ansys第四章_加载与求解
- 格式:pdf
- 大小:3.50 MB
- 文档页数:26
第四章2-D瞬态磁场分析4.1 什么是瞬态磁场分析瞬态磁场分析处理的既不是静态的也不是谐波的磁场,而是由电压、电流或外加场的随时间无规律变化所引起的磁场变化。
在瞬态磁场分析中我们所感兴趣的典型物理量是:·涡流·涡流致使的磁力·涡流致使的能量损耗瞬态磁场分析可以是线性,也可以是非线性。
4.2 2-D瞬态磁场分析中用到的单元在涡流区域,瞬态模型只能用矢量位方程描述。
只能用下列单元类型来模拟涡流区。
表12D实体单元表2通用电路单元4.3 创建2D瞬态磁场分析的物理环境如同ANSYS其他类型分析一样,瞬态磁分析要建立物理环境、建模、给模型区域赋属性、划分网格、加边界条件和载荷、求解、然后检察结果。
2D瞬态磁分析的大多数步骤都相同或相似于2D静态磁场分析步骤。
本章讨论2D瞬态磁场分析中需要特殊处理的部分。
关于2D瞬态磁场分析中如何设置GUI参考框、单元选项(KEYOPTs)、实常数、单位制与2D静态磁场分析相同,第2章已经作了详细描述。
当定义材料性质时,一般也采用与第2章中同样的方法。
4.4 建立模型,划分网格,指定属性《ANSYS建模与分网指南》详细介绍了建模过程。
建立了模型后,对每个模型区要指定属性,即指定在第一步中定义好的单元类型、单元选项、材料特性、实常数、单元坐标系等。
使用AATT或VATT命令或其等效路径来指定属性。
详见第2章静态磁场分析部分。
4.5 施加边界条件和励磁载荷在瞬态磁分析中,可将边界条件和载荷施加到实体模型上(关键点、线和面),也可以施加到有限元模型上(节点和单元)。
加载方式与第2章静态分析类似。
也可以用命令加载和施加边界条件,对2D 瞬态分析还可以用加载步选项。
本手册第16章对这些载荷步选择有详细描述。
根据定义,瞬态分析中的边界条件和载荷是时间的函数,实际分析计算时,要将“载荷-时间”曲线分解成合适的载荷步,“载荷-时间”曲线的每个"拐点"就是一个载荷步。
输气管道受力分析(ANSYS建模)任务和要求:按照输气管道的尺寸及载荷情况,要求在ANSYS中建模,完成整个静力学分析过程。
求出管壁的静力场分布。
要求完成问题分析、求解步骤、程序代码、结果描述和总结五部分。
所给的参数如下:材料参数:弹性模量E=200Gpa; 泊松比0.26;外径R₁=0.6m;内径R₂=0.4m;壁厚t=0.2m。
输气管体内表面的最大冲击载荷P为1Mpa。
四.问题求解(一).问题分析由于管道沿长度方向的尺寸远大于管道的直径,在计算过程中忽略管道的端面效应,认为在其长度方向无应变产生,即可将该问题简化为平面应变问题,选取管道横截面建立几何模型进行求解。
(二).求解步骤定义工作文件名选择Utility Menu→File→Chang Jobname 出现Change Jobname对话框,在[/FILNAM] Enter new jobname 输入栏中输入工作名LEILIN10074723,并将N ew log and eror file 设置为YES,单击[OK]按钮关闭对话框定义单元类型1)选择Main Meun→Preprocessor→Element T ype→Add/Edit/Delte命令,出现Element T ype 对话框,单击[Add]按钮,出现Library of Element types对话框。
2)在Library of Element types复选框选择S trctural、Solid、Quad 8node 82,在Element type reference number输入栏中出入1,单击[OK]按钮关闭该对话框。
3. 定义材料性能参数1)单击Main Meun→Preprocessor→Material Props→Material models出现Define Material Behavion 对话框。
选择依次选择S tructural、Linear、Elastic、Isotropic选项,出现Linear Isotropic Material Properties For Material Number 1对话框。
ANSYS基础教程—加载&求解关键字:ANSYS ANSYS常用命令力载荷求解器多重载荷步信息化调查找茬投稿收藏评论好文推荐打印社区分享本文主要讲述五种载荷类型中剩下一种载荷—集中载荷, 比如应力分析中的节点载荷,包括以下内容:集中载荷、节点坐标、求解器、多重载荷步。
概述·迄今为止, 我们已经知道了如何施加以下类型的载荷:–位移(DOF 约束)–压力和对流载荷(表面载荷)–重力(惯性载荷)–“结构”温度(体载荷)这些载荷占了五种载荷类型中的4种。
本文将讲述剩下的一种载荷—集中载荷, 比如应力分析中的节点载荷。
·将就以下问题进行讨论:A. 集中载荷B. 节点坐标C. 求解器D. 多重载荷步A. 力载荷·一个力就是可以在一个节点或关键点处施加的集中载荷(也可以叫“点载荷”)·和力一样,点载荷适合于线状模型,如梁,桁架,弹簧等。
在实体单元或壳单元中, 点载荷往往引起应力奇异,但当您忽略了附近的应力时,它仍然是可接受的。
记住,您可以通过选择来忽略附近施加了点载荷的单元。
·在左下角展示的二维实体单元中,我们注意到在加力位置出现最大应力SMAX (23,854)。
当在力附近的节点和单元不被选中时,SMAX (12,755)就会移到底部角点处,这是由于在该角点处约束引起的另一处应力奇异。
通过不选底部角点附近的节点和单元,您就可以在上孔附近得到预期的应力SMAX (8,098)。
注意,对于轴对称模型:·在全部360°范围内输入力的值。
·同样在全部360°范围内输出力的值(反力)。
·例如, 设想一个半径为r的圆柱形壳体边缘施加有P lb/in 的载荷。
把这个载荷施加在二维轴对称壳体模形上(比如SHELL51单元), 您就要施加一2πrP的力。
·施加一个力需要有以下信息:–节点号(您可以通过施取确定)–力的大小(单位应与您正在使用的单位系统保持一致)–力的方向—FX, FY, 或FZ使用:–Solution > -Loads-Apply > Force/Moment–或命令FK或F·问题:在哪一个坐标系中FX, FY, 和FZ 有说明?B.节点坐标系·所有的力,位移,和其它与方向有关的节点量都可以在节点坐标中说明。
ANSYS实体模型加载、求解及后处理步骤计算温度场步骤:1.定义标题和工作文件名1)定义标题:Utility Menu>Change Title2)定义工作文件名:Utility Menu>Change Jobname2.选择单元类型Main Menu>Proprecessor>Element Type>Add/Edit/Delete 出现一个“Element Type”对话框,点击“Add”,又出现一个“Library of Element Type”对话框,选择“Thermal Solid”,在右面的栏中选择“Brick 20Node 90”,单击“OK”。
3.定义材料属性1)设置材料密度Main Menu>Proprecessor>Material Props>Material Models 出现一个“Define Material Mode Behavior”对话框,在右面的对话框中双击“Thermal”,双击其下出现的“Density”,出现“Density for Material Number 1”的对话框,在“DENS”后面输入密度值;2)输入导热系数Main Menu>Proprecessor>Material Props>Material Models出现一个“Define Material Mode Behavior”对话框,在右面的对话框中双击“Thermal”,双击其下出现的“Conductivity”,双击“Isotropic”,出现一个“Conductivity for Material Number 1”的对话框,连续单击“Add Temperature”在“KXX”中输入导热系数值;3)定义比热在“Define Material Mode Behavior”对话框右面输入栏中,双击“Specific heat”,出现一个“Specific heat for Material Number 1”对话框,连续单击“Add Temperature”,在“Temperature”中输入温度,在“C”中输入与温度对应的比热系数;4)输入对流系数在“Define Material Mode Behavior”对话框右面输入栏中,双击“Convection or Film Coef”,出现一个“Convection or Film Coefficient for Material Number 1”对话框,在“Temperature”中输入温度,在“HF”后面输入与温度对应的对流数。
ANSYS 入门教程- 加载、求解及后处理技术C2011-01-09 14:22:45| 分类:ansys | 标签:|字号大中小订阅4.2 荷载步选项及设置一、载荷步与相关概念与荷载有关的几个术语或概念为:荷载步(Load Steps)荷载子步(Substeps)斜坡荷载(Ramped Loads)阶跃荷载(Stepped Loads)时间(Time)及时间步(Time step)平衡迭代(Equilibrium Iterations)。
与土木工程相同的概念如荷载工况和荷载组合等,将在后处理中予以介绍。
1. 荷载步、荷载子步和平衡迭代荷载步是为求解而定义的荷载配置,可根据荷载历程(时间和空间)在不同的荷载步内施加不同的荷载。
例如在结构线性静态分析中,可将结构自重和外荷载分两步施加到结构上,第一个荷载步可施加自重,第二个荷载步可施加外荷载等。
荷载子步是在某个荷载步之内的求解点(由程序定义荷载增量),不同分析中荷载子步有不同的目的。
例如在线性静态或稳态分析中,使用子步逐渐增加荷载可获得精确解;在瞬态分析中,使用子步可得到较小的积分步长,以满足瞬态时间积累法则;在谐分析中,使用子步可获得不同频率下的解。
平衡迭代是在给定子步下为了收敛而进行的附加计算。
在非线性分析中,平衡迭代作为一种迭代修正具有重要作用,迭代计算多次收敛后得到该荷载子步的解。
2. 斜坡荷载和阶跃荷载当在一个荷载步中设置一个以上子步时,就必须定义荷载是斜坡荷载或是阶跃荷载。
阶跃荷载指荷载全值施加在第一个荷载子步,其余荷载子步内荷载保持不变。
对于荷载步2 按要求是由荷载步 1 的全值荷载突然卸载,而程序实际上是从荷载步 1 的终点到荷载步2 的第一个子步内完成的,所以可增加荷载步2 的子步数(减小时间增量)以模拟突然卸载过程。
斜坡荷载指在每个荷载子步,荷载逐渐增加,在该荷载步结束时达到荷载全值。
载荷步内子步的荷载采用线性内插。
3. 时间及时间步在所有静态和稳态分析中,不管是否与时间“真实”相关,ANSYS 都使用时间作为跟踪参数。
ansys-LS-DYNA使用指南中文版本ansys-LS-DYNA使用指南中文版本_全文在线阅读请使用IE7或IE8预览本页,个别文件很大超过5M,请等几分钟后再下载!谢谢!ansys-LS-DYNA使用指南中文版本-第一章引言ANSYS/LS-DYNA将显式有限元程序LS-DYNA和ANSYS程序强大的前后处理结合起来。
用LS-DYNA的显式算法能快速求解瞬时大变形动力学、大变形和多重非线性准静态问题以及复杂的接触碰撞问题。
使用本程序,可以用ANSYS建立模型,用LS-DYNA做显式求解,然后用标准的ANSYS后处理来观看结果。
也可以在ANSYS和ANSYS-LS-DYNA之间传递几何信息和结果信息以执行连续的隐式-显式/显式-隐式分析,如坠落实验、回弹、及其它需要此类分析的应用。
1.1 显式动态分析求解步骤概述显式动态分析求解过程与ANSYS程序中其他分析过程类似,主要由三个步骤组成:1:建立模型(用PREP7前处理器)2:加载并求解(用SOLUTION处理器)3:查看结果(用POST1和POST26后处理器)本手册主要讲述了ANSYS/LS-DYNA显式动态分析过程的独特过程和概念。
没有详细论述上面的三个步骤。
如果熟悉ANSYS程序,已经知道怎样执行这些步骤,那么本手册将提供执行显式动态分析所需的其他信息。
如果从未用过ANSYS,就需通过以下两本手册了解基本的分析求解过程:·ANSYS Basic Analysis Guide·ANSYS Modeling and Meshing Guide使用ANSYS/LS-DYNA时,我们建议用户使用程序提供的缺省设置。
多数情况下,这些设置适合于所要求解的问题。
1.2 显式动态分析采用的命令在显式动态分析中,可以使用与其它ANSYS分析相同的命令来建立模型、执行求解。
同样,也可以采用ANSYS图形用户界面(GUI)中类似的选项来建模和求解。
第四章材料非线性分析4.1 材料非线性概述许多与材料有关的参数可以使结构刚度在分析期间改变。
塑性、非线性弹性、超弹性材料、混凝土材料的非线性应力—应变关系,可以使结构刚度在不同载荷水平下(以及在不同温度下)改变。
蠕变、粘塑性和粘弹性可以引起与时间、率、温度和应力相关的非线性。
膨胀可以引起作为温度、时间、中子流水平(或其他类似量)函数的应变。
ANSYS程序应可以考虑多种材料非线性特性:1.率不相关塑性指材料中产生的不可恢复的即时应变。
2.率相关塑性也可称之为粘塑性,材料的塑性应变大小将是加载速度与时间的函数。
3.材料的蠕变行为也是率相关的,产生随时间变化的不可恢复应变,但蠕变的时间尺度要比率相关塑性大的多。
4.非线性弹性允许材料的非线性应力应变关系,但应变是可以恢复的。
5.超弹性材料应力应变关系由一个应变能密度势函数定义,用于模拟橡胶、泡沫类材料,变形是可以恢复的。
6.粘弹性是一种率相关的材料特性,这种材料应变中包含了弹性应变和粘性应变。
7.混凝土材料具有模拟断裂和压碎的能力。
8.膨胀是指材料在中子流作用下的体积扩大效应。
4.2 塑性分析4.2.1 塑性理论简介许多常用的工程材料,在应力水平低于比例极限时,应力—应变关系为线性的。
超过这一极限后,应力—应变关系变成非线性,但却不一定是非弹性的。
以不可恢复的应变为特征的塑性,则在应力超过屈服点后开始出现。
由于屈服极限与比例极限相差很小,ANSYS程序在塑性分析中,假设这二个点相同,见图4-1。
图4-1 弹塑性应力-应变曲线塑性是一种非保守的(不可逆的),与路径相关的现象。
换句话说,荷载施加的顺序,以及什么时候发生塑性响应,影响最终求解结果。
如果用户预计在分析中会出现塑性响应,则应把荷载处理成一系列的小增量荷载步或时间步,以使模型尽可能附合荷载—响应路径。
最大塑性应变是在输出(Jobname.OUT)文件的子步信息中打印的。
在一个子步中,如果执行了大量的平衡迭代,或得到大于15%的塑性应变增量,则塑性将激活自动时间步选项[AUTOTS ](GUI :Main Menu>Solution> Sol'n Control:Basic Tab 或 MainMenu>Solution>Unabridged Menu> Time /Frequenc>Time and Substps)。
第一章实体建模第一节基本知识建模在ANSYS 系统中包括广义与狭义两层含义,广义模型包括实体模型和在载荷与边界条件下的有限元模型,狭义则仅仅指建立的实体模型与有限元模型。
建模的最终目的是获得正确的有限元网格模型,保证网格具有合理的单元形状,单元大小密度分布合理,以便施加边界条件和载荷,保证变形后仍具有合理的单元形状,场量分布描述清晰等。
一、实体造型简介1.建立实体模型的两种途径①利用ANSYS 自带的实体建模功能创建实体建模:②利用ANSYS 与其他软件接口导入其他二维或三维软件所建立的实体模型。
2.实体建模的三种方式(1) 自底向上的实体建模由建立最低图元对象的点到最高图元对象的体,即先定义实体各顶点的关键点,再通过关键点连成线,然后由线组合成面,最后由面组合成体。
(2) 自顶向下的实体建模直接建立最高图元对象,其对应的较低图元面、线和关键点同时被创建。
(3) 混合法自底向上和自顶向下的实体建模可根据个人习惯采用混合法建模,但应该考虑要获得什么样的有限元模型,即在网格划分时采用自由网格划分或映射网格划分。
自由网格划分时,实体模型的建立比较1e 单,只要所有的面或体能接合成一体就可以:映射网格划分时,平面结构一定要四边形或三边形的面相接而成。
二、ANSYS 的坐标系ANSYS 为用户提供了以下几种坐标系,每种都有其特定的用途。
①全局坐标系与局部坐标系:用于定位几何对象(如节点、关键点等)的空间位置。
②显示坐标系:定义了列出或显示几何对象的系统。
③节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。
④单元坐标系:确定材料特性主轴和单元结果数据的方向。
1.全局坐标系全局坐标系和局部坐标系是用来定位几何体。
在默认状态下,建模操作时使用的坐标系是全局坐标系即笛卡尔坐标系。
总体坐标系是一个绝对的参考系。
ANSYS 提供了4种全局坐标系:笛卡尔坐标系、柱坐标系、球坐标系、Y- 柱坐标系。
4种全局坐标系有相同的原点,且遵循右手定则,它们的坐标系识别号分别为:0是笛卡尔坐标系(cartesian), 1是柱坐标系(Cyliadrical) , 2 是球坐标系(Spherical),5 是Y-柱坐标系(Y-aylindrical),如图2-1 所示。