不经过 0,1P 点且与椭圆E 相交于,A B 两点,若直线PA 与直线PB 的斜率之和为2 ,证明:直线l 过定点.10.已知抛物线2:4C y x 的焦点为F ,斜率为k 的直线与抛物线C 交于A 、B 两点,与x 轴交于 ,0P a (1)当1k ,3a 时.求AF BF 的值;(2)当点P 、F 重合时,过点A 的圆 2220x y r r 与抛物线C 交于另外一点D .试问直线BD 是否过x轴上的定点Q ?若是,请求出点Q 坐标;若不是,请说明理由.11.已知抛物线22(0)y px p 上一点 4,t 到其焦点的距离为5. (1)求p 与t 的值;(2)过点 21M ,作斜率存在的直线l 与拋物线交于,A B 两点(异于原点O ),N 为M 在x 轴上的投影,连接AN 与BN 分别交抛物线于,P Q ,问:直线PQ 是否过定点,若存在,求出该定点,若不存在,请说明理由.12.已知抛物线 21:20C y px p 的焦点是椭圆 22222:10x y C a b a b的右焦点,且两条曲线的一个交点为 000,2p E x y x,若E 到1C 的准线的距离为53,到2C 的两焦点的距离之和为4.(1)求椭圆2C 的方程;(2)过椭圆2C 的右顶点的两条直线1l ,2l 分别与抛物线1C 相交于点A ,C ,点B ,D ,且12l l ,M 是AC 的中点,N 是BD 的中点,证明:直线MN 恒过定点.13.已知抛物线C : 220y px p 的焦点到准线的距离是12.(1)求抛物线方程;(2)设点 ,1P m 是该抛物线上一定点,过点P 作圆O : 2222x y r (其中01r )的两条切线分别交抛物线C 于点A ,B ,连接AB .探究:直线AB 是否过一定点,若过,求出该定点坐标;若不经过定点,请说明理由.14.已知抛物线 2:20C y px p 的焦点为F ,点M 在抛物线C 上,O 为坐标原点,OMF 是以OF 为底边的等腰三角形,且OMF 的面积为 (1)求抛物线C 的方程.(2)过点F 作抛物线C 的两条互相垂直的弦AB ,DE ,设弦AB ,DE 的中点分别为P ,Q ,试判断直线PQ 是否过定点.若是,求出所过定点的坐标;若否,请说明理由.15.如图,已知抛物线 2:20C y px p 与圆 22:412M x y 相交于A ,B ,C ,D 四点.(1)若8OA OD ,求抛物线C 的方程;(2)试探究直线AC 是否经过定点,若是,求出定点坐标;若不是,请说明理由.16.已知抛物线 2:20C y px p 上一点01,4y到焦点的距离为54.(1)求抛物线C 的标准方程;(2)若点A ,B 为抛物线位于x 轴上方不同的两点,直线OA ,OB 的斜率分别为1k ,2k ,且满足1212444k k k k ,求证:直线AB 过定点.17.如图,已知抛物线2:2(0)C y px p 与圆22:(4)12M x y 相交于A ,B ,C ,D 四点. (1)若以线段AD 为直径的圆经过点M ,求抛物线C 的方程;(2)设四边形ABCD 两条对角线的交点为E ,点E 是否为定点?若是,求出点E 的坐标;若不是,请说明理由.18.设双曲线22221x y a b ,其虚轴长为(1)求双曲线C 的方程;(2)过点 3,1P 的动直线与双曲线的左右两支曲线分别交于点A 、B ,在线段AB 上取点M 使得AM APMB PB,证明:点M 落在某一定直线上.19.在平面直角坐标系xOy 中,已知双曲线2222:1(0,0)x y C a b a b 的左右焦点分别为F 1(-c ,0),F 2(c ,0),离心率为e ,且点(e ,3),b )都在双曲线C 上. (1)求双曲线C 的标准方程;(2)若A ,B 是双曲线C 上位于x 轴上方的两点,且AF 1//BF 2.证明:1211AF BF 为定值.20.已知双曲线2222:1(0,0)x y C a b a b2,1F ,2F为其左右焦点,Q 为其上任一点,且满足120QF QF,122QF QF .(1)求双曲线C 的方程;(2)已知M ,N 是双曲线C 上关于x 轴对称的两点,点P 是C 上异于M ,N 的任意一点,直线PM 、PN 分别交x 轴于点T 、S ,试问:||||OS OT 是否为定值,若不是定值,说明理由,若是定值,请求出定值(其中O 是坐标原点).21.已知双曲线 2222:10,0x y C a b a b ,四点13M , 2M ,32,3M ,43M中恰有三点在C 上. (1)求C 的方程;(2)过点 3,0的直线l 交C 于P ,Q 两点,过点P 作直线1x 的垂线,垂足为A .证明:直线AQ 过定点.22.已知动点P 与定点(1,0)F 的距离和它到定直线:4l x 的距离之比为12,记P 的轨迹为曲线C . (1)求曲线C 的方程;(2)过点(4,0)M 的直线与曲线C 交于,A B 两点,,R Q 分别为曲线C 与x 轴的两个交点,直线,AR BQ 交于点N ,求证:点N 在定直线上.23.在平面直角坐标系xOy 中,椭圆C : 22210xy a a的左右顶点为A ,B ,上顶点K 满足3AK KB .(1)求C 的标准方程:(2)过点 1,0的直线与椭圆C 交于M ,N 两点.设直线MA 和直线NB 相交于点P ,直线NA 和直线MB 相交于点Q ,直线PQ 与x 轴交于S .①求直线PQ 的方程; ②证明:SP SQ 是定值.24.已知椭圆C : 222210x y a b a b ,左、右顶点分别为1A ,2A ,上、下顶点分别为1B ,2B ,四边形1122A B A B 的面积为(1)求椭圆C 的方程;(2)过点 0,1D 且斜率存在的直线与椭圆相交于E ,F 两点,证明:直线2EB ,1FB 的交点G 在一定直线上,并求出该直线方程.25.在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b的左,右顶点分别为A 、B ,点F 是椭圆的右焦点,3AF FB uu u r uu r ,3AF FB. (1)求椭圆C 的方程;(2)不过点A 的直线l 交椭圆C 于M 、N 两点,记直线l 、AM 、AN 的斜率分别为k 、1k 、2k .若 121k k k ,证明直线l 过定点,并求出定点的坐标.26.已知O 为坐标原点,椭圆2222Γ:1(0)x y a b a b 的右顶点为A ,动直线1:(1)l y x m 与相交于,B C 两点,点B 关于x 轴的对称点为B ,点B 到 的两焦点的距离之和为4.(1)求 的标准方程;(2)若直线B C 与x 轴交于点M ,,OAC AMC 的面积分别为12,S S ,问12S S 是否为定值?若是,求出该定值;若不是,请说明理由.。
铁路⼯程曲线放线及题解第⼀节纸上定线在⼤⽐例地图上确定道路中线的位置。
不同地区采⽤不同的⽅法,着重点不同。
平原地区:纵坡易于满⾜,平⾯线形易布设。
⼭岭重丘地区:纵坡成为⾸要问题。
(⼀)定导向线1 在⼤⽐例地图上,选定主要控制点。
2 确定平均坡度,i=h/a,反算a=h/i.在登⾼线间画出各点的位置,A a b ....D.3 对初步的⽅案作调整,明显有问题的地⽅进⾏调整。
确定出导向线。
(⼆)修正导向线1 参照导向线进⾏试线,确定各曲线半径。
绘制纵断⾯图。
桩号→地⾯标⾼→纵断⾯图→中⼼线2 在试线的横断⾯⽅向点出与设计标⾼相同的点⼦,这些点的连线为理想纵坡,不填不挖的道路中线,为折线,称为修正导向线。
3 在修正导向线上,作横断⾯图,找出各断⾯的最佳中线位置及可移动范围,将其联结起来为横断⾯最佳,具有理想纵坡的折线,称为⼆次修正导线。
具体 1 拟定线路⽅案2 图上放坡3 作导向线,放坡点的连线,对明显有问题的地⽅进⾏调整,连线为导向线。
4 修正导向线和平⾯试线根据平⾯线形设计的要求,结合横坡变化情况,确定必须通过的点和适当照顾的点及可以不考虑的点,这些点的连线为修正导向线。
采⽤以点连线,以线交点的⽅式定出平⾯试线,量出转⾓,在图上敷出曲线。
计算出各桩号的标⾼。
5 作⼆次修正导向线和平⾯定线在试线的各桩号,横断⾯左、右⽅向点出与设计⾼程相应的点。
这些点的连线为具有理想纵坡、中线⾼程不填不挖的经济线,⼜成为⼀个折线为⼆次修正导向线。
根据平⾯线形要求,修正后再定出中线,是⼀个⽐较理想的中线。
这个过程可以重复多次进⾏。
(三)定线定线是反复分析研究的⼆次修正导向线上各特制点的性质和可活动范围的基础上,反复试线才能得到满⾜的结果。
具体作法:1 直线形法:传统⽅法选作出与较⼤地形相⼀致的直线,然后⽤曲线把它们联结起来的作法,适合于平原微丘地形。
2曲线形法先⽤⼀系列的圆弧把各个困难点、控制较严格的点进⾏拟合,然后把这些圆弧⽤缓和曲线及直线联结起来。
积分方法总结李利霞摘要:微积分是大学一年级学的基础课,而在以后的课程中,我们会慢慢发现微积分几乎随处都用的到。
所以,在这里对积分方法做一个简单的总结。
关键字:二重积分 三重积分 曲面积分 曲线积分 散度 旋度 一:二重积分对于二重积分比较常用也比较简单,我在这里给出定限方法:如果是X 型,则将积分区域全部投影到x 轴上,确定x 的范围;在x 范围内取一点作平行于y 轴的射线,与区域的边界的两交点()()x 2x 1,ϕϕ则为对y 积分的上下限。
同理,可得y 型定限方法。
对于极坐标要定r ,θ的上下限。
二重积分是积分问题的基础,以后提到的各种积分方法最终都是通过某种方法换做二重积分。
下面给出二重积分的例子:dxdy y ⎰⎰=D2x I ;积分区域由2y 2-==x y x 与围成;将积分区域对x 轴投影可得x 的上下限为[0 ,4]。
在[0,1]间,做平行与y 轴的射线得y 轴的范围[]x ,x -;在[1,4]间,同理得y 的范围[]x 2-x ,。
从而积分式子可以写作:dy y xdx dy xx ⎰⎰⎰⎰-+=221041xx-2y xdx I同理,也可以对x 先积分,将积分区域投影到y 轴上,做平行于x 的射线,定x 的上下限为[]2,y 2+y ;y 的范围[-1,2]。
对于极坐标,应先画出在xy 坐标上的积分区域,把边界值方程化为极坐标下的方程,定r 与θ,定r 时同样用发射法,从坐标原点发射。
(以上方法简称为投影发射法)。
二:三重积分(1)在直坐标系中定限法一:将积分区域投影到其中的一个坐标平面,如xoy 面上,得到xy D ,x 的积分面范围y ;做平行与z 轴的射线,穿过积分区域时,进入和出来所经过的面分别为()()y x z z s y x z z ,:;,:s 2211==;从而三重积分可化为二重积分:()()()()dz z y x f dxdy dxdydz z y x y x z y x z D xy⎰⎰⎰⎰⎰⎰=Ω,,21,,,,f 。
曲线坐标计算一、圆曲线圆曲线要素:a -------------- 曲线转向角R -------------- 曲线半径根据a及R可以求出以下要素:T --------------- 切线长L -------------- 曲线长E -------------- 外矢距q -------------- 切曲差(两切线长与曲线全长之差)各要素的计算公式为:L R180(弧长)E RRsec 1)2(sec a =cos a 的倒数)圆曲线主点里程:ZY=J[> TQZ=ZY + L/2 或QZ=JD —q /2YZ=QZ + L/2 或YZ=JD + T—qJD=QZ + q/2 (校核用)1、基本知识里程:由线路起点算起,沿线路中线到该中线桩的距离。
表示方法:DK26+284.56 。
“+”号前为公里数,即26km,“ +”后为米数,即284.56m CK ——表示初测导线的里程。
DK ——表示定测中线的里程。
K ——表示竣工后的连续里程。
铁路和公路计算方法略有不同。
2、曲线点坐标计算(偏角法或弦切角法)已知条件:起点、终点及各交点的坐标。
1)计算ZY、YZ 点坐标通用公式:2)计算曲线点坐标①计算坐标方位角i 点为曲线上任意一点li为i点与ZY点里程之差当曲线左转时用“-”,右转时用“ +”② 计算弦长③ 计算曲线点坐标此时的已知数据为:ZY ( xZY , yZY 、?ZY- i 、C 。
根据坐标正算原理:切线支距法 这种方法是以曲线起点ZY 或终点YZ 为坐标原点,以切线为X 轴,以过原点的半径为丫轴,则圆曲线上任意一点的切线支距坐标可通过以下公式求得: 利用坐标平移和旋转,该点在大地平面直角坐标系中的坐标可由以下公式求得: 式中:a 为ZY(YZ)点沿线路前进方向的切线方位角。
当起点为ZY 时“土”取“ + ”,XO=X(ZY),YO=Y(ZY),曲线为左偏时应以yi=-yi 代入;当起点为YZ 时,“土”取“ -”,XO=X(YZ), YO=Y(YZ), 曲线为左偏时应以yi 二yi 代入;弧长所对的圆心角弦切角弦的方位角注:1、同弧所对的圆周角等于圆心角的一半2、切线性质圆的切线与过切点的半径相垂直3、弦切角定理弦切角等于它所夹弧上的圆周角4、弧长公式由L/ n R=n /180 °得L=n°n R/ 180 °=n n R/180二、缓和曲线(回旋线)缓和曲线主要有以下几类:A:对称完整缓和曲线(基本形)------切线长、Is1与ls2都相等。