全等三角形的判定SAS典型例题
- 格式:docx
- 大小:118.38 KB
- 文档页数:6
全等三角形的判定(SSS )1、如图1,AB=AD ,CB=CD ,∠B=30°,∠BAD=46°,则∠ACD 的度数是()A.120°B.125°C.127°D.104°2、如图2,线段AD 与BC 交于点O ,且AC=BD ,AD=BC , 则下面的结论中不正确的是( ) A.△ABC ≌△BAD B.∠CAB=∠DBA C.OB=OC D.∠C=∠D3、在△ABC 和△A 1B 1C 1中,已知AB=A 1B 1,BC=B 1C 1,则补充条件____________,可得到△ABC ≌△A 1B 1C 1.4、如图3,AB=CD ,BF=DE ,E 、F 是AC 上两点,且AE=CF .欲证∠B=∠D ,可先运用等式的性质证明AF=________,再用“SSS ”证明______≌_______得到结论.5、如图,已知AB=CD ,AC=BD ,求证:∠A=∠D .6、如图,AC 与BD 交于点O ,AD=CB ,E 、F 是BD 上两点,且AE=CF ,DE=BF.请推导下列结论:⑴∠D=∠B ;⑵AE ∥CF .7、已知如图,A 、E 、F 、C 四点共线,BF=DE ,AB=CD.⑴请你添加一个条件,使△DEC ≌△BFA ;⑵在⑴的基础上,求证:DE ∥BF.全等三角形的判定(SAS)1、如图1,AB ∥CD ,AB=CD ,BE=DF ,则图中有多少对全等三角形( )A.3B.4C.5D.6C BAA.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD3、如图3,AD=BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( ) A.AB ∥CD B.AD ∥BC C.∠A=∠C D.∠ABC=∠CDA4、如图4,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD=________, 根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,已知△ABC 中,AB=AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC , ∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,∵____________________________, ∴△ABD ≌△ACD ( )6、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B.7、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?8、如图,在△ABC 和△DEF 中,B 、E 、F 、C ,在同一直线上,下面有4个条件,请你在其中选3个作为题设,余下的一个作为结论,写一个真命题,并加以证明.①AB=DE ; ②AC=DF ; ③∠ABC=∠DEF ; ④BE=CF.9、如图⑴,AB ⊥BD ,DE ⊥BD ,点C 是BD 上一点,且BC=DE ,CD=AB .⑴试判断AC 与CE 的位置关系,并说明理由.⑵如图⑵,若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第⑴问中AC 与BE 的位置关系还成立吗?(注意字母的变化)全等三角形(三)AAS 和ASA【知识要点】1.角边角定理(ASA ):有两角及其夹边对应相等的两个三角形全等.【典型例题】例1.如图,AB∥CD,AE=CF ,求证:AB=CD例2.如图,已知:AD=AE ,ABE ACD ∠=∠,求证:BD=CE.例3.如图,已知:ABD BAC D C ∠=∠∠=∠.,求证:OC=OD.例4.如图已知:AB=CD ,AD=BC ,O 是BD 中点,过O 点的直线分别交DA 和BC 的延长线于E ,F.求证:AE=CF.例5.如图,已知321∠=∠=∠,AB=AD.求证:BC=DE.例6.如图,已知四边形ABCD 中,AB=DC ,AD=BC ,点F 在AD 上,点E 在BC 上,AF=CE ,EF 的对角线BD 交于O ,请问O 点有何特征?A BDCE O 123AFDOBEC【经典练习】1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,',CC '∠=∠则△ABC 与△C B A ''' .2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠请补充一个条件,使△ABC≌DFE,补充的条件是 .3.在△ABC 和△C B A '''中,下列条件能判断△ABC 和△C B A '''全等的个数有( )①A A '∠=∠B B '∠=∠,C B BC ''= ②A A '∠=∠,B B '∠=∠,C A C A ''='③A A '∠=∠B B '∠=∠,C B AC ''= ④A A '∠=∠,B B '∠=∠,C A B A ''=' A . 1个 B. 2个 C. 3个D. 4个4.如图,已知MB=ND ,NDC MBA ∠=∠,下列条件不能判定是△ABM≌△CDN 的是( )A . NM ∠=∠B. AB=CD C . AM=CN D. AM∥CN5.如图2所示, ∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2 ②BE=CF ③△ACN≌△ABM ④CD=DN其中正确的结论是_________ _________。
全等三角形的判定训练题(SSS、SAS)判定定理1:简单的表示为:SSS数学语言:在△ABC和△A'B'C'中AC=A'C'(已知)BC=B'C'(已知)AB=A'B'(已知)∴△ABC≌△A'B'C'(SSS)1、若AB=CD,AC=DB,可以判定哪两个三角形全等?请证明。
2、△ABC中,AB=AC,AD是BC边上的中线,∠B与∠C有什么关系?请证明。
3、点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,则AB和DE有怎样的位置关系?请证明。
C4、已知AB=CD,BE=DF,AF=CE,则AB与CD有怎样的位置关系?5、如图,AC=DF,BC=EF,AD=BE,∠BAC=80o,∠F=60o,求∠ABC6、如图,AC=AD,BC=BD,∠1=35o,∠2=65o,求∠C1.1数学八年级上册同步练习:12.2.1三角形全等的判定SSS 37、如图,△ABC 中,AD=AE , BE=CD ,AB=AC ,说明△ABD ≌△ACE判定定理2: 简单的表示为:SAS 数学语言:在△ABC 和△A 'B 'C ' 中 AB=A 'B ' (已知) ∠B=∠B ' (已知)BC=B 'C '(已知) ∴△ABC ≌△A 'B 'C '(SSS ) 8、如图,已知AC ,BD 相交于O ,AO=DO ,BO=CO ,证明:∠A=∠D9.如图,AE 是,BAC 的平分线 AB=AC.证明 △ABD ≌△ACDCDE1 210、已知:如图,AB=AC,AD=AE,求证:BE=CD.11、如图,已知:点D、E在BC上,且BD=CE,AD=AE,∠1=∠2,求证:△ADB≌△AEC12、如图,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE,求证: BE=DC13、如图,点C是AB中点,CD∥BE,且CD=BE,试探究AD与CE的关系。
11.2 三角形全等的判定(SAS)◆自学检测测试点 SAS1.如图,∠1=∠2,若用“SAS”证明△ACB≌△BDA,还需要加上条件()A.AD=BC B.BD=AC C.∠D=∠C D.OA=OB2.不能判定△ABC≌△A′B′C′的条件是()A.AB=A′B′,BC=B′C′,∠B=∠B′B.∠B=135°,∠C′=135°,AB=B′C′,BC=C′A′C.AB=BC=CA,A′B′=B′C′=C′A′,∠A=∠A′D.AB=A′B′,AC=A′C′,∠A=∠A′=135°3.如图,点D在AB上,点E在AC上,且AD=AE,AB=AC,•若∠B=•20•°,•则∠C=_____.4.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.◆当堂检测一.必做题5.如图,∠1=∠2,BC=EF,那么需要补充一个直接条件________(•写出一个即可),才能使△ABC≌△DEF.(第5题) (第6题) (第7题)6.如图,已知AB=AE,AC=AD,只要找出∠____=∠_____或∠____=∠____,就可证得△_____≌△______.7.如图,AD=AE,BE=CD,∠1=∠2,则∠B=_____,图中有____对三角形全等,请写出来_______.8.如图,已知AB⊥BD于B,ED⊥BD于D,点C在BD上,AB=CD,BC=ED,则∠ACE=_______.9.如图,已知AB=AC,AD=AE,欲证△ABD≌△ACE,须补充的条件是()A.∠B=∠C B.∠D=∠E C.∠1=∠2 D.∠CAD=∠DAC10.如图,已知AD是△ABC的中线,在AD及其延长线上截取DE=DF,•连结CE,BF。
求证:BF∥CE.11.已知:如图,OP是∠AOC和∠BOD的平分线,OA=OC,OB=OD,•求证:AB=CD.12.已知:如图,AE=CF,AD∥BC,AD=CB,求证:△ADF≌△CBE.二.选做题13.(变式题)如图(1),A,B,C,D在同一直线上,AB=CD,DE∥AF,且DE=AF.•由上题结论可知:△AFC≌△DEB.探究:如果将BD沿着AD边的方向平行移动,如图(2),(3)时,•其余条件不变,结论是否成立,如果成立,请选择其中一个图形予以证明;如果不成立,•请说明理由.。
40 DC B A《三角形全等的判定(SAS)》课时作业设计一、填空题.1.如图4,若AO=DO,只需补充________就可以根据SAS判定△AOB≌△DOC.(4) (5) (6)2.如图5,已知AB=BD,则需要添加条件________,就可以根据SSS判定△ABC•≌△DBC.二、选择题.3.如图6,AB=CD,AD=BC,则图中全等的三角形有().A.4对 B.3对 C.2对 D.1对4.如图7,已知△ABC中,BA=BC,BD⊥AC于D,若∠C=40°,则∠ABE为(). (7)A.40° B.50° C.80° D.140°三、证明题.5.如图8,点A,B,C,D在同一条直线上,EC=FD,AE=BF,AB=CD,你能证明AE∥BF,•CE ∥DF吗?写出推理过程.6.如图9,已知AB=AC,AD=AE,∠1=∠2,你能证明出∠B=∠C吗?与同伴交流.四、探索题.7.如图10,已知∠1=∠2,BA=BD,无论动点P在BC上如何移动,都能得到PA=PD,•你能说出这是为什么吗?动手试一试.五、聚焦中考.8.如图11,在正方形ABCD 中,E 是AD 中点,F 是BA 延长线上一点,AF=12AB . (1)求证:△ABE ≌△ADF .(2)阅读下面材料:如图12,把△ABC 沿直线BC 平行移动线段BC 的长度,可以变到△ECD 的位置. 如图13,以BC 为轴把△ABC 翻折180°,可以变到△DBC 的位置;如图14,以点A 为中心,把△ABC 旋轴180°,可以变到△AED 的位置.(11) (12) (13) (14)像这样,其中一个三角形是由另一个三角形按平行移动,翻折、旋转等方法变成的,这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.(3)回答下列问题:①在图11中,可以通过平行移动,翻折、旋转中的哪一种方法,使△ABE•变到△ADF 的位置?②指出图11中线段BE 与DF 之间的关系.。
全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )A.120°B.125°C.127°D.104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.5、如图,已知AB=CD,AC=BD,求证:∠A=∠D.6、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.7、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定(SAS)1、如图1,AB∥CD,AB=CD,BE=DF,则图中有多少对全等三角形( )A.3B.4C.5D.62、如图2,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )D CBA A.∠1=∠2 B.∠B=∠C C.∠D=∠E D.∠BAE=∠CAD3、如图3,AD=BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( ) A.AB ∥CD B.AD ∥BC C.∠A=∠C D.∠ABC=∠CDA4、如图4,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD=________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,已知△ABC 中,AB=AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC , ∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,∵____________________________, ∴△ABD ≌△ACD ( ) 6、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B.7、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?8、如图,在△ABC 和△DEF 中,B 、E 、F 、C ,在同一直线上,下面有4个条件,请你在其中选3个作为题设,余下的一个作为结论,写一个真命题,并加以证明. ①AB=DE ; ②AC=DF ; ③∠ABC=∠DEF ; ④BE=CF.9、如图⑴,AB ⊥BD ,DE ⊥BD ,点C 是BD 上一点,且BC=DE ,CD=AB .⑴试判断AC 与CE 的位置关系,并说明理由.⑵如图⑵,若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第⑴问中AC 与BE 的位置关系还成立吗?(注意字母的变化)全等三角形(三)AAS 和ASA【知识要点】1.角边角定理(ASA ):有两角及其夹边对应相等的两个三角形全等.2.角角边定理(AAS ):有两角和其中一角的对边对应相等的两个三角形全等.【典型例题】例1.如图,AB ∥CD ,AE=CF ,求证:AB=CD例2.如图,已知:AD=AE ,ABE ACD ∠=∠,求证:BD=CE.例3.如图,已知:ABD BAC D C ∠=∠∠=∠.,求证:OC=OD. 例4.如图已知:AB=CD ,AD=BC ,O 是BD 中点,过O 点的直线分别交DA 和BC 的延长线于E ,F.求证:AE=CF.例5.如图,已知321∠=∠=∠,AB=AD.求证:BC=DE.例6.如图,已知四边形ABCD 中,AB=DC ,AD=BC ,点F 在AD 上,点E 在BC 上,AF=CE ,EF 的对角线BD 交于O ,请问O 点有何特征?AABD C O12 3AFDOBEC【经典练习】1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,',C C '∠=∠则△ABC 与△C B A ''' .2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠请补充一个条件,使△ABC ≌DFE,补充的条件是 .3.在△ABC 和△C B A '''中,下列条件能判断△ABC 和△C B A '''全等的个数有( ) ①A A '∠=∠ B B '∠=∠,C B BC ''= ②A A '∠=∠,B B '∠=∠,C A C A ''=' ③A A '∠=∠ B B '∠=∠,C B AC ''= ④A A '∠=∠,B B '∠=∠,C A B A ''=' A . 1个 B. 2个 C. 3个 D. 4个4.如图,已知MB=ND ,NDC MBA ∠=∠,下列条件不能判定是△ABM ≌△CDN 的是( )A . N M ∠=∠ B. AB=CD C . AM=CN D. AM ∥CN 5.如图2所示, ∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2 ②BE=CF ③△ACN ≌△ABM ④CD=DN其中正确的结论是_________ _________。
全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )A.120°B.125°C.127°D.104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.5、如图,已知AB=CD,AC=BD,求证:∠A=∠D.6、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.7、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定(SAS)1、如图1,AB∥CD,AB=CD,BE=DF,则图中有多少对全等三角形( )A.3B.4C.5D.62、如图2,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )D CBA A.∠1=∠2 B.∠B=∠C C.∠D=∠E D.∠BAE=∠CAD3、如图3,AD=BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( ) A.AB ∥CD B.AD ∥BC C.∠A=∠C D.∠ABC=∠CDA4、如图4,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD=________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,已知△ABC 中,AB=AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC , ∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,∵____________________________, ∴△ABD ≌△ACD ( ) 6、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B.7、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?8、如图,在△ABC 和△DEF 中,B 、E 、F 、C ,在同一直线上,下面有4个条件,请你在其中选3个作为题设,余下的一个作为结论,写一个真命题,并加以证明. ①AB=DE ; ②AC=DF ; ③∠ABC=∠DEF ; ④BE=CF.9、如图⑴,AB ⊥BD ,DE ⊥BD ,点C 是BD 上一点,且BC=DE ,CD=AB .⑴试判断AC 与CE 的位置关系,并说明理由.⑵如图⑵,若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第⑴问中AC 与BE 的位置关系还成立吗?(注意字母的变化)全等三角形(三)AAS 和ASA【知识要点】1.角边角定理(ASA ):有两角及其夹边对应相等的两个三角形全等.2.角角边定理(AAS ):有两角和其中一角的对边对应相等的两个三角形全等.【典型例题】例1.如图,AB ∥CD ,AE=CF ,求证:AB=CD例2.如图,已知:AD=AE ,ABE ACD ∠=∠,求证:BD=CE.例3.如图,已知:ABD BAC D C ∠=∠∠=∠.,求证:OC=OD. 例4.如图已知:AB=CD ,AD=BC ,O 是BD 中点,过O 点的直线分别交DA 和BC 的延长线于E ,F.求证:AE=CF.例5.如图,已知321∠=∠=∠,AB=AD.求证:BC=DE.例6.如图,已知四边形ABCD 中,AB=DC ,AD=BC ,点F 在AD 上,点E 在BC 上,AF=CE ,EF 的对角线BD 交于O ,请问O 点有何特征?AABD C EO12 3AFDOBEC【经典练习】1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,',C C '∠=∠则△ABC 与△C B A ''' .2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠请补充一个条件,使△ABC ≌DFE,补充的条件是 .3.在△ABC 和△C B A '''中,下列条件能判断△ABC 和△C B A '''全等的个数有( ) ①A A '∠=∠ B B '∠=∠,C B BC ''= ②A A '∠=∠,B B '∠=∠,C A C A ''=' ③A A '∠=∠ B B '∠=∠,C B AC ''= ④A A '∠=∠,B B '∠=∠,C A B A ''=' A . 1个 B. 2个 C. 3个 D. 4个4.如图,已知MB=ND ,NDC MBA ∠=∠,下列条件不能判定是△ABM ≌△CDN 的是( )A . N M ∠=∠ B. AB=CD C . AM=CN D. AM ∥CN 5.如图2所示, ∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2 ②BE=CF ③△ACN ≌△ABM ④CD=DN其中正确的结论是_________ _________。
','',''.A A C A AC B A AB D ∠=∠==','',''.A A C B BC B A AB C ∠=∠=='',',''.C B BC B B B A AB B =∠=∠='','',''.C A AC C B BC B A AB A ===三角形全等的判定定理二两边和它们的夹角分别相等的两个三角形全等(简称成“ ”或“ ”)。
1、下列条件不能作为'''C B A ABC ∆≅∆的是( )2、如图,点B ,E ,C ,F 在同一直线上,DEF B ∠=∠,且AB =DE ,BE =CF 。
求证:△ABC ≌△DEF 。
3、如图,AB=AC ,AD=AE ,∠BAC=∠DAE .求证:△ABD ≌△ACE 。
4、如图,在△ABC 和△ABD 中,AC 与BD 相交于点E ,AD =BC ,∠DAB =∠CBA ,求证:BD =AC 。
5、如图,点A ,D ,C 在同一条直线上,AB ∥EC ,AC =CE ,AB=CD ,求证:∠B =∠1.6、如图,AB ,CD 交于点O ,点O 是线段AB 和线段CD 的中点.求证:(1)△AOD ≌△BOC ;(2)AD ∥BC.7、已知:AB=CD ,AB ∥DC ,求证:△ABC ≌△CDA.8、如图,已知AB ⊥AD ,AC ⊥AE ,AB =AD ,AC =AE ,BC 分别交AD ,DE 于点G ,F ,AC 与DE 交于点。
.求证:(1)△ABC ≌△ADE ;(2)BC ⊥DE 。
《全等三角形的判定SAS》精选测试题及参考答案一、选择题1.△ABC中,AB=7,AC=5,则中线AD之长的范围是( )A.5<AD<7B.1<AD<6C.2<AD<12D.2<AD<52.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形个数是()A.1B.2C.3D.43.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1) D.(﹣,﹣1)4.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③ B.②③④ C.①③⑤ D.①③④5.如图,在正方形ABCD中,AB=2,延长BC到点E,使CE=1,连接DE,动点P从点A出发以每秒1个单位的速度沿AB﹣BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当△ABP和△DCE全等时,t的值为()A.3B.5C.7D.3或76.如图,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1B.2C.3D.4二、填空题7.在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为 .8.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.9.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有.(第7题)(第8题)(第9题)10.在△ABC中,AB=8,AC=10,则BC边上的中线AD的取值范围是.三、解答题11.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF (2)EC⊥BF.12.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG 交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.参考答案一、选择题1-6 BCADDD二、填空题7.(-2,0)(-2,4)(2,4)8.相等或互补9.①②③10.1<AD<9三、解答题11.证明:(1)∵AE⊥AB,AF⊥AC∴∠BAE=∠CAF=90°∴∠BAE+∠BAC=∠CAF+∠BAC即∠EAC=∠BAF在△ABF和△AEC中∴△ABF≌△AEC(SAS)∴EC=BF(2)根据(1)△ABF≌△AEC∴∠AEC=∠ABF∵AE⊥AB ∴∠BAE=90°∴∠AEC+∠ADE=90°∵∠ADE=∠BDM∴∠ABF+∠BDM=90°在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°∴EC⊥BF 12(1)证明:∵在△CBF和△DBG中,∴△CBF≌△DBG(SAS)∴CF=DG(2)解:∵△CBF≌△DBG∴∠BCF=∠BDG又∵∠CFB=∠DFH又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB △DHF中,∠DHF=180°﹣∠BDG﹣∠DFH∴∠DHF=∠CBF=60°∴∠FHG=180°﹣∠DHF=180°﹣60°=120°。
1.5.1 全等三角形的判定:SSS和SAS考查题型一三角形的稳定性1.“停课不停学,学习不延期”、居家网课期问,元元将一平板保护套展开放置在水平桌面上,如图所示,平板能保持平稳,这是运用了()A.三角形内角和等于180°B.两点之间,线段最短C.三角形具有稳定性D.三角形的一个外角等于与它不相邻的两个内角之和2.如图,空调安装在墙上时,一般都会像如图所示的方法固定在墙上,这种方法应用了三角形的()A.全等性B.灵活性C.稳定性D.对称性考查题型二用“SSS”判定三角形全等3.如图,已知AB=DC,若用定理SSS证明△ABC≌△DCB,则需要添加的条件是()A.OA=OD B.AC=DB C.OB=OC D.BC=CB4.如图是雨伞在开合过程中某时刻的截面图,伞骨AB=AC,点D,E分别是AB,AC的中点,DM,EM是连接弹簧和伞骨的支架,且DM=EM,已知弹簧M在向上滑动的过程中,总有△ADM≌△AEM,其判定依据是()A.ASA B.AAS C.SSS D.SAS5.如图,已知AB=CD,AD=BC,O为AC上任意一点,过O点作一条直线分别交BA,DC的延长线于点F,E.求证:∠E=∠F.6.如图所示,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.考查题型三用“SAS”判定三角形全等7.如图,在3×3的方格图中,每个小方格的边长都为1,则∠ACB的度数为()A.89°B.90°C.91°D.92°8.如图,点B在CD上,OB=OD,AB=CD,∠OBA=∠D;(1)求证:△ABO≌△CDO;(2)当AO∥CD,∠BOD=30°,求∠A的度数.考查题型四线段垂直平分线的性质9.如图,△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连接CF.若∠A=50°,∠ABD=26°,则∠ACF的度数为( )A.66°B.52°C.46°D.42°10.如图,在ΔABC中,AD⊥BC垂足为点D,EF垂直平分AC,交BC于点E,交AC于点F,连接AE,若BD= DE,ΔABC的周长为16,AF=3,则DC的长为()A.4B.5C.6D.711.如图,在△ABC中,DM,EN分别垂直平分边AC和边BC,交边AB于M,N两点,DM与EN相交于点F.(1)若AB=5,则△CMN的周长为______;(2)若∠MFN=70°,求∠MCN的度数.A.4B.3 14.如图,点E、F在BD上,且()A.BE=DF B.△AEB≌15.如图,已知AB=AC,ADA.50°B16.如图,在四边形ABCD17.如图,在△ABC中,AB>PB―PC(填“>”、“<”或“=18.如图,在△ABC中,一点G,使GC=AB,连结19.如图,在△ABC中,AB=AC ACE,∠AEC=110°,则∠BDC的度数为20.如图,在ΔABC连接BD交AC于点(1)求证:ΔBAD≌ΔCAE;(2)猜想BD,CE有何特殊位置关系,并说明理由.21.如图,在△ABC中,D是BC延长线上一点,满足CD=BA,过点C作CE∥AB,且CE=BC,连接DE 并延长,分别交AC,AB于点F,G.(1)求证:△ABC≅△DCE;(2)若BD=12,AB=2CE,求BC的长度.22.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,点C在DE上.(1)求证:△ABD≌△ACE.(2)若∠BDA=35°,则∠BDE=______°.。
全等三角形的判定(SAS)
一、常用的知识点
1、全等三角形的性质:
2、等腰直角三角形的性质:
两锐角互余,相等,且等于︒
45。
3、等边三角形的性质:
三条边相等,三个角相等并且等于︒
60。
4、任意三角形三边的关系:
另外两边之差的绝对值<第三边<另外两边之和
5、三角形的内角和定理:
三角形的内角和等于︒
180。
6、关于三角形的外角的推论:
三角形的外角等于其不相邻两内角和。
7、关于公共角公共边的问题
①(公共角问题)若CAE
=
∠ ? 为什么?
BAC∠
BAD∠
=
∠,则EAD
②(公共边问题)若AF
BF= ? 为什么?
DC=,则AC
例题展示
1、(2014•吉林)如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AEC.
2、(2016•同安区一模)如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.
3、(2016秋•宜兴市校级月考)已知,如图,BC上有两点D、E,且BD=CE,AD=AE,∠1=∠2,AB和AC相等吗?为什么?
4、(2015秋•江都市期中)已知:如图,A、F、C、D四点在一直线上,AF=CD,AB∥DE,且AB=DE,
求证:△ABC≌△DEF.
5、(2015秋•泊头市校级月考)如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:△ABD≌△ACE.
6、(2014•常州)已知:如图,点C为AB中点,CD=BE,CD∥BE.
求证:△ACD≌△CBE
7、(2014•漳州)如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)
8、(2014•黄冈模拟)已知:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE.
9、(2014•房县三模)如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.
求证:△ACD≌△BCE
10、(2013秋•合浦县期末)如图,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE∥BC.求证:△AEF≌△BCD.
11、(2014春•工业园区期末)已知:如图,BC∥EF,AD=BE,BC=EF,试说明△ABC≌△DEF.
12、(2013•云南)如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).
(1)你添加的条件是.
(2)添加条件后,请说明△ABC≌△ADE的理由
13、(2012秋•台州期中)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.
(1)求证:△ABD≌△GCA;
(2)请你确定△ADG的形状,并证明你的结论.
14、(2012秋•富顺县校级月考)如图1,A,B,C,D在同一直线上,AB=CD,DE∥AF,且DE=AF,求证:△AFC≌△DEB.如果将BD沿着AD边的方向平行移动,如图2,3时,其余条件不变,结论是否成立?如果成立,请予以证明;如果不成立,请说明理由.
15、(2009•吉林)如图,AB=AC,AD⊥BC于点D,AD=AE,AB平分∠DAE交DE 于点F,请你写出图中三对全等三角形,并选取其中一对加以证明。
16、(2006•泰安)(1)已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=60°,求证:①AC=BD;②∠APB=60度;
(2)如图②,在△AOB和△COD中,若OA=OB,OC=OD,∠AOB=∠COD=α,则AC 与BD间的等量关系式为;∠APB的大小为;。