正弦函数、余弦函数的周期
- 格式:doc
- 大小:69.50 KB
- 文档页数:2
三角函数的周期与周期函数三角函数是数学中重要的函数之一,它具有很多特性和性质,其中之一就是周期性。
在本文中,我将探讨三角函数的周期以及周期函数的相关知识。
一、三角函数的周期1. 正弦函数的周期正弦函数(sin)是最常见的三角函数之一,其周期是2π,即sin(x + 2π) = sin(x)。
这意味着当自变量x增加2π时,正弦函数的值重复出现。
2. 余弦函数的周期余弦函数(cos)和正弦函数非常相似,其周期也是2π,即cos(x + 2π) = cos(x)。
与正弦函数不同的是,余弦函数在自变量增加2π时,其值也会重复出现。
3. 正切函数的周期正切函数(tan)是另一个常见的三角函数,其周期是π,即tan(x + π) = tan(x)。
当自变量x增加π时,正切函数的值会重新开始。
二、周期函数的性质1. 周期函数的定义周期函数是指当自变量增加一个周期时,函数值会重复出现的函数。
三角函数就是典型的周期函数。
2. 周期函数的图像特点周期函数的图像在一个周期内呈现出循环的形式。
对于正弦函数和余弦函数来说,它们的图像在一个周期内上升和下降,并且对称于坐标轴。
而正切函数的图像则在一个周期内交替地趋近于正无穷和负无穷。
3. 周期函数的性质周期函数具有一些特殊的性质。
例如,正弦函数具有奇对称性质,即sin(-x)=-sin(x),而余弦函数则具有偶对称性质,即cos(-x)=cos(x)。
这些性质使得周期函数在数学和物理中应用广泛。
三、常见的周期函数1. 方形波函数方形波函数是一种以方形波形进行周期性重复的函数。
它在每个周期内的一半时间内取常数值,另一半时间内则取相反的常数值。
2. 锯齿波函数锯齿波函数是一种以锯齿形状进行周期性重复的函数。
它在一个周期内不断上升或下降,然后在下一个周期重新从起点开始。
3. 指数函数指数函数也可以是周期函数,例如指数函数f(x) = e^x。
尽管指数函数本身并不是周期函数,但可以通过在指数函数中引入复数来使其变成周期函数。
三角函数的周期性练习题在数学中,三角函数是研究角的函数关系,常见的三角函数有正弦函数、余弦函数和正切函数。
这些函数在周期性方面具有重要的特点,本文将通过一些练习题来探讨三角函数的周期性。
1. 练习题1:正弦函数的周期正弦函数的基本周期是2π,即当自变量x增加2π时,正弦函数的值会重复出现。
考虑正弦函数y = sin(x),当x = π/6 时,求y的值。
解答:由于正弦函数的周期是2π,我们可以将x = π/6 用2π来表示,即x = π/6 + 2πn,其中n为整数。
代入正弦函数的表达式,得到y = sin(π/6 + 2πn)。
根据三角函数的性质,sin(π/6) 的值为1/2。
所以,y = sin(π/6 + 2πn) = 1/2,其中n为整数。
2. 练习题2:余弦函数的周期余弦函数的基本周期也是2π。
考虑余弦函数y = cos(x),当x = 3π/4 时,求y的值。
解答:同样地,我们可以将x = 3π/4 用2π来表示,即x = 3π/4 +2πn,其中n为整数。
代入余弦函数的表达式,得到y = cos(3π/4 + 2πn)。
根据三角函数的性质,cos(3π/4) 的值为-√2/2。
所以,y = cos(3π/4 + 2πn) = -√2/2,其中n为整数。
3. 练习题3:正切函数的周期正切函数的周期是π。
考虑正切函数y = tan(x),当x = π/3 时,求y的值。
解答:正切函数的周期是π,因此当x = π/3 + πn,其中n为整数时,正切函数的值会重复出现。
代入正切函数的表达式,得到y = tan(π/3 + πn)。
根据三角函数的性质,tan(π/3) 的值为√3。
所以,y = tan(π/3 + πn) = √3,其中n为整数。
通过这些练习题,我们可以看到三角函数的周期性特点。
正弦函数、余弦函数和正切函数在固定的周期内,它们的函数值会重复出现。
这一特性在实际问题的建模和解决中具有重要的应用价值。
三角函数的周期性与变化规律三角函数是高等数学中的重要知识点之一,它们具有独特的周期性和变化规律。
在本文中,我将详细介绍三角函数的周期性及其相关的变化规律,并对其应用进行一些实际案例分析。
一、三角函数的周期性-----------------------三角函数包括正弦函数、余弦函数和正切函数,它们都具有周期性。
正弦函数的周期为2π,即在每个2π的区间内,函数的值将重复。
这是因为正弦函数的定义是在单位圆上,随着自变量的增长,对应的函数值会不断重复。
余弦函数也具有相同的周期,即在每个2π的区间内,函数的值会周期性地重复。
与正弦函数不同的是,余弦函数在自变量增长时,对应的函数值与正弦函数有90°(或π/2)的相位差。
正切函数的周期为π,即在每个π的区间内,函数的值将周期性地重复。
正切函数的定义是通过正弦函数和余弦函数来计算的,因此也具有相同的周期性。
二、三角函数的变化规律-----------------------1. 正弦函数的变化规律正弦函数的取值范围在[-1, 1]之间,且当自变量为0时,函数取得最小值0。
当自变量增加时,正弦函数的值会先上升到最大值1,然后下降到最小值-1,再回升到0,不断重复这一过程。
2. 余弦函数的变化规律余弦函数的取值范围也在[-1, 1]之间,且当自变量为0时,函数取得最大值1。
当自变量增加时,余弦函数的值会先下降到最小值-1,然后上升到最大值1,再下降到0,也会不断重复这一过程。
3. 正切函数的变化规律正切函数的取值范围是整个实数轴,即它可以取任意实数值。
正切函数在某些自变量的取值下是无界的,例如在π/2和3π/2等点。
当自变量增加时,正切函数的值会在相邻的两个无界点之间不断变换,呈现出周期性的特点。
三、三角函数的应用实例-----------------------三角函数的周期性和变化规律在物理学、工程学等领域中有广泛的应用。
下面将以振动和电路分析为例,说明三角函数在实际问题中的应用。
初中数学正弦函数和余弦函数的周期是多少正弦函数和余弦函数都是周期函数,其周期是指函数图像在水平方向上重复出现的最小单位长度。
下面我将详细介绍正弦函数和余弦函数的周期。
1. 正弦函数的周期:正弦函数的周期是360°或2π弧度。
也就是说,正弦函数的图像在水平方向上每隔360°(或2π弧度)就会重复出现一次。
图像示意:```2π 4π 6π 8π│ │ │ │────────│──────────│──────────│──────────│───────│ │ │ │```在上面的图像中,每个周期的长度为2π,也就是一个完整的圆周。
正弦函数的图像在0°到360°之间重复出现。
2. 余弦函数的周期:余弦函数的周期也是360°或2π弧度。
与正弦函数类似,余弦函数的图像在水平方向上每隔360°(或2π弧度)就会重复出现一次。
图像示意:```2π 4π 6π 8π│ │ │ │────────│──────────│──────────│──────────│───────│ │ │ │```在上面的图像中,每个周期的长度为2π,也就是一个完整的圆周。
余弦函数的图像在0°到360°之间重复出现。
需要注意的是,正弦函数和余弦函数的周期是相同的,这是由它们的定义和性质决定的。
它们的周期性质在解决三角函数相关问题和图像绘制中非常重要,也是进一步学习三角函数和应用数学的基础。
如果要计算其他角度范围内的正弦和余弦值,可以利用周期性质进行换算。
例如,sin(420°)的值可以通过将420°减去一个周期(360°)得到sin(60°)的值,因为它们的正弦值相等。
这样,我们可以利用已知角度范围内的正弦和余弦值来计算其他角度的函数值。
通过了解正弦函数和余弦函数的周期,我们可以更好地理解它们的图像特点和变化规律,从而更好地应用于解决各种数学问题。
初中数学正弦函数和余弦函数的周期是多少正弦函数和余弦函数的周期都是2π。
在本文中,我们将详细解释为什么这两个三角函数的周期是2π,并提供一些例子来帮助你更好地理解。
首先,让我们看看正弦函数的周期是如何得出的。
正弦函数的定义是sin(x) = y,其中x是自变量(通常表示角度),y是正弦函数的值。
我们知道,正弦函数在[0, 2π]的范围内是一个完整的周期,即sin(x) = sin(x + 2π)。
这意味着当自变量增加2π时,正弦函数的值将重复。
例如,考虑正弦函数在[0, 2π]范围内的图像。
当x = 0时,sin(0) = 0;当x = π/2时,sin(π/2) = 1;当x = π时,sin(π) = 0;当x = 3π/2时,sin(3π/2) = -1;当x = 2π时,sin(2π) = 0。
我们可以看到,当x增加2π时,正弦函数的值重新回到原来的值。
因此,正弦函数的周期是2π。
接下来,让我们来看看余弦函数的周期是如何得出的。
余弦函数的定义是cos(x) = y,其中x 是自变量(通常表示角度),y是余弦函数的值。
与正弦函数类似,余弦函数在[0, 2π]的范围内也是一个完整的周期,即cos(x) = cos(x + 2π)。
当自变量增加2π时,余弦函数的值也会重复。
例如,考虑余弦函数在[0, 2π]范围内的图像。
当x = 0时,cos(0) = 1;当x = π/2时,cos(π/2) = 0;当x = π时,cos(π) = -1;当x = 3π/2时,cos(3π/2) = 0;当x = 2π时,cos(2π) = 1。
同样地,当x增加2π时,余弦函数的值重新回到原来的值。
因此,余弦函数的周期也是2π。
综上所述,正弦函数和余弦函数的周期都是2π。
这意味着在[0, 2π]范围内的正弦函数和余弦函数的图像将重复出现。
通过了解这个周期性质,我们可以更好地理解和应用正弦函数和余弦函数在数学和物理中的各种问题。
三角函数的周期性与奇偶性三角函数是数学中非常重要的一类函数,包括正弦函数sin(x),余弦函数cos(x),正切函数tan(x)等。
这些函数在数学、物理、工程等领域中有广泛的应用。
其中,周期性和奇偶性是三角函数的两个重要性质,下面将详细讨论这两个性质。
一、周期性1. 正弦函数sin(x)和余弦函数cos(x)的周期性:正弦函数sin(x)和余弦函数cos(x)都是周期函数,它们的周期都为2π。
也就是说,对于任意实数x,有sin(x+2π) = sin(x),cos(x+2π) =cos(x)。
这意味着当自变量x增加2π或减少2π时,函数值不变,即函数呈现出周期性的变化规律。
这样的周期性特点使得正弦函数和余弦函数在很多问题中具有重要的意义。
2. 正切函数tan(x)的周期性:正切函数tan(x)也是一个周期函数,它的周期为π。
也就是说,对于任意实数x,有tan(x+π) = tan(x)。
这意味着当自变量x增加π或减少π时,函数值保持不变。
需要注意的是,正切函数在一些特殊点(如π/2,3π/2等)处不定义,因为在这些点上正切函数的值会趋于无穷大,即函数的图像会有垂直渐进线。
二、奇偶性1. 正弦函数sin(x)的奇偶性:正弦函数sin(x)是一个奇函数,它的图像关于原点对称。
也就是说,对于任意实数x,有sin(-x) = -sin(x)。
这意味着当自变量x取相反数时,函数值的相反数与原来的函数值相等,即函数的图像关于y轴对称。
2. 余弦函数cos(x)的奇偶性:余弦函数cos(x)是一个偶函数,它的图像关于y轴对称。
也就是说,对于任意实数x,有cos(-x) = cos(x)。
这意味着当自变量x取相反数时,函数值保持不变,即函数的图像关于y轴对称。
3. 正切函数tan(x)的奇偶性:正切函数tan(x)既不是奇函数也不是偶函数,它的图像既没有关于原点的对称性,也没有关于y轴的对称性。
但是,正切函数有一个特殊的奇偶性质,即tan(-x) = -tan(x)。
三角函数的周期性及其应用三角函数是数学中重要的概念之一,它具有周期性质,即在一定范围内,函数值会重复出现。
本文将探讨三角函数的周期性及其在实际问题中的应用。
一、正弦函数的周期性正弦函数是最基本的三角函数之一,记作sin(x)。
它的定义域为实数集合,值域为[-1,1]。
我们可以观察到,正弦函数在[0,2π]区间内呈现周期性,即在这个范围内,函数值会重复出现。
具体来说,在[0,2π]区间内,sin(x)的图像从0递增至最大值1,然后再递减至最小值-1,最后再回到0。
类似地,在[2π,4π]、[4π,6π]等区间内,sin(x)的图像也会重复出现相同的变化规律。
二、余弦函数的周期性余弦函数是另一个重要的三角函数,记作cos(x)。
与正弦函数类似,余弦函数也在一定范围内呈现周期性。
在[0,2π]区间内,cos(x)的图像从最大值1递减至最小值-1,然后再递增至最大值1,最后再回到1。
在其他区间内,余弦函数的图像也会以相同的方式重复出现。
三、三角函数的应用三角函数的周期性在实际问题中有广泛的应用。
以下是其中几个常见的应用领域:1. 物理学:三角函数的周期性在描述波动现象中起到重要的作用。
例如,正弦函数可以用来描述声音的频率和振幅,余弦函数可以用来描述光的波动。
2. 电工电子学:交流电流和交流电压的变化也可以利用三角函数来描述。
正弦函数可以描述电流和电压的周期性变化,而余弦函数则可以描述相位差。
3. 统计学:三角函数可以应用于周期性数据的分析和预测。
例如,通过对历史天气数据的正弦曲线拟合,可以预测未来几天的气温变化趋势。
4. 工程学:三角函数在工程计算、机械振动等方面也有广泛的应用。
例如,在建筑设计中,通过正弦函数可以描述建筑物受地震等力的变形情况。
总结:三角函数具有周期性质,如正弦函数和余弦函数,在一定范围内函数值会重复出现。
这种周期性在物理学、电工电子学、统计学和工程学等领域中都有广泛的应用。
了解三角函数的周期性及其应用,有助于帮助我们理解和解决实际问题。
sin cos tan 三角函数值表在数学中,三角函数是一种非常常见且重要的函数类型,其中最常见的三个三角函数分别是正弦函数(sin)、余弦函数(cos)和正切函数(tan)。
这三个函数在解决各种数学问题中起着至关重要的作用,因此熟悉它们的数值表是非常有益的。
首先,我们来看正弦函数(sin)。
正弦函数是一个周期函数,其值在每个周期内都在-1到1之间变化。
在单位圆上,正弦函数的值与角度的正弦值相对应。
下面是一些常见角度对应的正弦值:0度:030度:0.545度:√2/260度:√3/290度:1这些值是在角度制下给出的,当然我们也可以将角度转换为弧度来使用正弦函数。
接下来是余弦函数(cos)。
余弦函数也是一个周期函数,其值同样在-1到1之间变化。
在单位圆上,余弦函数的值与角度的余弦值相对应。
以下是一些常见角度对应的余弦值:0度:130度:√3/245度:√2/260度:0.590度:0与正弦函数相似,余弦函数的值也可以根据需要转换为弧度制。
最后是正切函数(tan)。
正切函数是正弦函数和余弦函数的比值,其值可以是任何实数。
在单位圆上,正切函数的值与角度的正切值相对应。
以下是一些常见角度对应的正切值:0度:030度:√3/345度:160度:√390度:Undefined需要注意的是,在90度时,正切函数的值没有定义,因为在这个角度下正弦函数为1而余弦函数为0,导致分母为0。
通过了解这些三角函数值的表,我们可以更好地理解三角函数的性质和用途。
在数学问题中,三角函数常常被用于描述角度和边长之间的关系,解决各种几何和物理问题。
因此,熟练掌握三角函数值表可以帮助我们更快更准确地解决这些问题。
总的来说,正弦函数、余弦函数和正切函数是数学中不可或缺的重要工具,它们的值表对我们理解和应用这些函数起着关键作用。
通过反复练习和应用,我们可以更加熟练地运用三角函数解决各种问题,提高数学水平和解题效率。
愿每位数学爱好者都能够善于利用三角函数值表,掌握这一重要数学工具。
三角函数的周期性三角函数是我们在学习高中数学时必修的一门课程。
在三角函数中,周期性是一个重要的概念。
周期性是指函数在一定范围内的值有规律地重复出现。
在三角函数中,有三种函数具有周期性,它们分别是正弦函数、余弦函数和正切函数。
正弦函数的周期性正弦函数的周期性是指在一定范围内,正弦函数的值会按照一定的规律循环出现。
正弦函数的定义域是实数集,值域是闭区间[-1,1]。
正弦函数的图像是一条连续的波形,它的形状是上下有限的缓慢起伏的波浪线。
正弦函数的周期是2π,即在一个周期内,正弦函数的值会从1降到-1,再从-1升到1。
如果我们对正弦函数进行平移和拉伸,则周期会发生变化。
余弦函数的周期性余弦函数与正弦函数非常相似,它们的周期相同,都是2π。
余弦函数的定义域是实数集,值域是闭区间[-1,1]。
余弦函数的图像也是一条连续的波形,形状上下有限的缓慢起伏的波浪线。
余弦函数的周期与正弦函数的周期相同,但是它们的波形有所不同。
余弦函数的波形是将正弦函数的波形上下翻转再向左平移π/2个单位,即余弦函数的波形是正弦函数波形上下翻转,再向左移动π/2个单位。
正切函数的周期性正切函数是另一种具有周期性的三角函数。
正切函数的定义域是所有不为π/2+ kπ,k∈Z的实数,值域是实数集。
正切函数的图像是一条不连续的波形,它在每个周期内重复出现。
正切函数的周期是π,即在一个周期内,正切函数的值会从0降到-∞,再从-∞升到0,然后从0升到∞,最后再从∞降到0。
正切函数在定义域内存在无限个不连续点,因此它的图像是由一条条的线段组成,每个线段的斜率为正或负无穷。
三角函数的周期性在数学中有着广泛的应用。
它们除了可以用来描述波的传播、音乐和图形外,还可以用来描述周期性运动、波动和天文学等领域中的现象。
周期性是三角函数的一个特性,在实际问题中经常有用的信息,了解三角函数的周期性可以帮助我们更好地分析和解决实际问题。
总之,在学习三角函数时,我们需要深入理解周期性的概念,掌握正弦函数、余弦函数和正切函数的周期,为日后更深入地研究三角函数打下良好的基础。
三角函数的性质知识点总结三角函数是数学中重要的一部分,主要涉及到正弦函数、余弦函数和正切函数。
它们在数学、物理、工程等学科中都有广泛的应用。
本文将对三角函数的性质进行总结,包括周期性、对称性、函数值范围等方面的内容。
一、正弦函数的性质1. 周期性:正弦函数的周期是2π,即sin(x+2π) = sin(x),其中x表示角度。
2. 对称性:正弦函数关于原点对称,即sin(-x) = -sin(x)。
3. 函数值范围:正弦函数的函数值范围在[-1, 1]之间。
二、余弦函数的性质1. 周期性:余弦函数的周期也是2π,即cos(x+2π) = cos(x)。
2. 对称性:余弦函数关于y轴对称,即cos(-x) = cos(x)。
3. 函数值范围:余弦函数的函数值范围同样在[-1, 1]之间。
三、正切函数的性质1. 周期性:正切函数的周期是π,即tan(x+π) = tan(x),其中x表示角度。
2. 对称性:正切函数关于原点对称,即tan(-x) = -tan(x)。
3. 函数值范围:正切函数的函数值范围是整个实数集。
1. 正弦函数和余弦函数的特殊角度值如下: sin(0) = 0, cos(0) = 1;sin(π/6) = 1/2, cos(π/6) = √3/2;sin(π/4) = √2/2, cos(π/4) = √2/2;sin(π/3) = √3/2, cos(π/3) = 1/2;sin(π/2) = 1, cos(π/2) = 0;2. 正切函数的特殊角度值如下:tan(0) = 0;tan(π/4) = 1;tan(π/3) = √3;tan(π/2) 没有定义。
五、三角函数的基本关系1. 正切函数与正弦函数和余弦函数的关系: tan(x) = sin(x) / cos(x)。
2. 正弦函数和余弦函数的关系:sin^2(x) + cos^2(x) = 1。
1. 正弦函数和余弦函数的图像是波形振动,具有周期性和对称性。
正弦函数余弦函数的性质(单调性)正弦函数和余弦函数是高中数学中常见的函数,它们具有许多重要的性质。
单调性是其中之一。
本文将重点介绍正弦函数和余弦函数的单调性,希望能对读者加深对这两个函数的理解。
我们先来介绍一下正弦函数和余弦函数的定义。
正弦函数记作y=sin(x),其中x表示自变量,y表示函数值。
余弦函数记作y=cos(x),同样x表示自变量,y表示函数值。
这两个函数都是周期函数,其周期为2π。
下面我们分别来介绍它们的单调性。
正弦函数的单调性:正弦函数在每一个周期内都是先增后减或者先减后增的。
具体来说,当自变量x增大时(在0到π/2之间),y=sin(x)也逐渐增大,当自变量x继续增大(在π/2到π之间),y=sin(x)逐渐减小,当自变量x继续增大(在π到3π/2之间),y=sin(x)又逐渐增大,以此类推。
从图上来看,正弦函数的图像会呈现出一种周期性的波动,这体现了正弦函数的周期性。
我们可以得出结论,正弦函数在每一个周期内都是先增后减或者先减后增的。
正弦函数和余弦函数在各自的周期内的单调性是不同的。
正弦函数是先增后减或者先减后增的,而余弦函数是先减后增或者先增后减的。
这也是因为正弦函数和余弦函数的定义和性质不同所导致的。
通过对这两个函数的单调性进行分析,可以帮助我们更好地理解它们的规律和特点。
除了单调性以外,正弦函数和余弦函数还有许多其他重要的性质,比如周期性、奇偶性、图像特点等。
这些性质都是我们在学习和应用这两个函数时需要重点关注的内容。
希望通过本文的介绍,读者能够对正弦函数和余弦函数的单调性有更清晰的认识,并能够更好地应用这些知识解决实际问题。
1 正弦、余弦函数的周期性与奇偶性学习目标:1.了解周期函数、周期、最小正周期的定义.2.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的周期.(重点)3.掌握函数y =sin x ,y =cos x 的奇偶性,会判断简单三角函数的奇偶性.(重点、易混点)[自 主 预 习·探 新 知]1.函数的周期性(1)周期函数:对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么这个函数的周期为T .(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.2.正弦函数、余弦函数的周期性和奇偶性1.思考辨析(1)若sin ⎝ ⎛⎭⎪⎫2π3+π6=sin π6,则2π3是函数y =sin x 的一个周期.( )(2)所有的周期函数都有最小正周期.( ) (3)函数y =sin x 是奇函数.( )[解析] (1)×.因为对任意x ,sin ⎝ ⎛⎭⎪⎫2π3+x 与sin x 并不一定相等.(2)×.不是所有的函数都有最小正周期,如函数f (x )=5是周期函数,就不存在最小正周期.(3)×.函数y =sin x 的定义域为{x |2k π≤x ≤2k π+π,k ∈Z },不关于原点对称,故非奇非偶.[答案] (1)× (2)× (3)× 2.函数y =2sin ⎝ ⎛⎭⎪⎫2x +π2是( )A .周期为π的奇函数B .周期为π的偶函数C .周期为2π的奇函数D .周期为2π的偶函数B [y =2sin ⎝ ⎛⎭⎪⎫2x +π2=2cos 2x ,它是周期为π的偶函数.]3.若函数y =f (x )是以2为周期的函数,且f (5)=6,则f (1)=________. 6 [由已知得f (x +2)=f (x ), 所以f (1)=f (3)=f (5)=6.][合 作 探 究·攻 重 难](1)y =sin ⎝ ⎛⎭⎪⎫2x +π4;(2)y =|sin x |. 【优质试题:84352085】[思路探究] (1)法一:寻找非零常数T ,使f (x +T )=f (x )恒成立. 法二:利用y =A sin(ωx +φ)的周期公式计算. (2)作函数图象,观察出周期. [解] (1)法一:(定义法)y =sin ⎝ ⎛⎭⎪⎫2x +π4=sin ⎝ ⎛⎭⎪⎫2x +π4+2π=sin ⎣⎢⎡⎦⎥⎤2(x +π)+π4,所以周期为π.法二:(公式法)y =sin ⎝ ⎛⎭⎪⎫2x +π4中ω=2,T =2πω=2π2=π.(2)作图如下:观察图象可知周期为π.[规律方法] 求三角函数周期的方法: (1)定义法:即利用周期函数的定义求解.(2)公式法:对形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(A ,ω,φ是常数,A ≠0,ω≠0)的函数,T =2π|ω|.(3)图象法:即通过观察函数图象求其周期.提醒:y =|A sin(ωx +φ)|(A ≠0,ω≠0)的最小正周期T =π|ω|. [跟踪训练]1.利用周期函数的定义求下列函数的周期. (1)y =cos 2x ,x ∈R ; (2)y =sin ⎝ ⎛⎭⎪⎫13x -π4,x ∈R .[解] (1)因为cos 2(x +π)=cos(2x +2π)=cos 2x ,由周期函数的定义知,y =cos 2x 的周期为π.(2)因为sin ⎣⎢⎡⎦⎥⎤13(x +6π)-π4=sin ⎝ ⎛⎭⎪⎫13x +2π-π4=sin ⎝ ⎛⎭⎪⎫13x -π4,由周期函数的定义知,y =sin ⎝ ⎛⎭⎪⎫13x -π4的周期为6π.(1)f (x )=sin ⎝ ⎛⎭⎪⎫-12x +π2;(2)f (x )=lg(1-sin x )-lg(1+sin x ); (3)f (x )=1+sin x -cos 2x1+sin x .[思路探究][解] (1)显然x ∈R ,f (x )=cos 12x ,∵f (-x )=cos ⎝ ⎛⎭⎪⎫-12x =cos 12x =f (x ),∴f (x )是偶函数.(2)由⎩⎨⎧1-sin x >0,1+sin x >0,得-1<sin x <1,解得定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ∈R 且x ≠k π+π2,k ∈Z , ∴f (x )的定义域关于原点对称. 又∵f (x )=lg(1-sin x )-lg(1+sin x ), ∴f (-x )=lg [1-sin(-x )]-lg [1+sin(-x )] =lg(1+sin x )-lg(1-sin x )=-f (x ), ∴f (x )为奇函数.(3)∵1+sin x ≠0,∴sin x ≠-1, ∴x ∈R 且x ≠2k π-π2,k ∈Z . ∵定义域不关于原点对称, ∴该函数是非奇非偶函数.[规律方法] 1.判断函数奇偶性应把握好的两个方面: 一看函数的定义域是否关于原点对称; 二看f (x )与f (-x )的关系.2.对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式化简后再判断.提醒:研究函数性质应遵循“定义域优先”的原则. [跟踪训练]2.判断下列函数的奇偶性: (1)f (x )=cos ⎝ ⎛⎭⎪⎫32π+2x +x 2sin x ;(2)f (x )=1-2cos x +2cos x -1.【优质试题:84352086】[解] (1)f (x )=sin 2x +x 2sin x ,又∵x ∈R ,f (-x )=sin(-2x )+(-x )2sin(-x ) =-sin 2x -x 2sin x =-f (x ), ∴f (x )是奇函数.(2)由⎩⎨⎧1-2cos x ≥0,2cos x -1≥0,得cos x =12,∴f (x )=0,x =2k π±π3,k ∈Z , ∴f (x )既是奇函数又是偶函数.1.试举例说明哪些三角函数具有奇偶性?提示:奇函数有y =2sin x ,y =sin 2x ,y =5sin 2x ,y =sin x cos x 等.偶函数有y =cos 2x +1,y =3cos 5x ,y =sin x ·sin 2x 等.2.若函数y =f (x )是周期T =2的周期函数,也是奇函数,则f (2 018)的值是多少?提示:f (2 018)=f (0+1 009×2)=f (0)=0.(1)下列函数中是奇函数,且最小正周期是π的函数是( )【优质试题:84352087】A .y =cos|2x |B .y =|sin 2x |C .y =sin ⎝ ⎛⎭⎪⎫π2+2xD .y =cos ⎝ ⎛⎭⎪⎫3π2-2x(2)定义在R 上的函数f (x )既是偶函数,又是周期函数,若f (x )的最小正周期为π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,则f ⎝ ⎛⎭⎪⎫5π3等于( )A .-12 B.12 C .-32D.32[思路探究] (1)先作出选项A ,B 中函数的图象,化简选项C 、D 中函数的解析式,再判断奇偶性、周期性.(2)先依据f (x +π)=f (x )化简f ⎝ ⎛⎭⎪⎫5π3;再依据f (x )是偶函数和x ∈⎣⎢⎡⎦⎥⎤0,π2,f (x )=sin x 求值.(1)D (2)D [(1)y =cos|2x |是偶函数,y =|sin 2x |是偶函数,y =sin ⎝ ⎛⎭⎪⎫π2+2x =cos 2x 是偶函数,y =cos ⎝ ⎛⎭⎪⎫3π2-2x =-sin 2x 是奇函数,根据公式得其最小正周期T =π.(2)f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫5π3-π=f ⎝ ⎛⎭⎪⎫2π3 =f ⎝ ⎛⎭⎪⎫2π3-π=f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3 =sin π3=32.]母题探究:1.若本例(2)中的“偶函数”改为“奇函数”,“π”改为“11π12”,其他条件不变,结果如何?[解] f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫5π3-11π12×2=f ⎝ ⎛⎭⎪⎫-π6=-f ⎝ ⎛⎭⎪⎫π6=-sin π6=-12.2.若本例(2)中的“π”改为“π2”,其他条件不变,求f ⎝ ⎛⎭⎪⎫-176π.[解] ∵f (x )的周期为π2,且为偶函数, ∴f ⎝ ⎛⎭⎪⎫-176π=f ⎝ ⎛⎭⎪⎫-3π+π6 =f ⎝ ⎛⎭⎪⎫-6×π2+π6=f ⎝ ⎛⎭⎪⎫π6. 又∵f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π2-π3=f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32, ∴⎝ ⎛⎭⎪⎫-176π=32. [规律方法] 1.三角函数周期性与奇偶性的解题策略探求三角函数的周期,常用方法是公式法,即将函数化为y =A sin(ωx +φ)或y =A cos(ωx +φ)的形式,再利用公式求解.2.与三角函数奇偶性有关的结论(1)要使y =A sin(ωx +φ)(Aω≠0)为奇函数,则φ=k π(k ∈Z ); (2)要使y =A sin(ωx +φ)(Aω≠0)为偶函数,则φ=k π+π2(k ∈Z ); (3)要使y =A cos(ωx +φ)(Aω≠0)为奇函数,则φ=k π+π2(k ∈Z ); (4)要使y =A cos(ωx +φ)(Aω≠0)为偶函数,则φ=k π(k ∈Z ).[当 堂 达 标·固 双 基]1.如图所示的是定义在R 上的四个函数的图象,其中不是周期函数的图象的是()D [观察图象易知,只有D 选项中的图象不是周期函数的图象.] 2.函数f (x )=2sin 2x 的奇偶性为( ) A .奇函数 B .偶函数 C .既奇又偶函数D .非奇非偶函数A [f (x )=2sin 2x 的定义域为R ,f (-x )=2sin 2(-x )=-2sin 2x =-f (x ),所以f (x )是奇函数.]3.函数f (x )=3sin ⎝ ⎛⎭⎪⎫πx 2-π4,x ∈R 的最小正周期为________.4 [由已知得f (x )的最小正周期T =2ππ2=4.]4.若函数y =f (x )是定义在R 上的周期为3的奇函数且f (1)=3,则f (5)=________.【优质试题:84352088】-3[由已知得f(x+3)=f(x),f(-x)=-f(x),所以f(5)=f(2)=f(-1)=-f(1)=-3.]5.判断下列函数的奇偶性:(1)f(x)=-2cos 3x;(2)f(x)=x sin(x+π). 【优质试题:84352089】[解](1)f(-x)=-2cos 3(-x)=-2cos 3x=f(x),所以f(x)=-2cos 3x为偶函数.(2)f(x)=x sin(x+π)=-x sin x,所以f(-x)=x sin(-x)=-x sin x=f(x),故函数f(x)为偶函数.。
数学函数6个周期性公式推导数学函数的周期性是指函数在一定区间内以其中一种规律重复出现的性质。
下面将推导出六个常见的周期性函数公式,即正弦函数、余弦函数、正切函数、指数函数、对数函数和常函数的周期性公式:1.正弦函数的周期性公式推导:正弦函数的定义为f(x) = sin(x),其中x为实数。
根据正弦函数的属性,它的最小正周期为2π,即sin(x) = sin(x + 2π)。
进一步推导,可以得到sin(x) = sin(x + 2πk),其中k为任意整数。
因此,正弦函数的周期性公式为sin(x) = sin(x + 2πk),k为整数。
2.余弦函数的周期性公式推导:余弦函数的定义为f(x) = cos(x),其中x为实数。
根据余弦函数的属性,它的最小正周期也为2π,即cos(x) = cos(x + 2π)。
进一步推导,可以得到cos(x) = cos(x + 2πk),其中k为任意整数。
因此,余弦函数的周期性公式为cos(x) = cos(x + 2πk),k为整数。
3.正切函数的周期性公式推导:正切函数的定义为f(x) = tan(x),其中x为实数。
根据正切函数的属性,它的最小正周期为π,即tan(x) = tan(x + π)。
进一步推导,可以得到tan(x) = tan(x + πk),其中k为任意整数。
因此,正切函数的周期性公式为tan(x) = tan(x + πk),k为整数。
4.指数函数的周期性公式推导:指数函数的定义为f(x)=a^x,其中a为正实数、且a≠1,x为实数。
指数函数并没有严格的周期性,但它满足更一般的周期性性质,即f(x+T)=f(x),其中T为任意正数。
因此,指数函数的周期性公式为f(x+T)=f(x),其中T为正数。
5.对数函数的周期性公式推导:对数函数的定义为f(x) = logₐ(x),其中a为正实数、且a≠1,x为正实数。
对数函数并没有严格的周期性,但它满足更一般的周期性性质,即f(x + T) = f(x),其中T为任意正数。
三角函数性质及三角函数公式总结一。
三角函数的性质正弦函数 y = sin x 的定义域为实数集,值域为 [-1.1],函数在每个周期内都呈现出相同的形状,即具有周期性,周期为T = 2π。
在[0.π] 区间内,正弦函数单调递增,在[π。
2π] 区间内单调递减。
正弦函数是奇函数,即满足 sin(-x) = -sin(x),同时具有对称性,即满足sin(π-x) = sin(x)。
余弦函数 y = cos x 的定义域为实数集,值域为 [-1.1],函数在每个周期内都呈现出相同的形状,即具有周期性,周期为T = 2π。
在[0.π/2] 区间内,余弦函数单调递减,在[π/2.π] 区间内单调递增。
余弦函数是偶函数,即满足 cos(-x) = cos(x),同时具有对称性,即满足cos(π-x) = -cos(x)。
正切函数 y = tan x 的定义域为实数集,值域为 R,函数在每个周期内都呈现出相同的形状,即具有周期性,周期为 T = π。
在(kπ - π/2.kπ + π/2) 区间内,正切函数单调递增或递减。
正切函数是奇函数,即满足 tan(-x) = -tan(x),但没有对称轴。
二。
三角函数诱导公式三角函数诱导公式的作用是把求任意角的三角函数值,转化为求到2π角的三角函数值,或者把负角的三角函数转化为正角的三角函数。
例如,可以把180°~270°间的角的三角函数转化为锐角三角函数,或者把90°~180°间的角的三角函数转化为锐角三角函数。
同时,三角函数诱导公式还可以把任意角的正弦余弦函数进行转化。
三。
其他常用三角函数公式最基本的三角公式是 sin²x + cos²x = 1.两角和的余弦公式是 cos(a+b) = cosacosb - sinasinb。
两角差的余弦公式是 cos(a-b) = cosacosb + sinasinb。
正弦余弦正切周期
正切函数的周期是π。
至于|sinx|的周期是π的解释:正弦函数的周期是2π,但取绝对值后,把负半周变为正半周,所以
|sinx|的周期也是π。
质问
如果碰上复合函数或者参数函数不就画不了了吗?我想知道有关定义上的或者代数上的解法谢谢!
追答
根据定义:对于函数f(x),如果存在一个不为零的常数t,使得定义域内的每个x,都满足f(x+t)=f(x),那么函数f(x)就叫周期函数,这个非零的常数t就叫做这个函数的周期。
在基本初等函数中,正弦函数、余弦函数和正弦函数都就是周期函数。
周期的计算。
如f(2x+t)=f(2x),那么t是不是这个函数的周期呢?不是!按照定义应该写成f(2x+t)=f[2(x+t/2)]=f(2x)后,才能判定周期,可知这个函数的周期是t/2。
这就是根据定义来计算。
再例如,谋y=|sin2x|的周期,entitledf(x)=|sin2x|,则
f(π/2+x)=|sin(π/2+x)|=|sin(π+2x)|=|-sin2x|=|sin2x|=f(x)。
于是π/2就是函数的周期。
正弦函数、余弦函数的性质
【学习目标、细解考纲】
1.理解掌握什么是周期函数,函数的周期,最小正周期.
2.掌握正弦函数、余弦函数的周期性,周期,最小正周期.
3.掌握正弦函数,余弦函数的奇偶性、单调性.
4.会比较三角函数值的大小,会求三角函数的单调区间.
【知识梳理、双基再现】
f(x),__________________,那么f(x)叫做周期函数,_______叫这个函数的周期.
1.对于函数
2. _____________________叫做函数f(x)的最小正周期.
3.正弦函数,余弦函数都是周期函数,周期是_____________,最小正周期是___________.
4.由诱导公式__________________可知正弦函数是奇函数.由诱导公式___________________可知,余弦函数是偶函数.
5.正弦函数图象关于____________________对称,正弦函数是_____________.余弦函数图象关于________________对称,余弦函数是__________________.
6.正弦函数在每一个闭区间_________________上都是增函数,其值从-1增大到1;在每一个闭区间_________________上都是减函数,其值从1减少到-1.
7.余弦函数在每一个闭区间_________________上都是增函数,其值从-1增大到1;在每一个闭区间______________上都是减函数,其值从1减少到-1.
8.正弦函数当且仅当x=___________时,取得最大值1,当且仅当x=_________________时取得最小值-1.
9.余弦函数当且仅当x=______________时取得最大值1;当且仅当x=__________时取得最小值-1. 【小试身手、轻松过关】
1..正弦函数sinx
y=的周期是___________________________.
3
2.正弦函数sinx
y+
=的周期是_________________________.
3
=的周期是___________________________.
3.余弦函数y cos2x
4.函数y=sinx+1的最大值是______,最小值是______,y=-3cos2x的最大值是________,最小值是___.
21π54sin π45cos -π5
32sin π125cos )6
x 4cos(x)43sin(y ππ-++=5.y=-3cos2x 取得最大值时的自变量x 的集合是_________________.
6.函数y=sinx,y ≥ 时自变量x 的集合是_________________. 7.把下列三角函数值从小到大排列起来为:_____________________________
, , ,
【基础训练、锋芒初显】
1..函数y Asin(x )y Acos(x )ωϕωϕ=+=+或的周期与解析式中的_______无关,其周期为: ____.
2.函数x sin f (x)=是不是周期函数?若是,则它的周期是多少?
3.把下列各等式成立的序号写在后面的横线上。
①2cosx = ②3sinx 2= ③065sinx -x sin 2=+ ④5.0x cos 2= __________________________________________________________
4..不等式sinx ≥2
2-的解集是______________________. 5..函数x 2sin 2y =的奇偶数性为( ).
A. 奇函数
B. 偶函数 C .既奇又偶函数 D. 非奇非偶函数
6..下列函数在[,]2π
π上是增函数的是( )
A. y=sinx
B. y=cosx
C. y=sin2x
D. y=cos2x
【举一反三、能力拓展】
1.函数y=sin x 是周期函数吗?如果是,则周期是多少?
2.cosx sinx y +=是周期函数吗?如果是,则周期是多少?
3.函数c f(x)=(c 为常数)是周期函数吗?如果是,则周期是多少?
4.求函数 的周期、单调区间和最值.。