《高中数学》必会基础练习题__《导数》
- 格式:doc
- 大小:311.10 KB
- 文档页数:4
5.1.2 导数的概念及其几何意义基础过关练题组一 导数的定义及其应用1.函数y=f(x)的自变量x 由x 0变化到x 0+Δx 时,函数值的改变量Δy 为( )A.f(x 0+Δx)B.f(x 0)+ΔxC.f(x 0)·ΔxD.f(x 0+Δx)-f(x 0)2.函数f(x)在x=x 0处的导数可表示为( )A.f'(x 0)=limΔx→0f (x 0+Δx )-f (x 0)ΔxB.f'(x 0)=lim Δx→0[f(x 0+Δx)-f(x 0)]C.f'(x 0)=f(x 0+Δx)-f(x 0)D.f'(x 0)=f (x 0+Δx )-f (x 0)Δx3.已知函数f(x)=ax+4,若f'(1)=2,则a= .4.如图是函数y=f(x)的图象.(1)函数f(x)在区间[-1,1]上的平均变化率为 ; (2)函数f(x)在区间[0,2]上的平均变化率为 . 5.求函数y=x 2+1在x=0处的导数.题组二 导数的几何意义及其应用6.函数y=f(x)在x=x0处的导数f'(x0)的几何意义是( )A.在点(x0,f(x0))处与y=f(x)的图象只有一个交点的直线的斜率B.过点(x0,f(x0))的切线的斜率C.点(x0,f(x0))与点(0,0)的连线的斜率D.函数y=f(x)的图象在点(x0,f(x0))处的切线的斜率7.某司机看见前方50m处有行人横穿马路,这时司机开始紧急刹车,在刹车的过程中,汽车的速度v是关于刹车时间t的函数,其图象可能是( )8.已知函数f(x)在R上有导函数,且f(x)的图象如图所示,则下列不等式正确的是( )A.f'(a)<f'(b)<f'(c)B.f'(b)<f'(c)<f'(a)C.f'(a)<f'(c)<f'(b)D.f'(c)<f'(a)<f'(b)9.如图,函数y=f(x)的图象在P点处的切线方程是y=-x+8,若点P的横坐标是5,则f(5)+f'(5)=( )B.1C.2D.0A.12题组三 求曲线的切线方程10.若曲线f(x)=x2+ax+b在点(1,1)处的切线方程为3x-y-2=0,则( )A.a=-1,b=1B.a=1,b=-1C.a=-2,b=1D.a=2,b=-111.函数f(x)=x3+x-2的图象在点P处的切线平行于直线y=4x-1,则P点的坐标为( )A.(1,0)B.(2,8)C.(1,0)或(-1,-4)D.(2,8)或(-1,-4)12.若点A(2,1)在曲线y=f(x)上,且f'(2)=-2,则曲线y=f(x)在点A处的切线方程是 .13.(2020广东实验中学高二上期末)与直线2x-y+4=0平行且与抛物线y=x2相切的直线方程是 .14.试求过点M(1,1)且与曲线y=x3+1相切的直线方程.能力提升练题组一 导数的定义及其应用1.(2020浙江宁波中学高二下期中测试,)甲、乙两厂污水的排放量W与时间t的关系如图所示,则治污效果较好的是( )A.甲厂B.乙厂C.两厂一样D.不确定2.(2020河南新乡高二上期末,)若f'(2)=3,则lim Δx→0f (2+2Δx )-f (2)Δx= . 3.()服用某种药物后,人体血液中药物的质量浓度f(x)(单位:μg/mL)与时间t(单位:min)的函数关系式是y=f(t),假设函数y=f(t)在t=10和t=100处的导数分别为f'(10)=1.5和f'(100)=-0.6,试解释它们的实际意义.题组二 导数的几何意义及其应用4.(2020黑龙江佳木斯一中高二上期末,)函数f(x)的图象如图所示,则下列数值排序正确的是( )A.0<f'(2)<f'(3)<f(3)-f(2)B.0<f'(3)<f(3)-f(2)<f'(2)C.0<f'(3)<f'(2)<f(3)-f(2)D.0<f(3)-f(2)<f'(2)<f'(3)5.()已知函数f(x)和g(x)在区间[a,b]上的图象如图所示,则下列说法正确的是( )A.f(x)在a到b之间的平均变化率大于g(x)在a到b之间的平均变化率B.f(x)在a到b之间的平均变化率小于g(x)在a到b之间的平均变化率C.对于任意x0∈(a,b),函数f(x)在x=x0处的瞬时变化率总大于函数g(x)在x=x0处的瞬时变化率D.存在x0∈(a,b),使得函数f(x)在x=x0处的瞬时变化率小于函数g(x)在x=x0处的瞬时变化率6.(多选)()已知函数f(x)的定义域为R,其导函数f'(x)的图象如图所示,则对于任意x1,x2∈R(x1≠x2),下列结论正确的是( )A.(x1-x2)[f(x1)-f(x2)]<0B.(x1-x2)[f(x1)-f(x2)]>0>f(x1)+f(x2)2<f(x1)+f(x2)2题组三 求曲线的切线方程7.(2020浙江金华一中高二下期中,)已知f(x)=x2+2x+3,P为曲线C:y=f(x)上的点,且曲线C在点P处的切线的倾斜角的取值范围为,则点P的横坐标的取值范围为( )A.-∞,-B.[-1,0]C.[0,1]D.-1,+∞28.(2020浙江丽水高二下期末,)已知过点P(-1,1)的直线m交x轴于点A,若抛物线y=x2上有一点B,使得PA⊥PB,且AB是抛物线y=x2的切线,则直线m的方程为 .,过9.(2020福建厦门二中高二上期中,)已知曲线y=f(x)=x2,y=g(x)=1x两条曲线的交点作两条曲线的切线,求两切线与x轴围成的三角形的面积.(请用导数的定义求切线的斜率,否则只得结论分)答案全解全析基础过关练1.D 分别写出x=x 0和x=x 0+Δx 时对应的函数值f(x 0)和f(x 0+Δx),两函数值相减就得到了函数值的改变量,所以Δy=f(x 0+Δx)-f(x 0).2.A 由导数的定义知A 正确.3.答案 2解析 由题意得,Δy=f(1+Δx)-f(1)=a(1+Δx)+4-a-4=aΔx,∴lim Δx→0ΔyΔx =a,∴f'(1)=a=2.4.答案 (1)12 (2)34解析 (1)函数f(x)在区间[-1,1]上的平均变化率为f (1)-f (-1)1―(―1)=2―12=12.(2)由函数f(x)的图象知,,-1≤x ≤1,<x ≤3,所以函数f(x)在区间[0,2]上的平均变化率为f (2)-f (0)2―0=3―322=34.5.解析 Δy=(0+Δx )2+1-0+1=(Δx )2+1―1(Δx )2+1+1=(Δx )2(Δx )2+1+1,∴ΔyΔx =Δx (Δx )2+1+1,∴y'x=0=lim Δx→0ΔyΔx =lim Δx→0Δx (Δx )2+1+1=0.6.D f'(x 0)的几何意义是函数y=f(x)的图象在点(x 0,f(x 0))处的切线的斜率.7.A 在刹车过程中,汽车速度呈下降趋势,排除选项C,D;由于是紧急刹车,所以汽车开始时速度下降非常快,图象较陡,排除选项B,故选A.8.A 由题意可知,f'(a),f'(b),f'(c)分别是函数f(x)在x=a 、x=b 和x=c 处切线的斜率,则有f'(a)<0<f'(b)<f'(c),故选A.9.C ∵函数y=f(x)的图象在x=5处的切线方程是y=-x+8,∴f'(5)=-1,又f(5)=-5+8=3,∴f(5)+f'(5)=3-1=2.故选C.10.B 由题意得,f'(1)=lim Δx→0ΔyΔx=lim Δx→0(1+Δx )2+a(1+Δx )+b -1-a -bΔx =lim Δx→0(Δx )2+2Δx +aΔxΔx =2+a.∵曲线f(x)=x 2+ax+b 在点(1,1)处的切线方程为3x-y-2=0,∴2+a=3,解得a=1.又∵点(1,1)在曲线y=x 2+ax+b 上,∴1+a+b=1,解得b=-1,∴a=1,b=-1.故选B.11.C f'(x)=lim Δx→0ΔyΔx=lim Δx→0(x +Δx )3+(x +Δx )-2-x 3-x +2Δx=3x 2+1.设P(x 0,y 0),则f'(x 0)=3x 20+1=4,所以x 0=±1,当x 0=1时,f(x 0)=0,当x 0=-1时,f(x 0)=-4,因此P 点的坐标为(1,0)或(-1,-4).12.答案 2x+y-5=0解析 由题意知,切线的斜率k=-2.∴在点A(2,1)处的切线方程为y-1=-2(x-2),即2x+y-5=0.13.答案 2x-y-1=0解析 设切点坐标为(x 0,y 0),y=f(x)=x 2,则由题意可得,切线斜率f'(x 0)=limΔx→0f (x 0+Δx )-f (x 0)Δx=2x 0=2,所以x 0=1,则y 0=1,所以切点坐标为(1,1),故所求的直线方程为y-1=2(x-1),即2x-y-1=0.14.解析 Δy Δx =(x +Δx )3+1―x 3-1Δx =3x (Δx )2+3x 2Δx +(Δx )3Δx=3xΔx+3x 2+(Δx)2,则lim Δx→0ΔyΔx =3x 2,因此y'=3x 2.设过点M(1,1)的直线与曲线y=x 3+1相切于点P(x 0,x 30+1),根据导数的几何意义知曲线在点P 处的切线的斜率为k=3x 20①,过点M 和点P 的切线的斜率k=x 30+1―1x 0-1②,由①-②得3x 20=x 30x 0-1,解得x 0=0或x 0=32,所以k=0或k=274,因此过点M(1,1)且与曲线y=x 3+1相切的直线有两条,方程分别为y-1=274(x-1)和y=1,即27x-4y-23=0和y=1.能力提升练1.B 在t 0处,虽然有W 甲(t 0)=W 乙(t 0),但W 甲(t 0-Δt)<W 乙(t 0-Δt),所以在相同时间Δt 内,甲厂比乙厂的平均治污率小,所以乙厂治污效果较好.2.答案 6解析 limΔx→0f (2+2Δx )-f (2)Δx=2lim Δx→0f (2+2Δx )-f (2)2Δx =2f'(2)=6.3.解析 f'(10)=1.5表示服药后10 min 时,血液中药物的质量浓度上升的速度为1.5 μg/(mL ·min).也就是说,如果保持这一速度,每经过1 min,血液中药物的质量浓度将上升1.5 μg/mL. f'(100)=-0.6表示服药后100 min 时,血液中药物的质量浓度下降的速度为0.6 μg/(mL ·min).也就是说,如果保持这一速度,每经过1 min,血液中药物的质量浓度将下降0.6 μg/mL.4.B 如图所示, f'(2)是函数f(x)的图象在x=2(即点A)处切线的斜率k 1, f'(3)是函数f(x)的图象在x=3(即点B)处切线的斜率k 2,f (3)-f (2)3―2=f(3)-f(2)=k AB 是割线AB 的斜率.由图象知0<k 2<k AB <k 1,即0<f'(3)<f(3)-f(2)<f'(2).故选B.5.D ∵f(x)在a 到b 之间的平均变化率是f (b )-f (a )b -a,g(x)在a 到b 之间的平均变化率是g (b )-g (a )b -a ,f(b)=g(b),f(a)=g(a),∴f (b )-f (a )b -a=g (b )-g (a )b -a,∴A 、B 错误;易知函数f(x)在x=x 0处的瞬时变化率是函数f(x)在x=x 0处的导数,即函数f(x)在该点处的切线的斜率,同理函数g(x)在x=x 0处的瞬时变化率是函数g(x)在该点处的导数,即函数g(x)在该点处的切线的斜率,由题中图象知C 错误,D 正确.故选D.6.AD 由题中图象可知,导函数f'(x)的图象在x 轴下方,即f'(x)<0,且其绝对值越来越小,因此过函数f(x)图象上任一点的切线的斜率为负,并且从左到右切线的倾斜角是越来越大的钝角,由此可得f(x)的大致图象如图所示.A 选项表示x 1-x 2与f(x 1)-f(x 2)异号,即f(x)图象的割线斜率f (x 1)-f(x 2)x 1-x 2为负,故A 正确;B 选项表示x 1-x 2与f(x 1)-f(x 2)同号,即f(x) 图象的割线斜率f (x 1)-f(x 2)x 1-x 2为正,故B 不正确表示x 1+x 22对应的函数值,即图中点B 的纵坐标,f (x 1)+f(x 2)2表示当x=x 1和x=x 2时所对应的函数值的平均值,即图中点A 的纵坐标,显然有<f (x 1)+f(x 2)2,故C 不正确,D 正确.故选AD.7.D 设点P 的横坐标为x 0,则点P 处的切线倾斜角α与x 0的关系为tan α=f'(x 0)=lim Δx→0f (x 0+Δx )-f (x 0)Δx =2x 0+2.∵α,∴tan α∈[1,+∞),∴2x 0+2≥1,即x 0≥-12,∴点P 的横坐标的取值范围为-12,+∞.8.答案 x-y+2=0或x+3y-2=0解析 令y=f(x)=x 2,设B(t,t 2),则k AB =lim Δx→0f (t +Δx )-f (t )Δx =2t,则直线AB 的方程为y=2tx-t 2.当t=0时,符合题意,此时A(-2,0),∴直线m 的方程为x-y+2=0.当t ≠0时,0,PA=+1,―1,PB =(t+1,t 2-1),∵PA ⊥PB,∴PA ·PB =0,+1(t+1)-(t 2-1)=0,解得t=4或t=-1(B,P重合,舍去),此时A(2,0),∴直线m 的方程为x+3y-2=0.综上,直线m 的方程为x-y+2=0或x+3y-2=0.9.解析 由y =x 2,y =1x,得x =1,y =1,故两条曲线的交点坐标为(1,1).两条曲线切线的斜率分别为f'(1)=lim Δx→0f (Δx +1)―f (1)Δx =lim Δx→0(Δx +1)2-12Δx =lim Δx→0(Δx+2)=2,g'(1)=lim Δx→0g (Δx +1)―g (1)Δx =lim Δx→01Δx +1-11Δx=lim Δx→0-所以两条切线的方程分别为y-1=2(x-1),y-1=-(x-1),即y=2x-1与y=-x+2,两条切线与x,0,(2,0),所以两切线与x轴围成的三角形的面积为12×1×|2―12|=34.。
第二章导数及其应用§3导数的计算课后篇巩固提升必备知识基础练1.若f'(x0)=-2,则limk→0f(x0-12k)-f(x0)k等于()B.-1C.2D.1,lim k→0f(x0-12k)-f(x0)k=-12limk→0f(x0-12k)-f(x0)-12k=-12f'(x0)=1,故选D.2.下列各式中正确的个数是()①(x7)'=7x6;②(x-1)'=x-2;③1√x '=-12x-32;④(√x25)'=25x-35;⑤(cos x)'=-sin x;⑥(cos 2)'=-sin 2.B.4C.5D.6(x-1)'=-x-2,⑥(cos2)'=0,∴②⑥不正确.故选B.3.若函数f(x)=cos x,则f'π4+fπ4的值为()B.-1C.1D.2 解析f'(x)=-sin x,所以f'π4+fπ4=-sinπ4+cosπ4=0.4.已知f(x)=x a,若f'(1)=4,则a的值等于()B.-4C.5D.-5f'(x)=ax a-1,f'(1)=a(1)a-1=4,∴a=4.y=f(x)=2x2+4x在x=3处的导数为.(3)=limΔx→0Δy Δx=lim Δx→02(3+Δx)2+4(3+Δx)-(2×32+4×3)Δx=16.,其位移s与时间t的关系是s=3t-t2,则物体的初速度是.初=s'(0)=limΔt→0s(0+Δt)-s(0)Δt=limΔt→0(3-Δt)=3.7.已知f (x )=1x,g (x )=mx ,且g'(2)=1f '(2),则m=.4,f'(x )=-1x 2,g'(x )=m.∵g'(2)=1f '(2),∴m=-4.8.设直线y=12x+b 是曲线y 1=ln x (x>0)的一条切线,则实数b 的值为.-1y 1'=(ln x )'=1x ,设切点为(x 0,y 0),由题意,得1x 0=12,所以x 0=2,y 0=ln2,代入直线方程y=12x+b ,得b=ln2-1.9.利用导数的定义求函数y=f (x )=x-2x的导数.解由导数定义,得Δy=f (x+Δx )-f (x )=(x+Δx )-2x+Δx-x-2x,∴ΔyΔx =1+2x (x+Δx ),当Δx 趋于0时,得到导数f'(x )=1+2x 2.10.用求导数的公式求下列函数的导数.(1)y=x 8;(2)y=4x ;(3)y=log 3x ;(4)y=sin x+π2;(5)y=e 2. 解(1)y'=(x 8)'=8x 8-1=8x 7.(2)y'=(4x )'=4x ln4.(3)y'=(log 3x )'=1xln3.(4)y'=sin x+π2'=(cos x )'=-sin x.(5)y'=(e 2)'=0.关键能力提升练11.已知函数f (x )在x 0处的导数为f'(x 0),则lim Δx →0f (x 0)-f (x 0-mΔx )Δx等于()A.mf'(x 0) B .-mf'(x 0) C .-1m f'(x 0) D .1m f'(x 0),limΔx →0f (x 0)-f (x 0-mΔx )Δx=m limΔx →0f (x 0)-f (x 0-mΔx )mΔx=mf'(x 0).12.已知曲线f(x)=x3在点(2,8)处的切线方程为y=kx+b,则k-b等于()B.-4C.28D.-28点(2,8)在切线上,∴2k+b=8,①又f'(x)=3x2,f'(2)=3×22=12=k,②由①②可得k=12,b=-16,∴k-b=28.13.设正弦曲线y=sin x上一点P,以点P为切点的切线为直线l,则直线l的倾斜角α的取值X围是()A.0,π4∪3π4,π B.[0,π)C.π4,3π4D.0,π4∪π2,3π4答案A解析∵(sin x)'=cos x,∴k l=cos x,∴-1≤k l≤1,∴α∈0,π4∪3π4,π.14.(多选题)以下运算正确的是()A.1x '=1x2B.(cos x)'=-sin xC.(2x)'=2x ln 2D.(tan x)'=1cos2x解析1x '=-1x2,所以A不正确;因为(cos x)'=-sin x,故B正确;因为(2x)'=2x ln2,所以C正确;因为(tan x)'=1cos2x,所以D正确.15.(多选题)已知曲线y=x3在点P处的切线斜率为k,则当k=3时的P点坐标为()A.(-1,1)B.(-1,-1)D.(1,-1),y'=3x2,因为k=3,所以3x2=3,所以x=±1,则P点坐标为(-1,-1)或(1,1).16.设函数f(x)在x=x0处可导,当h趋于0时,对于f(x0+ℎ)-f(x0)ℎ的值,以下说法正确的是.(填序号)①与x0,h都有关;②仅与x0有关而与h无关;③仅与h有关而与x0无关;④与x0,h均无关.(x)=sin x,f1(x)=f'0(x),f2(x)=f'1(x),…,f n+1(x)=f'n(x),n∈N,则f2 020(x)=.x,f1(x)=cos x,f2(x)=-sin x,f3(x)=-cos x,f4(x)=sin x,f5(x)=cos x,…,依次类推可得,函数呈周期变化,且周期为4,则f2020(x)=f4(x)=sin x.18.函数y=x 2(x>0)的图象在点(a k ,a k 2)处的切线与x 轴的交点的横坐标为a k+1,其中k ∈N +,若则a 1+a 3+a 5的值是.y'=2x ,∴y=x 2(x>0)的图象在点(a k ,a k 2)处的切线方程为y-a k 2=2a k (x-a k ).又该切线与x 轴的交点坐标为(a k+1,0),∴a k+1=12a k ,即数列{a k }是首项为a 1=16,公比为q=12的等比数列,∴a 3=4,a 5=1,∴a 1+a 3+a 5=21.19.已知P 为曲线y=ln x 上的一动点,Q 为直线y=x+1上的一动点,则当点P 的坐标为时,PQ 最小,此时最小值为.√2 ,当直线l 与曲线y=ln x 相切且与直线y=x+1平行时,切点到直线y=x+1的距离即为PQ 的最小值.易知(ln x )'=1x ,令1x =1,得x=1,故此时点P 的坐标为(1,0),所以PQ 的最小值为√2=√2.f (x )=x 2,g (x )=x 3,求适合f'(x 0)+2=g'(x 0)的x 0的值.(x 0)=2x 0,g'(x 0)=3x 02.因为f'(x 0)+2=g'(x 0),所以2x 0+2=3x 02,即3x 02-2x 0-2=0,解得x 0=1-√73或x 0=1+√73.学科素养创新练21.设曲线y=x n+1(n ∈N +)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,求a 1+a 2+…+a 99的值.解由题得y'=(n+1)x n ,故在点(1,1)处的切线斜率k=n+1,所以切线方程为y=(n+1)x-n (n ∈N +),可求得切线与x 轴的交点为nn+1,0,则a n =lg nn+1=lg n-lg(n+1),n ∈N +,所以a 1+a 2+…+a 99=(lg1-lg2)+(lg2-lg3)+…+(lg99-lg100)=lg1-lg100=-2.。
高中数学导数练习题附答案一、解答题1.已知函数()ln f x ax x =+ (1)讨论()f x 的单调区间;(2)设()2xg x =,若对任意的[]11,100x ∈,存在[]20,1x ∈,使()()12f x g x <成立,求实数a 的取值范围.2.已知函数()ln ex f x x =,()2ln 1g x a x x =-+,e 是自然对数的底数.(1)求函数()f x 的最小值;(2)若()0g x ≤在()0,∞+上恒成立,求实数a 的值;(3)求证:2022202320232023e 20222022⎛⎫⎛⎫<< ⎪⎪⎝⎭⎝⎭.3.已知函数()()()211e 2x f x x ax a R =--∈ (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求实数a 的取值范围.4.已知函数21()ln (1)()22=+-+++∈R x f x a x a x a a 有一个大于1的零点0x .(1)求实数a 的取值范围;(2)证明:对任意的(]01,x x ∈,都有ln 10-+>a x x 恒成立.5.已知函数()e sin cos xf x x x ax =+--.(1)若函数()f x 在[)0,∞+上单调递增,求实数a 的取值范围; (2)设函数()()()ln 1g x f x x =--,若()0g x ≥,求a 的值.6.己知数列{}n a 和{}n b ,12a =且()11n nb n a *=-∈N ,函数()()ln 11mx f x x x=+-+,其中0m >.(1)求函数()f x 的单调区间;(2)若数列{}n a 各项均为正整数,且对任意的n *∈N 都有2112112n n n n a a a a +++-<+.求证:(ⅰ)()12n n a a n *+=∈N ;(ⅱ)53123e n b b b b ->,其中e 2.71828=⋅⋅⋅为自然对数的底数.7.已知函数()e 1xf x ax =--,a ∈R .(1)当2a =时,求()f x 的单调区间;(2)若()f x 在定义域R 内单调递增,求a 的取值范围. 8.已知函数()()32131.3f x x a x x =-++ (1)若1a =,求函数()f x 的单调区间; (2)证明:函数()2y f x a =-至多有一个零点. 9.已知函数2()ln (2)(R)f x a x x a x a =+-+∈. (1)若1a =,求()f x 在区间[]1,e 上的最大值; (2)求()f x 在区间[]1,e 上的最小值()g a .10.已知函数2()ln f x a x x =+,其中a R ∈且0a ≠. (1)讨论()f x 的单调性;(2)当1a =时,证明:2()1f x x x ≤+-; (3)求证:对任意的*n N ∈且2n ≥,都有:222111111234⎛⎫⎛⎫⎛⎫+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭…211e n⎛⎫+< ⎪⎝⎭.(其中e 2.718≈为自然对数的底数)【参考答案】一、解答题1.(1)答案见解析 (2)31a e ≤-【解析】 【分析】(1)由()()110ax f x a x xx+=+=>',按0a ≥,0a <进行分类讨论求解; (2)由已知,转化为()()max max f x g x <,由已知得()()max 12g x g ==,由此能求出实数a 的取值范围. (1)()(]110ax f x a x x x+'=+=>, ①当0a ≥时,由于0x >,故10ax +>,()0f x '>, 所以()f x 的单调递增区间为()0,∞+; ②当0a <时,由()0f x '=,得1x a=-,在区间10,a ⎛⎫- ⎪⎝⎭上()0f x '>,在区间1,a∞⎛⎫-+ ⎪⎝⎭上()0f x '<,所以,函数()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,单调递减区间为1,a∞⎛⎫-+ ⎪⎝⎭;(2)由题目知,只需要()()max max f x g x <即可又因为()()max 12g x g ==,所以只需要()max 2f x <即可()max 2f x <即等价于()2f x <恒成立,由变量分离可知2ln xa x-<,[]1,100x ∈, 令()2ln xh x x -=,下面求()h x 的最小值, 令()23ln xh x x-+'=,所以()0h x '=得3x e =, 所以()h x 在31,e ⎡⎤⎣⎦为减函数,3,100e ⎡⎤⎣⎦为增函数, 所以()()33min 1h x h e e -==,所以31a e ≤-. 2.(1)1- (2)2(3)证明见解析 【解析】 【分析】(1)根据导数判断函数()f x 的单调性,进而可得最值;(2)将不等式恒成立转化为求函数()g x 的最大值问题,可得参数取值范围; (3)根据函数()f x 与()g x 的单调性直接可证不等式. (1)函数()ln ln exf x x x x x ==-的定义域为()0,∞+,()ln f x x '=,当()0,1x ∈时,()0f x '<,()1,x ∈+∞时,()0f x '>, 故()f x 在()0,1上单调递减,在()1,+∞上单调递增, 所以()()min 11f x f ==-. (2)函数()2ln 1g x a x x =-+,0x >,则()()2220a a x g x x x x x-'=-=>,当0a ≤时,()0g x '<,()g x 在()0,∞+上单调递减, 此时存在()00,1x ∈,使得()()010g x g >=,与题设矛盾,当0a >时,x ⎛∈ ⎝时,()0g x '>,x ⎫∈+∞⎪⎪⎭时,()0g x '<,故()g x 在⎛⎝上单调递增,在⎫+∞⎪⎪⎭上单调递减,所以()max 1ln 12222a a a ag x g a ==+=-+,要使()0g x ≤在()0,∞+恒成立, 则()max 0g x ≤,即ln 10222aa a -+≤,又由(1)知()ln 1f x x x x =-≥-即ln 10x x x -+≥,(当且仅当1x =时,等号成立).令2a x =有ln 10222a a a -+≥,故ln 1022a a -+=且12a =, 所以2a =. (3)由(1)知()l n 1l n x f x x x x ex ==-≥-(当且仅当1x =时等号成立).令()10t x t t +=>,则1x >,故111ln 1t t t t t t +++->-,即11ln 1tt t ++⎛⎫> ⎪⎝⎭,所以11e tt t ++⎛⎫> ⎪⎝⎭令2022t =,则20232023e 2022⎛⎫> ⎪⎝⎭;由(2)知22ln 1x x ≤-在()0,∞+上恒成立, 所以22ln 1x x ≤-(当且仅当1x =时等号成立).令()210m x m m +=>,则21x >,故11ln 1m m m m ++<-,即1ln 1mm m +⎛⎫< ⎪⎝⎭, 所以1e mm m +⎛⎫< ⎪⎝⎭.令2022m =,则20222023e 2022⎛⎫< ⎪⎝⎭综上,2022202320232023e 20222022⎛⎫⎛⎫<< ⎪⎪⎝⎭⎝⎭.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理. 3.(1)答案见解析 (2)0a < 【解析】 【分析】(1)求出导函数()(e )x f x x a '=-,对a 分0a ≤、01a <<、1a =、1a >四种情况讨论即可求解;(2)由(1)问结论,对a 分0a <、0a =、1a =、01a <<、1a >讨论即可得答案. (1)解:()e (1)e (e )x x x f x x ax x a '=+--=-,若0a ≤,则当(,0)x ∈-∞时,()0f x '<,当()0,x ∈+∞时()0f x '>, 所以()f x 在(,0)-∞上单调递减,在()0,∞+上单调递增; 若0a >,由()0f x '=得0x =或1x na =,①若1a =,则()()e 10xx f x '-=≥,所以()f x 在(),-∞+∞上单调递增;②若01a <<,则ln 0a <,当(,ln )(0,)x a ∈-∞⋃+∞时,()0f x '>;当(ln ,0)x a ∈时,()0f x '<,所以()f x 在(,ln )a -∞和(0,)+∞上单调递增,在(ln ,0)a 上单调递减;③若1a >,则ln 0a >,当(,0)(ln ,)x a ∈-∞⋃+∞时,()0f x '>;当(0,ln )x a ∈时,()0f x '<,所以()f x 在(,0)-∞和(ln ,)a +∞上单调递增,在(0,ln )a 上单调递减; 综上,当0a ≤时,()f x 在(,0)-∞上单调递减,在()0,∞+上单调递增; 当01a <<时,()f x 在(,ln )a -∞和(0,)+∞上单调递增,在(ln ,0)a 上单调递减; 当1a =时,()f x 在(),-∞+∞上单调递增;当1a >时,()f x 在(,0)-∞和(ln ,)a +∞上单调递增,在(0,ln )a 上单调递减; (2)解:当0a <时,由(1)知,()f x 在(,0)-∞上单调递减,在()0,∞+上单调递增, 又()()1010,102f f a =-<=->,取b 满足3b <-且ln(b a <-),则()()()2211122022f b a b ab a b b >---=+->,所以()f x 有两个零点;当0a =时,令()(1)e 0x f x x =-=,解得0x =,所以()f x 只有一个零点; 当1a =时,令()()01x f x e x -==,解得0x =,所以()f x 只有一个零点;当01a <<时,由(1)知,()f x 在(,ln )a -∞和(0,)+∞上单调递增,在(ln ,0)a 上单调递减,又()01f =-,当ln b a =时,()f x 有极大值()()()2211122022f b a b ab a b b =--=--+<,所以()f x 不存在两个零点;当1a >时,由(1)知,()f x 在(,0)-∞和(ln ,)a +∞上单调递增,在(0,ln )a 上单调递减,当0x =时,()f x 有极大值()010f =-<,所以()f x 不存在两个零点; 综上,a 的取值范围为0a <. 【点睛】关键点点睛:本题(2)问解题的关键是,当0a <时,取b 满足3b <-且ln(b a <-),从而可得()()()2211122022f b a b ab a b b >---=+->.4.(1)1a > (2)证明见解析 【解析】 【分析】(1)先求导,分1a ≤和1a >进行讨论,1a >时结合零点存在定理说明存在零点即可;(2)先构造函数()ln 1g x a x x =-+,求导证明函数先增后减,故只要说明两个端点大于0即可,化简得到()()0001()1212g x x x a =--+,由(21)0f a ->借助()f x 的单调性说明021<<-a x a ,即可得到0()0g x >. (1)2(1)(1)()()(1)a x a x a x x a f x x a x x x-++--=+-+==',①若1a ≤,则()0f x '>在(1,)+∞恒成立,即()f x 在(1,)+∞上单调递增, 当1x >时,()(1)0f x f >=,与()f x 有一个大于1的零点0x 矛盾.②若1a >,令()0f x '>,解得01x <<或x a >,令()0f x '<,解得1x a <<. 所以()f x 在(0,1)和(,)a +∞上单调递增,在(1,)a 单调递减.所以()(1)0f a f <=,当x →+∞时,()f x →+∞,由零点存在性定理,()f x 在(,)a +∞上存在一个零点0x .综上,1a >. (2)令()ln 1,()1'-=-+=-=a a x g x a x x g x x x,由(1)知01<<a x ,令()0g x '>,解得1x a <<,令()0g x '<,解得0a x x <<,故()g x 在(1,)a 单调递增,在()0,a x 单调递减.(1)0g =,()000ln 1=-+g x a x x因为0x 为函数()f x 的零点,故()20001ln (1)022=+-+++=x f x a x a x a ,即20001ln (1)22=-++--x a x a x a ,所以()()220000000011ln 1112222x x g x a x x a x a x ax a =-+=-++---+=-+-+()()0011212=--+x x a . 又因为2(21)1(21)ln(21)(1)(21)ln(21)2222--=-+-+-++=--+a f a a a a a a a a a , 令()ln(21)22=--+h a a a a ,则21()ln(21)2ln(21)12121=-+-=-+-'--a h a a a a a ,令1()ln(21)121m a a a =-+--, 22224(1)()021(21)(21)a m a a a a -'=-=>---恒成立, 所以()h a '在(1,)+∞单调递增,()(1)0h a h ''>=,所以()h a 在(1,)+∞单调递增,()(1)0h a h >=,即(21)0f a ->,由(1)可知()0f a <,所以021<<-a x a ,因为0010,210-<-+<x x a ,所以()()()000112102=--+>g x x x a , 所以()0>g x 在(]01,x x ∈恒成立,故对任意的(]01,x x ∈,都有ln 10-+>a x x 恒成立. 【点睛】本题关键点在于构造函数()ln 1g x a x x =-+后,如何说明()()0001()1212g x x x a =--+大于0,由(21)0f a ->借助()f x 的单调性说明021<<-a x a ,即可得到0()0g x >,即可得证. 5.(1)2a ≤ (2)3a = 【解析】【分析】(1)由题意()e cos sin 0xf x x x a '=++-≥,利用分离参数法得到e cos sin x a x x ≤++对[)0,x ∈+∞恒成立.设()e cos sin xh x x x =++,利用导数判断出函数()h x 在[)0,∞+上单调递增,求出2a ≤;(2)把题意转化为(),1x ∀∈-∞,()()0g x g ≥恒成立.由0x =为()g x 的一个极小值点,解得3a =.代入原函数验证成立. (1)由题意知()e cos sin xf x x x a '=++-因为函数()f x 在[)0,∞+上单调递增,所以()e cos sin 0xf x x x a '=++-≥,即e cos sin x a x x ≤++对[)0,x ∈+∞恒成立设()e cos sin xh x x x =++,则()e sin cos 4x x h x x x e x π⎛⎫'=-+=- ⎪⎝⎭当02x π≤<时,()e 1104xh x x π⎛⎫'=->-= ⎪⎝⎭当2x π≥时,()2e e 0h x π'>>> 所以函数()e cos sin xh x x x =++在[)0,∞+上单调递增所以()()min 02a h x h ≤== (2)由题知()()()()()ln 1e sin cos ln 11xg x f x x x x ax x x =--=+----< 所以()1e cos sin 1xg x x x a x'=++-+-,()00g = 因为()0g x ≥,所以(),1x ∀∈-∞,()()0g x g ≥即()0g 为()g x 的最小值,0x =为()g x 的一个极小值点, 所以()010e cos0sin 0010g a '=++-+=-,解得3a = 当3a =时,()()()e sin cos 3ln 11xg x x x x x x =+----<所以()11e cos sin 3e 3141xx g x x x x x x π⎛⎫'=++-+=+-+ ⎪--⎝⎭ ①当01x ≤<时,()11310g x '≥+-+=(当且仅当0x =时等号成立) 所以()g x 在[)0,1上单调递增②当0x <时,若02x π-≤<,()11310g x '<+-+=;若2x π<-,()22132e 3302222g x πππ-'<+<+-+<++ 所以()g x 在(),0∞-上单调递减综上,()g x 在(),0∞-上单调递减,在[)0,1上单调递增 所以当3a =时,()()00g x g ≥= 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.6.(1)单调增区间为()1,1m --,单调减区间为()1,m ∞-+ (2)(ⅰ)、(ⅱ)证明见解析 【解析】 【分析】(1)求导之后,分别令()0f x '>,()0f x '<即可求得单调区间(2)(i )将已知恒成立的不等式化简之后再放缩得到121n na a +-<,又12n n a a +-为整数,则120n n a a +-=,即得所证(ii )对所要证明的不等式两边同时取对数,等价转化为115ln 123nk k =⎛⎫->- ⎪⎝⎭∑,利用(1)的结论可得()ln 11x x x+≥+(1x >-),赋值累加之后进一步将问题转化为证明115213nk k =<-∑,对通项进行放缩,即可证明(1)()()()211111x m m f x x xx --'=-=+++(1x >-),令()0f x '=得1x m =-. 因为0m >,所以11m ->-,当()1,1x m ∈--时,()0f x '<;当()1,x m ∈-+∞时,()0f x '>.故函数()f x 的单调递减区间为()1,1m --,单调递增区间为()1,m ∞-+. (2)(i )法一:因为{}n a 各项均为正整数,即1na ≥,故112n n a a ≥+. 于是()211112122112n n n n n n n nn n a a a a a a a a a a +++++-=-≥-++,又2112112n n n n a a a a +++-<+, 所以121n n a a +-<,由题意12n n a a +-为整数, 因此只能120n n a a +-=,即12n n a a +=. (i )法二:由题,22111122111111212122222n n n n n n n n n n n n a a a a a a a a a a a a +++++--<⇔<⇔--<-<+++,因为{}n a 各项均为正整数,即1n a ≥, 故11022na<≤,于是()111,022na --∈-且()110,122n a +∈. 由题意12n n a a +-为整数,因此只能120n n a a +-=,即12n n a a +=.(ii )法一:由12a =,得2n n a =,11112n nnb a=-=-.原不等式532111115111e ln 122223nn k k -=⎛⎫⎛⎫⎛⎫⎛⎫⇔--->⇔->- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑. 由(1)知1m =时,()ln 11xx x+≥+(1x >-), 取12kx =-得11ln 1221k k -⎛⎫-≥ ⎪-⎝⎭.因此只需证:11115ln 12213nnkkk k ==⎛⎫-≥->- ⎪-⎝⎭∑∑, 即证明115213nn k k S ==<-∑.记121k k c =-,则+1+1+1+1212111212222k k k k k k k kc c c c --=<=⇒<--. 1513S =<;215133S =+<; 当3n ≥时,1122222211111153211222312n n n S c c c c c --⎛⎫- ⎪⎝⎭<+++++=+<-.故原不等式成立.(ii )法二:由12a =,得2n n a =,11112n n n b a =-=-.原不等式532111115111e ln 122223nn k k -=⎛⎫⎛⎫⎛⎫⎛⎫⇔--->⇔->- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑. 由(1)知1m =时,()ln 11xx x+≥+(1x >-), 取12kx =-得11ln 1221k k -⎛⎫-≥ ⎪-⎝⎭.因此只需证:11115ln 12213nnkkk k ==⎛⎫-≥->- ⎪-⎝⎭∑∑, 即证明115213nn kk S ==<-∑.1513S =<;215133S =+<; 当3k ≥时,24k >,故()42132k k ->⋅,即1412132k k <⋅-.当3n ≥时,2233111414414451582132133233332312n nnn k k n k k S --==⎛⎫- ⎪⎝⎭=+<+=+⋅=-<-⋅-∑∑.故原不等式成立. 【点睛】利用导数证明不等式,一般要结合所证不等式,抽象构造出函数,利用导数求出函数的单调性或最值,证明不等式成立,然后把已经证明的不等式替换,或应用得到需要证明的不等式,能力要求较高,属于难题.7.(1)2a = 时,函数 () f x 的单调增区间是(ln2,)+∞ ,递减区间为 (,ln2)-∞ ; (2)a 的取值范围为 (], 0-∞ 【解析】 【分析】(1)将2a =代入,对()f x 求导,根据导数正负,确定函数增减即可; (2)()x f x e a '=-,根据题意函数单调增,所以需要()0f x '≥在R 上恒成立,利用参变分离即可求解. (1)当2a = 时,()e 21x f x x =--,()e 2x f x '∴=-.令()0f x '> ,即e 20x -> ,解得 : ln 2x > ; 令()0f x '< ,即e 20x -< ,解得 :ln 2x < ;()f x ∴ 在ln 2x =时取得极小值,亦为最小值,即(ln 2)12ln 2f =- .∴ 当2a = 时,函数()f x 的单调增区间是(ln2,)+∞,递减区间为(,ln2)-∞.(2)()e 1x f x ax =-- ()e .x f x a ∴-'=()f x 在R 上单调递增,()e 0x f x a ∴='-≥ 恒成立,即e x a ≤在x ∈R 恒成立,x ∈R时,e (0,)x ∈+∞,0a ∴≤.即 a 的取值范围为(],0∞-.8.(1)()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减 (2)证明见解析 【解析】 【分析】(1)直接求导后判断单调性即可;(2)先变形得到323033x a x x -=++,构造函数,求导后说明单调性即可证明. (1)当1a =时,()()321313f x x x x =-++,2()23f x x x '=--. 令()0f x '=,解得1x =-或3x =,当()(),13,x ∞∞∈--⋃+时,()0f x '>;当(1,3)x ∈-时,()0f x '<, 故()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减.(2)()321()2333y f x a x a x x =-=-++,由于2330x x ++>,所以()20f x a -=等价于3230.33x a x x -=++设()32333x g x a x x =-++, 则()g x '()()222269033x x x xx ++=++,当且仅当0x =或3x =-时,()0g x '=,所以()g x 在(,)-∞+∞上单调递增,故()g x 至多有一个零点,从而()2y f x a =-至多有一个零点. 9.(1)2e 3e 1-+(2)()()221,2ln ,22e 241e e 2e,2e a a a a g a a a a a a --≤⎧⎪⎪=--<<⎨⎪-+-≥⎪⎩【解析】 【分析】(1)利用导数求得()f x 在区间[]1,e 上的最大值.(2)由()'f x 对a 进行分类讨论,由此求得()f x 在区间[]1,e 上的最小值()g a .(1)当1a =时,()()2ln 31e f x x x x x =+-≤≤,()()()'123123x x f x x x x--=+-=, 所以()f x 在区间()()'31,,0,2f x f x ⎛⎫< ⎪⎝⎭递减;在区间()()'3,e ,0,2f x f x ⎛⎫> ⎪⎝⎭递增.()()212,e e 3e 10f f =-=-+>,所以()f x 在区间[]1,e 上的最大值为2e 3e 1-+. (2)2()ln (2)(R,1e)f x a x x a x a x =+-+∈≤≤,()()()()'1222x x a af x x a x x--=+-+=, 当1,22aa ≤≤时,()f x 在区间()()()'1,e ,0,f x f x >递增,所以()f x 在区间[]1,e 上的最小值为()()1121f a a =-+=--.当1e,22e 2aa <<<<时,()f x 在区间()()'1,,0,2a f x f x ⎛⎫< ⎪⎝⎭递减;在区间()',e ,02af x ⎛⎫> ⎪⎝⎭,()f x 递增.所以()f x 在区间[]1,e 上的最小值为()22ln 2ln 222224a a a a a a f a a a a ⎛⎫⎛⎫=+-+⋅=-- ⎪ ⎪⎝⎭⎝⎭.当e,2e 2a a ≥≥时,()f x 在区间()()()'1,e ,0,f x f x <递减,所以()f x 在区间[]1,e 上的最小值为()()()22e e 2e 1e e 2ef a a a =+-+=-+-.所以()()221,2ln ,22e 241e e 2e,2e a a a a g a a a a a a --≤⎧⎪⎪=--<<⎨⎪-+-≥⎪⎩.【点睛】利用导数求解函数的单调性、最值,若导函数含有参数,则需要对参数进行分类讨论,分类讨论标准的制定,可以考虑利用导函数的零点分布来进行分类. 10.(1)答案见解析; (2)证明见解析; (3)证明见解析. 【解析】 【分析】(1)求得()'f x ,对参数a 进行分类讨论,即可求得不同情况下函数的单调性; (2)构造函数()ln 1g x x x =-+,利用导数研究函数单调性和最值,即可证明;(3)根据(2)中所求得2211ln 1n n ⎛⎫+<⎪⎝⎭,结合累加法即可求证结果. (1)函数()f x 的定义域为(0,)+∞,22()2a a xf x x x x'+=+=,①当0a >时,()0f x '>,所以()f x 在(0,)+∞上单调递增;②当0a <时,令()0f x '=,解得x =当0x <<220a x +<,所以()0f x '<,所以()f x 在⎛ ⎝上单调递减,当x >220a x +>,所以()0f x '>,所以()f x 在⎫+∞⎪⎪⎭上单调递增.综上,当0a >时,函数()f x 在(0,)+∞上调递增;当0a <时,函数()f x 在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增. (2)当1a =时,2()ln f x x x =+,要证明2()1f x x x ≤+-, 即证ln 1≤-x x ,即ln 10x x -+≤, 设()ln 1g x x x =-+,则1()xg x x-'=,令()0g x '=得,可得1x =, 当(0,1)x ∈时,()0g x '>,当(1,)x ∈+∞时,()0g x '<. 所以()(1)0g x g ≤=,即ln 10x x -+≤,故2()1f x x x ≤+-. (3)由(2)可得ln 1≤-x x ,(当且仅当1x =时等号成立), 令211x n =+,1,2,3,n =,则2211ln 1n n ⎛⎫+<⎪⎝⎭, 故2211ln 1ln 123⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭ (222)111ln 123n ⎛⎫++<++ ⎪⎝⎭…21111223n +<++⨯⨯…()11n n +- 1111223⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭…11111lne 1n n n ⎛⎫+-=-<= ⎪-⎝⎭,即222111ln[111234⎛⎫⎛⎫⎛⎫+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭…211]lne n ⎛⎫+< ⎪⎝⎭, 故222111111234⎛⎫⎛⎫⎛⎫+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭…211e n⎛⎫+< ⎪⎝⎭. 【点睛】本题考察利用导数研究含参函数单调性,以及构造函数利用导数证明不等式,以及数列和导数的综合,属综合困难题.。
一、选择题1.已知函数222,0()11,0x x x f x x x ⎧++≤⎪=⎨-+>⎪⎩,若()f x ax ≥恒成立,则实数a 的取值范围是( )A .222,1⎡⎤-⎣⎦B .(],1-∞C .()222,0-D .222,0⎡⎤-⎣⎦2.已知函数()f x 与()f x '的图象如图所示,则函数()()x f x g x e=(其中e 为自然对数的底数)的单调递减区间为( )A .()0,4B .()4,1,43⎛⎫-∞⋃⎪⎝⎭ C .40,3⎛⎫ ⎪⎝⎭D .()0,1,()4,+∞3.已知a R ∈,0b ≠,若x b =是函数()()()2f x x b x ax b =-++的极小值点,则实数b 的取值范围为( )A .1b <且0b ≠B .1b >C .2b <且0b ≠D .2b >4.已知函数2()f x x a =-+,2()x g x x e ,若对于任意的2[1,1]x ∈-,存在唯一的112[,]2x ∈-,使得12()()f x g x =,则实数a 的取值范围是( )A .(e ,4)B .(e 14+,4] C .(e 14+,4) D .(14,4] 5.对任意的0a b t <<<,都有ln ln b a a b <,则t 的最大值为( ) A .1B .eC .2eD .1e6.函数()f x x =,2()=g x x 在[0,1]的平均变化率分别记为12,m m ,则下面结论正确的是 A .12m m = B .12m m C .21m m D .12m m ,的大小无法确定7.已知()1()2ln 0f x a x x a x ⎛⎫-⎪⎝⎭=->在[1)+∞,上为单调递增函数,则a 的取值范围为( )A .[0)+∞,B .(0)+∞,C .(1)+∞,D .[1)+∞,8.已知函数f (x )(x ∈R )满足(1)1f =,且()f x 的导数f ′(x )>12,则不等式1()22x f x <+的解集( ) A .(-∞,1) B .(1,+∞)C .(-∞,-1]∪[1,+∞)D .(-1,1)9.已知()3216132m f x x x x =-++在()1,1-单调递减,则m 的取值范围为( ) A .[33]-,B .(-3,3)C .[55]-,D .(-5,5)10.设函数()'f x 是奇函数()()f x x R ∈的导函数,当0x >时,()()ln 'x x f x f x ⋅<-,则使得()()240x f x ->成立的x 的取值范围是( )A .()()2,00,2-⋃B .()(),22,-∞-⋃+∞C .()()2,02,-⋃+∞D .()(),20,2-∞-⋃11.已知函数()cos ln f x x x =-+,则()1f '的值为( ) A .sin11- B .1sin1- C .1sin1+ D .1sin1--12.已知函数()ln f x x x =,则()f x ( ) A .在()0,∞+上递增 B .在()0,∞+上递减 C .在10,e ⎛⎫⎪⎝⎭上递增 D .在10,e ⎛⎫⎪⎝⎭上递减 二、填空题13.已知曲线()32351f x x x x =+-+,过点()1,0的直线l 与曲线()y f x =相切于点P ,则点P 的横坐标为______________.14.已知()'f x 是定义在R 上的函数()f x 的导函数,且()()0f x f x +'>,则()2ln 2a f =,()1b ef =,()0c f =的大小关系为_____15.已知函数()xf x a x e =-有3个零点,则实数a 的取值范围为_______________.16.sin ),()sin cos ,(0)a x dx f x x x x x a ==+≤≤,则()f x 的最大值为_____________.17.已知32()26f x x x m =-++(m 为常数)在[]22-,上有最小值3,那么此函数在[]22-,上的最大值为______.18.若曲线21()ln 2f x x a x =-在点(1,(1))f 处的切线与直线310x y ++=垂直,则常数a =___.19.已知函数()f x 的导函数为'()f x ,且满足关系式2()3(2)ln f x xf 'x x =++,则'(2)f =______.20.已知()()'1ln f f x x x x=+,则()'1f =__________.三、解答题21.已知函数()3()ln f x x a x a R =-∈.(1)讨论函数()f x 的单调性;(2)若函数()()18g x f x x =-在区间[]1,e 上是增函数,求实数a 的取值范围. 22.已知函数()e x f x ax =,a 为非零常数. (1)求()f x 单调递减区间;(2)讨论方程()()21f x x =+的根的个数. 23.已知函数()xaf x x e =+,其中a R ∈,e 是自然对数的底数. (1)当1a =-时,求函数() f x 在区间[0,)+∞的零点个数;(2)若()2xe f x <对任意[1,)x ∈-+∞恒成立,求实数a 的取值范围.24.已知函数()()ln xf x xe a x x =-+.(1)当0a >时,求()f x 的最小值; (2)若对任意0x >恒有不等式()1f x ≥成立. ①求实数a 的值;②证明:()22ln 2sin xx e x x x >++.25.已知函数()()ln f x x x ax =+,()()g x f x '=.(1)若曲线()y f x =在点()()1,1f 处的切线与直线410x y +-=平行,求实数a 的值;(2)当13a =-时,求()g x 在[]1,2上的最大值. 26.已知函数211()ln (,0)22f x x a x a R a =--∈≠. (1)当2a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间;(3)若对任意的[1,)x ∈+∞,都有()0f x ≥成立,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】作出函数()f x 的图象,利用数形结合的思想判断a 的范围,找出临界点即相切时a 的取值,进而得出a 的范围. 【详解】作出()f x 的图象,如图,由图象可知: 要使()f x ax 恒成立,只需函数()g x ax =的图象恒在图象()f x 的下方, 可得1a ,设()g x ax =与函数2()22(0)f x x x x =++相切于点(),(0)P m n m <, 由()f x 的导数为22x +,可得切线的斜率为22m +, 即有22a m =+,222am m m =++, 解得2m =-,222a =-由图象可得222a -,综上可得a 的范围是[22-1]. 故选:A 【点睛】解决此类问题的关键是作出函数图象,根据数形结合的思想处理问题,本题关键找出相切时刻这一临界位置,利用直线与抛物线相切即可求解.2.D解析:D 【分析】利用图象求得不等式()()0f x f x '-<的解集,求得()()()xf x f xg x e'-'=,解不等式()0g x '<即可得出函数()g x 的单调递减区间.【详解】由图象可知,不等式()()0f x f x '-<的解集为()()0,14,+∞,因为()()xf xg x e=,所以,()()()()()()2x xxx f x e f x e f x f x g x e e ''--'==,解不等式()0g x '<,可得()()0f x f x '-<,解得()()0,14,x ∈+∞,因此,函数()g x 的单调递减区间为()0,1,()4,+∞. 故选:D. 【点睛】易错点睛:本题考查利用导数求解函数的单调递减区间,通过解不等式()0g x '<得到()()0,14,x ∈+∞,但需要注意的是,函数()g x 的两个单调递减区间不能取并集,而应分开表示.3.B解析:B 【分析】由x b =既是()f x 的极小值点,又是零点,且()f x 的最高次项系数为1,因此可设2()()()f x x b x m =-+,这样可求得1m =-,然后求出()'f x ,求得()'f x 的两个零点,一个零点是b ,另一个零点2x 必是极大值点,由2b x >可得b 的范围. 【详解】因为()0f b =,x b =是函数()f x 的极小值点,结合三次函数的图象可设2()()()f x x b x m =-+,又2()()()f x x b x ax b =-++,令0x =得22b m b =-,1m =-,即2()(1)()f x x x b =--,22()3(42)2f x x b x b b '=-+++()(32)x b x b =---,由()0f x '=得1x b =,223b x +=, x b =是极小值点,则23b +是极大值点,23b b +>,所以1b >. 故选:B . 【点睛】本题考查导数与极值点的关系,解题关键是结合零点与极值点,设出函数表达式,然后再求极值点,由极小值点大于极大值点可得所求范围.4.B解析:B 【分析】结合导数和二次函数的性质可求出()f x 和()g x 的值域,结合已知条件可得[0e 4[]a ⊆-,,1)4a -,从而可求出实数a 的取值范围. 【详解】解:g (x )=x 2e x 的导函数为g ′(x )=2xe x +x 2e x =x (x +2)e x ,当0x =时,()0g x '=, 由[)1,0x ∈-时,()0g x '<,(]0,1x ∈时,()0g x '>,可得g (x )在[–1,0]上单调递减,在(0,1]上单调递增,故g (x )在[–1,1]上的最小值为g (0)=0,最大值为g (1)=e , 所以对于任意的2[1,1]x ∈-,2()[0,e]g x ∈.因为2y x a =-+开口向下,对称轴为y 轴,又10202--<-,所以当0x =时,max ()f x a =,当2x =时,min ()4f x a =-, 则函数2()f x x a =-+在[12-,2]上的值域为[a –4,a ],且函数f (x )在11[,]22-,图象关于y 轴对称,在(12,2]上,函数()f x 单调递减.由题意,得[0e 4[]a ⊆-,,1)4a -, 可得a –4≤0<e <14a -,解得e 14+<a ≤4.故选:B . 【点睛】本题考查了利用导数求函数的最值,考查了二次函数的性质,属于中档题.本题的难点是12()()f x g x =这一条件的转化.5.B解析:B 【分析】令ln xy x=,问题转化为函数在(0,)t 递增,求出函数的导数,求出函数的单调区间,从而求出t 的最大值即可. 【详解】0a b t <<<,ln ln b a a b <,∴ln ln a ba b<,()a b <, 令ln xy x=,则函数在(0,)t 递增, 故21ln 0xy x -'=>, 解得:0x e <<,所以(0,)t 是(0,)e 的子集, 可得0t e <≤,故t 的最大值是e ,故选:B . 【点睛】利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间,a b 上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围.6.A解析:A 【解析】因为1m =1,21010m -=-=1,所以12m m =,选A. 7.D解析:D 【分析】首先求导,由题意转化为在[1,)x ∈+∞,220ax x a -+≥恒成立,即221xa x ≥+在[1,)+∞上恒成立.再利用基本不等式求出221xx +的最大值即可. 【详解】222()ax x af x x-+'=,(0)a > 因为()f x 在[1,)+∞上为单调递增,等价于220ax x a -+≥恒成立. 即221xa x ≥+在[1,)+∞上恒成立. 因为222111x x x x x x=≤=++,当1x =时,取“=”, 所以1a ≥,即a 的范围为[1,)+∞. 故选:D 【点睛】本题主要考查利用导数的单调区间求参数的问题,同时考查了学生的转化思想,属于中档题.8.A解析:A 【分析】 根据f ′(x )>12,构造函数 ()()122x g x f x =-- ,又()()1111022=--=g f ,然后将不等式1()22x f x <+,转化为1()022--<x f x ,利用单调性的定义求解. 【详解】 因为f ′(x )>12, 所以()102f x '-> 所以()()()()()110222x g x f x g x f x g x =--⇒=->⇒'' 在R 上递增, 又()()1111022=--=g f , 所以不等式1()22x f x <+,即为1()022--<x f x , 即为:()()1g x g <, 所以1x <, 故选:A 【点睛】本题主要考查函数的单调性与导数以及单调性的应用,还考查了构造转化求解问题的能力,属于中档题.9.C解析:C 【分析】依题意得,(1,1)x ∈-时,2()60f x x mx '=+-恒成立,得到(1)0(1)0f f '-⎧⎨'⎩,解之即可.【详解】 解:()3216132mf x x x x -+=+,()26f x x x m '∴=-+,要使函数()f x 在()1,1-单调递减, 则()0f x '≤在()1,1x ∈-上恒成立, 即260x mx -+≤在()1,1x ∈-上恒成立,则:()()1010f f ⎧-≤⎪⎨≤''⎪⎩,即:160160m m --≤⎧⎨+-≤⎩,解得:55m -≤≤则m 的取值范围为:[]55-,. 故选:C .本题考查利用导数研究函数的单调性,依题意得到(1)0(1)0f f '-⎧⎨'⎩是关键,考查化归思想与运算能力,属于中档题.10.D解析:D 【分析】构造函数()ln (),g x xf x = 根据()g x '的符号判断函数单调性,结合函数单调性的特点,得当0x >时,f (x )<0, 当0x <时,f (x )>0,再解不等式即可. 【详解】构造函数()ln (),g x xf x =则()()()()ln ()ln f x f x x xf x g x xf x xx+''=+'=,已知当0x >时,()()ln 'x x f x f x ⋅<-,所以在x>0时,()g x '<0,即g (x )在(0,+∞)上是减函数,因为y=lnx 在(0,+∞)上是增函数,所以f (x )在(0,+∞)上是减函数 已知()()f x x R ∈是奇函数,所以f (x )在(-∞,0)上也是减函数,f (0)=0, 故当0x >时,f (x )<0, 当0x <时,f (x )>0,由()()240x f x ->得224040()0()0x x f x f x ⎧⎧->-<⎨⎨><⎩⎩或 ,解得x<-2或0<x<2 故选D. 【点睛】本题考查了函数的导数与函数的单调性的关系,考查了奇函数,以及不等式的解法,关键是构造函数,根据函数单调性分析f (x )>0与f (x )<0的解集.11.C解析:C 【分析】根据导数的运算法则先求出函数的导数()f x '的解析式,再把1x =代入()f x '的解析式运算求得结果. 【详解】∵函数()cos ln f x x x =-+,∴()1sin f x x x'=+, ∴()1sin11f ='+,故选C. 【点睛】本题主要考查求函数的导数,导数的加减法则的应用,属于基础题.12.D解析:D确定函数的定义域,求导函数,根据导函数的正负确定函数的单调性. 【详解】函数的定义域为(0,+∞) 求导函数,可得f′(x )=1+lnx 令f′(x )=1+lnx=0,可得x=1e, ∴0<x <1e 时,f′(x )<0,x >1e时,f′(x )>0 ∴在10,e ⎛⎫ ⎪⎝⎭上递减, 在1,e⎛⎫+∞ ⎪⎝⎭上递增 故选D . 【点睛】这个题目考查了导数在函数的单调性中的应用,判断函数的单调性常用的方法是:求导,根据导函数的正负得到函数的单调区间.导函数为正的区间是增区间,导函数为负的区间是减区间.二、填空题13.0或或【分析】设切点的坐标由求出切线方程把代入切线方程可求得切点坐标【详解】设的坐标为过点的切线方程为代入点的坐标有整理为解得或或故答案为:0或或【点睛】本题考查导数的几何意义求函数图象的切线方程要解析:0或1-或53【分析】设切点P 的坐标,由P 求出切线方程,把(1,0)代入切线方程可求得切点坐标. 【详解】设P 的坐标为()32,351m m m m +-+,2()9101f x x x +'=-,过点P 的切线方程为()()3223519101()m m m m x y m m +-+=+---,代入点()1,0的坐标有()()()32235191011mm m mm m --+-+=+--,整理为323250m m m --=,解得0m =或1m =-或53m =, 故答案为:0或1-或53. 【点睛】本题考查导数的几何意义.求函数图象的切线方程要分两种情况:(1)函数()y f x =图象在点00(,)P x y 处的切线方程,求出导函数,得出切线方程000()()y y f x x x '-=-;(2)函数()y f x =图象过点00(,)P x y 处的切线方程:设切线坐标11(,)x y ,求出切线方程为111()()y y f x x x '-=-,代入00(,)x y 求得11,x y ,从而得切线方程.14.【分析】令则可以判断出在上单调递增再由根据单调性即可比较大小【详解】令则因为对于恒成立所以所以在上单调递增因为所以所以故答案为:【点睛】关键点点睛:本题的关键是构造函数利用导数判断出在上单调递增更关 解析:c a b <<【分析】令()()xg x f x e =,则()()()0xg x e f x f x ''=+>⎡⎤⎣⎦,可以判断出()()xg x f x e =在R上单调递增,再由()ln 2a g =,()1b g =,()0c g =根据单调性即可比较大小. 【详解】令()()xg x f x e =,则()()()()()xxxg x f x e f x e e f x f x '''=+=+⎡⎤⎣⎦,因为()()0f x f x +'>对于x ∈R 恒成立, 所以()()()0xg x e f x f x ''=+>⎡⎤⎣⎦,所以()()xg x f x e =在R 上单调递增,()()()ln22ln 2ln 2ln 2a f e f g ===,()()()1111b ef e f g ===, ()()()0000c f e f g ===,因为0ln 21<<,所以()()()0ln 21g g g <<,所以c a b <<, 故答案为:c a b << 【点睛】关键点点睛:本题的关键是构造函数()()xg x f x e =,利用导数判断出()g x 在R 上单调递增,更关键的一点要能够得出()ln 2a g =,()1b g =,()0c g =,根据单调性即可比较大小.15.【分析】对参数的取值分类讨论特别地考虑当时利用导数的几何意义求得相切状态时参数的临界值即可数形结合求得参数范围【详解】函数有3个零点也即的图象有3个交点当时没有零点故舍去;当时故此时也没有零点故舍去 解析:a e >【分析】对参数a 的取值分类讨论,特别地考虑当0a >时,利用导数的几何意义,求得相切状态时参数a 的临界值,即可数形结合求得参数范围. 【详解】函数()f x 有3个零点,也即,xy e y a x ==的图象有3个交点.当0a =时,()xf x e =没有零点,故舍去;当0a <时,0xa x e ≤<,故此时()f x 也没有零点,故舍去;当0a >时,画出,xy e y a x ==的函数图象,如下所示:数形结合可知,当a 大于,(0)y ax x =>与xy e =相切时切线的斜率即可.不妨设此时切线斜率为k ,切点为(),m n ,又xy e '=,则mm n e k e m m===,解得1m =,故可得k e =.即,(0)y ax x =>与xy e =相切时切线的斜率为1, 故要满足题意,只需a e >. 故答案为:a e >. 【点睛】本题考查由函数零点个数求参数范围,以及导数的几何意义,涉及数形结合的数学思想,属综合中档题.16.【分析】根据定积分的几何意义以及定积分性质求得再求得利用导数分析函数单调性即可求得最大值【详解】令则又即故为半径为的半圆面积故;又是奇函数根据定积分性质则故则故当时单调递增;当时单调递减故故答案为:解析:2π 【分析】 根据定积分的几何意义以及定积分性质,求得a ,再求得f x ,利用导数分析函数单调性,即可求得最大值. 【详解】令m =,)n x dx =,则a m n =+,又y =222x y +=,故m 的半圆面积,故212m ππ=⨯=;又y sinx =是奇函数,根据定积分性质,则0n =.故a π=.则()(),0f x xsinx cosx x π=+≤≤,()f x xcosx =',故当0,2x π⎛⎫∈ ⎪⎝⎭时,0f x,()f x 单调递增;当,2x ππ⎛⎫∈ ⎪⎝⎭时,0f x,()f x 单调递减.故()22max f x f ππ⎛⎫== ⎪⎝⎭. 故答案为:2π 【点睛】本题考查利用定积分的几何意义求定积分,以及定积分的性质,涉及利用导数求函数的最大值,属综合中档题.17.43【分析】先求导数判断函数单调性和极值结合(为常数)在上有最小值3求出的值再根据单调性和极值求出函数的最大值【详解】令解得或当时单调递减当时单调递增当时单调递减所以在时有极小值也是上的最小值即函数解析:43. 【分析】先求导数,判断函数单调性和极值,结合32()26f x x x m =-++(m 为常数)在[]22-,上有最小值3,求出m 的值,再根据单调性和极值求出函数的最大值. 【详解】32()26f x x x m =-++, 2()6126(2)f x x x x x '∴=-+=--,令 ()0f x '=,解得 0x =或2x =,当20x -<<时,()0,()f x f x '<单调递减,当02x <<时,()0,()f x f x '>单调递增,当2x >时,()0,()f x f x '<单调递减,所以()f x 在0x =时有极小值,也是[]22-,上的最小值, 即(0)3f m ==,函数在[]22-,上的最大值在2x =-或2x =时取得, 3232(2)2(2)6(2)343;(2)2262311f f -=-⨯-+⨯-+==-⨯+⨯+=,∴函数在[]22-,上的最大值为43.故答案为:43 【点睛】本题主要考查了利用导数研究函数的单调性和极值,函数的最值,属于中档题.18.-2【分析】利用导数的几何意义求得在点处的切线斜率为再根据两直线的位置关系即可求解【详解】由题意函数可得所以即在点处的切线斜率为又由在点处的切线与直线垂直所以解得【点睛】本题主要考查了利用导数的几何解析:-2 【分析】利用导数的几何意义,求得在点(1,(1))f 处的切线斜率为1k a =-,再根据两直线的位置关系,即可求解. 【详解】由题意,函数21()ln 2f x x a x =-,可得()af x x x'=-,所以(1)1f a '=-, 即在点(1,(1))f 处的切线斜率为1k a =-,又由在点(1,(1))f 处的切线与直线310x y ++=垂直,所以1(1)()13a -⨯-=-, 解得2a =-. 【点睛】本题主要考查了利用导数的几何意义求解参数问题,其中解答中利用导数的几何意义求得切线的斜率,再根据两直线的位置关系是解答的关键,着重考查了推理与运算能力,属于基础题.19.【分析】对两边求导可得:将代入即可求得问题得解【详解】对两边求导可得:将代入上式可得:解得:【点睛】本题主要考查了导数的计算及赋值思想考查计算能力属于中档题解析:94- 【分析】对2()3(2)ln f x xf 'x x =++两边求导可得:1()23(2)f x f 'xx '=++,将2x =代入即可求得9(2)4f '=-,问题得解. 【详解】对2()3(2)ln f x xf 'x x =++两边求导可得:1()23(2)f x f 'xx '=++,将2x =代入上式可得:1(2)223(2)2f f ''=⨯++ 解得:9(2)4f '=- 【点睛】本题主要考查了导数的计算及赋值思想,考查计算能力,属于中档题.20.【解析】【分析】首先求得导函数利用赋值法令求解即可【详解】由函数的解析式可得利用赋值法令得解得【点睛】本题主要考查导数的运算法则方程思想的应用等知识意在考查学生的转化能力和计算求解能力解析:12【解析】 【分析】首先求得导函数,利用赋值法,令1x =求解()'1f 即可. 【详解】由函数的解析式可得()()2'11ln f f x x x'=+-,利用赋值法,令1x =,得()()11'1f f ='-,解得()1'12f =. 【点睛】本题主要考查导数的运算法则,方程思想的应用等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(1)若0a ≤时,函数在()0,∞+上单调递增;若0a >时,函数在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增;(2)(,-∞-.【分析】(1)先求导,根据导数和函数的单调性的关系,分类讨论即可求出;(2)对()g x 求导得3318()x x a g x x--'=,由()g x 在区间[]1,e 上是增函数,可得[]1,x e ∈时,3318a x x ≤-恒成立,令3()318h x x x =-,[]1,x e ∈,利用导数求出()h x 的最小值,即可求得a 的取值范围. 【详解】解:(1)函数()f x 的定义域为()0,∞+,()323()30a x af x x x x x-'=-=>,①若0a ≤时,()0f x '>,此时函数在()0,∞+上单调递增;②若0a >时,令()0f x '>,可得x >()0f x '<,可得0x <<,所以函数在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增.(2)32318()()18318a x x ag x f x x x x--''=-=--=,若函数()()18g x f x x =-在区间[]1,e 上是增函数, 又当[]1,x e ∈时,3318a x x ≤-恒成立,令3()318h x x x =-,[]1,x e ∈,则()22()91892h x x x '=-=-,令()0h x '>x e <<,可得函数()h x 的增区间为)e ,减区间为(,所以min ()h x h ===-有a ≤-,故实数a 的取值范围为(,-∞-. 【点睛】关键点点睛:本题考查函数的导数的应用,函数的最值,构造法的应用,解题的关键是根据单调性确定3318a x x ≤-恒成立,考查分析问题解决问题的能力,属于中档题. 22.(1)当0a >时,()f x 的单调递减区间为(,1)-∞-,当0a <时,()f x 的单调递减区间为(1,)-+∞;(2)当0a >时,原方程有且仅有一个解;当0a <时,原方程有两个解. 【分析】(1)求导,对a 分类讨论,利用()0f x '<可解得结果;(2)转化为函数2(1)()e xx g x x +=与y a =的图象的交点的个数,利用导数可求得结果.【详解】(1)()(1)e x x xf x ae axe a x '=+=+,由()0f x '=得1x =-,①若0a >时,由()0f x '<得1x <-,所以()f x 的单调递减区间为(,1)-∞-; ②若0a <时,由()0f x '<得1x >-,所以()f x 的单调递减区间为(1,)-+∞.综上所述,当0a >时,()f x 的单调递减区间为(,1)-∞-;当0a <时,()f x 的单调递减区间为(1,)-+∞.(2)因为方程2()(1)f x x =+等价于2(1)e x x a x +=,令2(1)()e xx g x x +=,所以方程()()21f x x =+的根的个数等于函数2(1)()exx g x x +=与y a=的图象的交点的个数,因为()2222(1)12(1)(1)()()()ex x x x x x x x xe x e xe g x xe x +++-++=-'=, 由()0g x '=,得1x =-,当(,1)x ∈-∞-,时,()0g x '>,()g x 在(,1)-∞-上单调递增; 当()()1,00,x ∈-+∞时,()0g x '<,所以()g x 在()1,0-,()0,∞+上单调递减,又()10g -=,所以当(,1)x ∈-∞-时,()(),0g x ∈-∞; 当()1,0x ∈-时,()(),0g x ∈-∞; 当()0,x ∈+∞时,()()0,g x ∈+∞.所以,当0a >时,原方程有且仅有一个解; 当0a <时,原方程有两个解. 【点睛】方法点睛:讨论函数零点(或方程根)的个数的常用的方法: (1)直接法:直接求解方程得到方程的根,可得方程根的个数;(2)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解23.(1)1个;(2)2122e e a --+<.【分析】(1)求导得到函数的单调性,再利用零点存在性定理得解(2)分离参变量,不等式恒成立转化为求函数的最值得解 【详解】(1)()x f x x e -=-,0x ≥,()10xf x e '-=+>故()f x 在[0,)+∞递增,又(0)1f =-,1(1)10f e -=->(0)(1)0f f <,故()f x 在(0,1)上存在唯一零点因此()f x 在区间[0,)+∞的零点个数是1个; (2)1x ∀≥-,2x xe x ae-+<恒成立,即1x ∀≥-,2e 2x x a xe <-恒成立 令2()2xx e g x xe =-,1x ≥-,则min ()a g x <()()1x x g x e x e '=--,令()1x h x e x =--,1x ≥-()1x h x e '=-,[1,0)x ∈-时,()0h x '<,0x >时,()0h x '>故()h x 在[1,0)-递减,(0,)+∞递增,因此()(0)0h x h ≥= 所以,()0g x '≥,故 ()g x 在[1,)-+∞递增 故21min 2()(1)2e e g x g --+=-=,因此2122e e a --+<. 【点睛】不等式恒成立问题解决思路:一般参变分离、转化为最值问题. 24.(1)ln a a a -;(2)①1;②证明见解析. 【分析】(1)求出函数()f x 的定义域,对函数求导,令0x xe a -=,构造()xg x xe =,利用导数研究函数的单调性与实根个数,进而得出()f x 的单调性和最值;(2)①当0a ≤时,()f x 单调递增,()f x 值域为R ,不适合题意;当0a >时,构造()()ln 0a a a a a ϕ=->,求导得出函数的最大值,可得实数a 的值;②由①可知ln 1x xe x x --≥,因此只需证:22ln 2sin x x x x +>+,只需证2222sin x x x x +>-+,即222sin x x x -+>,按1x >和01x <≤分别证明即可.【详解】 (1)法一:()f x 的定义域为()0,∞+,由题意()()()11x xa xe a f x x e x x x ⎛⎫-⎛⎫'=+-=+ ⎪ ⎪⎝⎭⎝⎭,令0x xe a -=,得x a xe =, 令()xg x xe =,()()10x x x g x e xe x e '=+=+>,所以()g x 在()0,x ∈+∞上为增函数,且()00g =, 所以x a xe =有唯一实根, 即()0f x '=有唯一实根,设为0x , 即00xa x e =,所以()f x 在()00,x 上为减函数,在()0,x +∞上为增函数, 所以()()()00000min ln ln xf x f x x e a x x a a a ==-+=-.法二:()()()()ln ln ln 0xe x xf x x a x x e a x x x +=-+=-+>.设ln t x x =+,则t R ∈.记()()tt e at t R ϕ=-∈.故()f x 最小值即为()t ϕ最小值.()()0t t e a a ϕ'=->,当(),ln t a =-∞时,()0t ϕ'<,()t ϕ单调递减, 当()ln ,t a ∈+∞时,()0t ϕ'>,()t ϕ单调递增, 所以()()ln min ln ln ln af x a ea a a a a ϕ==-=-,所以()f x 的最小值为ln a a a -.(2)①当0a ≤时,()f x 单调递增,()f x 值域为R ,不适合题意, 当0a >时,由(1)可知()min ln f x a a a =-, 设()()ln 0a a a a a ϕ=->, 所以()ln a a ϕ'=-,当()0,1a ∈时,()0a ϕ'>,()a ϕ单调递增, 当()1,a ∈+∞时,()0a ϕ'<,()a ϕ单调递减, 所以()()max 11a ϕϕ==,即ln 1a a a -≤. 由已知,()1f x ≥恒成立,所以ln 1a a a -≥, 所以ln 1a a a -=, 所以1a =.②由①可知ln 1x xe x x --≥,因此只需证:22ln 2sin x x x x +>+, 又因为ln 1≤-x x ,只需证2222sin x x x x +>-+,即222sin x x x -+>,当1x >时,2222sin x x x -+>≥结论成立,当(]0,1x ∈时,设()222sin g x x x x =-+-,()212cos g x x x '=--,当(]0,1x ∈时,()g x '显然单调递增.()()112cos10g x g ''≤=-<,故()g x 单调递减, ()()122sin10g x g ≥=->,即222sin x x x -+>. 综上结论成立. 【点睛】方法点睛:本题考查导数研究函数的最值,导数解决恒成立问题以及导数证明不等式,导数对于含参数的函数在闭区间上函数值恒大于等于或小于等于常数问题,可以求函数最值的方法, 一般通过变量分离,将不等式恒成立问题转化为求函数的最值问题:()f x m >恒成立min ()f x m ⇔>;()f x m <恒成立max ()f x m ⇔<.25.(1)52a =-;(2)()max 3ln 2=g x .【分析】(1)求出函数的导数,求得()1f '的值,由题意可得124a +=-,从而可求出a 的值;(2)先求出()2ln 13g x x x =-+,然后对函数求导,通过列表判断函数的极值,得到函数只有极大值,从而可得其最大值 【详解】解:(1)由()()ln f x x x ax =+,得()ln 21f x x ax '=++,所以()112f a '=+, 因为曲线()y f x =在点()()1,1f 处的切线与直线410x y +-=平行, 所以()14f '=-得124a +=-,解得52a =-. (2)()2ln 13g x x x =-+,()123g x x '=-, ∵12x ≤≤,∴1112x≤≤∴()max ln 22g x g ⎛⎫==⎪⎝⎭.【点睛】此题考查了导数的几何意义的应用,考查利用导数求函数的最值,考查计算能力,属于基础题26.(1)10x y +-=;(2)答案见解析;(3)()(],00,1-∞. 【分析】(1)当2a =时,求出函数的导数,利用导数的几何意义即可求曲线()y f x =在点()1,()f x 处的切线方程;(2)求函数的导数,利用函数单调性和导数之间的关系即可求函数()f x 的单调区间; (3)根据函数的单调性求出函数的最小值即可实数a 的取值范围.【详解】解:(1)2a =时,211()2ln 22f x x x =--,(1)0f =, 2'()f x x x=- ,'(1)1f =- 曲线()y f x =在点(1,(1))f 处的切线方程10x y +-=(2)2'()(0)a x a f x x x x x -=-=>①当0a <时,2'()0x a f x x-=>恒成立,函数()f x 的递增区间为()0,∞+②当0a >时,令'()0f x =,解得x =x =所以函数()f x 的递增区间为+∞,递减区间为 (3)对任意的[1,)x ∈+∞,使()0f x ≥成立,只需任意的[1,)x ∈+∞,min ()0f x ≥ ①当0a <时,()f x 在[1,)+∞上是增函数,所以只需(1)0f ≥ 而11(1)ln1022f a =--= 所以0a <满足题意;②当01a <≤时,01<≤,()f x 在[1,)+∞上是增函数,所以只需(1)0f ≥ 而11(1)ln1022f a =--= 所以01a <≤满足题意;③当1a >1>,()f x 在上是减函数,)+∞上是增函数,所以只需0f ≥即可 而(1)0f f <= 从而1a >不满足题意;综合①②③实数a 的取值范围为()(],00,1-∞.【点睛】 本题主要考查函数切线的求解,以及函数单调性和函数最值的求解,综合考查函数的导数的应用,属于中档题.。
一、选择题1.函数()[)(](),00,sin xf x x x xππ=∈--的图象大致是( )A .B .C .D .2.已知函数()x f x e ex a =-+与1()ln g x x x=+的图象上存在关于x 轴对称的点,则a 的取值范围是( ) A .(,]e -∞-B .(,1] -∞-C .[1,) -+∞D .[,)e3.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( ) A .()1,+∞ B .[)3,+∞C .(],1-∞D .(],3-∞4.已知函数322()f x =x ax bx a +++在1x =处的极值为10,则a b -=( ). A .6-B .15-C .15D .6-或155.若函数()22ln 45f x x x bx =+++的图象上的任意一点的切线斜率都大于0,则b 的取值范围是( ) A .(),8-∞- B .()8,-+∞ C .(),8-∞ D .()8,+∞6.若函数()()sin xf x e x a =+在区间,22ππ⎛⎫- ⎪⎝⎭上单调递增,则实数a 的取值范围是()A .)+∞ B .[)1,+∞C .()1,+∞D .()+∞7.已知函数2()ln(1)22x x f x x -=-++,则使不等式(1)(2)f x f x +<成立的x 的取值范围是( )A .(1)(1,)-∞-⋃+∞,B .(1,+)∞C .1(,)(1,+)3-∞-⋃∞D .(,2)(1,)-∞-+∞8.已知定义在R 上的可导函数()f x 的导函数为'()f x ,满足()'()f x f x >,且(0)1f =,则不等式()x e f x >(e 为自然对数的底数)的解集为( )A .(1,)-+∞B .(0,)+∞C .(1,)+∞D .(,0)-∞9.设函数()f x 在R 上存在导数()f x ',对任意的x ∈R ,有()()2f x f x x +-=,且在[)0,+∞上有()f x x '>.若()()222f k f k k --≥-,则k 的取值范围是( )A .(],0-∞B .(],1-∞C .1,22⎡⎤⎢⎥⎣⎦D .50,2⎡⎤⎢⎥⎣⎦10.内接于半径为R 的球且体积最大的圆柱体的高为( )A .3R B .3R C .2R D .2R 11.设函数()'f x 是函数()()f x x R ∈的导函数,当0x ≠时,3()()0f x f x x'+<,则函数31()()g x f x x =-的零点个数为( ) A .3 B .2 C .1D .012.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( ) A .2eB .eC .1D .12二、填空题13.函数()f x 定义在0,2π⎛⎫⎪⎝⎭上,26f π⎛⎫=⎪⎝⎭,其导函数是()f x ',且()()cos sinx f x x f x '⋅<⋅恒成立,则不等式()22sinx f x >的解集为_____________.14.如图,有一块半径为2的半圆形钢板,计划裁剪成等腰梯形ABCD 的形状,它的下底AB 是圆O 的直径,上底C 、D 的端点在圆周上,则所裁剪出的等腰梯形面积最大值为_______________.15.已知函数()ln 1f x x x =--,()ln g x x =,()()F x f g x =⎡⎤⎣⎦,()()G x g f x =⎡⎤⎣⎦,给出以下四个命题:(1)()y F x =是偶函数;(2)()y G x =是偶函数;(3)()y F x =的最小值为0;(4)()y G x =有两个零点;其中真命题的是______.16.已知函数()2xe f x ax x=-,()0,x ∈+∞,当21x x >时,不等式()()12210f x f x x x -<恒成立,则实数a 的取值范围为________. 17.已知函数()321213f x x x ax =+-+,若函数()f x 在()2,2-上有极值,则实数a 的取值范围为______. 18.函数()ln xf x x=在(),1a a +上单调递增,则实数a 的取值范围为______. 19.已知在正四棱锥P ABCD -中,4PA =,则当该正四棱锥的体积最大时,它的高h 等于______.20.已知()2sin cos f x x x x x =++,则不等式()()1lg lg 22f x f x f ⎛⎫+ ⎪⎝⎭>的解集为______.三、解答题21.已知函数()cos x f x e x x =-,()(sin 1)g x x x =-. (1)讨论()f x 在区间(,0)2π-上的单调性;(2)判断()()f x g x -在区间[,]22ππ-上零点的个数,并给出证明. 22.已知函数()()3exf x xx a =-+,a R ∈.(1)当2a =-时,求()f x 在[]1,2-上的最大值和最小值; (2)若()f x 在()1,+∞上单调,求a 的取值范围.23.已知函数432()f x ax x bx =++(),a b ∈R ,()()()g x f x f x '=+是偶函数. (1)求函数()g x 的极值以及对应的极值点. (2)若函数43221()()(1)4h x f x x c x x cx c =++--++,且()h x 在[]2,5上单调递增,求实数c 的取值范围. 24.设函数()()21xf x ea x =-+.(1)讨论()f x 的单调性;(2)若()0f x >对x ∈R 恒成立,求a 的取值范围.25.已知函数21(),()ln 2f x xg x a x ==. (1)若曲线()()y f x g x =-在2x =处的切线与直线370x y +-=垂直,求实数a 的值;(2)若[]1,e 上存在一点x ,使得()()()()00001f xg x g x f x ''+<-'成立,求实数a 的取值范围.26.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I 内的地块形状为矩形ABCD ,大棚II 内的地块形状为CDP ,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP 的面积,并确定sin θ的取值范围;(2)若大棚I 内种植甲种蔬菜,大棚II 内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先判断函数的奇偶性,再利用导数研究函数的单调性即可得解; 【详解】 解:因为()[)(](),00,sin xf x x x xππ=∈--,定义域关于原点对称,又()()()sin sin x x f x f x x x x x --===----,所以()[)(](),00,sin x f x x x xππ=∈--为偶函数,函数图象关于y 轴对称,所以排除A 、D ; ()()()()()22sin sin cos sin sin sin x x x x x xx x xf x x x x x ''----'==--令()cos sin g x x x x =-,则()sin g x x x '=-,所以当(]0,x π∈时()0g x '≤,所以()cos sin g x x x x =-在(]0,x π∈上单调递减,又()00g =,所以()0g x <在(]0,x π∈上恒成立,所以()0f x '<在(]0,x π∈上恒成立,即函数()sin xf x x x=-在(]0,π上单调递减,故排除C ,故选:B 【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.2.B解析:B 【分析】根据题中条件,得到方程1ln xa e ex x x ⎛⎫=--++⎪⎝⎭有解,令1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭,则a 的取值范围是()(0)y h x x =>的值域,对函数()h x 求导,判定其单调性,研究其值域,即可得出结果. 【详解】函数()x f x e ex a =-+与1()ln g x x x=+的图象上存在关于x 轴对称的点, 即方程1ln 0xe ex a x x -+++=有解,即方程1ln x a e ex x x ⎛⎫=--++ ⎪⎝⎭有解,令1()ln xh x e ex x x ⎛⎫=--++ ⎪⎝⎭,则a 的取值范围是()(0)y h x x =>的值域, 因为()22111()xx x h x e e e e x x x -⎛⎫⎡⎤'=--+-=--+ ⎪⎢⎥⎝⎭⎣⎦, 所以当1x =时,()0h x '=; 当01x <<时,0x e e -<,210x x -<,所以()21()0xx h x e e x -⎡⎤'=--+>⎢⎥⎣⎦,则函数1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭单调递增;当1x >时,0x e e ->,210x x ->,所以()21()0xx h x e e x -⎡⎤'=--+<⎢⎥⎣⎦,则函数1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭单调递减;所以max ()(1)1h x h ==-, 画出函数()h x 的大致图像如下,由图像可得,()(],1h x ∈-∞-, 所以a 的取值范围(],1-∞-. 故选:B. 【点睛】本题主要考查导数的方法研究方程根的问题,考查函数与方程的应用,将问题转化为两函数交点的问题是解题的关键,属于常考题型.3.B解析:B 【分析】根据'()0f x ≤在(1,1)-上恒成立求解. 【详解】∵3()f x x ax =-,∴2'()3f x x a =-.又函数()f x 在()1,1-上单调递减,∴2'()30f x x a =-≤在(1,1)-上恒成立,即23a x ≥在(1,1)-上恒成立.∵当(1,1)x ∈-时,3033x ≤<,∴3a ≥. 所以实数a 的取值范围是[3,)+∞. 故选:B . 【点睛】本题考查根据导函数研究函数的单调性,以及不等式的恒成立问题,注意当'()0()f x x D <∈时,则函数()f x 在区间D 上单调递减;而当函数()f x 在区间D 上单调递减时,则有'()0f x ≤在区间D 上恒成立.解题时要注意不等式是否含有等号,属于中档题.4.C解析:C 【分析】由题,可得(1)0(1)10f f '=⎧⎨=⎩,通过求方程组的解,即可得到本题答案,记得要检验.【详解】因为322()f x =x ax bx a +++,所以2()32f x x ax b '=++,由题,得(1)0(1)10f f '=⎧⎨=⎩,即2320110a b a b a ++=⎧⎨+++=⎩,解得411a b =⎧⎨=-⎩或33a b =-⎧⎨=⎩,因为当3,3a b =-=时,2()3(1)0f x x '=-≥恒成立,()f x 在R 上递增,无极值,故舍去,所以4(11)15a b -=--=.故选:C 【点睛】本题主要考查含参函数的极值问题,得到两组解后检验,是解决此题的关键.5.B解析:B 【分析】对函数()f x 求导,得到()f x ',然后根据题意得到()0f x '>恒成立,得到 【详解】因为函数()22ln 45f x x x bx =+++,定义域()0,∞+所以()28f x x b x'=++, 因为()f x 图象上的任意一点的切线斜率都大于0, 所以()280f x x b x'=++>对任意的()0,x ∈+∞恒成立, 所以28b x x>--, 设()28g x x x=--,则()max b g x > ()228g x x'=- 令()0g x '=,得到12x =,舍去负根, 所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增, 当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0g x '<,()g x 单调递减, 所以12x =时,()g x 取最大值,为()max 182g x g ⎛⎫==- ⎪⎝⎭,所以8b >-,故选B. 【点睛】本题考查利用导数求函数图像切线的斜率,不等式恒成立,利用导数研究函数的单调性、极值、最值,属于中档题.6.B解析:B 【分析】将问题转化为()0f x '≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立;根据导函数解析式可知问题可进一步转化04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫-⎪⎝⎭上恒成立;利用正弦型函数值域求法可求得(14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭,则只需10a -+≥即可,解不等式求得结果. 【详解】由题意得:()()sin cos 4xx x f x ex a e x e x a π⎫⎛⎫'=++=++ ⎪⎪⎝⎭⎭()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增 ()0f x '∴≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立又0x e >04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫- ⎪⎝⎭上恒成立 当,22x ππ⎛⎫∈- ⎪⎝⎭时,3,444πππ⎛⎫+∈- ⎪⎝⎭xsin 4x π⎛⎤⎛⎫∴+∈ ⎥ ⎪ ⎝⎭⎝⎦(14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭10a ∴-+≥,解得:[)1,a ∈+∞ 本题正确选项:B 【点睛】本题考查根据函数在一段区间内的单调性求解参数范围问题,涉及到正弦型函数值域的求解问题;本题解题关键是能够将问题转化为导函数在区间内恒大于等于零的问题,从而利用三角函数的最值来求得结果.7.D解析:D 【分析】先判断函数的奇偶性和单调性,由此列不等式组,解不等式组求得x 的取值范围. 【详解】由210x ->解得1x <-或1x >,故函数的定义域为{|1x x <-或}1x >,且()()f x f x -=,所以函数()f x 为偶函数,且当1x >时,令22x x y -=+,'1412ln 2ln 2022x x x x y -⎛⎫=-=⨯> ⎪⎝⎭,所以22x x y -=+在1x >时递增,根据复合函数单调性可知()2ln 1y x =-在1x >时递增,所以函数()f x 在1x >时递增,故在1x <-时递减.由(1)(2)f x f x +<可知121121x x x x ⎧+<⎪+>⎨⎪>⎩,解得(,2)(1,)x -∞-∈+∞.故选D. 【点睛】本小题主要考查函数的单调性和奇偶性,考查利用导数判断函数的单调性,考查函数不等式的解法,属于中档题.8.B解析:B 【解析】令()()()()()0,(0)1x xf x f x f xg x g x g e e-=∴=<'=' 所以()xe f x >()1(0)0g x g x ⇒=⇒ ,选B.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e =,()()0f x f x '+<构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等9.B解析:B 【分析】构造函数()()212g x f x x =-,可得()g x 在[)0,+∞上单调递增,利用奇偶性的定义知()g x 是奇函数,进而求解不等式即可.【详解】由题意当0x ≥时,()f x x '>,构造函数()()212g x f x x =-, 则()()'0g x f x x '=->,得()g x 在[)0,+∞上单调递增, 又由条件()()2f x f x x +-=得()()0g x g x +-=.所以()g x 是奇函数,又()g x 在[)0,+∞上单调递增且()00g =,所以()g x 在R 上单调递增,由()()222f k f k k --≥-,得()()20k g k g --≥,即()()2g k g k -≥, 根据函数()g x 在R 上单调递增,可得2k k -≥,解得1k ≤. 故选:B 【点睛】本题考查导数在函数单调性中的应用,考查函数的奇偶性,属于中档题.10.A解析:A 【分析】根据圆柱的高,底面半径以及球半径之间的关系,建立圆柱的高与圆柱体积之间的函数关系,利用导数求体积取得最大值时对应的自变量即可. 【详解】根据题意,设圆柱底面半径为r ,圆柱的高为h ,作出示意图如下所示:显然满足2224h r R =-, 故圆柱的体积()23214h r h h R h πππ=⨯=-+, 故可得()223,(02)4V h h R h R ππ<'=-+<, 令()0V h '>,解得230h <<,故此时()V h 单调递增, 令()0V h '<232h R <<,故此时()V h 单调递减. 故()23max V h V ⎫=⎪⎪⎝⎭. 即当23h =时,圆柱的体积最大. 故选:A .【点睛】 本题考查圆柱的外接球以及利用导数求体积的最大值,属综合中档题.11.D解析:D【分析】构造函数3()()1F x x f x =-,可得出3()()F x g x x=,利用导数研究函数()y F x =的单调性,得出该函数的最大值为负数,从而可判断出函数()y F x =无零点,从而得出函数3()()F x g x x =的零点个数. 【详解】设3()()1F x x f x =-,则3233()()()3()()f x F x x f x x f x x f x x '''⎡⎤=+=+⎢⎥⎣⎦. 当0x ≠时,3()()0f x f x x'+<, 当0x >时,30x >,故()0F x '<,所以,函数()y F x =在(0,)+∞上单调递减; 当0x <时,30x <,故()0F x '>,所以,函数()y F x =在(,0)-∞上单调递增. 所以max ()(0)10F x F ==-<,所以,函数()y F x =没有零点, 故331()()()F x g x f x x x=-=也没有零点. 故选:D .【点睛】本题考查函数零点个数的判断, 解题的关键就是要结合导数不等式构造新函数,并利用导数分析函数的单调性与最值,必要时借助零点存在定理进行判断,考查分析问题和解决问题的能力,属于中档题. 12.C解析:C【分析】整理所给的不等式,构造新函数,结合导函数研究函数的单调性,即可求得结果.【详解】解:由已知可得,211212ln ln x x x x x x -<-,两边同时除以12x x , 则121221ln ln 11x x x x x x -<-,化简有1212ln 1ln 1x x x x ++<, 而120x x <<,构造函数()ln 1x f x x+=,()2ln x f x x -'=, 令()0f x '>,则01x <<;令()0f x '<,则1x > ,所以函数()f x 在()0,1上为增函数,在()1,+∞上为减函数, 由1212ln 1ln 1x x x x ++<对于120x x a <<<恒成立, 即()f x 在()0,a 为增函数,则01a <≤,故a 的最大值为1.故选:C.【点睛】本题考查导数研究函数的单调性,考查分析问题能力,属于中档题.二、填空题13.【分析】构造函数再利用函数的单调性解不等式即可【详解】解:构造函数则当时在单调递增不等式即即故不等式的解集为故答案为:【点睛】关键点点睛:本题解题的关键是根据题目的特点构造一个适当的函数利用它的单调 解析:,62ππ⎛⎫ ⎪⎝⎭【分析】构造函数()()sin f x g x x =,再利用函数的单调性解不等式即可. 【详解】解:()()cos sin f x x f x x '<()()sin cos 0f x x x f x '∴->,构造函数()()sin f x g x x =, 则()()()2sin cos f x x f x x g x sin x '-'=, 当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>, ()g x ∴在0,2π⎛⎫ ⎪⎝⎭单调递增, ∴不等式()f x x >,即()61sin sin 26f f x x ππ⎛⎫ ⎪⎝⎭>== 即()6xg g π⎛>⎫ ⎪⎝⎭, 26x ππ∴<< 故不等式的解集为,62ππ⎛⎫⎪⎝⎭. 故答案为:,62ππ⎛⎫⎪⎝⎭. 【点睛】 关键点点睛:本题解题的关键是根据题目的特点,构造一个适当的函数,利用它的单调性进行解题.14.【分析】连过作垂足为设则则等腰梯形的面积令利用导数求其最值【详解】连过作垂足为如图:设则所以等腰梯形的面积令单调递增单调递减所以时取得极大值也是最大值即的最大值故答案为:【点睛】本题考查了函数的实际 解析:33 【分析】连OC ,过C 作CE OB ⊥,垂足为E ,设(02),OE x x CE y =<<=,则224x y +=,则等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+3(2)(2)x x =+-,令3()(2)(2),02h x x x x =+-<<,利用导数求其最值.【详解】连OC ,过C 作CE OB ⊥,垂足为E ,如图:设,OE x CE y ==,则224x y +=,所以等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+2(2)4x x =+-3(2)(2),02x x x =+-<<令3()(2)(2),02h x x x x =+-<<232()3(2)(2)(2)4(1)(2)h x x x x x x '=+--+=-+,(0,1),()0,()x h x h x ∈'>单调递增,(1,2),()0,()x h x h x ∈'<单调递减,所以1x =时,()h x 取得极大值,也是最大值,max ()(1)27h x h ==,即S 的最大值33故答案为:33【点睛】本题考查了函数的实际应用,运用导数求最值时解题的关键,属于中档题.15.(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)(2)的正误;利用导数与复合函数法求得函数的最小值可判断(3)的正误;利用复合函数法与导数求得函数的零点个数可判断(4)的正误综合可得出结论 解析:(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)、(2)的正误;利用导数与复合函数法求得函数()y F x =的最小值,可判断(3)的正误;利用复合函数法与导数求得函数()y G x =的零点个数,可判断(4)的正误.综合可得出结论.【详解】对于命题(1),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,即1x >,解得1x <-或1x >,所以,函数()y F x =的定义域为()(),11,-∞-⋃+∞,定义域关于原点对称,()()ln ln g x x x g x -=-==,则()()()()F x f g x f g x F x ⎡⎤⎡⎤-=-==⎣⎦⎣⎦, 所以,函数()y F x =为偶函数,命题(1)正确;对于命题(2),对于函数()()G x g f x ⎡⎤=⎣⎦,()ln 10f x x x =--≠,()111x f x x x'-=-=,令()0f x '=,得1x =,且函数()y f x =的定义域为()0,+∞,当01x <<时,()0f x '<,此时函数()y f x =单调递减;当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()min 10f x f ==,则函数()()G x g f x ⎡⎤=⎣⎦的定义域为()()0,11,⋃+∞,定义域不关于原点对称,所以,函数()y G x =是非奇非偶函数,命题(2)错误;对于命题(3),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,由(2)知,函数()y f x =的最小值为0,则函数()y F x =的最小值为0,命题(3)正确;对于命题(4),令()()0G x g f x ⎡⎤==⎣⎦,可得()1f x =,则()1f x =或()1f x =-, 由(2)知,()()10f x f ≥=,所以方程()1f x =-无解;令()()1ln 2h x f x x x =-=--,由(2)可知,函数()y h x =在()0,1上单调递减,在()1,+∞上单调递增, 22110h e e⎛⎫=> ⎪⎝⎭,()110h =-<,()42ln422ln20h =-=->, 由零点存在定理可知,函数()y h x =在区间21,1e ⎛⎫ ⎪⎝⎭和()1,4上各有一个零点, 所以,方程()1f x =有两个实根,即函数()y G x =有两个零点,命题(4)正确. 故答案为:(1)(3)(4).【点睛】本题考查函数奇偶性的判断,复合函数最值以及零点个数的判断,考查分析问题和解决问题的能力,属于中等题.16.【分析】由当时不等式恒成立变形得到当时不等式恒成立即在上是增函数然后由在上是恒成立求解【详解】因为当时不等式恒成立即当时不等式恒成立所以在上是增函数所以在上是恒成立即在上是恒成立令所以当时当时所以当 解析:2,12e ⎛⎤-∞ ⎥⎝⎦ 【分析】由当21x x >时,不等式()()12210f x f x x x -<恒成立,变形得到当21x x >时,不等式()()1122x f x x f x <恒成立,即()()g x xf x =,在()0,x ∈+∞上是增函数,然后由()0g x '≥,在()0,x ∈+∞上是恒成立求解.【详解】因为当21x x >时,不等式()()12210f x f x x x -<恒成立,即当21x x >时,不等式()()1122x f x x f x <恒成立,所以()()g x xf x =,在()0,x ∈+∞上是增函数,所以()230x g x e ax '=-≥,在()0,x ∈+∞上是恒成立, 即23xe a x≤,在()0,x ∈+∞上是恒成立, 令2()3xe h x x=, 所以()32()3x e x h x x-'=, 当02x <<时,()0h x '<,当2x >时,()0h x '>,所以当2x =时,()h x 取得最小值,最小值为212e , 所以实数a 的取值范围为2,12e ⎛⎤-∞ ⎥⎝⎦. 故答案为:2,12e ⎛⎤-∞ ⎥⎝⎦. 【点睛】本题主要考查导数与函数的单调性,还考查了转化化归的思想和运算求解的能力,属于中档题.17.【分析】求出函数的导数利用函数的极值点转化列出不等式求解即可【详解】解:可得导函数的对称轴为x =﹣1f (x )在(﹣22)上有极值可得或可得或解得故答案为:【点睛】本题考查函数的导数的应用函数的极值的 解析:1,42⎛⎫- ⎪⎝⎭【分析】求出函数的导数,利用函数的极值点,转化列出不等式求解即可.【详解】解:()321213f x x x ax =+-+, 可得()'222f x x x a =+-,导函数的对称轴为x =﹣1,f (x )在(﹣2,2)上有极值,可得(2)0(1)0f f >⎧⎨-<''⎩或(2)0(1)0f f ->⎧⎨-<''⎩, 可得44201220a a +->⎧⎨--<⎩或44201220a a -->⎧⎨--<⎩, 解得1,42a ⎛⎫∈- ⎪⎝⎭. 故答案为:1,42⎛⎫-⎪⎝⎭. 【点睛】本题考查函数的导数的应用,函数的极值的求法,考查转化思想以及计算能力. 18.【分析】先求出得到在上单调递增要使得在上单调递增则从而得到答案【详解】由函数有由得得所以在上单调递增在上单调递减又函数在上单调递增则则解得:故答案为:【点睛】本题考查函数在某区间上的单调性求参数的范 解析:[]0,1e -【分析】先求出()21ln x f x x-'=,得到()f x 在()0e ,上单调递增,要使得在(),1a a +上单调递增,则()(),10a a e +⊆,,从而得到答案.【详解】由函数()ln x f x x =有()()2ln 1ln 0x x f x x x x -'==> 由()0f x '>得0x e <<,()0f x '<得x e >.所以()f x 在()0e ,上单调递增,在(),e +∞上单调递减,又函数()ln x f x x =在(),1a a +上单调递增,则()(),10a a e +⊆, 则01a a e≥⎧⎨+≤⎩ ,解得:01a e ≤≤-.故答案为:[]0,1e -【点睛】本题考查函数在某区间上的单调性,求参数的范围,属于基础题.19.【分析】设正四棱锥的底面边长为即可由表示出和的等量关系进而表示出正四棱锥的体积利用导函数判断单调性由单调性即可求得最值并求得取最值时的高的值【详解】设正四棱锥的底面边长为因为所以即所以正四棱锥的体积【分析】设正四棱锥P ABCD -的底面边长为a ,即可由4PA =表示出a 和h 的等量关系,进而表示出正四棱锥P ABCD -的体积.利用导函数,判断单调性,由单调性即可求得最值,并求得取最值时的高h 的值.【详解】设正四棱锥P ABCD -的底面边长为a ,因为4PA =,所以22162a h +=, 即22322a h =-,所以正四棱锥P ABCD -的体积()2313220333V a h h h h ==->, 可得232'23V h =-,令'0V =,解得h =当03h <<,可得'0V >,可知V 在03h <<内单调递增,当h >'0V <,可知V 在h >所以当h =P ABCD -的体积取得最大值,即16322313V ⎛⎫-⨯ =⎪⎝⎭=【点睛】本题考查了正四棱锥的性质与应用,四棱锥的体积公式,利用导数求函数的最值及取最值时的自变量,属于中档题.20.【分析】先判断函数为偶函数再利用导数判断函数在递增从而将不等式转化为进一步可得不等式解对数不等式即可得答案【详解】的定义域为且即有即为偶函数;又时则在递增不等式即为即有可得即有即或解得或则解集为故答 解析:()10,100,100⎛⎫+∞ ⎪⎝⎭【分析】先判断函数为偶函数,再利用导数判断函数在0x >递增,从而将不等式转化为()()lg 2f x f >,进一步可得不等式lg 2x >,解对数不等式即可得答案.【详解】()2sin cos f x x x x x =++的定义域为R ,且()()()()()22sin cos sin cos f x x x x x x x x x -=--+-+-=++, 即有()()f x f x -=,即()f x 为偶函数;又0x >时,()()sin cos sin 22cos 0f x x x x x x x x '=+-+=+>,则()f x 在0x >递增,不等式()()1lg lg 22f x f x f ⎛⎫+ ⎪⎝⎭>, 即为()()()lg lg 22f x f x f +->, 即有()()lg 2f x f >, 可得()()lg 2f x f >, 即有lg 2x >,即lg 2x >或lg 2x <-,解得100x >或10100x <<, 则解集为()10,100,100⎛⎫+∞ ⎪⎝⎭. 故答案为:()10,100,100⎛⎫+∞ ⎪⎝⎭.【点睛】 本题考查函数奇偶性、单调性的综合运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意偶函数(||)()f x f x =这一性质的应用.三、解答题21.(1)()f x 在(,0)2π-上单调递减;(2)有且仅有2个零点. 证明见解析.【分析】(1)求出函数的导数,根据导函数的单调性判断即可;(2)令()()()cos sin x F x f x g x e x x x =-=-,求出函数的导数,通过讨论x 的范围,求出函数的单调区间,从而求出函数的零点个数即可证明结论成立.【详解】(1)()cos sin 1cos()14x x x f x e x e x x π⎛⎫=--=+- ⎪⎝⎭',()cos sin 44x x f x x x ππ⎛⎫⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭'⎭⎝'⎝⎭ 2cos()2sin 2x x e x e x π=+=-.(,0)2x π∈-,sin 0x ∴<,()0f x ''∴>,所以()'f x 在(,0)2π-上单调递增,()(0)0f x f ''<=, ()f x ∴在(,0)2π-上单调递减.(2)()()f x g x -在区间[,]22ππ-上有且仅有2个零点. 证明:令()()()cos sin x F x f x g x e x x x =-=-,所以()()()cos sin cos sin x F x ex x x x x '=--+, ①当,02x ⎡⎤∈-⎢⎥⎣⎦π时, 因为()()cos sin 0,cos sin 0x x x x x ->-+>,()()0,F x F x '∴>在02π⎡⎤-⎢⎥⎣⎦,单调递增, 又()010,022F F ππ⎛⎫=>-=-< ⎪⎝⎭. ()F x ∴在02π⎡⎤-⎢⎥⎣⎦,上有一个零点; ②当0,4x π⎛⎤∈ ⎥⎝⎦时,cos sin 0,0x x x e x ≥>>>,()cos sin sin sin sin ()0x x x F x e x x x e x x x x e x ∴=-≥-=->恒成立.()F x ∴在04π⎛⎤ ⎥⎝⎦,上无零点;③当,42x ππ⎛⎤∈ ⎥⎝⎦时, 0cos sin x x <<, ()()()cos sin cos sin 0x F x e x x x x x '∴=--+<,()F x ∴在42ππ⎛⎤ ⎥⎝⎦,上单调递减;又40,022424F F e πππππ⎫⎛⎫⎛⎫=-<=->⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()F x ∴在42ππ⎛⎤ ⎥⎝⎦,上必存在一个零点; 综上,()()f x g x -在区间[,]22ππ-上有且仅有2个零点. 【点睛】方法点睛:利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性.22.(1)最大值为24e ,最小值为2e -;(2)[)2,-+∞.【分析】(1)2a =-代入()f x ,对函数求导,利用导数正负确定单调性即可;(2)先利用极限思想进行估值x →+∞时()0f x '>,来确定()f x 在()1,+∞上单增,()0f x '≥,再对32310x x a x -++-≥分离参数,研究值得分布即得结果.【详解】(1)()()3231x f x e x x a x '=-++-当2a =-时,()()()()()3233311x x f x e x x x e x x x '=+--=+-+∴()f x '在()3,1--和()1,+∞上为正,在(),3-∞-和()1,1-上为负,∴()f x 在()3,1--和()1,+∞上单增,在(),3-∞-和()1,1-上单减,有()21f e-=-,()224f e =,()12f e =-,故()f x 在[]1,2-上的最大值为24e ,最小值为2e -;(2)由()()3231x f x e x x x a '=+-+-知,当x →+∞时,()0f x '>,若()f x 在()1,+∞上单调则只能是单增,∴()0f x '≥在()1,+∞恒成立,即32310x x a x -++-≥∴3231a x x x ≥--++,令()3231g x x x x =--++,1x >,则()23610g x x x '=--+<,∴()g x 在()1,+∞递减,()()12g x g <=-,∴[)2,a ∈-+∞.【点睛】(1)利用导数研究函数()f x 的最值的步骤:①写定义域,对函数()f x 求导()'f x ;②在定义域内,解不等式()0f x '>和()0f x '<得到单调性;③利用单调性判断极值点,比较极值和端点值得到最值即可.(2)函数()f x 在区间I 上递增,则()0f x '≥恒成立;函数()f x 在区间I 上递减,则()0f x '≤恒成立.(3)解决恒成立问题的常用方法:①数形结合法;②分离参数法;③构造函数法.23.(1)函数()g x的一个极大值点为,对应的极大值为9,另一个极大值点为9;函数()g x 极小值点为0,对应的极小值为0;(2)4,13⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)求出()g x 的表达式,结合函数的奇偶性即可求出140a b ⎧=-⎪⎨⎪=⎩,从而可确定()g x 的解析式,求出导数即可求出函数的极值点和极值.(2)结合第一问可得()h x 的解析式,从而可求出2()32h x cx x c '=-+,由()h x 的单调性可得213c x x ≥+在[]2,5上恒成立,设()13m x x x =+,利用导数求出()m x 在[]2,5上的最小值,从而可求出实数c 的取值范围.【详解】解:(1)∵432()f x ax x bx =++,∴32()432f x ax x bx '=++,∴432()()()(41)(3)2g x f x f x ax a x b x bx '=+=+++++,因为()g x 为偶函数,∴41020a b +=⎧⎨=⎩,解得140a b ⎧=-⎪⎨⎪=⎩,∴431()4f x x x =-+,则421()34g x x x =-+,∴3()6(g x x x x x x '=-+=-,由()0g x '>,解得x <或0x <<()0g x '<,解得>x0x <<; ∴()g x在(,-∞,(单调递增;在(),)+∞单调递减.∴函数()g x的一个极大值点为(9g =,9g =; 函数()g x 极小值点为0,对应的极小值为()00g =.(2)由(1)知431()4f x x x =-+,∴43221()()(1)4h x f x x c x x cx c =++--++322cx x cx c =-++,∴2()32h x cx x c '=-+,因为函数()h x 在[]2,5上单调递增,∴2320cx x c -+≥在[]2,5上恒成立,即 2221313x c x x x≥=++在[]2,5上恒成立,设()13m x x x =+,令()22213130x m x x x -'=-==,解得[]2,5x =, 当[]2,5x ∈时,()0m x '>,所以()13m x x x=+在[]2,5上单调递增, 则()()1322m x m ≥=,所以24=13132c ≥. 【点睛】方法点睛:已知奇偶性求函数解析式时,常用方法有:一、结合奇偶性的定义,若已知偶函数,则()()f x f x -=,若已知奇函数,则()()f x f x -=-,从而可求出函数解析式;二、由奇偶性的性质,即偶函数加偶函数结果也是偶函数,奇函数加奇函数结果也是奇函数. 24.(1)当0a ≤时,()f x 在R 上单调递增;当0a >时,在1ln ,22a ⎛⎫+∞⎪⎝⎭上单调递增,在1,ln22a ⎛⎫-∞ ⎪⎝⎭上单调递减;(2)20,e ⎡⎫⎪⎢⎣⎭. 【分析】(1)分别在0a ≤和0a >两种情况下,根据()f x '的正负可确定()f x 的单调性;(2)根据(1)的结论可确定0a <不合题意;当0a =时,根据指数函数值域可知满足题意;当0a >时,令()min 0f x >,由此构造不等式求得结果.【详解】(1)由题意得:()22xf x e a '=-, 当0a ≤时,()0f x '>,()f x ∴在R 上单调递增;当0a >时,令()0f x '=得:1ln 22a x =. 当1ln 22a x <时,()0f x '<,()f x ∴在1,ln 22a ⎛⎫-∞ ⎪⎝⎭上单调递减; 当1ln 22a x >时,()0f x '>,()f x ∴在1ln ,22a ⎛⎫+∞ ⎪⎝⎭上单调递增. 综上所述:当0a ≤时,()f x 在R 上单调递增;当0a >时,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭上单调递增,在1,ln 22a ⎛⎫-∞ ⎪⎝⎭上单调递减. (2)由(1)可知:当0a <时,()f x 在R 上单调递增,当x →-∞时,20x e →,()1a x +→+∞,此时()0f x <,不合题意;当0a =时,2()0x f x e =>恒成立,满足题意.当0a >时,()f x 在1ln 22a x =处取最小值,且1ln ln 22222a a a a f ⎛⎫=-- ⎪⎝⎭, 令ln 0222a a a -->,解得:20a e <<,此时()0f x >恒成立. 综上所述:a 的取值范围为20,e ⎡⎫⎪⎢⎣⎭. 【点睛】本题考查导数在研究函数中的应用,涉及到利用导数讨论含参数函数的单调性、恒成立问题的求解;求解恒成立问题的关键是能够通过分类讨论,将问题转化为函数最小值大于零的问题,由此构造不等式求得结果.25.(1)2a =-(2)21(,2),1e e ⎛⎫+-∞-+∞ ⎪-⎝⎭【分析】(1)将(),()f x g x 的解析式代入曲线()()y f x g x =-,根据导数几何意义及垂直直线的斜率关系即可求得a 的值;(2)将0x 代入导函数(),()f x g x '',并代入不等式中化简变形,构造函数1()ln a m x x a x x+=-+,求得()m x '并令()0m x '=,对a 分类讨论即可确定满足题意的a 的取值范围.【详解】(1)由21()()ln 2y f x g x x a x =-=-, 得()a y x x x'=-.在2x =处的切线斜率为22a -, 直线370x y +-=的斜率为13-, 由垂直直线的斜率关系可知232a -=, 解得2a =-.(2)21(),()ln 2f x xg x a x ==, 则(),()a f x x g x x '='=, 不等式()()()()00001f x g x g x f x ''+<-'等价于00001ln a x a x x x +<-. 整理得0001ln 0a x a x x +-+<. 构造函数1()ln a m x x a x x +=-+, 由题意知,在[]1,e 上存在一点0x ,使得()00m x <.22221(1)(1)(1)()1a a x ax a x a x m x x x x x+--+--+'=--==. 因为0x >,所以10x +>,令0mx '=(),得1x a =+. ①当11a +≤,即0a ≤时,()m x 在[]1,e 上单调递增.只需()120m a =+<,解得2a <-.②当11a e <+≤即01a e <≤-时,()m x 在1x a =+处取最小值.令(1)1ln(1)10m a a a a +=+-++<即11ln(1)a a a ++<+, 可得11ln(1)(*)a a a++<+. 令1t a =+,即1t e <≤,不等式(*)可化为1ln 1t t t +<-: 因为1t e <≤,所以不等式左端大于1,右端小于等于1,所以不等式不能成立. ③当1a e +>,即1a e >-时,()m x 在[]1,e 上单调递减, 只需1()0a m e e a e +=-+<,解得211e a >e +-.综上所述,实数的取值范围是21(,2),1e e ⎛⎫+-∞-+∞ ⎪-⎝⎭. 【点睛】本题考查了导数的几何意义及由垂直关系求参数,导函数在解不等式中的应用,构造函数法分析函数的单调性、最值的综合应用,属于中档题.26.(1)()8004cos cos sin θθθ+, ()1600cos cos ,sin θθθ- 1,14⎡⎫⎪⎢⎣⎭;(2)6π. 【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定sin θ的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10.过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ,故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ),△CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0),则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ)=8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2),则()()()()222'sin sin 2sin 1211f cos sin sin sin θθθθθθθθ=--=-+-=--+. 令()'=0f θ,得θ=π6, 当θ∈(θ0,π6)时,()'>0f θ,所以f (θ)为增函数; 当θ∈(π6,π2)时,()'<0f θ,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.。
§3.1 导数的概念及运算1.下列求导运算正确的是( )A.⎝⎛⎭⎫x +1x ′=1+1x 2 B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 2.(2021·安徽江南十校联考)曲线f (x )=1-2ln x x在点P (1,f (1))处的切线l 的方程为( ) A .x +y -2=0 B .2x +y -3=0 C .3x +y +2=0 D .3x +y -4=03.(2020·广元模拟)已知函数f (x )=14x 2+cos x ,则其导函数f ′(x )的图象大致是( )4.设点P 是曲线y =x 3-3x +23上的任意一点,则曲线在点P 处切线的倾斜角α的取值范围为( ) A.⎣⎡⎦⎤0,π2∪⎣⎡⎭⎫5π6,π B.⎣⎡⎭⎫2π3,π C.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π D.⎝⎛⎦⎤π2,5π6 5.(多选)已知函数f (x )的图象如图,f ′(x )是f (x )的导函数,则下列结论正确的是( )A .f ′(3)>f ′(2)B .f ′(3)<f ′(2)C .f (3)-f (2)>f ′(3)D .f (3)-f (2)<f ′(2)6.(多选)已知函数f (x )及其导函数f ′(x ),若存在x 0使得f (x 0)=f ′(x 0),则称x 0是f (x )的一个“巧值点”.下列选项中有“巧值点”的函数是( )A .f (x )=x 2B .f (x )=e -xC .f (x )=ln xD .f (x )=tan x7.已知函数y =f (x )的图象在x =2处的切线方程是y =3x +1,则f (2)+f ′(2)= .8.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = . 9.我国魏晋时期的科学家刘徽创立了“割圆术”,实施“以直代曲”的近似计算,用正n 边形进行“内外夹逼”的办法求出了圆周率π的精度较高的近似值,这是我国最优秀的传统科学文化之一.借用“以直代曲”的近似计算方法,在切点附近,可以用函数图象的切线近似代替在切点附近的曲线来近似计算.设f (x )=ln(1+x ),则曲线y =f (x )在点(0,0)处的切线方程为________,用此结论计算ln 2 022-ln 2 021≈________.10.(2021·山东省实验中学四校联考)曲线y =x 2-ln x 上的点到直线x -y -2=0的最短距离是 .11.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值;(2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围.12.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.13.(2020·青岛模拟)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x14.已知函数f (x )=x +a 2x,若曲线y =f (x )存在两条过(1,0)点的切线,则a 的取值范围是 .15.已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为 . 16.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C . (1)求在曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.§3.2 导数与函数的单调性课时精练1.函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )2.下列函数中,在(0,+∞)上单调递增的是( )A .f (x )=sin 2xB .g (x )=x 3-xC .h (x )=x e xD .m (x )=-x +ln x3.(2020·甘肃静宁一中模拟)已知函数f (x )=x 2+a x ,若函数f (x )在[2,+∞)上单调递增,则实数a 的取值范围为( )A .(-∞,8)B .(-∞,16]C .(-∞,-8)∪(8,+∞)D .(-∞,-16]∪[16,+∞)4.已知函数f (x )=sin x +cos x -2x ,a =f (-π),b =f (2e ),c =f (ln 2),则a ,b ,c 的大小关系是( )A .a >c >bB .a >b >cC .b >a >cD .c >b >a5.(多选)若函数f (x )=ax 3+3x 2-x +1恰好有三个单调区间,则实数a 的取值可以是( )A .-3B .-1C .0D .26.(多选)若函数 g (x )=e x f (x )(e =2.718…,e 为自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数不具有M 性质的为( )A .f (x )=1xB .f (x )=x 2+1C .f (x )=sin xD .f (x )=x7.函数y =2ln x -3x 2的单调递增区间为________.8.若函数f (x )=ln x +e x -sin x ,则不等式f (x -1)≤f (1)的解集为________.9.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎡⎭⎫23,+∞上存在单调递增区间,则a 的取值范围是________. 10.(2020·济南质检)若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是________.11.函数f (x )=(x 2+ax +b )e -x ,若f (x )在点(0,f (0))处的切线方程为6x -y -5=0.(1)求a ,b 的值;(2)求函数f (x )的单调区间.12.讨论函数f (x )=(a -1)ln x +ax 2+1的单调性.13.(多选)若0<x 1<x 2<1,则( )A .x 1+ln x 2>x 2+ln x 1B .x 1+ln x 2<x 2+ln x 1C .1221e e x x x x >D .1221e e x xx x < 14.已知函数f (x )(x ∈R )满足f (1)=1,f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为____________.15.已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝⎛⎭⎫ln 1x <2f (1)的解集为________. 16.已知函数f (x )=a ln x -ax -3(a ∈R ).(1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎡⎦⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求实数m 的取值范围.§3.3 导数与函数的极值、最值课时精练1.函数f (x )=(x 2-1)2+2的极值点是( )A .x =1B .x =-1C .x =1或-1或0D .x =02.函数y =x e x 在[0,2]上的最大值是( ) A.1e B.2e 2 C .0 D.12e3.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( )A .2B .-52C .3+ln 2D .-2+2ln 24.已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22等于( )A.23B.43C.83D.1635.(多选)函数y =f (x )的导函数f ′(x )的图象如图所示,则以下命题错误的是( )A .-3是函数y =f (x )的极值点B .-1是函数y =f (x )的最小值点C .y =f (x )在区间(-3,1)上单调递增D .y =f (x )在x =0处切线的斜率小于零6.(多选)(2021·烟台模拟)已知函数f (x )=x 2+x -1e x,则下列结论正确的是( ) A .函数f (x )存在两个不同的零点B .函数f (x )既存在极大值又存在极小值C .当-e<k ≤0时,方程f (x )=k 有且只有两个实根D .若x ∈[t ,+∞)时,f (x )max =5e2,则t 的最小值为2 7.函数f (x )=2x -ln x 的最小值为________.8.若函数f (x )=x 3-2cx 2+x 有两个极值点,则实数c 的取值范围为______________.9.已知函数f (x )=sin x -13x ,x ∈[0,π],cos x 0=13,x 0∈[0,π]. ①f (x )的最大值为f (x 0); ②f (x )的最小值为f (x 0);③f (x )在[0,x 0]上是减函数; ④f (x 0)为f (x )的极大值.那么上面命题中真命题的序号是________.10.已知不等式e x -1≥kx +ln x 对于任意的x ∈(0,+∞)恒成立,则k 的最大值为________.11.已知函数f (x )=ln x -ax (a ∈R ).(1)当a =12时,求f (x )的极值; (2)讨论函数f (x )在定义域内极值点的个数.12.已知函数f (x )=x ln x .(1)求函数f (x )的极值点;(2)设函数g (x )=f (x )-a (x -1),其中a ∈R ,求函数g (x )在区间(0,e]上的最小值(其中e 为自然对数的底数).13.已知函数f (x )=x +2sin x ,x ∈[0,2π],则f (x )的值域为( )A.⎣⎡⎦⎤4π3-3,2π3+3 B.⎣⎡⎦⎤0,4π3-3 C.⎣⎡⎦⎤2π3+3,2π D .[0,2π]14.(2020·邢台模拟)若函数f (x )=12x 2+(a -1)x -a ln x 存在唯一的极值,且此极值不小于1,则实数a 的取值范围为________.15.已知函数f (x )=x ln x +m e x (e 为自然对数的底数)有两个极值点,则实数m 的取值范围是__________.16.(2019·全国Ⅲ)已知函数f (x )=2x 3-ax 2+2.(1)讨论f (x )的单调性;(2)当0<a <3时,记f (x )在区间[0,1]的最大值为M ,最小值为m ,求M -m 的取值范围.高考专题突破一 高考中的导数综合问题第1课时 利用导数研究恒(能)成立问题1.设函数f (x )=ln x +a x(a 为常数).(1)讨论函数f (x )的单调性; (2)不等式f (x )≥1在x ∈(0,1]上恒成立,求实数a 的取值范围.2.已知函数f (x )=x ln x (x >0).(1)求函数f (x )的极值;(2)若存在x ∈(0,+∞),使得f (x )≤-x 2+mx -32成立,求实数m 的最小值.3.已知函数f (x )=x 2+(a +1)x -ln x ,g (x )=x 2+x +2a +1.(1)若f (x )在(1,+∞)上单调递增,求实数a 的取值范围;(2)当x ∈[1,e]时,f (x )<g (x )恒成立,求实数a 的取值范围.4.已知函数f (x )=x -(a +1)ln x -a x (a ∈R ),g (x )=12x 2+e x -x e x . (1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)成立,求a 的取值范围.5.(2020·衡水中学检测)设函数f (x )=1-a 2x 2+ax -ln x (a ∈R ). (1)当a =1时,求函数f (x )的极值;(2)若对任意a ∈(4,5)及任意x 1,x 2∈[1,2],恒有a -12m +ln 2>|f (x 1)-f (x 2)|成立,求实数m 的取值范围.第2课时利用导函数研究函数的零点1.已知函数f(x)=e x(ax+1),曲线y=f(x)在x=1处的切线方程为y=bx-e.(1)求a,b的值;(2)若函数g(x)=f(x)-3e x-m有两个零点,求实数m的取值范围.2.已知f(x)=ax2(a∈R),g(x)=2ln x.(1)讨论函数F(x)=f(x)-g(x)的单调性;(2)若方程f(x)=g(x)在区间[1,e]上有两个不相等的解,求a的取值范围.3.已知函数f(x)=e x+ax-a(a∈R且a≠0).(1)若函数f(x)在x=0处取得极值,求实数a的值,并求此时f(x)在[-2,1]上的最大值;(2)若函数f(x)不存在零点,求实数a的取值范围.4.(2020·潍坊检测)已知函数f(x)=ln x-x2+ax,a∈R.(1)证明:ln x≤x-1;(2)若a≥1,讨论函数f(x)的零点个数.5.已知函数f(x)=e x+1-kx-2k(其中e是自然对数的底数,k∈R).(1)讨论函数f(x)的单调性;(2)当函数f(x)有两个零点x1,x2时,证明x1+x2>-2.第3课时利用导数证明不等式1.(2021·莆田模拟)已知函数f(x)=x e x-1-ax+1,曲线y=f(x)在点(2,f(2))处的切线l的斜率为3e-2.(1)求a的值及切线l的方程;(2)证明:f(x)≥0.2.(2021·沧州七校联考)设a为实数,函数f(x)=e x-2x+2a,x∈R.(1)求f(x)的单调区间与极值;(2)求证:当a>ln 2-1且x>0时,e x>x2-2ax+1.3.已知函数f(x)=eln x-ax(a∈R).(1)讨论f(x)的单调性;(2)当a=e时,证明:xf(x)-e x+2e x≤0.4.已知函数f (x )=ln x -ax (a ∈R ).(1)讨论函数f (x )在(0,+∞)上的单调性;(2)证明:e x -e 2ln x >0恒成立.5.(2018·全国Ⅰ)已知函数f (x )=1x-x +a ln x . (1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2.。
5.2 导数的运算5.2.1 基本初等函数的导数基础过关练题组一 利用导数公式求函数的导数1.(2020浙江绍兴稽山中学高二下期中)已知f(x)=cos30°,则f'(x)的值为( )A.-12B.12C.-32D.02.已知函数f(x)=1x2,则 )A.-14B.-18C.-8D.-163.函数y=1x在x=4处的导数是( )A.116B.-116C.18D.-184.下列求导运算正确的是( )A.(cos x)'=sin xB.(3x)'=3x log3eC.(lg x)'=1x ln10D.(x-2)'=-2x-15.设f0(x)=sin x,f1(x)=f0'(x),f2(x)=f1'(x),……,f n+1(x)=f n'(x),n∈N,则f2 019(x)=( )A.sin xB.-sin xC.cos xD.-cos x6.(多选)下列求导运算正确的是( )'=1x2B.(x)'=12xC.(x a)'=ax a-1D.(log a'=1x ln a 7.求下列函数的导数.(1)y=1x5;(2)y=x2x;(3)y=lg x;(4)y=5x-x.题组二 导数公式的应用8.(2020黑龙江佳木斯一中高二上期末)曲线y=1x在点A(-1,-1)处的切线方程是( )A.x+y-2=0B.x-y+2=0C.x+y+2=0D.x-y-2=09.若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为( )A.4x-y-3=0B.x+4y-5=0C.4x-y+3=0D.x+4y+3=010.(2020福建三明第一中学月考)以正弦曲线y=sin x上一点P为切点作切线l,则切线l的倾斜角的范围是( )A.0,πB.[0,π), D.0,,11.已知函数f(x)=ln x,则函数g(x)=f(x)-f'(x)的零点所在的区间是( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)12.若曲线y=x-12在点(m,m-12)处的切线与两个坐标轴围成的三角形的面积为18,则m=( )A.64B.32C.16D.813.(多选)已知函数f(x)及其导数f'(x),若存在x0,使得f(x0)=f'(x0),则称x0是f(x)的一个“巧值点”.下列函数中,有“巧值点”的是( )A.f(x)=x2B.f(x)=e-xC.f(x)=ln xD.f(x)=1x14.(2019广东东莞高二上期末)设曲线y=x n+1(n∈N*)在点(1,1)处的切线,计算a1+a2+a3+…+a2019.与x轴交点的横坐标为x n,令a n=lg1x n答案全解全析基础过关练1.D ∵f(x)=cos 30°=32,∴f'(x)=0.2.D f'(x)=-2x -3=-2x 3,则故选D.3.B y'=-12x -32,∴y'x=4=-12×4-32=-116,故选B.4.C (cos x)'=-sin x,故A 不正确;(3x )'=3x ·ln 3,故B 不正确;(lg x)'=1x ·ln10,故C 正确;(x -2)'=-2x -2-1=-2x -3,故D 不正确.故选C.5.D f 0(x)=sin x,f 1(x)=f 0'(x)=(sin x)'=cos x,f 2(x)=f 1'(x)=(cos x)'=-sin x,f 3(x)=f 2'(x)=(-sin x)'=-cos x,f 4(x)=f 3'(x)=(-cos x)'=sin x,所以4为最小正周期,故f 2 019(x)=f 3(x)=-cos x.6.BCD 在A 中-1)'=-1x 2,故A 错误;在B 中,(x )'=(x 12)'=12×x -12=12x ,故B 正确;在C 中,(x a )'=ax a-1,故C 正确;在D 中,(log a '=1x ln a ,故D 正确.故选BCD.7.解析 (1)∵y=1x 5=x -5,∴y'=-5x -6.(2)∵y=x 2x =x 2x 12=x 32,∴y'=32x 12.(3)∵y=lg x,∴y'=1x ln10.(4)∵y=5x ,∴y'=5x ln 5.(5)∵-x =sin x,∴y'=cos x.8.C 由y=1x 得y'=-x -2,因此切线的斜率为k=-(-1)-2=-1,∴切线方程为y+1=-(x+1),即x+y+2=0,故选C.9.A ∵直线x+4y-8=0的斜率为-14,∴直线l 的斜率为4,又y'=4x 3,∴4x 3=4,得x=1,又当x=1时,y=x 4=1,∴直线l 的方程为y-1=4(x-1),即4x-y-3=0.10.A ∵y=sin x,∴y'=cos x,∵cos x ∈[-1,1],∴切线斜率的范围是[-1,1],∴倾斜角的范围是0,,π,故选A.11.B 由f(x)=ln x,得f'(x)=1x ,则g(x)=f(x)-f'(x)=ln x-1x .易知函数g(x)的定义域为(0,+∞),且函数g(x)在(0,+∞)上为增函数,又g(1)=ln 1-1=-1<0,g(2)=ln 2-12=ln 2-ln e >0,所以函数g(x)在区间(1,2)上有唯一零点.12.A 因为y'=-12x -32,所以曲线y=x -12在点(m,m -12)处的切线方程为y-m -12=-12·m -32(x-m),令x=0,得y=32m -12,令y=0,得x=3m,由题意可得,12×32m -12×3m=18,解得m=64.13.ACD 在A 中,若f(x)=x 2,则f'(x)=2x,则x 2=2x,这个方程显然有解,故A 符合要求;在B 中,若f(x)=e -x ,则ln 1e =-e -x ,即e -x =-e -x ,此方程无解,故B 不符合要求;在C 中,若f(x)=ln x,则f'(x)=1x ,由ln x=1x ,数形结合可知该方程存在实数解,故C 符合要求;在D 中,若f(x)=1x ,则f'(x)=-1x 2,由1x =-1x 2,可得x=-1,故D 符合要求.故选ACD.14.解析 因为y=x n+1,所以y'=(n+1)x n ,所以曲线y=x n+1(n ∈N *)在(1,1)处的切线斜率为k=n+1,切线方程为y-1=(n+1)(x-1).令y=0,得x=n n +1,即x n =n n +1,所以a n =lg 1x n =lg(n+1)-lg n,所以a 1+a 2+a 3+…+a 2 019=lg 2-lg 1+lg 3-lg 2+lg 4-lg 3+…+lg 2 020-lg 2 019=lg 2 020-lg 1=1+lg 202.。
高中数学导数练习题一、选择题1. 函数f(x) = 3x^2 + 2x - 5的导数是:A. 6x + 2B. 2x^2 + 2C. 6x - 5D. 3x + 22. 若函数g(x) = sin(x) + cos(x)的导数为g'(x),那么g'(π/4)的值是:A. √2B. 1C. -1D. 03. 已知h(x) = x^3 - 4x^2 + 7x - 6,求h'(x)的值:A. 3x^2 - 8x + 7B. 3x^2 - 8x + 6C. 3x^2 - 4x + 7D. 3x^2 - 4x + 64. 函数k(t) = e^t + ln(t)的导数k'(t)是:A. e^t + 1/tB. e^t + tC. e^t + ln(t)D. e^t - 1/t5. 给定函数f(x) = (x^2 - 1)/x,求f'(x):A. (2x + 1)/x^2B. (2x - 1)/x^2C. (2x + 1)/xD. (2x - 1)/x二、填空题6. 函数f(x) = √x的导数是_________。
7. 函数g(x) = 1/x的导数是_________。
8. 函数h(x) = x^4的导数是_________。
9. 函数k(x) = sin(x)的导数是_________。
10. 函数m(x) = cos(x)的导数是_________。
三、简答题11. 已知函数f(x) = x^3 + x^2 - 5x + 7,请写出f'(x)的表达式。
12. 给定函数g(x) = x^2 - 3x + 2,请计算g'(x)并求g'(1)的值。
13. 函数h(x) = 2x^3 - 5x^2 + 7x - 3,请找出h'(x)的表达式。
14. 已知函数k(x) = 3x^2 + 4x - 5,求k'(x)的值,并找出k'(2)的值。
再练一课(范围:§5.1~§5.2)1.(多选)自变量x 从x 0变化到x 1时,函数值的增量与相应自变量的增量之比是( )A .从x 0到x 1的平均变化率B .在x =x 1处的变化率C .点(x 0,f (x 0))与点(x 1,f (x 1))连线的斜率D .在区间[x 0,x 1]上的导数答案 AC解析 Δy Δx =f (x 1)-f (x 0)x 1-x 0表示函数从x 0到x 1的平均变化率,也表示点(x 0,f (x 0))与点(x 1,f (x 1))连线的斜率.2.已知物体的运动方程为s =t 2+3t,则物体在t =2时的瞬时速度为( ) A.194 B.174 C.154 D.134答案 D解析 ∵s ′=2t -3t 2,∴s ′|t =2=4-34=134. 3.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( )A .4B .-14C .2D .-12答案 A解析 ∵f ′(x )=g ′(x )+2x ,∴f ′(1)=g ′(1)+2=2+2=4.4.对于函数f (x )=e x x 2+ln x -2k x,若f ′(1)=1,则实数k 等于( ) A.e 2 B.e 3 C .-e 2 D .-e 3答案 A解析 因为f ′(x )=e x (x -2)x 3+1x +2k x 2, 所以f ′(1)=-e +1+2k =1,解得k =e 2,故选A.5.若曲线y =ln x 在点M 处的切线过原点,则该切线的斜率为( )A .1B .eC .-1e D.1e答案 D解析 设M (x 0,ln x 0),由y =ln x 得y ′=1x(x >0), 所以切线斜率为k =0=1|,x x y'x 0= 所以切线方程为y -ln x 0=1x 0(x -x 0). 由题意得0-ln x 0=1x 0(0-x 0), 即ln x 0=1,所以x 0=e.所以k =1x 0=1e,故选D. 6.已知f (x )=f ′(1)x+4x ,则f ′(1)=________. 答案 2解析 因为f (x )=f ′(1)x+4x , 所以f ′(x )=-f ′(1)x 2+4, 所以f ′(1)=-f ′(1)12+4,即f ′(1)=2. 7.若某物体做运动方程为s =(1-t )2(位移单位:m ,时间单位:s)的直线运动,则其在t =1.2 s 时的瞬时速度v 为________ m/s.答案 0.4解析 ∵s =t 2-2t +1,∴s ′=2t -2,∴v =s ′|t =1.2=2×1.2-2=0.4(m/s).8.设a ∈R ,函数f (x )=e x +a ·e -x 的导函数f ′(x )是奇函数,若曲线y =f (x )的一条切线的斜率是32,则a =________,切点的横坐标为________. 答案 1 ln 2解析 由题意可得,f ′(x )=e x -a e x 是奇函数,∴f ′(0)=1-a =0,∴a =1,∴f (x )=e x +1e x ,f ′(x )=e x -1e x .∵曲线y =f (x )的一条切线的斜率是32,∴32=e x -1e x ,可得e x =2(舍负),∴x =ln 2.9.求下列函数的导数:(1)f (x )=13x 3-12x 4+6; (2)f (x )=(5x -4)cos x ;(3)f (x )=ln (2x )x. 解 (1)f ′(x )=⎝⎛⎭⎫13x 3-12x 4+6′=x 2-2x 3. (2)f ′(x )=[(5x -4)cos x ]′=5cos x -5x sin x +4sin x .(3)f ′(x )=[ln (2x )]′×x -[ln (2x )]×(x )′x 2=1-ln (2x )x 2. 10.已知a >0,f (x )=ax 2-2x +1+ln(x +1),l 是曲线y =f (x )在点P (0,f (0))处的切线,求切线l 的方程.解 ∵f (x )=ax 2-2x +1+ln(x +1),∴f (0)=1,又f ′(x )=2ax -2+1x +1,∴f ′(0)=-1, ∴切点P 的坐标为(0,1),切线l 的斜率为-1,∴切线l 的方程为x +y -1=0.11.已知二次函数f (x )=ax 2+bx +c 的导数为f ′(x ),f ′(0)>0,且对于任意实数x 有f (x )≥0,则f (1)f ′(0)的最小值为( ) A .3 B.52 C .2 D.32答案 C解析 f ′(0)=b >0.对于任意实数x 有f (x )≥0,故⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac ≤0,则2ac ≥b ,因此f (1)f ′(0)=a +c b +1≥2.当且仅当a =c =b 2时,取等号. 12.若函数f (x )=(x -1)(x -2)(x -3)(x -4)(x -5),且f ′(x )是函数f (x )的导函数,则f ′(1)等于( )A .24B .-24C .10D .-10答案 A解析 ∵f ′(x )=(x -1)′·(x -2)(x -3)(x -4)(x -5)+[(x -2)(x -3)(x -4)(x -5)]′·(x -1),∴f ′(1)=(1-2)×(1-3)×(1-4)×(1-5)=24.故选A.13.若函数f (x )=-1b e ax (a >0,b >0)的图象在x =0处的切线与圆x 2+y 2=1相切,则a +b 的最大值为( )A .4B .22C .2D.2答案 D解析 函数的导数为f ′(x )=-1be ax ·a , 所以f ′(0)=-1b e 0·a =-a b, 即在x =0处的切线斜率k =-a b, 又f (0)=-1b e 0=-1b, 所以切点坐标为⎝⎛⎭⎫0,-1b , 所以切线方程为y +1b =-a bx ,即ax +by +1=0. 圆心到直线ax +by +1=0的距离d =1a 2+b 2=1, 即a 2+b 2=1,所以a 2+b 2=1≥2ab ,即0<ab ≤12. 又a 2+b 2=(a +b )2-2ab =1,所以(a +b )2=2ab +1≤1+1=2,即0<a +b ≤2,当且仅当a =b =22时等号成立, 所以a +b 的最大值是2,故选D.14.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________. 答案 2解析 令y ′=2x -1x=1,解得x =1⎝⎛⎭⎫x =-12舍去, 故当点P 坐标为(1,1)时,它到已知直线的距离最小,最小距离为d =|1-1-2|2= 2.15.曲线y =e 2x cos 3x 在点(0,1)处的切线与过点(2,3)的直线l 垂直,则直线l 的方程为________________.答案 x +2y -8=0解析 由题意知y ′=(e 2x )′cos 3x +e 2x (cos 3x )′=2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2x sin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2.所以直线l 的斜率为-12,直线l 的方程为y -3=-12·(x -2),即x +2y -8=0. 16.已知函数f (x )=x 3-3x 及曲线y =f (x )上一点P (1,-2),过点P 作直线l .(1)若直线l 与曲线y =f (x )相切于点P ,求直线l 的方程;(2)若直线l 与曲线y =f (x )相切,且切点异于点P ,求直线l 的方程.解 (1)由f (x )=x 3-3x ,得f ′(x )=3x 2-3.过点P 且以P (1,-2)为切点的直线l 的斜率为f ′(1)=0,故所求直线l 的方程为y =-2.(2)设过点P (1,-2)的直线l 与曲线y =f (x )相切于点(x 0,x 30-3x 0).由f ′(x 0)=3x 20-3,得直线l 的方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0).又直线l 过点P (1,-2),所以-2-(x 30-3x 0)=(3x 20-3)(1-x 0),即(x 0-1)2(x 0+2)=3(x 20-1)(x 0-1),解得x 0=1(舍去)或x 0=-12, 故直线l 的斜率k =-94, 故直线l 的方程为y -(-2)=-94(x -1), 即9x +4y -1=0.。
2024年高考数学总复习第三章《导数及其应用》测试卷及答案解析(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知曲线y=f(x)在x=5处的切线方程是y=-x+5,则f(5)与f′(5)分别为() A.5,-1B.-1,5C.-1,0D.0,-1答案D解析由题意可得f(5)=-5+5=0,f′(5)=-1,故选D.2.已知函数f(x)=x sin x+ax,且f1,则a等于()A.0B.1C.2D.4答案A解析∵f′(x)=sin x+x cos x+a,且f1,∴sin π2+π2cosπ2+a=1,即a=0.3.若曲线y=mx+ln x在点(1,m)处的切线垂直于y轴,则实数m等于() A.-1B.0C.1D.2答案A解析f(x)的导数为f′(x)=m+1x,曲线y=f(x)在点(1,m)处的切线斜率为k=m+1=0,可得m=-1.故选A.4.已知f1(x)=sin x+cos x,f n+1(x)是f n(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,f n+1(x)=f n′(x),n∈N*,则f2020(x)等于()A.-sin x-cos x B.sin x-cos xC.-sin x+cos x D.sin x+cos x答案B解析∵f1(x)=sin x+cos x,∴f2(x)=f1′(x)=cos x-sin x,∴f3(x)=f2′(x)=-sin x-cos x,∴f4(x)=f3′(x)=-cos x+sin x,∴f5(x)=f4′(x)=sin x+cos x=f1(x),∴f n(x)是以4为周期的函数,∴f2020(x)=f4(x)=sin x-cos x,故选B.5.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+ln x(其中e为自然对数的底数),则f′(e)等于()A .1B .-1C .-eD .-e -1答案D解析已知f (x )=2xf ′(e)+ln x ,其导数f ′(x )=2f ′(e)+1x,令x =e ,可得f ′(e)=2f ′(e)+1e ,变形可得f ′(e)=-1e ,故选D.6.函数y =12x 2-ln x 的单调递减区间为()A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)答案B解析由题意知,函数的定义域为(0,+∞),又由y ′=x -1x≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].7.(2019·沈阳东北育才学校模拟)已知定义在(0,+∞)上的函数f (x )=x 2+m ,g (x )=6ln x -4x ,设两曲线y =f (x )与y =g (x )在公共点处的切线相同,则m 值等于()A .5B .3C .-3D .-5答案D解析f ′(x )=2x ,g ′(x )=6x -4,令2x =6x-4,解得x =1,这就是切点的横坐标,代入g (x )求得切点的纵坐标为-4,将(1,-4)代入f (x )得1+m =-4,m =-5.故选D.8.(2019·新乡模拟)若函数f (x )=a e x +sin x 在-π2,0上单调递增,则a 的取值范围为()B .[-1,1]C .[-1,+∞)D .[0,+∞)答案D解析依题意得,f ′(x )=a e x +cos x ≥0,即a ≥-cos xe x 对x ∈-π2,0恒成立,设g (x )=-cos xe x ,x ∈-π2,0,g ′(x )g ′(x )=0,则x =-π4,当x ∈-π2,-g ′(x )<0;当x -π4,0时,g ′(x )>0,故g (x )max =g (0,则a ≥0.故选D.9.(2019·河北衡水中学调研)如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且小圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为()A.2000π9B.4000π27C .81πD .128π答案B解析小圆柱的高分为上下两部分,上部分同大圆柱一样为5,下部分深入底部半球内设为h (0<h <5),小圆柱的底面半径设为r (0<r <5),由于r ,h 和球的半径5满足勾股定理,即r 2+h 2=52,所以小圆柱体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),求导V ′=-π(3h -5)·(h +5),当0<h ≤53时,体积V 单调递增,当53<h <5时,体积V 单调递减.所以当h =53时,小圆柱体积取得最大值,V max ==4000π27,故选B.10.(2019·凉山诊断)若对任意的0<x 1<x 2<a 都有x 2ln x 1-x 1ln x 2<x 1-x 2成立,则a 的最大值为()A.12B .1C .eD .2e答案B解析原不等式可转化为1+ln x 1x 1<1+ln x 2x 2,构造函数f (x )=1+ln x x ,f ′(x )=-ln xx2,故函数在(0,1)上导数大于零,单调递增,在(1,+∞)上导数小于零,单调递减.由于x 1<x 2且f (x 1)<f (x 2),故x 1,x 2在区间(0,1)上,故a 的最大值为1,故选B.11.(2019·洛阳、许昌质检)设函数y =f (x ),x ∈R 的导函数为f ′(x ),且f (x )=f (-x ),f ′(x )<f (x ),则下列不等式成立的是(注:e 为自然对数的底数)()A .f (0)<e -1f (1)<e 2f (2)B .e -1f (1)<f (0)<e 2f (2)C .e 2f (2)<e -1f (1)<f (0)D .e 2f (2)<f (0)<e -1f (1)答案B解析设g (x )=e -x f (x ),∴g ′(x )=-e -x f (x )+e -x f ′(x )=e -x (f ′(x )-f (x )),∵f ′(x )<f (x ),∴g ′(x )<0,∴g (x )为减函数.∵g (0)=e 0f (0)=f (0),g (1)=e -1f (1),g (-2)=e 2f (-2)=e 2f (2),且g (-2)>g (0)>g (1),∴e -1f (1)<f (0)<e 2f (2),故选B.12.(2019·廊坊省级示范高中联考)已知函数f (x )=-13x 3-12x 2+ax -b 的图象在x =0处的切线方程为2x -y -a =0,若关于x 的方程f (x 2)=m 有四个不同的实数解,则m 的取值范围为()A.-323,-B.-2-323,-2答案D解析由函数f (x )=-13x 3-12x 2+ax -b ,可得f ′(x )=-x 2-x +a ,则f (0)=-b =-a ,f ′(0)=a =2,则b =2,即f (x )=-13x 3-12x 2+2x -2,f ′(x )=-x 2-x +2=-(x -1)(x +2),所以函数f (x )在(-2,1)上单调递增,在(-∞,-2),(1,+∞)上单调递减,又由关于x 的方程f (x 2)=m 有四个不同的实数解,等价于函数f (x )的图象与直线y =m 在x ∈(0,+∞),上有两个交点,又f (0)=-2,f (1)=-56,所以-2<m <-56,故选D.二、填空题(本大题共4小题,每小题5分,共20分)13.(2019·陕西四校联考)已知函数f (x )=ln x +2x 2-4x ,则函数f (x )的图象在x =1处的切线方程为________________.答案x -y -3=0解析∵f (x )=ln x +2x 2-4x ,∴f ′(x )=1x +4x -4,∴f ′(1)=1,又f (1)=-2,∴所求切线方程为y -(-2)=x -1,即x -y -3=0.14.已知函数f (x )=(x -a )ln x (a ∈R ),若函数f (x )存在三个单调区间,则实数a 的取值范围是________.答案-1e2,解析f ′(x )=ln x +1x (x -a )=ln x +1-ax,函数f (x )=(x -a )ln x (a ∈R ),若函数f (x )存在三个单调区间,则f ′(x )有两个变号零点,即f ′(x )=0有两个不等实根,即a =x (ln x +1)有两个不等实根,转化为y =a 与y =x (ln x +1)的图象有两个不同的交点.令g (x )=x (ln x +1),则g ′(x )=ln x +2,令ln x +2=0,则x =1e 2,即g (x )=x (ln x +1)[g (x )]min =-1e 2,当x →0时,g (x )→0,当x →+∞时,f (x )→+∞,所以结合f (x )的图象(图略)可知a -1e 2,15.(2019·山师大附中模拟)已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.答案-1,12解析由函数f (x )=x 3-2x +e x -1e x f ′(x )=3x 2-2+e x +1e x ≥-2+e x +1ex ≥-2+2e x ·1e x=0,当且仅当x =0时等号成立,可得f (x )在R 上递增,又f (-x )+f (x )=(-x )3+2x +e -x -e x +x 3-2x +e x -1e x 0,可得f (x )为奇函数,则f (a -1)+f (2a 2)≤0,即有f (2a 2)≤0-f (a -1)=f (1-a ),即有2a 2≤1-a ,解得-1≤a ≤12.16.(2019·湖北黄冈中学、华师附中等八校联考)定义在R 上的函数f (x )满足f (-x )=f (x ),且对任意的不相等的实数x 1,x 2∈[0,+∞)有f (x 1)-f (x 2)x 1-x 2<0成立,若关于x 的不等式f (2mx -ln x-3)≥2f (3)-f (-2mx +ln x +3)在x ∈[1,3]上恒成立,则实数m 的取值范围是______________.答案12e ,1+ln 36解析∵函数f (x )满足f (-x )=f (x ),∴函数f (x )为偶函数.又f (2mx -ln x -3)≥2f (3)-f (-2mx +ln x +3)=2f (3)-f (2mx -ln x -3),∴f (2mx -ln x -3)≥f (3).由题意可得函数f (x )在(-∞,0)上单调递增,在[0,+∞)上单调递减.∴|2mx -ln x -3|≤3对x ∈[1,3]恒成立,∴-3≤2mx -ln x -3≤3对x ∈[1,3]恒成立,即ln x2x ≤m ≤ln x +62x对x ∈[1,3]恒成立.令g (x )=ln x2x ,x ∈[1,3],则g ′(x )=1-ln x 2x 2∴g (x )在[1,e ]上单调递增,在(e,3]上单调递减,∴g (x )max =g (e)=12e .令h (x )=ln x +62x ,x ∈[1,3],则h ′(x )=-5-ln x2x 2<0,∴h (x )在[1,3]上单调递减,∴h (x )min =h (3)=6+ln 36=1+ln 36.综上可得实数m 的取值范围为12e ,1+ln 36.三、解答题(本大题共70分)17.(10分)(2019·辽宁重点高中联考)已知函数f (x )=x 3+mx 2-m 2x +1(m 为常数,且m >0)有极大值9.(1)求m 的值;(2)若斜率为-5的直线是曲线y =f (x )的切线,求此直线方程.解(1)f ′(x )=3x 2+2mx -m 2=(x +m )(3x -m )=0,令f ′(x )=0,则x =-m 或x =13m ,当x 变化时,f ′(x )与f (x )的变化情况如下表:f ′(x )+0-0+f (x )增极大值减极小值增从而可知,当x =-m 时,函数f (x )取得极大值9,即f (-m )=-m 3+m 3+m 3+1=9,∴m =2.(2)由(1)知,f (x )=x 3+2x 2-4x +1,依题意知f ′(x )=3x 2+4x -4=-5,∴x =-1或x =-13,又f (-1)=6,=6827,所以切线方程为y -6=-5(x +1)或y -6827=-即5x +y -1=0或135x +27y -23=0.18.(12分)(2019·成都七中诊断)已知函数f (x )=x sin x +2cos x +ax +2,其中a 为常数.(1)若曲线y =f (x )在x =π2处的切线斜率为-2,求该切线的方程;(2)求函数f (x )在x ∈[0,π]上的最小值.解(1)求导得f ′(x )=x cos x -sin x +a ,由f a -1=-2,解得a =-1.此时2,所以该切线的方程为y -2=-2x +y -2-π=0.(2)对任意x ∈[0,π],f ″(x )=-x sin x ≤0,所以f ′(x )在[0,π]内单调递减.当a ≤0时,f ′(x )≤f ′(0)=a ≤0,∴f (x )在区间[0,π]上单调递减,故f (x )min =f (π)=a π.当a ≥π时,f ′(x )≥f ′(π)=a -π≥0,∴f (x )在区间[0,π]上单调递增,故f (x )min =f (0)=4.当0<a <π时,因为f ′(0)=a >0,f ′(π)=a -π<0,且f ′(x )在区间[0,π]上单调递减,结合零点存在定理可知,存在唯一x 0∈(0,π),使得f ′(x 0)=0,且f (x )在[0,x 0]上单调递增,在[x 0,π]上单调递减.故f (x )的最小值等于f (0)=4和f (π)=a π中较小的一个值.①当4π≤a <π时,f (0)≤f (π),故f (x )的最小值为f (0)=4.②当0<a <4π时,f (π)≤f (0),故f (x )的最小值为f (π)=a π.综上所述,函数f (x )的最小值f (x )min,a ≥4π,π,a <4π.19.(12分)(2019·武汉示范高中联考)已知函数f (x )=4ln x -mx 2+1(m ∈R ).(1)若函数f (x )在点(1,f (1))处的切线与直线2x -y -1=0平行,求实数m 的值;(2)若对于任意x ∈[1,e ],f (x )≤0恒成立,求实数m 的取值范围.解(1)∵f (x )=4ln x -mx 2+1,∴f ′(x )=4x -2mx ,∴f ′(1)=4-2m ,∵函数f (x )在(1,f (1))处的切线与直线2x -y -1=0平行,∴f ′(1)=4-2m =2,∴m =1.(2)∵对于任意x ∈[1,e ],f (x )≤0恒成立,∴4ln x -mx 2+1≤0,在x ∈[1,e ]上恒成立,即对于任意x ∈[1,e ],m ≥4ln x +1x 2恒成立,令g (x )=4ln x +1x 2,x ∈[1,e ],g ′(x )=2(1-4ln x )x 3,令g ′(x )>0,得1<x <14e ,令g ′(x )<0,得14e <x <e ,当x 变化时,g ′(x ),g (x )的变化如下表:x 14(1,e )14e14(e ,e)g ′(x )+0-g (x )极大值∴函数g (x )在区间[1,e ]上的最大值g (x )max =g (14e )=141244ln e 1(e )+=2e e ,∴m ≥2ee,即实数m 的取值范围是2ee ,+20.(12分)已知函数f (x )=ln x -ax (ax +1),其中a ∈R .(1)讨论函数f (x )的单调性;(2)若函数f (x )在(0,1]内至少有1个零点,求实数a 的取值范围.解(1)依题意知,函数f (x )的定义域为(0,+∞),且f ′(x )=1x -2a 2x -a =2a 2x 2+ax -1-x =(2ax -1)(ax +1)-x,当a =0时,f (x )=ln x ,函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )>0,得0<x <12a,由f ′(x )<0,得x >12a,函数f (x )当a <0时,由f ′(x )>0,得0<x <-1a ,由f ′(x )<0,得x >-1a ,函数f (x )-1a,+.(2)①当a =0时,函数f (x )在(0,1]内有1个零点x 0=1;②当a >0时,由(1)知函数f (x )若12a ≥1,即0<a ≤12时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞且f (1)=-a 2-a <0知,函数f (x )在(0,1]内无零点;若0<12a <1,即当a >12时,f (x )1上单调递减,要使函数f (x )在(0,1]内至少有1个零点,只需满足0,即ln 12a ≥34,又∵a >12,∴ln 12a <0,∴不等式不成立.∴f (x )在(0,1]内无零点;③当a <0时,由(1)知函数f (x )-1a,+若-1a ≥1,即-1≤a <0时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞,且f (1)=-a 2-a >0,知函数f (x )在(0,1]内有1个零点;若0<-1a <1,即a <-1时,函数f (x )-1a,1上单调递减,由于当x →0时,f (x )→-∞,且当a <-1时,,知函数f (x )在(0,1]内无零点.综上可得a 的取值范围是[-1,0].21.(12分)(2019·湖北黄冈中学、华师附中等八校联考)在工业生产中,对一正三角形薄钢板(厚度不计)进行裁剪可以得到一种梯形钢板零件,现有一边长为3(单位:米)的正三角形钢板(如图),沿平行于边BC 的直线DE 将△ADE 剪去,得到所需的梯形钢板BCED ,记这个梯形钢板的周长为x (单位:米),面积为S (单位:平方米).(1)求梯形BCED 的面积S 关于它的周长x 的函数关系式;(2)若在生产中,梯形BCED 试确定这个梯形的周长x 为多少时,该零件才可以在生产中使用?解(1)∵DE ∥BC ,△ABC 是正三角形,∴△ADE 是正三角形,AD =DE =AE ,BD =CE =3-AD ,则DE +2(3-AD )+3=9-AD =x ,S =(3+AD )·(3-AD )·sin 60°2=3(12-x )(x -6)4(6<x <9),化简得S =34(-x 2+18x -72)(6<x <9).故梯形BCED 的面积S 关于它的周长x 的函数关系式为S =34(-x 2+18x -72)(6<x <9).(2)∵由(1)得S =34(-x 2+18x -72)(6<x <9),令f (x )=S x =x -72x +x <9),∴f ′(x )1令f ′(x )=0,得x =62或x =-62(舍去),f (x ),f ′(x )随x 的变化如下表:x(6,62)62(62,9)f ′(x )+0-f (x )单调递增极大值单调递减∴当x =62时,函数f (x )=S x有最大值,为f (62)=923-36.∴当x =62米时,该零件才可以在生产中使用.22.(12分)(2019·衡水中学调研)已知函数f (x )=k e x -x 2(其中k ∈R ,e 是自然对数的底数).(1)若k =2,当x ∈(0,+∞)时,试比较f (x )与2的大小;(2)若函数f (x )有两个极值点x 1,x 2(x 1<x 2),求k 的取值范围,并证明:0<f (x 1)<1.解(1)当k =2时,f (x )=2e x -x 2,则f ′(x )=2e x -2x ,令h (x )=2e x -2x ,h ′(x )=2e x -2,由于x ∈(0,+∞),故h ′(x )=2e x -2>0,于是h (x )=2e x -2x 在(0,+∞)上为增函数,所以h (x )=2e x -2x >h (0)=2>0,即f ′(x )=2e x -2x >0在(0,+∞)上恒成立,从而f (x )=2e x -x 2在(0,+∞)上为增函数,故f (x )=2e x -x 2>f (0)=2.(2)函数f (x )有两个极值点x 1,x 2,则x 1,x 2是f ′(x )=k e x -2x =0的两个根,即方程k =2x ex 有两个根,设φ(x )=2x e x ,则φ′(x )=2-2x ex ,当x <0时,φ′(x )>0,函数φ(x )单调递增且φ(x )<0;当0<x <1时,φ′(x )>0,函数φ(x )单调递增且φ(x )>0;当x >1时,φ′(x )<0,函数φ(x )单调递减且φ(x )>0.作出函数φ(x )的图象如图所示,要使方程k =2x e x 有两个根,只需0<k <φ(1)=2e,故实数k f (x )的两个极值点x 1,x 2满足0<x 1<1<x 2,由f ′(x 1)=1e x k -2x 1=0得k =112e x x ,所以f (x 1)=1e x k -x 21=112e x x 1e x -x 21=-x 21+2x 1=-(x 1-1)2+1,由于x 1∈(0,1),所以0<-(x 1-1)2+1<1,所以0<f (x 1)<1.。
5.2.2导数的四则运算法则基础过关练题组一导数的四则运算法则1.函数f(x)=x 2x+3的导数f'(x)=()A.x 2+6xx+3B.-2x(x+3)2C.x2+6x(x+3)2D.3x2+6x(x+3)22.函数y=x2cos x的导数为()A.y'=2xcos x-x2sin xB.y'=2xcos x+x2sin xC.y'=x2cos x-2xsin xD.y'=xcos x-x2sin x3.已知f(x)=x2+e x,则f'(0)=()A.0B.-4 C.-2 D.14.对于函数f(x)=e xx2+ln x-2kx,若f'(1)=1,则实数k等于()A.e2B.e3C.-e2D.-e35.(2020浙江宁波余姚中学高二下月考)设f(x)与g(x)是定义在R上的两个可导函数,若f(x),g(x)满足f'(x)=g'(x),则f(x)与g(x)满足() A.f(x)=g(x) B.f(x)=g(x)=0C.y=f(x)-g(x)为常数函数D.y=f(x)+g(x)为常数函数6.若函数f(x)=x 2e x,则f'(x)=.7.已知函数f(x),g(x)满足f(5)=5,f'(5)=3,g(5)=4,g'(5)=1,若h(x)=f(x)+2g(x),则h'(5)=.8.求下列函数的导数.(1)y=x-2+x2;(2)y=3x e x-2x+e;(3)y=lnxx2+1;(4)y=x2-4sin x2cos x2.题组二求导法则的综合应用9.已知函数f(x)=f'(1)+xln x,则f(e)=()A.1+eB.eC.2+eD.310.已知定义在R上的函数f(x)=e x+x2-x+sin x,则曲线y=f(x)在点(0,f(0))处的切线方程为()A.y=3x-2B.y=x+1C.y=2x-1D.y=-2x+311.(2020浙江嘉兴高三上期末)设曲线y=x+1x-2在点(1,-2)处的切线与直线ax+by+c=0(b≠0)垂直,则ab=()A.13B.-13C.3D.-312.(2020河北保定高二上期末)设曲线f(x)=ae x-ln x(a≠0)在x=1处的切线为l,则l在y轴上的截距为()A.1B.2C.aeD.ae-113.若质子的运动方程为s=tsin t,其中s的单位为m,t的单位为s,则质子在t=2s时的瞬时速度为m/s.14.曲线y=x3+3x2+6x-10的所有切线中,斜率最小的切线方程为.15.(2020江西南昌三中高二下期中)已知函数f(x)=x-2ln x,求曲线y=f(x)在点A(1,f(1))处的切线方程.能力提升练题组导数的四则运算法则及其应用1.()设函数f(x)=sinθ3x3+√3cosθ2x2+tanθ,其中θ∈[0,5π12],则导数f'(1)的取值范围是()A.[-2,2]B.[√2,√3]C.[√3,2]D.[√2,2]2.(2020湖南长沙长郡中学高二上期末,)下面四个图象中,有一个是函数f(x)=13x3+ax2+(a2-1)x+1(a∈R)的导函数y=f'(x)的图象,则f(-1)=()A.13B.-23C.73D.-13或533.(2019河北衡水中学高三二调,)已知f'(x)是函数f(x)的导函数,且对任意的实数x都有f'(x)=e x(2x-2)+f(x)(e是自然对数的底数),f(0)=1,则(易错)A.f(x)=e x(x+1)B.f(x)=e x(x-1)C.f(x)=e x(x+1)2D.f(x)=e x(x-1)24.()设函数f(x)=xsin x+cos x的图象在点(t,f(t))处切线的斜率为g(t),则函数y=g(t)图象的一部分可以是()5.(多选)()给出定义:若函数f(x)在D上可导,即f'(x)存在,且导函数f'(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f″(x)=(f'(x))',若f″(x)<0在D上恒成立,则称f(x)在D上为凸函数.以下四个函数在(0,π)上不是凸函数的是()2A.f(x)=sin x-cos xB.f(x)=ln x-2xC.f(x)=-x3+2x-1D.f(x)=xe x6.()对于三次函数f(x)=ax3+bx2+cx+d(a≠0),现给出定义:设f'(x)是函数f(x)的导数,f″(x)是f'(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数f(x)=ax3+bx2+cx+d(a≠0)的“拐点”.经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=2x3-3x2+1,则g(1100)+g(2100)+…+g(99100)=.7.(2020湖南长沙长郡中学高二上期末,)已知函数f(x)=13x3-2x2+3x(x∈R)的图象为曲线C.(1)求曲线C上任意一点的切线的斜率的取值范围;(2)若在曲线C上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.8.()已知直线x+2y-4=0与抛物线y2=4x相交于A,B两点,O是坐标原点,试在抛物线的AOB⏜上求一点P,使△ABP的面积最大.9.()已知函数f(x)(x∈(0,+∞))的导函数为f'(x),且满足xf'(x)-2f(x)=x3e x,f(1)=e-1,求f(x)在点(2,f(2))处的切线方程.答案全解全析基础过关练1.C f'(x)=(x 2)'(x+3)−x2(x+3)′(x+3)2=2x(x+3)−x 2(x+3)2=2x2+6x-x2(x+3)2=x2+6x(x+3)2.故选C.2.A对函数y=x2cos x求导,得y'=2xcos x+x2·(-sin x)=2xcos x-x2sin x.故选A.3.D由题意,得f'(x)=2x+e x,则f'(0)=1,故选D.4.A因为f'(x)=e x(x-2)x3+1x+2kx2,所以f'(1)=-e+1+2k=1,解得k=e2,故选A.5.C取f(x)=x,g(x)=x+1,满足f'(x)=g'(x),可以验证A、B、D错误;由f'(x)=g'(x),得f'(x)-g'(x)=0,即[f(x)-g(x)]'=0,所以f(x)-g(x)=c(c为常数),C 正确.故选C.6.答案2x-x 2e x解析f'(x)=2xe x-x2e x(e x)2=2x-x2e x.7.答案516解析由题意得,h'(x)=f'(x)g(x)-[f(x)+2]g'(x)[g(x)]2,由f(5)=5,f'(5)=3,g(5)=4,g'(5)=1,得h'(5)=f'(5)g(5)-[f(5)+2]g'(5)[g(5)]2=3×4−(5+2)×142=516.8.解析(1)y'=2x-2x-3. (2)y'=(ln3+1)·(3e)x-2x ln2.(3)y'=x 2+1−2x 2lnx x(x 2+1)2.(4)∵y=x 2-4sin x2cos x 2=x 2-2sin x,∴y'=2x-2cos x.9.A ∵f'(x)=ln x+1,∴f'(1)=ln 1+1=1,则f(x)=1+xln x,∴f(e)=1+eln e=1+e.10.B ∵f'(x)=e x +2x-1+cos x,∴切线的斜率k=f'(0)=1,又f(0)=1,∴切线方程为y=x+1. 11.B 依题意得y'=x -2-(x+1)(x -2)2=-3(x -2)2,则y'x=1=-3,由于曲线y=x+1x -2在点(1,-2)处的切线与直线ax+by+c=0(b ≠0)垂直,所以(-3)·(-ab)=-1,解得a b=-13.故选B.12.A 因为函数f(x)=ae x -ln x(a ≠0), 所以f'(x)=ae x -1x ,将x=1代入,得k=ae-1,又f(1)=ae,所以曲线f(x)在x=1处的切线l 的方程为y-ae=(ae-1)(x-1), 整理得y=(ae-1)x+1,令x=0,得y=1. 所以l 在y 轴上的截距为1.故选A. 13.答案 sin 2+2cos 2解析 ∵s'=(tsin t)'=sin t+tcos t, ∴所求瞬时速度为(sin 2+2cos 2)m/s. 14.答案 3x-y-11=0解析 ∵y'=3x 2+6x+6=3(x 2+2x+2) =3(x+1)2+3≥3,∴当x=-1时,y'最小,即此时切线的斜率最小,此时切点为(-1,-14), ∴切线方程为y+14=3(x+1), 即3x-y-11=0.15.解析 ∵函数f(x)=x-2ln x 的导函数为f'(x)=1-2x ,∴曲线y=f(x)在点A(1,f(1))处的切线斜率为f'(1)=1-2=-1,又f(1)=1,∴曲线y=f(x)在点A(1,f(1))处的切线方程为y-1=-(x-1),即x+y-2=0.能力提升练1.D f'(x)=sin θ·x 2+√3cos θ·x, ∴f'(1)=sin θ+√3cos θ=2sin (θ+π3),∵θ∈[0,5π12],∴θ+π3∈[π3,3π4],∴sin (θ+π3)∈[√22,1],∴f'(1)=2sin (θ+π3)∈[√2,2].故选D.2.D 因为f'(x)=x 2+2ax+a 2-1,所以y=f'(x)的图象开口向上,排除②④.若y=f'(x)的图象为①,则a=0,f(-1)=53;若y=f'(x)的图象为③,则a 2-1=0,得a=±1.又对称轴x=-a>0,所以a=-1,所以f(-1)=-13.3.D 由f'(x)=e x (2x-2)+f(x), 得f'(x)-f(x)e x =2x-2,即[f(x)e x]'=2x-2,所以f(x)e x=x 2-2x+c(c 为常数),所以f(x)=(x 2-2x+c)e x , 又因为f(0)=1,所以c=1,所以函数f(x)的解析式是f(x)=e x (x-1)2.故选D.易错警示 已知原函数可求出唯一的导函数,已知导数求原函数,则结论不唯一,如本题中由y'=2x-2可以得到y=x 2-2x+c(c 为常数),解题时容易将c 遗漏导致解题错误. 4.A 由f(x)=xsin x+cos x,可得f'(x)=sin x+xcos x-sin x=xcos x. 则g(t)=f'(t)=tcos t,易知函数g(t)是奇函数,排除选项B,D; 当t ∈(0,π2)时,g(t)>0,排除选项C.故选A.5.AD 对于A,f'(x)=cos x+sin x, f″(x)=-sin x+cos x,当x ∈(0,π4)时,f″(x)>0,故f(x)=sin x-cos x 不是凸函数;对于B,f'(x)=1x-2,f″(x)=-1x2<0,故f(x)=ln x-2x 是凸函数; 对于C,f'(x)=-3x 2+2,f″(x)=-6x,当x ∈(0,π2)时,f″(x)<0,故f(x)=-x 3+2x-1是凸函数;对于D,f'(x)=(x+1)e x ,f″(x)=(x+2)e x ,当x ∈(0,π2)时,f″(x)>0,故f(x)=xe x 不是凸函数.故选AD.6.答案992解析 依题意得,g'(x)=6x 2-6x,g″(x)=12x -6,令g″(x)=0,解得x=12, ∵g (12)=12,∴函数g(x)的对称中心为(12,12),则g(1-x)+g(x)=1,∵1100+99100=2100+98100=…=49100+51100=1,∴g (1100)+g (99100)=g (2100)+g (98100)=…=g (49100)+g (51100)=1,∴g (1100)+g (2100)+…+g (99100) =[g (1100)+g (99100)]+[g (2100)+g (98100)] +…+[g (49100)+g (51100)]+g (12) =49+12=992.7.解析 (1)由题意得f'(x)=x 2-4x+3,则f'(x)=(x-2)2-1≥-1,即曲线C 上任意一点的切线的斜率的取值范围是[-1,+∞).(2)设曲线C 的其中一条切线的斜率为k,则由条件和(1)中结论可知, {k ≥−1,-1k ≥−1,解得-1≤k<0或k ≥1,故由-1≤x 2-4x+3<0或x 2-4x+3≥1,得x ∈(-∞,2-√2]∪(1,3)∪[2+√2,+∞).8.解析 因为|AB|为定值,所以要使△PAB 的面积最大,只要点P 到AB 的距离最大即可,即点P 是抛物线的切线中平行于AB 的切线的切点,设P(x,y).由题图知,点P 在x 轴下方的图象上,所以y=-2√x ,所以y'=-√x . 因为k AB =-12,所以-√x =-12,解得x=4.由y=-2√x ,得y=-4, 所以点P 的坐标为(4,-4).9.解析 ∵xf'(x)-2f(x)=x 3e x ,x ∈(0,+∞),∴xf'(x)-2f(x)x 3=e x . 令g(x)=f(x)x 2,则g'(x)=xf'(x)-2f(x)x 3=e x , ∴g(x)=f(x)x 2=e x +c(c 为常数),∴f(x)=x 2(e x +c).又f(1)=e+c=e-1,∴c=-1.∴f(x)=x 2(e x -1),∴f'(x)=2x(e x -1)+x 2e x =(x 2+2x)e x -2x,∴f'(2)=8e 2-4.又f(2)=4(e 2-1),∴所求切线方程为y-4(e 2-1)=(8e 2-4)·(x-2),即y=(8e 2-4)x-12e 2+4.。
导数的运算精选题一.选择题(共10小题) 1.设()f x '是函数()f x 的导函数,且()2()()f x f x x R '>∈,1()(2fe e=为自然对数的底数),则不等式2()f ln x x<的解集为( )A .(0,)2e B .(0 C .1(e,)2e D .(2e2.已知定义在R 上的可导函数()y f x =的导函数为()f x ',满足()()f x f x <',且(0)2f =,则不等式()2xf x e>的解集为()A .(,0)-∞B .(0,)+∞C .(,2)-∞D .(2,)+∞3.函数2()(0,0)f x a x b x a b =+>>在点(1,f(1))处的切线斜率为2,则8a b a b+的最小值是()A .10B .9C .8D .4.已知()f x ln x=,则f '(e )的值为()A .1B .1-C .eD .1e5.已知定义在实数集R 的函数()f x 满足f (1)4=,且()f x 导函数()3f x '<,则不等式()31f ln x ln x >+的解集为()A .(1,)+∞B .(,)e +∞C .(0,1)D .(0,)e 6.已知函数()f x 的导函数为()f x ',且满足()2f x x f ='(e )ln x+,则f '(e )(=)A .1B .1-C .1e --D .e -7.若()2f x x f ='(1)2x +,则(0)f '等于()A .2B .0C .2-D .4-8.设()f x x ln x=,若0()2f x '=,则0(x =)A .2eB .2lnC .22lnD .e9.设函数()f x 的导函数是()f x ',若()()c o s s in 2f x f x xπ'=⋅-,则()(3f π'=)A .12-B 2C .12D .2-10.等比数列{}n a 中,12a =,84a =,函数128()()()()f x x x a x a x a =--⋯-,则(0)(f '=)A .62B .92C .122D .152二.多选题(共1小题)11.以下四个式子分别是函数在其定义域内求导,其中正确的是( )A .211()x x'=B .(c o s 2)2s in 2x x '=-C .3()33xxln '=D .1()10lg x x ln -'=三.填空题(共17小题) 12.已知函数()(21)xf x x e=+,()f x '为()f x 的导函数,则(0)f '的值为 . 13.设函数()f x 在(0,)+∞内可导,且()xxf e x e=+,则f '(1)=. 14.定义在(0,)+∞上的函数()f x 满足2()10x f x '+>,f(1)5=,则不等式1()4f x x <+的解集为 .15.若函数2()xx f x e=,则f '(1)= .16.已知函数1()xe f x x-=,()f x '是()f x 的导函数,则f '(1)= .17.曲线nyx=在2x=处的导数为12,则n=.18.若函数()f x f ='(1)3223x x -+,则f '(1)的值为. 19.若函数()yf x =满足()s in ()c o s 6f x x f xπ=+',则()6f π'=.20.已知函数()f x 的导函数为()f x ',且满足()2f x x f ='(e )ln x +,则f '(e )=.21.已知函数21()2(2021)20212f x xx f ln x'=-++,则(2021)f '=.22.如图,函数()f x 的图象是折线段A B C ,其中A ,B ,C 的坐标为(0,4),(2,0),(6,4),则((0))f f =;函数()f x 在1x=处导数f '(1)=.23.已知(1)()f f x x ln x x'=+,则f '(1)= .24.已知31()f x x x =-+的导函数为()f x ',则(1)f '-=.25.若函数()f x f '=(1)12(0)x ef x x--+,则f '(1)= .26.已知2()3f x x x f =+'(2),则f '(2)= . 27.已知函数()sin 21f x x x x =+-,则()f π'=.28.已知函数241()3()2f x xf x'=-,则1()2f '=.四.解答题(共9小题) 29.已知函数()xf x e a ln x=-.(1)讨论()f x 的导函数()f x '的零点的个数;(2)证明:当0a >时,()(2)f x a ln a -….30.求下列函数的导数. (1)23(21)xy x =+ (2)sin 2xy e x-=.31.求下列函数的导数: (1)3()(1c o s )(1)f x x x =+-;(2)()21xx f x x =-+.32.设()f x ln x =,()()()g x f x f x =+'.(1)求()g x 的单调区间和最小值; (2)讨论()g x 与1()g x 的大小关系.33.求下列函数的导数. (1)2(23)(31)y x x =+-;(2)1s in ()xf x x-=;(3)y =.34.设()yf x =是二次函数,方程()0f x =有两个相等的实根,且()22f x x '=+.(1)求()yf x =的表达式;(2)若直线(01)x t t =-<<把()yf x =的图象与两坐标轴所围成图形的面积二等分,求t 的值.35.求下列函数的导数 (1)()xf x ln x x a=+;(2)12()c o s 2f x x x =+.36.已知函数32()1f x a x b x x =-++,且f(1)1=,(1)3f -=-.(1)求a ,b 的值; (2)若[2x ∈-,2],求函数()f x 的最大值和最小值.37.已知函数1()(c o s s in )(0)22xf x e x x xπ=+剟.(1)计算函数()f x 的导数()f x '的表达式;(2)求函数()f x 的值域.导数的运算精选题37道参考答案与试题解析一.选择题(共10小题) 1.设()f x '是函数()f x 的导函数,且()2()()f x f x x R '>∈,1()(2fe e=为自然对数的底数),则不等式2()f ln x x<的解集为( )A .(0,)2eB.(0 C .1(e,)2e D .(2e【分析】构造函数2()()xf x F x e=,求出导数,判断()F x 在R 上递增.原不等式等价为1()()2F ln x F <,运用单调性,可得12ln x<,运用对数不等式的解法,即可得到所求解集.【解答】解:可构造函数2()()xf x F x e=,2()2()()xf x f x F x e'-'=,由()2()f x f x '>,可得()F x '>,即有()F x 在R 上递增. 不等式2()f ln x x<即为2()1f ln x x<,(0)x>,即2()1ln xf ln x e<,0x>.即有1()12()12f F e==,即为1()()2F ln x F <,由()F x 在R 上递增,可得12ln x <,解得0x <<.故不等式的解集为(0,故选:B .【点评】本题考查导数的运用:求单调性,考查构造法的运用,以及单调性的运用,对数不等式的解法,属于中档题.2.已知定义在R 上的可导函数()y f x =的导函数为()f x ',满足()()f x f x <',且(0)2f =,则不等式()2xf x e>的解集为()A .(,0)-∞B .(0,)+∞C .(,2)-∞D .(2,)+∞【分析】根据条件构造函数()()xf xg x e=,利用导数求函数的单调性,即可解不等式.【解答】解:设()()xf xg x e=,则2()()()()()[]x xxxf x e f x ef x f xg x e e''--'==,()()f x f x <',()0g x ∴'>,即函数()g x 单调递增. (0)2f =,(0)(0)(0)2f g f e∴===,则不等式()2xf x e>等价为()(0)xf x f ee>,即()(0)g x g >,函数()g x 单调递增.x ∴>,∴不等式()2xf x e>的解集为(0,)+∞,故选:B .【点评】本题主要考查导数的应用,根据条件构造函数,利用函数的单调性和导数之间的关系是解决本题的关键. 3.函数2()(0,0)f x a x b x a b =+>>在点(1,f(1))处的切线斜率为2,则8a b a b+的最小值是()A .10B .9C .8D.【分析】求出原函数的导函数,由f '(1)22a b =+=,得12b a+=,把8a b a b+变形为81b a+后整体乘以1,展开后利用基本不等式求最小值. 【解答】解:由2()f x a x b x=+,得()2f x a x b'=+,又2()(0,0)f x a x b x a b =+>>在点(1,f(1))处的切线斜率为2,所以f '(1)22a b =+=,即12b a+=.则881818()()55922a b b a b a a bbab aba+=+=++=++=….当且仅当2282a b a bba +=⎧⎪⎨=⎪⎩,即1343a b ⎧=⎪⎪⎨⎪=⎪⎩时“=”成立.所以8a b a b+的最小值是9.故选:B .【点评】本题考查了导数的运算,考查了利用基本不等式求最值,考查了学生灵活变换和处理问题的能力,是中档题.4.已知()f x ln x=,则f '(e )的值为()A .1B .1-C .eD .1e【分析】利用导数的运算法则即可得出. 【解答】解:1()f x x'=,∴1()f e e'=.故选:D .【点评】熟练掌握导数的运算法则是解题的关键. 5.已知定义在实数集R 的函数()f x 满足f (1)4=,且()f x 导函数()3f x '<,则不等式()31f ln x ln x >+的解集为()A .(1,)+∞B .(,)e +∞C .(0,1)D .(0,)e【分析】构造函数()()31g x f x x =--,求函数的导数,判断函数的单调性 即可得到结论【解答】解:设t ln x=, 则不等式()31f ln x ln x >+等价为()31f t t >+,设()()31g x f x x =--, 则()()3g x f x '='-,()f x 的导函数()3f x '<,()()30g x f x ∴'='-<,此时函数单调递减,f (1)4=,g∴(1)f=(1)310--=,则当1x <时,()g x g>(1)0=,即()0g x <,则此时()()310g x f x x =-->,即不等式()31f x x >+的解为1x <,即()31f t t >+的解为1t<,由1ln x <,解得0x e <<,即不等式()31f ln x ln x >+的解集为(0,)e ,故选:D .【点评】本题主要考查不等式的求解,根据条件构造函数,利用函数的单调性和导数之间的关系是解决本题的关键,属于中档题. 6.已知函数()f x 的导函数为()f x ',且满足()2f x x f ='(e )ln x +,则f '(e )(=)A .1B .1-C .1e --D .e -【分析】首先对等式两边求导得到关于f '(e )的等式解之.【解答】解:由关系式()2f x x f ='(e )ln x +,两边求导得()2f x f ''=(e )1x+,令xe=得f '(e )2f '=(e )1e-+,所以f '(e )1e-=-;故选:C .【点评】本题考查了求导公式的运用;关键是对已知等式两边求导,得到关于()f x '的等式,对x 取e 求值.7.若()2f x x f ='(1)2x+,则(0)f '等于()A .2B .0C .2-D .4-【分析】利用导数的运算法则求出()f x ',令1x=得到关于f '(1)的方程,解方程求出f '(1),求出()f x ';令0x=求出(0)f '.【解答】解:()2f x f '='(1)2x +f ∴'(1)2f ='(1)2+f ∴'(1)2=- ()42f x x ∴'=-+(0)4f ∴'=-故选:D .【点评】在求导函数值时,应该先利用导数的运算法则求出导函数,再求导函数值. 8.设()f x x ln x=,若0()2f x '=,则0(x =)A .2eB .2lnC .22ln D .e【分析】由题意求导()1f x ln x '=+,从而得012ln x +=;从而解得.【解答】解:()1f x ln x '=+; 故0()2f x '=可化为012ln x +=;故0x e=;故选:D .【点评】本题考查了导数的求法及应用,属于基础题. 9.设函数()f x 的导函数是()f x ',若()()c o s s in 2f x f x xπ'=⋅-,则()(3f π'=)A .12-B 2C .12D .2-【分析】对函数()f x 的解析式求导,得到其导函数,把2x π=代入导函数中,列出关于()2f π'的方程,进而得到()2f π'的值,再求出()3f π'即可.【解答】解:()()c o s sin 2f x f x xπ'=⋅-,则()()s in c o s 2f x f x xπ'=-'-,()()s inc o s2222f f ππππ∴'=-'-,()02f π∴'=,()co s f x x ∴'=-,1()32f π∴'=-,故选:A .【点评】本题主要考查了导数的运算,运用求导法则得出函数的导函数,求出常数()2f π'的值,从而确定出函数的解析式是解本题的关键,属于基础题. 10.等比数列{}n a 中,12a =,84a =,函数128()()()()f x x x a x a x a =--⋯-,则(0)(f '=)A .62B .92C .122D .152【分析】对函数进行求导发现(0)f '在含有x 项均取0,再利用等比数列的性质求解即可.【解答】解:考虑到求导中(0)f ',含有x 项均取0,得:412123818(0)()2f a a a a a a '=⋯==.故选:C .【点评】本题考查多项式函数的导数公式,重点考查学生创新意识,综合与灵活地应用所学的数学知识、思想和方法.二.多选题(共1小题)11.以下四个式子分别是函数在其定义域内求导,其中正确的是( )A .211()x x'=B .(c o s 2)2s in 2x x '=-C .3()33xxln '=D .1()10lg x x ln -'=【分析】根据基本初等函数和复合函数的求导公式对每个选项函数进行求导即可. 【解答】解:211()x x'=-,(co s 2)2sin 2x x'=-,3()33xxln '=,1()10lg x x ln '=.故选:B C .【点评】本题考查了基本初等函数和复合函数的求导公式,考查了计算能力,属于基础题.三.填空题(共17小题) 12.已知函数()(21)xf x x e=+,()f x '为()f x 的导函数,则(0)f '的值为 3 .【分析】先求导,再带值计算. 【解答】解:()(21)xf x x e=+,()2(21)xxf x e x e∴'=++,(0)2(201)213f e e ∴'=+⨯+=+=.故答案为:3.【点评】本题考查了导数的运算法则,属于基础题. 13.设函数()f x 在(0,)+∞内可导,且()x xf e x e =+,则f '(1)= 2 .【分析】由题设知,可先用换元法求出()f x 的解析式,再求出它的导数,从而求出f '(1). 【解答】解:函数()f x 在(0,)+∞内可导,且()xxf e x e=+,令xe t=,则xln t=,故有()f t ln t t=+,即()f x ln x x=+,1()1f x x∴'=+,故f '(1)112=+=.故答案为:2.【点评】本题考查了求导的运算以及换元法求外层函数的解析式,属于基本题型,运算型. 14.定义在(0,)+∞上的函数()f x 满足2()10x f x '+>,f(1)5=,则不等式1()4f x x<+的解集为(0,1).【分析】设1()()4g x f x x=--对其求导,结合已知不等式得到其单调性,所求不等式转利用单调性得到自变量的大小,即x 范围. 【解答】解:由2()10xf x '+>,设1()()4g x f x x =--,则2221()1()()0x f x g x f x xx'+'='+=>.故函数()g x 在(0,)+∞上单调递增,又g (1)0=,故()0g x <的解集为(0,1),即1()4f x x <-的解集为(0,1).故答案为:(0,1).【点评】本题考查了抽象不等式的解法;关键是正确构造新函数,利用已知不等式得到函数的单调性. 15.若函数2()xx f x e=,则f '(1)=1e.【分析】根据基本初等函数和商的导数的求导公式进行求导得出()f x ',然后即可求出f '(1)的值.【解答】解:22222()()x xxxx e x ex x f x e e--'==,∴1(1)f e'=.故答案为:1e.【点评】本题考查了基本初等函数和商的导数的求导公式,已知函数求值的方法,考查了计算能力,属于基础题. 16.已知函数1()xe f x x-=,()f x '是()f x 的导函数,则f '(1)= 1 .【分析】先求导,再代值计算即可. 【解答】解:21()xxx e e f x x -+'=,f ∴'(1)111e e -+==,故答案为:1【点评】本题考查了导数的基本运算,属于基础题. 17.曲线nyx=在2x=处的导数为12,则n=3 .【分析】求出函数线ny x=的导函数,把2x=代入导函数解析式可求n 的值.【解答】解:由ny x=,得1n y n x-'=,又曲线nyx=在2x=处的导数为12, 所以1212n n -⋅=,3n=.故答案为3.【点评】本题考查了导数的运算,考查了基本初等函数的导数公式,是基础题. 18.若函数()f x f ='(1)3223x x -+,则f '(1)的值为 2 .【分析】求出函数()f x 的导数,计算f '(1)的值即可.【解答】解:()f x f ='(1)3223x x -+,()3f x f ∴'='(1)24x x-,f ∴'(1)3f ='(1)4-,解得:f '(1)2=,故答案为:2.【点评】本题考查了导数的应用,代入求值问题,是一道基础题.19.若函数()yf x =满足()s in ()c o s 6f x x f xπ=+',则()6f π'=3.【分析】由()s in ()c o s 6f x x f xπ=+',利用导数的运算法则,再令6xπ=,即可得出()6f π'.【解答】解:()sin ()c o s 6f x x f xπ=+',()c o s ()s in 6f x x f xπ∴'=-',令6xπ=,则()c o s()s in6666f f ππππ'=-',解得:()63f π'=.3【点评】本题考查了导数的运算法则、方程的解法、三角函数求值,考查了推理能力与计算能力,属于基础题. 20.已知函数()f x 的导函数为()f x ',且满足()2f x x f ='(e )ln x +,则f '(e )=1e-.【分析】利用求导法则求出()f x 的导函数,把x e=代入导函数中得到关于f '(e )的方程,求出方程的解即可得到f '(e )的值.【解答】解:求导得:()2f x f ''=(e )1x+,把xe=代入得:f '(e )12ef -=+'(e ),解得:f '(e )1e-=-,故答案为:1e-【点评】本题要求学生掌握求导法则.学生在求()f x 的导函数时注意f '(e )是一个常数,这是本题的易错点.21.已知函数21()2(2021)20212f x xx f ln x'=-++,则(2021)f '=2020 .【分析】先求出导函数()f x ',再令2021x=求解即可.【解答】解:21()2(2021)20212f x xx f ln x'=-++,∴2021()2(2021)f x x f x''=-++,(2021)20212(2021)1f f ''∴=-++, (2021)2020f '∴=.故答案为:2020.【点评】本题考查了导数的运算,主要考查了常见导数的求导公式的应用以及导数的四则运算的应用,属于基础题. 22.如图,函数()f x 的图象是折线段A B C ,其中A ,B ,C 的坐标为(0,4),(2,0),(6,4),则((0))f f =2 ;函数()f x 在1x=处导数f '(1)=.【分析】(1)要求((0))f f 的值,可先求(0)4f =,再求f(4),此即为所求;(2)函数的图象可知,24,022,26x x yx x -+⎧=⎨-⎩剟剟,然后求出导数即可求出结果.【解答】解:(1)由图象可知(0)4f =,f(4)2=,即((0))2f f = (2)(0)4f =,f(4)2=,f(2)4=,∴由函数的图象可知,24,022,26x x y x x -+⎧=⎨-⎩剟剟,当02x剟时,()2f x '=-f '∴(1)2=-故答案为:2,2-【点评】本题考查函数的图象,导数的运算,解题时要注意分段函数的定义域,属于基础题. 23.已知(1)()f f x x ln x x'=+,则f '(1)=12.【分析】先求出()f x 的导函数,再将1x=代入,解出f '(1)的值即可.【解答】解:21(1)()f f x ln x xx x''=+-,令1x=,则f '(1)1f =-'(1),解得f '(1)12=,故应填12.【点评】本题考查导数的运算,以及求解函数值,属于中档题目. 24.已知31()f x x x=-+的导函数为()f x ',则(1)f '-=4- .【分析】先根据导数的运算法则求出()f x ',再求(1)f '-.【解答】解:31()f x x x=-+,∴221()3f x xx'=--,(1)314f '∴-=--=-,故答案为:4-.【点评】本题主要考查导数的基本运算,属于基础题. 25.若函数()f x f '=(1)12(0)x ef x x--+,则f '(1)=2e.【分析】求导,当1x =时,求得(0)2f =,()f x f '=(1)122x ex x--+,当1x=时,即可求得f '(1).【解答】解:()f x f ''=(1)1(0)2x e f x--+,则f '(1)f '=(1)(0)2f -+,(0)2f ∴=;故()f x f '=(1)122x ex x--+,则有(0)f f '=(1)1e -,解得:f '(1)2e=,故答案为:2e .【点评】本题考查导数的运算,考查导数的求导法则,考查计算能力,属于基础题. 26.已知2()3f x x x f =+'(2),则f '(2)=2- . 【分析】把给出的函数求导,在其导函数中取2x =,则f '(2)可求.【解答】解:由2()3f x x x f =+'(2),得:()23f x x f '=+'(2),所以,f '(2)223f =⨯+'(2),所以,f '(2)2=-.故答案为:2-.【点评】本题考查了导数的加法与乘法法则,考查了求导函数的值,解答此题的关键是正确理解原函数中的f '(2),f '(2)就是一个具体数,此题是基础题.27.已知函数()sin 21f x x x x =+-,则()f π'=2π- .【分析】可以求出导函数,()sin co s 2f x x x x '=++,从而可以求出()2f ππ'=-.【解答】解:()sin co s 2f x x x x '=++;()022f πππ∴'=-+=-.故答案为:2π-.【点评】考查基本初等函数的求导公式,积的导数的求导公式,以及已知函数求值的方法. 28.已知函数241()3()2f x xf x'=-,则1()2f '=2 .【分析】先求出()f x ',然后将12x=代入解出1()2f '即可.【解答】解:31()64()2f x x f x'=-',所以111()34()282f f '=-⨯⨯'解得:1()22f '=.故答案为:2【点评】本题主要是考查了导数的计算以及利用方程思想解决问题的能力.属于较易题. 四.解答题(共9小题) 29.已知函数()xf x e a ln x=-.(1)讨论()f x 的导函数()f x '的零点的个数;(2)证明:当0a >时,()(2)f x a ln a -….【分析】(1)求出()f x 的定义域,以及()f x 的导函数,导函数零点的个数即为两函数交点个数,分类讨论a 的范围确定出零点个数即可; (2)由0a>时,导函数有零点,存在唯一0x 使0()0f x '=,分类讨论x 的范围确定出导函数的增减性,求出()f x 最小值,即可得证. 【解答】解:(1)由()xf x e a ln x=-,得到0x>,()f x ∴定义域为(0,)+∞,()xa f x e x∴'=-的零点个数xy e⇔=与a yx=的交点个数,①0a =时,显然无; ②0a >时,有1个; ③0a<时,无零点;(2)由(1)0a>时,存在唯一0x 使0()0f x '=,即0xa e x =,且0(0,)x x ∈时,0()0f x '<,()f x 单调递减,0(x x ∈,)+∞时,0()0f x '>,()f x 单调递增,0000()()2(2)x m in a a a f x f x e a ln x a lna x a ln a a a ln a a ln a x x x ∴==-=-=+--=-…,得证.【点评】此题考查了导数的运算,根的存在性及根的个数判断,熟练掌握导函数的性质是解本题的关键. 30.求下列函数的导数. (1)23(21)xyx =+(2)sin 2xyex-=.【分析】根据导数的运算法则和复合函数的求导法则求导即可. 【解答】解:(1)3222642(21)3(21)222(21)(21)x x x x x x y x x ⋅+-⋅+⋅-'==++;(2)sin 22c o s 2(2c o s 2sin 2)xxxy ex e x ex x ---'=-+=-.【点评】本题考查了导数的运算法则和复合函数的求导法则,属于基础题. 31.求下列函数的导数: (1)3()(1c o s )(1)f x x x =+-;(2)()21xx f x x =-+.【分析】由已知结合基本初等函数的求导公式及函数的求导法则即可分别求解. 【解答】解:(1)3332322()(1c o s )(1)(1c o s )(1)sin (1)3(1c o s )sin sin 33c o s f x x x x x x x x x x x x x x x'''=+-++-=---+=-+--.(2)1()21211xxx f x x x =-=--++,则21()22(1)xf x ln x '=-+.【点评】本题主要考查了基本初等函数的求导,属于基础试题. 32.设()f x ln x=,()()()g x f x f x =+'.(1)求()g x 的单调区间和最小值; (2)讨论()g x 与1()g x 的大小关系.【分析】(1)利用导数研究函数()g x 的单调性极值最值即可得出. (2)令11()()()2(0)h x g x g ln x x x xx=-=+->.可得22(1)()x h x x--'=…,函数()h x 在(0,)+∞上单调递减.由于h (1)=,即可得出大小关系.【解答】解:(1)1()(0)f x x x'=>.1()(0)g x ln x x x ∴=+>. ∴22111()x g x xxx'-=-=, 令()0g x '=,解得1x=.当01x <<时,()0g x '<,函数()g x 单调递减;当1x<时,()g x '>,函数()g x 单调递增.∴当1x =时,函数()g x 取得极小值即最小值,g (1)1=.综上可得:函数()g x 单调递减区间为(0,1);函数()g x 单调递增区间为[1,)+∞,最小值为1.(2)1()(0)g x ln x x x=+>,1()g ln x xx=-+.令11()()()2(0)h x g x g ln x x x xx=-=+->.22221(1)()10x h x xxx--∴'=--=…,∴函数()h x 在(0,)+∞上单调递减.当1x =时,h (1)0=,此时1()()g x g x=.当01x <<时,h (1)0>,此时1()()g x g x >.当1x<时,h (1)0<,此时1()()g x g x<.【点评】本题考查了利用导数研究函数的单调性,考查了分类讨论的思想方法、构造函数法,考查了推理能力与计算能力,属于难题. 33.求下列函数的导数. (1)2(23)(31)y x x =+-;(2)1s in ()xf x x-=;(3)y=.【分析】利用常见函数的导数公式以及和、差、积、商的求导公式、复合函数的求导公式求解即可. 【解答】解:(1)函数2(23)(31)y x x =+-,所以222(23)(31)(23)(31)4y x x x x x x x xx '=+'-++-'=⋅-++;(2)函数1s in ()xf x x-=,所以22(1s in )(1s in )c o s 1s in ()x x x x x x xf x xx-'⋅--⋅'--+'==;(3)函数y=,所以112212y x'=⋅=+.【点评】本题考查了导数的运算,主要考查了常见函数的导数,和、差、积、商的求导公式以及复合函数的求导公式的应用,解题的关键是熟练掌握公式,属于基础题. 34.设()yf x =是二次函数,方程()0f x =有两个相等的实根,且()22f x x '=+.(1)求()yf x =的表达式;(2)若直线(01)xt t =-<<把()yf x =的图象与两坐标轴所围成图形的面积二等分,求t 的值.【分析】(1)设2()f x a x b x c=++,根据()22f x x '=+求出a 、b 的值,再由方程()0f x =有两个相等的实根,△0=,求得c 的值,即可得到函数的解析式.(2)由题意可得1(t f --2021)(t x x d x f -++=221)x x d x++,即3232111()|()|33ttx xx x xx ---++=++,化简得32(1)1t-=-,由此求得t 的值.【解答】解:(1)设2()f x a x b x c=++,则()2f x a x b'=+,又因为()22f x x '=+,1a ∴=,2b=,2()2f x x x c∴=++.由于方程()0f x =有两个相等的实根,∴△440c =-=,解得1c =,2()21f x xx ∴=++.(2)由题意可得1(tf --221)(t x x d x f -++=221)x x d x++,即3232111()|()|33ttx xx x xx ---++=++,即13-321133t tt +-+=32t t t-+,3226610t t t ∴-+-=,即32(1)1t-=-,1t∴=-.【点评】本题主要考查用待定系数法求函数的解析式,导数的运算,定积分的应用,属于中档题. 35.求下列函数的导数 (1)()xf x ln x x a=+;(2)12()c o s 2f x x x =+.【分析】(1)直接利用常见导数的求导公式以及导数的运算法则进行求解即可; (2)利用常见函数的求导公式结合复合函数的求导法则进行求解即可. 【解答】解:(1)因为()xf x ln x x a=+,所以1()xxf x ax a ln ax '=++;(2)因为12()c o s 2f x x x =+, 所以121()2s in 22f x x x-'=-+.【点评】本题考查了导数的运算,涉及了常见函数的求导公式的运用、导数的求导法则的运用、复合函数求导法则的应用,属于基础题. 36.已知函数32()1f x a x b x x =-++,且f(1)1=,(1)3f -=-.(1)求a ,b 的值; (2)若[2x ∈-,2],求函数()f x 的最大值和最小值.【分析】(1)列方程组可求的a ,b 的值, (2)由导数的综合应用得:()f x 在1(2,)3-上单调递增,在1(,1)3上单调递减,在(1,2)上单调递增,所以()m a x f x f=(2)3=,()(2)17m in f x f =-=-,得解.【解答】解:(1)因为32()1f x a x b x x =-++,则由题可知:(1)21(1)3f a b f a b =-+=⎧⎨-=--=-⎩,解得:12a b =⎧⎨=⎩, 故1a=,2b =.(2)由(1)知:32()21f x x x x =-++,[2x ∈-,2],所以2()341(31)(1)f x x x x x '=-+=--,令121()0,,13f x x x '===,由()0f x '>,得12123x x -<<<<或,由()0f x '<,得113x <<,所以()f x 在1(2,)3-上单调递增,在1(,1)3上单调递减,在(1,2)上单调递增,又131(2)17,(2)3,(),(1)1327f f f f -=-===,所以()m a x f x f=(2)3=,()(2)17m in f x f =-=-,故函数()f x 的最大值为3,最小值为17-.【点评】本题考查了导数的综合应用,属综合性较强的题型. 37.已知函数1()(c o s s in )(0)22xf x e x x xπ=+剟.(1)计算函数()f x 的导数()f x '的表达式;(2)求函数()f x 的值域.【分析】(1)根据基本初等函数和积的导数的求导公式求导即可得出()c o s xf x e x'=;(2)02x π剟时,可得出()0f x '…,从而得出()f x 在[0,]2π上是增函数,然后即可求出()f x 的最小值和最大值,进而得出()f x 的值域.【解答】解:(1)1()(c o s s in )2xf x e x x =+,∴11()(c o s s in )(s in c o s )c o s 22xxxf x e x x e x x e x'=++-+=;(2)02xπ剟,()c o s 0xf x e x ∴'=…,∴函数()f x 在[0,]2π上是单调增函数,∴011()(0)(c o s 0s in 0)22m in f x f e ==+=,2211()()(c o ss in)22222m a x f x f e eπππππ==+=;∴函数()f x 的值域为211[,]22e π.【点评】本题考查了基本初等函数和积的导数的求导公式,根据导数符号判断函数单调性的方法,根据函数的单调性求函数在闭区间上的最值的方法,考查了计算能力,属于基础题.。
一、选择题1.若关于x 的方程2lnx ax x -=在0,上有两个不等的实数根,则实数a 的取值范围为( ) A .(],1-∞-B .(),1-∞-C .[)1,-+∞D .()1,-+∞2.设函数()f x '是奇函数()()f x x R ∈的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是( )A .()()0,11,+∞B .()(),11,-∞-+∞C .()(),10,1-∞-⋃D .()()1,01,-⋃+∞3.已知函数()2sin x m f x x +=-在30,4π⎡⎤⎢⎥⎣⎦上有两个不同的零点,则实数m 的取值范围是( ) A .3,44ππ⎫⎡--⎪⎢⎣⎭ B .3,44ππ⎛⎤⎥⎝⎦ C .,42ππ⎛⎫⎪⎝⎭ D .,24ππ⎛⎫-- ⎪⎝⎭ 4.已知函数()23ln f x x ax x =-+在其定义域内为增函数,则a 的最大值为( )A.4B .C .D .65.已知函数()f x 定义域为R ,其导函数为f x ,且()()30f x f x '->在R 上恒成立,则下列不等式定成立的是( ) A .()()310f e f <B .()()210f e f < C .()()310f e f >D .()()210f e f >6.已知函数()()()()221ln 10,,2a f x a x x a a xb x a b =-++--+>∈∈R R .若函数()f x 有三个零点,则( )A .1a >,0b <B .01a <<,0b >C .0a <,0b >D .01a <<,0b < 7.已知定义在R 上的函数()f x 满足()()f x f x '<-,则下列式子成立的是( )A .(2020)(2021)f ef >B .(2020)(2021)f ef <C .(2020)(2021)ef f >D .(2020)(2021)ef f <8.已知函数()()()110ln x f x x x++=>,若()1kf x x >+恒成立,则整数k 的最大值为( ) A .2B .3C .4D .59.对于正数k ,定义函数:()()()(),,f x f x k g x k f x k ⎧≤⎪=⎨>⎪⎩.若对函数()ln 22f x x x =-+,有()()g x f x =恒成立,则( )A .k 的最大值为1ln2+B .k 的最小值为1ln2+C .k 的最大值为ln 2D .k 的最小值为ln 210.甲乙两人进行乒乓球友谊赛,每局甲胜出概率是()01p p <<,三局两胜制,甲获胜概率是q ,则当q p -取得最大值时,p 的取值为( ) A .12B .1326-C .1326+ D .2311.函数()212x f x x -=+的值域是( ) A .30,⎡⎤⎢⎥⎣⎦B .3⎛⎫∞ ⎪ ⎪⎝⎭,+C .()0,3D .)3,⎡+∞⎣12.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 二、填空题13.已知函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值,则实数m 的取值范围是_________.14.已知函数()(ln )xe f x k x x x=+-,若1x =是函数()f x 的唯一极值点,则实数k 的取值范围是_______.15.已知函数()f x 与()f x '的图象如图所示,则函数()()x f x g x e=的单调递减区间为___________.16.已知函数()2ln(1)f x x ax =+-,对任意的(0,1),(0,1)m n ∈∈,当m n ≠时,(1)(1)1f m f n m n+-+<-,则实数a 的取值范围是____________.17.函数21f x x x 的极大值为_________.18.已知函数3223,01()21,1x x m x f x mx x ⎧-+≤≤=⎨-+>⎩,若函数()f x 的图象与x 轴有且只有两个不同的交点,则实数m 的取值范围为________.19.函数2sin y x x =-在[]0,2π上的递增区间是________.20.已知函数()321f x x x =++,若对于x R ∀∈不等式()21xf ax e a -+≤恒成立,则实数a 的取值范围为:____________.三、解答题21.已知函数()2ln f x x a x x=--. (1)已知()f x 在点()()1,1f 处的切线方程为2y x =-,求实数a 的值; (2)已知()f x 在定义域上是增函数,求实数a 的取值范围. 22.已知函数()xax f x e =. (1)当1a =时,判断函数()f x 的单调性; (2)若0a >,函数()()212g x f x x x =+-只有1个零点,求实数a 的取值范围. 23.已知函数32()691f x x x x =-++. (1)求曲线()y f x =在点()0,1处的切线方程.(2)证明:()()1ln 2cos x x f x x +->对1()2,x ∈+∞恒成立. 24.已知函数()()3f x alnx ax a R =--∈. (1)函数()f x 的单调区间;(2)当1a =-时,证明:当()1x ∈+∞,时,()20f x +>. 25.已知函数21()ln (1)12f x a x x a x =+-++. (I )当0a =时,求曲线()y f x =在点(2,(2))f 处的切线方程;(Ⅱ)若函数()f x 在1x =处取得极小值,求实数a 的取值范围.26.已知函数321()23f x x x ax =-++,21()42g x x =-. (1)若函数()f x 在()0,∞+上存在单调递增区间,求实数a 的取值范围;(2)设()()()G x f x g x =-.若02a <<,()G x 在[]1,3上的最小值为13-,求()G x 在[]1,3上取得最大值时,对应的x 值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】通过分离参数变成ln x a x x=-,构造函数()ln x f x xx =-,利用导数求其单调区间和值域,数形结合写出a 的取值范围. 【详解】2lnx ax x -=故ln xa x x=- 则()ln x f x xx=- ()2'221ln 1ln 1x x x f x x x---=-= 设()21ln g x x x =--,0x >故()'120g x x x=--< ()21ln g x x x =--在0,上为减函数,10g .故()0,1∈x 时()'0f x >;()1,∈+∞x 时()'0f x <.故()ln x f x xx=-在0,1上为增函数,在1,上为减函数.()()max 11f x f ==-,且0,x →时()f x →-∞;,x →+∞时()f x →-∞y a =与()ln x f x x x=-的图象要有两个交点则a 的取值范围为(),1-∞-. 故选:B 【点睛】方程在某区间上有解的问题,可通过分离参数,构造函数,利用导数求该区间上单调区间和值域,得出参数的取值范围.2.C解析:C 【分析】 构造函数()()f xg x x=,分析出函数()g x 为偶函数,且在()0,∞+上为减函数,由()0f x >可得出()00g x x ⎧>⎨>⎩或()00g x x ⎧<⎨<⎩,解这两个不等式组即可得解.【详解】构造函数()()f xg x x=,该函数的定义域为{}0x x ≠, 由于函数()f x 为奇函数,则()()()()()f x f x f x g x g x x x x---====--, 所以,函数()()f xg x x=为偶函数. 当0x >时,()()()20xf x f x g x x'-'=<,所以,函数()g x 在()0,∞+上为减函数, 由于函数()()f xg x x=为偶函数,则函数()g x 在(),0-∞上为增函数. ()10f -=,则()10f =且()00f =,所以,()()110g g -==.不等式()0f x >等价于()()010g x g x ⎧>=⎨>⎩或()()010g x g x ⎧<=-⎨<⎩,解得1x <-或01x <<.因此,不等式()0f x >的解集为()(),10,1-∞-⋃. 故选:C. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.3.A【分析】()0f x =有两解变形为2sin m xxe e =有两解, 设2sin ()xxg xe =,利用导数确定函数的单调性、极值,结合()g x 的大致图象可得结论. 【详解】 由()22sin x mf x e x +=-得2sin m xxe e =,设2sin ()xxg x e=,则2(cos sin )()x x g x -'=, 易知当04x π<<时,()0g x '>,()g x 递增,当344x ππ<<时,()0g x '<,()g x 递减,(0)0g =,414g e ππ⎛⎫= ⎪⎝⎭,34314g e ππ⎛⎫= ⎪⎝⎭,如图是()g x 的大致图象, 由2sin mx e =有两解得34411m e e eππ≤<,所以344m ππ-≤<-.故选:A .【点睛】关键点点睛:本题考查函数的零点问题,解题关键是转化.函数的零点转化为方程的解,再用分离参数变形为2sin m xe =2sin ()x g x =my e =有两个交点,利用导数研究函数()g x 的单调性、极值后可得.4.B解析:B 【分析】求导,则由题意导函数在0,上恒大于等于0,分参求a 范围.【详解】由题意可得()160f x x a x'=-+≥对()0,x ∈+∞恒成立,即16a x x ≤+,对()0,x ∈+∞因为16x x +≥16x x =即x =时取最小值所以a ≤ 故选:B 【点睛】(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.5.A解析:A 【分析】 构造函数()()3xf xg x e=,由()()30f x f x '->得0g x ,进而判断函数()g x 的单调性,判断各选项不等式. 【详解】()()3x f x g x e=,则()()()()()()3323333x x x x f x e f x e f x f x g x e e ⋅--==''', 因为()()30f x f x '->在R 上恒成立, 所以0g x在R 上恒成立,故()g x 在R 上单调递减, 所以()()10g g <,即()()3010f f e e <,即()()310f e f <, 故选:A. 【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.6.B解析:B 【分析】首先求出函数的导函数,要使函数()f x 有三个零点,则()0f x '=必定有两个正实数根,即可求出参数a 的取值范围,再求出函数的单调区间,从而得到()10f a ->,即可判断b 的范围; 【详解】解:因为()()()()221ln 10,,2a f x a x x a a xb x a b =-++--+>∈∈R R 所以()()()()()()()222111111ax a a x a a ax x a f x ax a a xxx+--+---+-'=++--==要使函数()f x 有三个零点,则()0f x '=必定有两个正实数根,即11x a=,21x a =-,所以1010a a->⎧⎪⎨>⎪⎩解得01a <<,此时111x a =>,211x a =-<,令()0f x '>,解得01x a <<-或1x a >,即函数在()0,1a -和1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,令()0f x '<,解得11a x a -<<或1x a >,即函数在11,a a ⎛⎫- ⎪⎝⎭上单调递减,所以()f x 在1x a =-处取得极大值,在1x a=处取得极小值; 因为当0x →时,()f x →-∞;当x →+∞时,()f x →+∞,要使函数函数()f x 有三个零点,则()10f a ->,10f a ⎛⎫< ⎪⎝⎭即()()()()()()2211ln 11112a f a a a a a a ab -=--+-+---+ ()()()()211ln 102a a a a b -+⎡⎤=--++>⎢⎥⎣⎦且()()2211111ln 102a f a a a b a a a a ⎛⎫⎛⎫=-++--+< ⎪ ⎪⎝⎭⎝⎭ 因为01a <<,所以011a <-<,20a -<,所以()()2102a a -+<,()ln 10a -<,所以()()()()211ln 102a a a a -+⎡⎤--+<⎢⎥⎣⎦,又()()()()211ln 102a a a a b -+⎡⎤--++>⎢⎥⎣⎦,所以0b >故选:B 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.7.A解析:A 【分析】构造函数()()xg x e f x =,求导判定函数单调性,根据单调性得(2020)(2021)g g >化简即可. 【详解】解:依题意()()0f x f x '+<,令()()x g x e f x =,则()(()())0xg x f x f x e ''=+<在R 上恒成立,所以函数()()xg x e f x =在R 上单调递减, 所以(2020)(2021)g g >即20202021(2020)(2021)(2020)(2021)e e e f f f f >⇒>故选:A. 【点睛】四种常用导数构造法:(1)对于不等式()()0f x g x ''+> (或0<) ,构造函数()()()F x f x g x =+. (2)对于不等式()()0f x g x ''->(或0<) ,构造函数()()()F x f x g x =-.(3)对于不等式()()0f x f x '+>(或0<) ,构造函数()()xF x e f x =.(4)对于不等式()()0f x f x '->(或0<) ,构造函数()()x f x F x e=. 8.B解析:B 【分析】 将不等式化为()()111ln x x k x +++>,令()()()111ln x g x xx ++=+,求出导函数,利用导数判断函数的单调性,从而可得()02,3x ∃∈使()00g x '=,进而可得()()001()g x x x g ≥=+,即求.【详解】()()()1ln 10x f x x x ++=>, ()1k f x x ∴>+可化为()111ln x k x x ++>+即()()111ln x x k x+++>, 令()()()111ln x g x xx ++=+, 则()()()()21ln 11111x x x x ln x g x x +++---++⎡⎤⎣⎦'= ()211x ln x x--+=令()()11h x x ln x =--+, 则()111h x x '=-+,()0,x ∈+∞时, ()0h x '>,()g x '∴在()0,∞+单调递增.又()()1ln 32ln 420,30,49g g --''=<=> ()02,3x ∃∈使()00g x '=,即()0011ln x x +=-.当()00,x x ∈时,()()0,g x g x '<单调递减, 当0(,)x x ∈+∞时,()()0,g x g x '>单调递增,()()000001ln 1))1(()(1x x g x x x x g +∴≥==+++, ()02,3x ∈,()013,4x +∴∈,∴正整数k 的最大值为3.故选:B. 【点睛】关键点点睛:本题考查了导数研究不等式恒成立问题,解题的关键根据函数的单调性确定存在()02,3x ∈,使得()00g x '=,考查了分离参数法求范围.9.B解析:B 【分析】利用导数求出函数()f x 的最大值,由函数()g x 的定义结合()()g x f x =恒成立可知()f x k ≤,由此可得出k 的取值范围,进而可得出合适的选项.【详解】对于正数k ,定义函数:()()()(),,f x f x kg x k f x k ⎧≤⎪=⎨>⎪⎩,且()()g x f x =恒成立,则()f x k ≤.函数()ln 22f x x x =-+的定义域为()0,∞+,且()111x f x x x-'=-=. 当01x <<时,()0f x '>,此时,函数()f x 单调递增; 当1x >时,()0f x '<,此时,函数()f x 单调递减. 所以,()()max 11ln 2f x f ==+,1ln 2k ∴≥+. 因此,k 的最小值为1ln2+. 故选:B. 【点睛】解决导数中的新定义的问题,要紧扣新定义的本质,将问题转化为导数相关的问题,本题将问题转为不等式()k f x ≥恒成立,从而将问题转化为求函数()f x 的最大值.10.C解析:C 【分析】采用三局两胜制,则甲在下列两种情况下获胜:甲净胜二局,前二局甲一胜一负,第三局甲胜,由此能求出甲胜概率,进而求得的最大值. 【详解】采用三局两胜制,则甲在下列两种情况下获胜: 甲净胜二局概率为2p ;前二局甲一胜一负,第三局甲胜概率为12(1)C p p p -⋅22(1)p p =-则22(1)q p p p =+-,得q p -222(1)p p p p =+--3223p p p =-+-(01)p <<, 设3223y p p p =-+-,(01)p <<,则2661y p p '=-+-6(p p =---则函数y 在单调递减,在单调递增,故函数在36p =+处取得极大值,也是最大值. 故选:C. 【点睛】本题考查了概率的求法和应用以及利用导数求函数最值的方法,解题时要认真审题,注意等价转化思想和分类讨论思想的合理运用,属于中档题.11.A解析:A 【分析】求出函数的定义域,然后求出导函数,确定单调性,得值域.【详解】由21020x x ⎧-≥⎨+≠⎩得11x -≤≤,()f x '==当112x -≤<-时,()0f x '>,()f x 递增,112x -<≤时,()0f x '<,()f x 递减, 所以12x =-时,max()22f x ==-+(1)(1)0f f -==, 所以()f x的值域是⎡⎢⎣⎦. 故选:A . 【点睛】本题考查用导数求函数的值域,解题方法是由导数确定函数的单调性,得出最大值和最小值,得值域.12.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x1=,x2=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴123a-<2,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:1、若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;2、若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;二、填空题13.【分析】利用导数求出函数的极大值点和极小值点由题意可得出关于实数的不等式组由此可解得实数的取值范围【详解】则令可得列表如下: 极大值 极小值 所以函数的极大值点为 解析:()3,2--【分析】利用导数求出函数()f x 的极大值点和极小值点,由题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】()32133f x x x =++,则()()222f x x x x x '=+=+,令()0f x '=,可得12x =-,20x =,列表如下:所以,函数f x 的极大值点为2x =-,极小值点为0x =, 由于函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值, 所以,230m m <-⎧⎨+>⎩,解得32m -<<-.因此,实数m 的取值范围是()3,2--. 故答案为:()3,2--.【点睛】易错点点睛:已知极值点求参数的值,先计算()0f x '=,求得x 的值,再验证极值点.由于导数为0的点不一定是极值点,因此解题时要防止遗漏验证导致错误.14.【分析】首先求函数的导数由条件是函数的唯一极值点说明在无解或有唯一解求实数的取值【详解】∵∴∴x =1是函数f (x )的唯一极值点在上无解或有唯一解x=1①当x=1为其唯一解时k=e 令当时即h(x)的单 解析:(,]e -∞【分析】首先求函数的导数2(1)()()x x e kx f x x'--=,由条件1x =是函数()f x 的唯一极值点,说明0-=x e kx 在()0,x ∈+∞无解,或有唯一解1x =,求实数k 的取值. 【详解】∵()(ln )x e f x k x x x =+-,∴22(1)1(1)()()(1)x x x e x e kx f x k x x x'---=+-= ∴x =1是函数f (x )的唯一极值点,0x x e k ∴-=在(0,)x ∈+∞上无解,或有唯一解x =1,①当x =1为其唯一解时,k =e ,令()(0)x h x e ex x =->,()xh x e e '=-,当(0,1)x ∈时,()0h x '<,即h (x )的单调递减区间为(0,1), 当(1,)x ∈+∞时,()0h x '>,即()h x 的单调递增区间为(1,)+∞, ∴()h x 在x =1处,取得极小值, ∴k =e 时,x =1是f (x )的唯一极值点;②当xe k x=在(0,)x ∈+∞上无解,设()x e g x x =则2(1)()x e x g x x'-=, 当(0,1)x ∈时,()0g x '<,即g (x )的单调递减区间为(0,1),当(1,)x ∈+∞时,()0g x '>,即()g x 的单调递增区间为(1,)+∞, ∴()g x 在x =1处,取得极小值,也是其最小值,min ()(1)g x g e ==,又k xe x=在(0,)x ∈+∞上无解,e k ∴<,综上k e ≤ 故答案为:(,]e -∞. 【点睛】易错点睛:本题考查根据函数的极值点求参数的取值范围,容易忽略k e =的情况,此时x e ex ≥恒成立.15.【分析】利用图象得出不等式的解集再利用导数可求得函数的单调递减区间【详解】由图象可知不等式的解集为由可得解得因此函数的单调递减区间为故答案为:【点睛】思路点睛:利用导数求函数单调区间的步骤:(1)求解析:()0,1、()4,+∞ 【分析】利用图象得出不等式()()0f x f x '-<的解集,再利用导数可求得函数()()x f x g x e=的单调递减区间. 【详解】由图象可知,不等式()()0f x f x '-<的解集为()()0,14,+∞,()()x f x g x e =,()()()()()()()2x x x x f x e f x e f x f x g x e e ''-⋅'-==', 由()0g x '<,可得()()0f x f x '-<,解得()()0,14,x ∈+∞.因此,函数()()x f x g x e=的单调递减区间为()0,1、()4,+∞. 故答案为:()0,1、()4,+∞. 【点睛】思路点睛:利用导数求函数单调区间的步骤: (1)求函数()f x 的定义域; (2)求导数()f x ';(3)解不等式()0f x '>,并与定义域取交集得到的区间为函数()f x 的单调增区间; (4)解不等式()0f x '<,并与定义域取交集得到的区间为函数()f x 的单调减区间.16.【分析】把不等式恒成立转化为函数的导数小于1在内恒成立进而转化为在内恒成立结合函数的性质即可求解【详解】由题意分式的几何意义为:表示点与连线的斜率因为实数在区间内故和在区间内不等式恒成立所以函数图象解析:1,6⎡⎫-+∞⎪⎢⎣⎭【分析】 把不等式(1)(1)1f m f n m n+-+<-恒成立,转化为函数()f x 的导数小于1在(1,2)内恒成立,进而转化为()121a x ->+在(1,2)内恒成立,结合函数的性质,即可求解.【详解】 由题意,分式(1)(1)f m f n m n+-+-的几何意义为:表示点(1,(1))m f m ++与(1,(1))n f n ++连线的斜率, 因为实数,m n 在区间(0,1)内,故1m + 和1n +在区间(1,2)内, 不等式(1)(1)1f m f n m n+-+<-恒成立,所以函数图象上在区间(1,2)内任意两点连线的斜率小于1,故函数()2ln(1)f x x ax =+-的导数小于1在(1,2)内恒成立, 由函数()2ln(1)f x x ax =+-满足10x +>,即定义域为(1,)-+∞,即()2111f x ax x '=-<+在(1,2)内恒成立,即()121a x ->+在(1,2)内恒成立, 设函数()()121g x x -=+,根据函数的单调性可知函数()()121g x x -=+在(1,2)上是单调增函数,可得()()126g x g <=-,所以16a ≥-, 故答案为:1,6⎡⎫-+∞⎪⎢⎣⎭. 【点睛】对于利用导数研究不等式的恒成立问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,通常要设出导数的零点,难度较大.17.【分析】利用导数研究函数的单调性由此可求得该函数的极大值【详解】定义域为令可得或当或时此时函数单调递增;当时此时函数单调递减所以函数在处取得极大值且极大值为故答案为:【点睛】本题考查利用导数求解函数 解析:427【分析】利用导数研究函数21f x x x 的单调性,由此可求得该函数的极大值.【详解】()()21f x x x =-,定义域为R ,()()()()()2121311f x x x x x x '=-+-=--.令()0f x '=,可得13x =或1x =. 当13x <或1x >时,()0f x '>,此时,函数21f x x x 单调递增;当113x <<时,()0f x '<,此时,函数21f x x x 单调递减.所以,函数21f xx x 在13x =处取得极大值,且极大值为21114133327f ⎛⎫⎛⎫=⨯-=⎪ ⎪⎝⎭⎝⎭. 故答案为:427. 【点睛】本题考查利用导数求解函数的极值,考查计算能力,属于中等题.18.【分析】利用导数求得在区间上的单调性和最值对分成三种情况进行分类讨论由此求得的取值范围【详解】当时所以在区间上递减最大值为最小值为当时在区间上没有零点在区间上递增而所以在区间上没有零点所以不符合题意解析:1(0,)2【分析】利用导数求得()f x 在区间[]0,1上的单调性和最值,对m 分成0,0,0m m m <=>三种情况进行分类讨论,由此求得m 的取值范围. 【详解】当01x ≤≤时,()()'26661fx x x x x =-=-,所以()f x 在区间[]0,1上递减,最大值为()0f m =,最小值为()11f m =-.当0m <时,()f x 在区间[]0,1上没有零点,在区间()1,+∞上递增, 而2110m -⨯+>,所以()f x 在区间()1,+∞上没有零点.所以0m <不符合题意.当0m =时,3223,01()1,1x x x f x x ⎧-≤≤=⎨>⎩,所以()f x 在区间[)0,+∞上有唯一零点()00f =,所以0m =不符合题意.当0m >时,()f x 在区间[]0,1和区间()1,+∞上递减,要使()f x 的图象与x 轴有且只有两个不同的交点,则需0102110m m m >⎧⎪-≤⎨⎪-⨯+>⎩,解得102m <<.综上所述,m 的取值范围是10,2⎛⎫ ⎪⎝⎭. 故答案为:1(0,)2【点睛】本小题主要考查利用导数研究函数的零点,考查分类讨论的数学思想方法,属于中档题.19.【分析】根据函数求导解的解集即可【详解】因为函数所以令得或当时所以函数在上的递增区间是故答案为:【点睛】本题主要考查导数与函数的单调性还考查了转化问题和运算求解的能力属于中档题解析:5,33ππ⎡⎤⎢⎥⎣⎦【分析】根据函数2sin y x x =-,求导12cos y x '=-,解0y '>的解集即可. 【详解】因为函数2sin y x x =-, 所以12cos y x '=-, 令12cos 0y x '=-=,得3x π=或53x π=, 当533x ππ≤≤时,0y '>, 所以函数2sin y x x =-在[]0,2π上的递增区间是5,33ππ⎡⎤⎢⎥⎣⎦. 故答案为:5,33ππ⎡⎤⎢⎥⎣⎦【点睛】本题主要考查导数与函数的单调性,还考查了转化问题和运算求解的能力,属于中档题.20.【分析】根据在R 上递增结合将不等式恒成立转化为恒成立然后分和两种情况利用导数法求解【详解】因为所以成立所以在R 上递增又成立所以恒成立即恒成立当时转化为恒成立令当时单调递减当时单调递增所以当时求得最小解析:10a e≤≤ 【分析】根据()f x 在R 上递增,结合()01f =,将x R ∀∈不等式()21xf ax e a -+≤恒成立,转化为()2xa x e +≤ ,x R ∀∈恒成立,然后分20x +≤和20x +>两种情况,利用导数法求解. 【详解】因为()321f x x x =++,所以()2320f x x '=+>成立,所以()f x 在R 上递增,又()()01,21xf f ax e a =-+≤x R ∀∈成立,所以20x ax e a -+≤,x R ∀∈ 恒成立,即()2xa x e +≤,x R ∀∈恒成立,当20x +>时,转化为2xe a x ≤+恒成立,令()2xg x ex =+,()()()212x x e g x x +'=+,当21x -<<-时,()0g x '<,()g x 单调递减, 当1x >-时,()0g x '>,()g x 单调递增, 所以当1x =-时,()g x 求得最小值min 1()(1)g x g e=-=, 所以1a e≤, 当20x +≤时,转化为2xe a x ≥+恒成立,(),(,2)a g x x ≥∈-∞-上恒成立,(,2)x ∈-∞-时,()0,()g x g x '<单调递减,又(,2),()0x g x ∈-∞-<,所以0a ≥不等式恒成立, 综上:实数a 的取值范围为10a e≤≤ 故答案为:10a e≤≤ 【点睛】本题主要考查导数与函数的单调性,导数与不等式恒成立,还考查了转化化归的思想,分类讨论思想和运算求解的能力,属于中档题.三、解答题21.(1)2a =;(2)(-∞. 【分析】(1)由题意可得出()11f '=,由此可求得实数a 的值;(2)求出函数()f x 的定义域为()0,∞+,由题意可知,()2210af x x x'=+-≥在()0,∞+上恒成立,利用参变量分离法得出min2a x x ⎛⎫≤+ ⎪⎝⎭,利用基本不等式求出2x x +在()0,∞+上的最小值,由此可得出实数a 的取值范围.【详解】 (1)()2ln f x x a x x =--,()221af x x x'∴=+-,()13f a '∴=-,又()f x 在点()()1,1f 处的切线方程为2y x =-,()131f a '∴=-=,解得2a =; (2)()f x 的定义域为()0,∞+,()f x 在定义域上为增函数,()2210af x x x'∴=+-≥在()0,∞+上恒成立, 2a x x ∴≤+在()0,∞+上恒成立,min 2a x x ⎛⎫∴≤+ ⎪⎝⎭,由基本不等式2x x +=≥x时等号成立,故min2x x ⎛⎫+= ⎪⎝⎭ 故a的取值范围为(-∞. 【点睛】结论点睛:利用函数的单调性求参数,可按照以下原则进行:(1)函数()f x 在区间D 上单调递增()0f x '⇔≥在区间D 上恒成立; (2)函数()f x 在区间D 上单调递减()0f x '⇔≤在区间D 上恒成立; (3)函数()f x 在区间D 上不单调()f x '⇔在区间D 上存在异号零点; (4)函数()f x 在区间D 上存在单调递增区间x D ⇔∃∈,使得()0f x '>成立; (5)函数()f x 在区间D 上存在单调递减区间x D ⇔∃∈,使得()0f x '<成立. 22.(1)当1a =时,函数()f x 在区间(),1-∞上单调递增;在区间1,上单调递减;(2)当函数()g x 只有1个零点时,实数a 的取值范围是,2e ⎛⎫+∞ ⎪⎝⎭. 【分析】(1)先对函数求导,然后分别由0f x 和0f x 可求出函数的增区间和减区间;(2)由0g x,得1x =,或ln x a =,然后分ln 1a =,ln 1a <和ln 1a >三种情况讨论,当ln 1a =可得()g x 只有1个零点,当ln 1a <时,求出()g x 的单调区间,然后讨论其零点,当ln 1a >时,求出()g x 的单调区间,然后讨论其零点,从而可求出实数a 的取值范围 【详解】解:(1)当1a =时,()xxf x e =,定义域为R , 所以()1xxf x e -'=. 当1x <时,0f x,函数()f x 单调递增;当1x >时,0f x,函数()f x 单调递减.综上所述,当1a =时,函数()f x 在区间(),1-∞上单调递增; 在区间1,上单调递减.(2)因为0a >,函数()212x ax g x e x x =+-, 所以()()()111x xx a x e a g x x x e e -⎛⎫-'=+-=- ⎪⎝⎭. 当0g x时,得1x =,或ln x a =.①若ln 1a =,即a e =,则0g x恒成立,函数()g x 在R 上单调递增,因为()00g =,所以函数()g x 只有1个零点. ②若ln 1a <,即0a e <<, 当ln x a <时,0g x,函数()g x 单调递增; 当ln 1a x <<时,0g x ,函数()g x 单调递减;当1x >时,0g x,函数()g x 单调递增.(Ⅰ)当ln 0a <,即01a <<时,()()()ln 001g a g g >=>, 又因为()2220ag e =>,所以函数()g x 在区间1,2上有1个零点, 故函数()g x 在R 上至少有2个零点,不符合题意. (Ⅱ)当ln 0a =,即1a =时,()()()ln 001g a g g ==>, 又因为()2220g e =>,所以函数()g x 在区间1,2上有1个零点, 故函数()g x 在R 上至少有2个零点,不符合题意.(Ⅲ)当ln 0a >,即1a e <<时,()()()ln 001g a g g >=>, 若函数()g x 只有1个零点,需()1102a e g =->, 解得2ea e <<.③若ln 1a >,即a e >,当1x <时,0g x,函数()g x 单调递增;当1ln x a <<时,0g x ,函数()g x 单调递减; 当ln x a >时,0g x,函数()g x 单调递增.所以()()100g g >=,()21ln ln 02g a a =>所以函数()g x 在R 上只有1个零点.综上所述,当函数()g x 只有1个零点时,实数a 的取值范围是,2e ⎛⎫+∞ ⎪⎝⎭. 【点睛】关键点点睛:此题考查导数的应用,利用导数求函数的单调区间和求函数的零点,第二问解题的关键是由0g x求得1x =或ln x a =,然后分ln 1a =,ln 1a <和ln 1a >三种情况讨论函数的单调性,从而由零点的情况求出参数的取值范围,属于中档题 23.(1)91y x =+;(2)证明见解析. 【分析】(1)求出函数在0x =处的导数后可得切线方程.(2)设函数()1ln g x x x =+-,利用导数可证明在1(,)2+∞上有()()1,1f x g x ≥≥,但等号不同时成立,结合余弦函数的性质可证明()()1ln 2cos x x f x x +->在1()2,x ∈+∞恒成立.【详解】(1)解:2()3129f x x x -'=+,则()09f =,故曲线()y f x =在点()0,1处的切线方程为91y x =+. (2)证明:当1(,1)(3,)2x ∈⋃+∞时,()0f x '>, 则()f x 在1(,1),(3,)2+∞上单调递增;当()1,3x ∈时,()0f x '<,则()f x 在()1,3上单调递减. 因为133()(3)128f f =>=, 所以()f x 在1(,)2+∞上的最小值为()31f =.设函数()1ln g x x x =+-.则1()(0)x g x x x -'=>. 当1(,1)2x ∈时,()0g x '<,则()g x 在1(,1)2上单调递减;当(1,)x ∈+∞时,()0g x '>,则()g x 在(1,)+∞上单调递增. 故()()12g x g ≥=.从而()()1ln 2x x f x +-≥,但由于()1f x ≥与()2g x ≥的取等条件不同, 所以()()1ln 2x x f x +->.因为2cos 2x ≤,所以()()1ln 2cos x x f x x +->对1()2,x ∈+∞恒成立. 【点睛】方法点睛:对于不等式的恒成立的问题,如果该不等式中含有三角函数,那么可以利用三角函数的有界性把前者转化为与三角函数无关的不等式,这样便于问题的讨论与处理. 24.(1)答案见解析;(2)证明见解析. 【分析】 (1)求导()()1'(0)a x f x x x-=>,0a >,0a <,0a =讨论,令()'0f x >求解.(2)结合(1)将问题转化为()min 2f x >-求解. 【详解】(1)根据题意知,()()1'(0)a x f x x x-=>,当0a >时,当()01x ∈,时,()'0f x >,当()1x ∈+∞,时,()'0f x <, 所以()f x 的单调递增区间为()01,,单调递减区间为()1+∞,; 同理,当0a <时,()f x 的单调递增区间为()1+∞,,单调递减区间为()01,;当0a =时,()3f x =-,不是单调函数,无单调区间. (2)证明:当1a =-时,()ln 3f x x x =-+-, 所以12f ,由(1)知()ln 3f x x x =-+-在()1+∞,上单调递增, 所以当()1x ∈+∞,时,()()1f x f >. 即()2f x >-,所以()20f x +>. 【点睛】方法点睛:利用导数方法证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数h (x )=f (x )-g (x ),然后根据函数的单调性,或者函数的最值证明函数h (x )>0,其中一个重要技巧就是找到函数h (x )在什么地方可以等于零,这往往就是解决问题的一个突破口. 25.(I )1y x =-;(Ⅱ)1a <. 【分析】(Ⅰ)当0a =时,利用导数的几何意义求切线方程;(Ⅱ)首先求函数的导数,2(1)()10a x a x af x x a x x'-++=+--==时,11x =和2x a =,并讨论a 与0,1的大小关系,求实数a 的取值范围. 【详解】(I )当0a =时,21()12f x x x =-+. 所以()1f x x '=-, 所以(2)1k f '==,因为21(2)22112f =⨯-+=. 所以切线方程为1y x =-.(Ⅱ)函数()f x 的定义域为(0,)+∞. 因为21()ln (1)12f x a x x a x =+-++ 所以2(1)()1a x a x af x x a x x'-++=+--=. 令()0f x '=,即2(1)0x a x a -++=,解得1x =或x a =.(1)当0a 时,当x 变化时,(),()f x f x '的变化状态如下表:所以0a 成立.(2)当01a <<时,当x 变化时,(),()f x f x '的变化状态如下表:所以01a <<成立.(3)当1a =时,()0f x '在(0,)+∞上恒成立,所以函数()f x 在(0,)+∞上单调递增,没有板小值,不成立. (4)当1a >时,当x 变化时,(),()f x f x '的变化状态如下表:所以1a >不成立. 综上所述,1a <. 【点睛】关键点点睛:本题考查根据极值点求a 的取值范围,本题容易求出导函数的零点1和a ,但需讨论a 的范围,这是易错的地方,容易讨论不全面,需注意.26.(1)12a >-;(2)最大值点为36+.36x +=. 【分析】(1)根据()f x 在()0,∞+上存在单调递增区间,由()2220f x x x a =-++>'在()0,∞+上有解求解.(2)由()0G x '=得1x =2x =,根据02a <<,易得10x <,213x <<,则()G x 在[]1,3上的最大值点为2x ,最小值为()1G 或()3G ,然后由()()143143G G a -=-+,分14403a -+<,14403a -+≥确定最小值进而求得a 即可 【详解】(1)∵()f x 在()0,∞+上存在单调递增区间, ∴()2220f x x x a =-++>'在()0,∞+上有解,即()max 0f x '>在()0,∞+上成立, 而()f x '的最大值为()112f a '=+, ∴120a +>, 解得:12a >-. (2)3211()()()2432G x f x g x x x ax =-=-+++, ∴()22G x x x a '=-++,由()0G x '=得:112x =,212x +=,则()G x 在()1,x -∞,()2,x +∞上单调递减,在()12,x x 上单调递增, 又∵当02a <<时,10x <,213x <<,∴()G x 在[]1,3上的最大值点为2x ,最小值为()1G 或()3G , 而()()143143G G a -=-+, 1︒当14403a -+<,即706a <<时,()113623G a =-=-,得136a =,此时,最大值点236x +=; 2︒ 当14403a -+≥,即726a ≤<时,()2511263G a =+=-,得94a =-(舍).综上()G x 在[]1,3 【点睛】方法点睛:(1)求解函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得; (2)已知函数的最值求参数,一般先用参数表示最值,列方程求解参数.。
高中数学导数练习题高中数学中,导数是一个重要的概念和工具,用于描述函数的变化率。
掌握导数的计算方法对于理解数学的应用问题以及解决实际问题非常关键。
本文将为大家提供一些高中数学导数的练习题,以帮助巩固相关知识。
1. 求函数 f(x) = 3x^2 - 2x + 1 的导函数。
解析:为了求函数的导函数,需要对函数进行求导运算。
对于多项式函数,求导时只需要按照幂次递减的规则,将各项的系数与幂次相乘即可。
因此,对于 f(x) = 3x^2 - 2x + 1,其导函数为 f'(x) = 6x - 2。
2. 计算函数 g(x) = sin(x) + cos(x) 的导数。
解析:对于三角函数的求导,可以利用导数的性质和基本公式来计算。
根据基本求导公式,sin(x) 的导数为 cos(x),cos(x) 的导数为 -sin(x)。
因此,函数 g(x) 的导数为 g'(x) = cos(x) - sin(x)。
3. 设 h(x) = (x^2 + 1)^2 ,求 h'(x)。
解析:对于复合函数的求导,可以使用链式法则来计算。
链式法则的公式为:(f(g(x)))' = f'(g(x)) * g'(x)。
对于给定的函数 h(x) = (x^2 +1)^2,可以将其分解成两个复合函数:f(g(x)) = g^2(x) 和 g(x) = x^2 + 1。
首先求 g(x) 的导数,g'(x) = 2x。
然后求 f(g(x)) 的导数,f'(g(x)) = 2g(x)= 2(x^2 + 1)。
综合链式法则,得到 h'(x) = f'(g(x)) * g'(x) = 2(x^2 + 1) *2x = 4x(x^2 + 1)。
4. 求函数 y = e^x 的导数。
解析:指数函数 e^x 的导数等于其本身,即 e^x 的导数为 e^x。
因此,函数 y = e^x 的导数为 y' = e^x。
黄金冲刺大题05 导数(精选30题)1.(2024·安徽·二模)已知函数2()103(1)ln f x x x f x '=-+.(1)求函数()f x 在点(1,(1))f 处的切线方程;(2)求()f x 的单调区间和极值.2.(2024·江苏南京·二模)已知函数2()e xx ax a f x -+=,其中a ∈R .(1)当0a =时,求曲线()y f x =在(1,(1))f 处的切线方程;(2)当0a >时,若()f x 在区间[0,]a 上的最小值为1e,求a 的值.3.(2024·浙江绍兴·模拟预测)已知()e xf x a x =-,()cosg x x =.(1)讨论()f x 的单调性.(2)若0x ∃使得()()00f x g x =,求参数a 的取值范围.4.(2024·福建漳州·一模)已知函数()ln f x a x x a =-+,R a ∈且0a ≠.(1)证明:曲线()y f x =在点()()1,1f 处的切线方程过坐标原点.(2)讨论函数()f x 的单调性.5.(2024·山东·二模)已知函数()2e ln x f x a x x x =--.(1)当a =()f x 的单调区间;(2)当0a >时,()2f x a ≥-,求a 的取值范围.6.(2024·山东·一模)已知函数21()ln (1)2f x x a x =+-.(1)当12a =-时,求函数()f x 的单调区间;(2)若函数()()21g x f x x =-+有两个极值点12,x x ,且12)3(2()1g x x ag +≥--,求a 的取值范围.7.(2024·湖北·二模)求解下列问题,(1)若1ln kx x -≥恒成立,求实数k 的最小值;(2)已知a ,b 为正实数,[]0,1x ∈,求函数()()11x xg x ax x b a b -=+--⋅的极值.8.(2024·湖北武汉·模拟预测)函数9πππ()tan sin ,()sin cos ,(0,2222n n f x x x x x g x x x x x n +=+--<<=-∈∈N ,.(1)求函数()f x 的极值;(2)若()0g x >恒成立,求n 的最大值.9.(2024·湖北·模拟预测)已知函数()()2ln 1f x ax x x =-++,a ∈R ,(1)若对定义域内任意非零实数1x ,2x ,均有()()12120f x f x x x >,求a ;(2)记1112n t n =++⋅⋅⋅+,证明:()5ln 16n n t n t -<+<.10.(2024·湖南·一模)已知函数()sin cos ,f x x ax x a =-⋅∈R .(1)当1a =时,求函数()f x 在π2x =处的切线方程;(2)π0,2x ⎛⎫∈ ⎪⎝⎭时;(ⅰ)若()sin20f x x +>,求a 的取值范围;(ⅱ)证明:23sin tan x x x ⋅>.11.(2024·全国·模拟预测)已知函数()ln(1)f x x =+(1)求曲线()y f x =在(0,(0))f 处的切线方程;(2)若(1,π)x ∈-,讨论曲线()y f x =与曲线2cos y x =-的交点个数.12.(2024·广东佛山·二模)已知()21e 4e 52x x f x ax =-+--.(1)当3a =时,求()f x 的单调区间;(2)若()f x 有两个极值点1x ,2x ,证明:()()12120f x f x x x +++<.13.(2024·广东广州·模拟预测)已知函数()()e ,xf x x kx k =-∈R .(1)当0k =时,求函数()f x 的极值;(2)若函数()f x 在()0,∞+上仅有两个零点,求实数k 的取值范围.14.(2024·江苏南通·二模)已知函数()ln f x x ax =-,()2g x ax=,0a ≠.(1)求函数()f x 的单调区间;(2)若0a >且()()f x g x ≤恒成立,求a 的最小值.15.(2024·山东济南·二模)已知函数()()()22l ,n 1e x f x ax x g x x ax a =--=-∈R .(1)讨论()f x 的单调性;(2)证明:()()f x g x x +≥.16.(2024·福建·模拟预测)已知函数()ln f x a x bx =-在()()1,1f 处的切线在y 轴上的截距为2-.(1)求a 的值;(2)若()f x 有且仅有两个零点,求b 的取值范围.17.(2024·浙江杭州·二模)已知函数()()()21ln 22f x a x x a =+-∈R .(1)讨论函数()f x 的单调性;(2)若函数()f x 有两个极值点,(ⅰ)求实数a 的取值范围;(ⅱ)证明:函数()f x 有且只有一个零点.18.(2024·河北沧州·模拟预测)已知函数()ln 1f x x ax =-+,a ∈R .(1)讨论()f x 的单调性;(2)若0x ∀>,()2e 2xf x x ax ≤-恒成立,求实数a 的取值范围.19.(2024·广东·二模)已知()()21122ln ,02f x ax a x x a =+-->.(1)求()f x 的单调区间;(2)函数()f x 的图象上是否存在两点()()1122,,,A x y B x y (其中12x x ≠),使得直线AB 与函数()f x 的图象在1202x x x +=处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.20.(2024·广东深圳·二模)已知函数()()1e x f x ax =+,()f x '是()f x 的导函数,且()()2e xf x f x '-=.(1)若曲线()y f x =在0x =处的切线为y kx b =+,求k ,b 的值;(2)在(1)的条件下,证明:()f x kx b ≥+.21.(2024·辽宁·二模)已知函数()2ln f x ax ax x =--.(1)若曲线()y f x =在1x =处的切线方程为2y mx =+,求实数,a m 的值;(2)若对于任意1x ≥,()f x ax a +≥恒成立,求实数a 的取值范围.22.(2024·黑龙江哈尔滨·一模)已知函数()e ,e xxx f x a a =-∈R .(1)当0a =时,求()f x 在1x =处的切线方程;(2)当1a =时,求()f x 的单调区间和极值;(3)若对任意x ∈R ,有()1e xf x -≤恒成立,求a 的取值范围.23.(2024·安徽合肥·二模)已知曲线():e e x xC f x x =-在点()()1,1A f 处的切线为l .(1)求直线l 的方程;(2)证明:除点A 外,曲线C 在直线l 的下方;(3)设()()1212,f x f x t x x ==≠,求证:1221etx x t +<--.24.(2024·江苏扬州·模拟预测)已知函数()()22ln 1f x x ax a =-+∈R .(1)讨论函数()f x 的单调性;(2)若存在正数x ,使()0f x ≥成立,求a 的取值范围;(3)若120x x <<,证明:对任意()0,a ∈+∞,存在唯一的实数()012,x x x ∈,使得()()()21021f x f x f x x x '-=-成立.25.(2024·重庆·模拟预测)已知函数()()()23e ln R ,xf x x a x a x ⎛⎫=-++∈ ⎪⎝⎭(1)若过点()2,0的直线与曲线()y f x =切于点()()1,1f ,求a 的值;(2)若()f x 有唯一零点,求a 的取值范围.26.(2024·江苏南通·模拟预测)设函数()()ln f x x a x x a =--+,R a ∈.(1)若0a =,求函数()f x 的单调区间;(2)若220e a -<<,试判断函数()f x 在区间()22e ,e -内的极值点的个数,并说明理由;(3)求证:对任意的正数a ,都存在实数t ,满足:对任意的()x t t a ∈+,,()1f x a <-.27.(2024·河北保定·二模)已知函数()sin cos f x a x x x =+.(1)若0a =,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()π,πx ∈-,试讨论()f x 的零点个数.28.(2024·河北·二模)已知函数()e xf x =.(1)求曲线()y f x =在0x =处的切线l 与坐标轴围成的三角形的周长;(2)若函数()f x 的图象上任意一点P 关于直线1x =的对称点Q 都在函数()g x 的图象上,且存在[)0,1x ∈,使()()2e f x x m g x -≥+成立,求实数m 的取值范围.29.(2024·河北邯郸·二模)已知函数()()e ,ln x f x mx g x x m x =-=-.(1)是否存在实数m ,使得()f x 和()g x 在()0,∞+上的单调区间相同?若存在,求出m 的取值范围;若不存在,请说明理由.(2)已知12,x x 是()f x 的零点,23,x x 是()g x 的零点.①证明:e m >,②证明:31231e x x x <<.30.(2024·浙江杭州·模拟预测)已知函数()()1122e ,e e e 1xxx x f x m m g x -=+-=++.(1)当0m =时,证明:()e xf x -<;(2)当0x <时,()g x t ≥,求t 的最大值;(3)若()f x 在区间()0,∞+存在零点,求m 的取值范围.黄金冲刺大题05 导数(精选30题)1.(2024·安徽·二模)已知函数2()103(1)ln f x x x f x '=-+.(1)求函数()f x 在点(1,(1))f 处的切线方程;(2)求()f x 的单调区间和极值.【答案】(1)413y x =-;(2)递增区间为(0,2),(3,)+∞,递减区间为()2,3,极大值1612ln 2-+,极小值2112ln 3-+.【分析】(1)求出函数()f x 的导数,赋值求得(1)f ',再利用导数的几何意义求出切线方程.(2)由(1)的信息,求出函数()f x 的导数,利用导数求出单调区间及极值.【详解】(1)函数2()103(1)ln f x x x f x '=-+,求导得3(1)()210f f x x x''=-+,则(1)83(1)f f ''=-+,解得(1)4f '=,于是2()1012ln f x x x x =-+,(1)9f =-,所以所求切线方程为:94(1)y x +=-,即413y x =-.(2)由(1)知,函数2()1012ln f x x x x =-+,定义域为(0,)+∞,求导得122(2)(3)()210x x f x x x x--'=-+=,当02x <<或3x >时,()0f x '>,当23x <<时,()0f x '<,因此函数()f x 在(0,2),(3,)+∞上单调递增,在(2,3)上单调递减,当2x =时,()f x 取得极大值(2)1612ln 2f =-+,当3x =时,()f x 取得极小值(3)2112ln 3f =-+,所以函数()f x 的递增区间为(0,2),(3,)+∞,递减区间为(2,3),极大值1612ln 2-+,极小值2112ln 3-+.2.(2024·江苏南京·二模)已知函数2()e xx ax af x -+=,其中a ∈R .(1)当0a =时,求曲线()y f x =在(1,(1))f 处的切线方程;(2)当0a >时,若()f x 在区间[0,]a 上的最小值为1e,求a 的值.【答案】(1)e 0x y -=(2)1a =【分析】(1)由0a =,分别求出(1)f 及(1)f ',即可写出切线方程;(2)计算出()f x ',令()0f x '=,解得2x =或x a =,分类讨论a 的范围,得出()f x 的单调性,由()f x 在区间[0,]a 上的最小值为1e,列出方程求解即可.【详解】(1)当0a =时,2()ex x f x =,则1(1)e f =,22()e x x x f x -'=,所以1(1)e f '=,所以曲线()y f x =在(1,(1))f 处的切线方程为:11(1)e ey x -=-,即e 0x y -=.(2)2(2)2(2)()()e e x xx a x a x x a f x -++---'==-,令()0f x '=,解得2x =或x a =,当02a <<时,[0,]x a ∈时,()0f x '≤,则()f x 在[0,]a 上单调递减,所以min ()()f x f a ==1e ea a =,则1a =,符合题意;当2a >时,[0,2]x ∈时,()0f x '≤,则()f x 在[0,2]上单调递减,(2,]x a ∈时,()0f x '>,则()f x 在(2,]a 上单调递增,所以min ()(2)f x f ==241e ea -=,则4e 2a =-<,不合题意;当2a =时,[0,2]x ∈时,()0f x '≤,则()f x 在[0,2]上单调递减,所以min ()(2)f x f ==221e e=≠,不合题意;综上,1a =.3.(2024·浙江绍兴·模拟预测)已知()e xf x a x =-,()cosg x x =.(1)讨论()f x 的单调性.(2)若0x ∃使得()()00f x g x =,求参数a 的取值范围.【答案】(1)当0a ≤时,()f x 在(),-∞+∞上单调递减;当0a >时,()f x 在(),ln a -∞-上单调递减,在()ln ,a -+∞上单调递增.(2)(],1-∞【分析】(1)对()e xf x a x =-求导数,然后分类讨论即可;(2)直接对1a >和1a ≤分类讨论,即可得到结果.【详解】(1)由()e xf x a x =-,知()e 1x f x a '=-.当0a ≤时,有()e 10110xf x a =-≤-=-<',所以()f x 在(),∞∞-+上单调递减;当0a >时,对ln x a <-有()ln e 1e1110x af x a a --'=-<=-=,对ln x a >-有()ln e 1e1110x af x a a --'=->=-=,所以()f x 在(),ln a ∞--上单调递减,在()ln ,a ∞-+上单调递增.综上,当0a ≤时,()f x 在(),∞∞-+上单调递减;当0a >时,()f x 在(),ln a ∞--上单调递减,在()ln ,a ∞-+上单调递增.(2)当1a >时,由(1)的结论,知()f x 在(),ln a ∞--上单调递减,在()ln ,a ∞-+上单调递增,所以对任意的x 都有()()()ln ln eln 1ln 1ln11cos af x f a a a a xg x -≥-=+=+>+=≥=,故()()f x g x >恒成立,这表明此时条件不满足;当1a ≤时,设()e cos xh x a x x =--,由于()()()()11111e1cos 1ee1e1e 0a a a a h a a a a a a a a a a ----------=++---≥+≥-+=-≥-=,()00e 0cos 010h a a =--=-≤,故由零点存在定理,知一定存在01,0x a ⎡⎤∈--⎣⎦,使得()00h x =,故()()()000000e cos 0xf xg x a x xh x -=--==,从而()()00f x g x =,这表明此时条件满足.综上,a 的取值范围是(],1-∞.4.(2024·福建漳州·一模)已知函数()ln f x a x x a =-+,R a ∈且0a ≠.(1)证明:曲线()y f x =在点()()1,1f 处的切线方程过坐标原点.(2)讨论函数()f x 的单调性.【答案】(1)证明见解析(2)答案见解析【分析】(1)先利用导数的几何意义求得()f x 在()()1,1f 处的切线方程,从而得证;(2)分类讨论0a <与0a >,利用导数与函数的单调性即可得解.【详解】(1)因为()()ln 0f x a x x a x =-+>,所以()1a a xf x x x'-=-=,则(1)ln111f a a a =-+=-,(1)1f a '=-,所以()f x 在()()1,1f 处的切线方程为:(1)(1)(1)y a a x --=--,当0x =时,(1)(1)(01)(1)y a a a --=--=--,故0y =,所以曲线()y f x =在点()()1,1f 处切线的方程过坐标原点.(2)由(1)得()1a a x f x x x'-=-=,当0a <时,0a x -<,则()0f x '<,故()f x 单调递减;当0a >时,令()0f x '=则x a =,当0x a <<时,()0f x '>,()f x 单调递增;当x a >时,()0f x '<,()f x 单调递减;综上:当0a <时,()f x 在(0,)+∞上单调递减;当0a >时,()f x 在(0,)a 上单调递增,在(,)a +∞上单调递减.5.(2024·山东·二模)已知函数()2e ln xf x a x x x =--.(1)当a =()f x 的单调区间;(2)当0a >时,()2f x a ≥-,求a 的取值范围.【答案】(1)()f x 的减区间为()0,1,增区间为()1,+∞(2)1a ≥【分析】(1)当a =()1e ln ,0xf x x x x x -=-->,求导得()()11e 1x x f x x x-'+=-,令()1e 1x g x x -=-,求()g x '确定()g x 的单调性与取值,从而确定()f x '的零点,得函数的单调区间;(2)求()f x ',确定函数的单调性,从而确定函数()f x 的最值,即可得a 的取值范围.【详解】(1)当a =()1e ln ,0xf x x x x x -=-->,则()()()11111e 1e 1x x x f x x x x x--+=+--=-',设()1e1x g x x -=-,则()()11e 0x g x x -+'=>恒成立,又()01e 10g =-=,所以当()0,1x ∈时,()0f x '<,()f x 单调递减,当()1,x ∈+∞时,()0f x ¢>,()f x 单调递增,所以()f x 的减区间为()0,1,增区间为()1,+∞;(2)()()()22111e 1e 1xx x f x a x a x x x'+=+--=-,设()2e 1xh x a x =-,则()()21e 0x h x a x =+>,所以()h x 在()0,∞+上单调递增,又()010h =-<,2121e 10a h a ⎛⎫=-> ⎪⎝⎭,所以存在0210,x a ⎛⎫∈ ⎪⎝⎭,使得()00h x =,即020e 10x a x -=,当()00,x x ∈时,()0f x '<,()f x 单调递减,当()0,x x ∈+∞时,()0f x ¢>,()f x 单调递增,当0x x =时,()f x 取得极小值,也是最小值,所以()()()00200000e ln 1ln e 12ln x x f x f x a x x x x a ≥=--=-=+,所以12ln 2a a +≥-,即2ln 10a a +-≥,设()2ln 1F a a a =+-,易知()F a 单调递增,且()10F =,所以()()1F a F ≥,解得1a ≥,综上,1a ≥.6.(2024·山东·一模)已知函数21()ln (1)2f x x a x =+-.(1)当12a =-时,求函数()f x 的单调区间;(2)若函数()()21g x f x x =-+有两个极值点12,x x ,且12)3(2()1g x x ag +≥--,求a 的取值范围.【答案】(1)增区间(0,2),减区间(2,)+∞(2)[1,)+∞【分析】(1)将12a =-代入求导,然后确定单调性即可;(2)求导,根据导函数有两个根写出韦达定理,代入12)3(2()1g x x ag +≥--,构造函数,求导,研究函数性质进而求出a 的取值范围.【详解】(1)当12a =-时,21()ln (1)4f x x x =--,0x >,则11(2)(1)()(1)22x x f x x x x-+'=--=-,当(0,2)x ∈,()0f x '>,()f x 单调递增,当(2,)x ∈+∞,()0f x '<,()f x 单调递减,所以()f x 的单调递增区间是(0,2),单调递减区间是(2,)+∞;(2)21()()21ln (1)212g x f x x x a x x =-+=+--+,所以21(2)1()(1)2ax a x g x a x x x-++'=+--=,设2()(2)1x ax a x ϕ=-++,令()0x ϕ=,由于()g x 有两个极值点12,x x ,所以221212Δ(2)4402010a a a a x x a x x a ⎧⎪=+-=+>⎪+⎪+=>⎨⎪⎪=>⎪⎩,解得0a >.由122a x x a ++=,121=x x a,得()()()()221211122211ln 121ln 12122g x g x x a x x x a x x +=+--+++--+()()()()212121212121ln 222222x x a x x x x x x x x ⎡⎤=++--++-++⎣⎦2112222ln 22222a a a a a a a a a ⎡⎤+++⎛⎫=+--⋅+-⋅+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦123ln1122a a a a=+--≥--,即11ln 02a a a ⎛⎫--≤ ⎪⎝⎭,令11()ln 2m a a a a ⎛⎫=-- ⎪⎝⎭,则222111(1)()0222a m a a a a -'=--=-≤,所以()m a 在(0,)+∞上单调递减,且(1)0m =,所以1a ≥,故a 的取值范围是[1,)+∞.7.(2024·湖北·二模)求解下列问题,(1)若1ln kx x -≥恒成立,求实数k 的最小值;(2)已知a ,b 为正实数,[]0,1x ∈,求函数()()11x xg x ax x b a b -=+--⋅的极值.【答案】(1)1(2)答案见解析【分析】(1)求导,然后分0k ≤和0k >讨论,确定单调性,进而得最值;(2)先发现()()010g g ==,当a b =时,()0g x =,当01x <<,a b ¹时,取at b=,()1x L x tx x t =+--,求导,研究单调性,进而求出最值得答案.【详解】(1)记()()1ln 0f x kx x x =-->,则需使()0f x ≥恒成立,()()10f x k x x∴=->',当0k ≤时,()0f x '<恒成立,则()f x 在(0,)+∞上单调递减,且在1x >时,()0f x <,不符合题意,舍去;当0k >时.令()0f x '=,解得1x k=,则()f x 在10,k ⎛⎫ ⎪⎝⎭上单调递减,在1,k ∞⎛⎫+ ⎪⎝⎭上单调递增,所以()min 11ln ln f x f k k k ⎛⎫==-= ⎪⎝⎭,要使1ln kx x -≥恒成立,只要ln 0k ≥即可,解得1k ≥,所以k 的最小值为1;(2)1()(1)x x g x ax x b a b -=+--⋅,[0,1]x ∈,0a >,0b >,易知()()010g g ==,当a b =时,()0g x ax a ax a =+--=,此时函数无极值;当01x <<,a b ¹时,()(1)(1xx a a a g x ax x b b b x x b b b ⎡⎤⎛⎫=+--⋅=+--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,取at b=,0t >,1t ≠,()1x L x tx x t =+--,0t >,1t ≠,()0,1x ∈,则()1ln xL x t t t =--',当1t >时,由()0L x '≥得1lnln ln t t x t-≤,由(1)知1ln t t -≥,当1t >时,11ln t t->,因为1ln x x -≥,所以111ln x x-≥,所以1ln 1x x ≥-,即0x >,当1t >时,1ln 1t t >-,所以1ln t t t->,则1ln ln 0ln t t t ->>,所以1lnln 1ln t t t-<,即()L x 在1ln ln 0,ln t t t -⎛⎫ ⎪ ⎪ ⎪⎝⎭上单调递增,在1ln ln ,1ln t t t -⎛⎫ ⎪ ⎪ ⎪⎝⎭单调递减.所以函数()1ln ln ln t t g x g t -⎛⎫⎪= ⎪ ⎪⎝⎭极大,a t b =,a b ¹,当01t <<时,同理有()1lnln 0,1ln t t t-∈,由()0L x '≥得1lnln ln t t x t-≤,即()x 在1ln ln 0,ln t t t -⎛⎫ ⎪ ⎪ ⎪⎝⎭上单调递增,在1ln ln ,1ln t t t -⎛⎫⎪⎪ ⎪⎝⎭上单调递减.所以函数()1ln ln ln t t g x g t -⎛⎫⎪= ⎪ ⎪⎝⎭极大,a t b =,a b ¹,综上可知,当a b =时,函数()g x 没有极值;当a b ¹时,函数()g x 有唯一的极大值1ln ln ln t t g t -⎛⎫⎪⎪ ⎪⎝⎭,其中at b=,没有极小值.【点睛】关键点点睛:取at b=,将两个参数的问题转化为一个参数的问题,进而求导解答问题.8.(2024·湖北武汉·模拟预测)函数9πππ()tan sin ,()sin cos ,(0,2222n n f x x x x x g x x x x x n +=+--<<=-∈∈N ,.(1)求函数()f x 的极值;(2)若()0g x >恒成立,求n 的最大值.【答案】(1)极小值为π()3f =π()3f -=;(2)3.【分析】(1)判断函数()f x 为奇函数,利用导数求出()f x 在区间π(0,2上的极值,利用奇偶性即可求得定义域上的极值.(2)利用导数证明当1n =时,()0g x >恒成立,当1n >时,等价变形不等式并构造函数1sin π(),02cos nx F x x x x=-<<,利用导数并按导数为负为正确定n的取值范围,进而确定不等式恒成立与否得解.【详解】(1)函数9ππ()tan sin 222f x x x x x =+--<<,,9()tan()sin()()()2f x x x x f x -=-+---=-,即函数()f x 为奇函数,其图象关于原点对称,当π02x <<时,sin 9()sin cos 2x f x x x x =+-,求导得:3222192cos 9cos 2()cos cos 22cos x x f x x x x -+'=+-==,由于cos (0,1)x ∈,由()0f x '>,得10cos 2x <<,解得ππ32x <<,由()0f x '<,得1cos 12x <<,解得π03x <<,即()f x 在(0,π3)上单调递减,在ππ(,)32上单调递增,因此函数()f x 在π(0,)2上有极小值π()3f =从而()f x 在ππ(,)22-上的极小值为π()3f =π()3f -=.(2)当1n =时,()0g x >恒成立,即sin cos 0x x x ->恒成立,亦即tan x x >恒成立,令π()tan ,(0,)2h x x x x =-∈,求导得222211cos ()1tan 0cos cos xh x x x x -'=-==>,则函数()h x 在π(0,2上为增函数,有()(0)0h x h >=,因此tan 0x x ->恒成立;当1n >时,()0g x >x >恒成立,令1sin π(),02cos nx F x x x x=-<<,求导得:1111122211cos cos cos (sin )sin cossin cos ()11cos cos n n nn nnn nx x x x x x x xn nF x xx+--⋅-⋅⋅-⋅+⋅⋅'=-=-11222221111111cos sin coscos (1cos )coscos 1cos cos cos n n nnn n n n n nn x x x x x x x n n n nxxx+++++-+⋅-----=-==令1211()coscos n nn G x x x n n +-=--,求导得则111()cos (sin )2cos (sin )n n n G x x x x x n n+-'=⋅--⋅⋅-11sin 221[(22)cos (1)cos ]sin (cos cos )22n n x n n n x n x x x x n n n -+=--+=⋅--11221sin cos (cos )22n n n n n x x x n n --+=⋅⋅--,由π1,(0,)2n x >∈,得122sin cos 0n n x x n-⋅⋅>,当1122n n +≥-时,即3n ≤时,()0'<G x ,则函数()G x 在π(0,)2上单调递减,则有()(0)0G x G <=,即()0F x '<,因此函数()F x 在π(0,)2上单调递减,有()(0)0F x F <=,即()0g x >,当1122n n +<-时,即3n >时,存在一个0π(0,2x ∈,使得101cos 22n n n x n -+=-,且当0(0,)x x ∈时,()0G x '>,即()G x 在0(0,)x 上单调递增,且()(0)0G x G >=,则()0F x '>,于是()F x 在0(0,)x 上单调递增,因此()(0)0F x F >=x <,与()0g x >矛盾,所以n 的最大值为3.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:①通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;②利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.③根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.9.(2024·湖北·模拟预测)已知函数()()2ln 1f x ax x x =-++,a ∈R ,(1)若对定义域内任意非零实数1x ,2x ,均有()()12120f x f x x x >,求a ;(2)记1112n t n =++⋅⋅⋅+,证明:()5ln 16n n t n t -<+<.【答案】(1)12a =(2)证明见解析【分析】(1)求导可得() 00f '=,再分0a ≤与0a >两种情况分析原函数的单调性,当0a >时分析极值点的正负与原函数的正负区间,从而确定a 的值;(2)由(1)问的结论可知,21111ln 12n n n n ⎛⎫-<+< ⎪⎝⎭,再累加结合放缩方法证明即可.【详解】(1)()f x 的定义域为()1,-+∞,且()00f =;()112122111x f x ax ax x a x x x ⎛⎫'=-+=-=- ⎪+++⎝⎭,因此() 00f '=;i.0a ≤时,1201a x -<+,则此时令()0f x ¢>有()1,0x ∈-,令()0f x '<有()0,x ∈+∞,则()f x 在()1,0-上单调递增,()0,∞+上单调递减,又()00f =,于是()0f x ≤,此时令120x x <,有()()12120f x f x x x <,不符合题意;ii.0a >时,()f x '有零点0和0112x a=-,若00x <,即12a >,此时令()0f x '<有()0,0x x ∈,()f x 在()0,0x 上单调递减,又()00f =,则()00f x >,令1>0x ,02x x =,有()()12120f x f x x x <,不符合题意;若00x >,即102a <<,此时令()0f x '<有()00,x x ∈,()f x 在()00,x 上单调递减,又()00f =,则()00f x <,令12010,x x x -<<=,有()()12120f x f x x x <,不符合题意;若00x =,即12a =,此时()201x f x x +'=>,()f x 在()1,-+∞上单调递增,又()00f =,则0x >时()0f x >,0x <时()0f x <;则0x ≠时()0f x x>,也即对120x x ≠,()()12120f x f x x x >,综上,12a =(2)证:由(1)问的结论可知,0a =时,()()ln 10f x x x =-++≤;且12a =时0x >,()()21ln 102f x x x x =-++>; 则0x >时,()21ln 12x x x x -<+<,令1x n =,有21111ln 12n n n n ⎛⎫-<+< ⎪⎝⎭,即()2111ln 1ln 2n n n n n-<+-<,于是()()2111ln ln 11121n n n n n -<--<---11ln212-<<将上述n 个式子相加,()221111ln 122n n t n t n ⎛⎫-++⋅⋅⋅+<+< ⎪⎝⎭;欲证()5ln 16n n t n t -<+<,只需证2251111622n n t t n ⎛⎫-<-++⋅⋅⋅+ ⎪⎝⎭,只需证22115123n ++⋅⋅⋅+<;因为2221441124412121n n n n n ⎛⎫=<=- ⎪--+⎝⎭,所以22111111115251122355721213213n n n n ⎛⎫++⋅⋅⋅+<+-+-+⋅⋅⋅+-=-< ⎪-++⎝⎭,得证:于是得证()5ln 16n n t n t -<+<.【点睛】方法点睛:(1)此题考导数与函数的综合应用,找到合适的分类标准,设极值点,并确定函数正负区间是解此题的关键;(2)对累加结构的不等式证明,一般需要应用前问的结论,取特定参数值,得出不等式累加证明,遇到不能累加的数列结构,需要进行放缩证明.10.(2024·湖南·一模)已知函数()sin cos ,f x x ax x a =-⋅∈R .(1)当1a =时,求函数()f x 在π2x =处的切线方程;(2)π0,2x ⎛⎫∈ ⎪⎝⎭时;(ⅰ)若()sin20f x x +>,求a 的取值范围;(ⅱ)证明:23sin tan x x x ⋅>.【答案】(1)2ππ220.2x y -+-=(2)(ⅰ)3a ≤(ⅱ)证明见解析【分析】(1)令1a =时,利用导数的几何意义求出斜率,进行计算求出切线方程即可.(2)(ⅰ)设π()2sin tan ,(0,),2g x x x ax x =+-∈由()0g x '>得3a ≤,再证明此时满足()0g x >.(ⅱ)根据(ⅰ)结论判断出()23sin tan F x x x x =⋅-在π(0,)2上单调递增,()(0)0,F x F ∴>=即23sin tan .x x x >【详解】(1)当1a =时,()sin cos ,()cos (cos sin )sin ,f x x x x f x x x x x x x '=-⋅=--⋅=⋅πππ(,() 1.222f f '==所以切线方程为:ππ1(),22y x -=-即2ππ220.2x y -+-=(2)(ⅰ)()sin 2sin cos sin 20,f x x x ax x x +=-⋅+>即πtan 2sin 0,(0,2x ax x x -+>∈,设π()2sin tan ,(0,),2g x x x ax x =+-∈322211()2cos (2cos cos 1).cos cos g x x a x a x x x'=+-=-+又(0)0,(0)3,(0)30g g a g a ''==-∴=-≥ 是()0g x >的一个必要条件,即 3.a ≤下证3a ≤时,满足π()2sin tan 0,(0,2g x x x ax x =+->∈又3221()(2cos 3cos 1)cos g x x x x'≥-+,设322()231,(0,1),()666(1)0,t t t t h t t t t t '=-+∈=-=-<()h t 在(0,1)上单调递减,所以()(1)0h t h >=,又π(0,(0,1),()0,2x x g x '∈∈∴>即()g x 在π(0,)2单调递增.π(0,)2x ∴∈时,()(0)0g x g >=;下面证明3a >时不满足π()2sin tan 0,(0,),2g x x x ax x =+->∈,21()2cos cos g x x a x'=+-,令21()()2cos cos h x g x x a x'==+-,则332sin 1()2sin 2sin 1cos cos x h x x x x x ⎛⎫'=-+=- ⎪⎝⎭,3π10,,sin 0,102cos x x x ⎛⎫∈∴>-> ⎪⎝⎭,∴()0,()()h x h x g x ''>∴=在π0,2⎛⎫⎪⎝⎭为增函数,令0x满足00π0,,cos 2x x ⎛⎫∈= ⎪⎝⎭,则()0002012cos 2cos 0cos g x x a x a a x '=+-=+->,又(0)30,g a '=-<∴()100,x x ∃∈,使得()10g x '=,当()10,x x ∈时,()1()0g x g x ''<=,∴此时()g x 在()10,x 为减函数,∴当()10,x x ∈时,()(0)0g x g <=,∴3a >时,不满足()0g x ≥恒成立.综上3a ≤.(ⅱ)设23π()sin tan ,(0,),2F x x x x x =⋅-∈2222221()2sin cos tan sin 32sin tan 3cos F x x x x x x x x x x '=⋅⋅+⋅-=+-222222(sin )(tan )2(2sin tan )23.x x x x x x x x x x =-+-++---由(ⅰ)知22sin tan 3,()002360,x x x F x x x x '+>∴>++⋅-=,()F x 在π(0,)2上单调递增,()(0)0,F x F ∴>=即23sin tan .x x x >【点睛】关键点点睛:本题考查导数,解题关键是进行必要性探路,然后证明充分性,得到所要求的参数范围即可.11.(2024·全国·模拟预测)已知函数()ln(1)f x x =+(1)求曲线()y f x =在(0,(0))f 处的切线方程;(2)若(1,π)x ∈-,讨论曲线()y f x =与曲线2cos y x =-的交点个数.【答案】(1)312y x =-;(2)2.【分析】(1)求导,即可根据点斜式求解方程,(2)求导,分类讨论求解函数的单调性,结合零点存在性定理,即可根据函数的单调性,结合最值求解.【详解】(1)依题意,()()3211121f x x x '=+++,故()302f '=,而()01f =-,故所求切线方程为312y x +=,即312y x =-.(2)令()ln 12cos x x +=-,故()ln 12cos 0x x ++=,令()()ln 12cos g x x x =++()()32112sin 112g x x x x -=++'-+,令()()()32112sin 112h x g x x x x -==-++'+,()()()522132cos 141h x x x x -=---++'.①当π1,2x ⎛⎤∈- ⎥⎝⎦时,()()522cos 0,10,10x x x -≥+>+>,()()0,h x h x ∴∴'<在π1,2⎛⎤- ⎥⎝⎦上为减函数,即()g x '在π1,2⎛⎤- ⎥⎝⎦上为减函数,又()()32111111010,12sin122sin1120222222g g -=+>=-+⋅'<-⋅+<-'⨯=,()'∴g x 在()0,1上有唯一的零点,设为0x ,即()()00001g x x ='<<.()g x ∴在()01,x -上为增函数,在0π,2x ⎛⎫⎪⎝⎭上为减函数.又()πππ0210,ln 12cos 444g g ⎛⎫⎛⎫⎛⎫=->-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭πππln 10,ln 10422g ⎛⎫⎛⎫⎛⎫=-<=+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()g x ∴在()01,x -上有且只有一个零点,在0π,2x ⎛⎤⎥⎝⎦上无零点;②当π5π,26x ⎛⎤∈ ⎥⎝⎦时,()()()3211110,12g x x g x x -<-++<+'单调递减,又12π5π5π5π0,ln 11ln402666g g -⎛⎫⎛⎫⎛⎫⎛⎫>=++<< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()g x ∴在π5π,26⎛⎤⎥⎝⎦内恰有一零点;③当5π,π6x ⎛⎫∈ ⎪⎝⎭时,()()()522132cos 141h x x x x -=---++'为增函数,()5225π135π1106465π1+6h x h -⎛⎫⎛⎫∴==-+-⋅+> ⎪ ⎪⎝⎭⎝⎭⎛⎫⎝'⎪⎭,()'∴g x 单调递增,又()5ππ0,06g g ⎛⎫>< ⎪⎝'⎭',所以存在唯一()005π,π,06x g x '⎛⎫∈=⎪⎝⎭,当05π,6x x ⎛⎫∈ ⎪⎝⎭时,()()0,g x g x '<递减;当()0,πx x ∈时,()()0,g x g x '>递增,()()5πmax ,π06g x g g ⎧⎫⎛⎫≤<⎨⎬ ⎪⎝⎭⎩⎭,()g x ∴在5π,π6⎛⎫⎪⎝⎭内无零点.综上所述,曲线()y f x =与曲线2cos y x =-的交点个数为2.【点睛】方法点睛:本题考查了导数的综合运用,求某点处的切线方程较为简单,利用导数求单调性时,如果求导后的正负不容易辨别,往往可以将导函数的一部分抽离出来,构造新的函数,利用导数研究其单调性,进而可判断原函数的单调性.在证明不等式时,常采用两种思路:求直接求最值和等价转化.无论是那种方式,都要敢于构造函数,构造有效的函数往往是解题的关键.12.(2024·广东佛山·二模)已知()21e 4e 52x xf x ax =-+--.(1)当3a =时,求()f x 的单调区间;(2)若()f x 有两个极值点1x ,2x ,证明:()()12120f x f x x x +++<.【答案】(1)答案见解析(2)证明见解析【分析】(1)求导后,借助导数的正负即可得原函数的单调性;(2)借助换元法,令e x t =,11e x t =,22e xt =,可得1t 、2t 是方程240t t a -+=的两个正根,借助韦达定理可得124t t +=,12t t a =,即可用1t 、2t 表示()()1212f x f x x x +++,进而用a 表示()()1212f x f x x x +++,构造相关函数后借助导数研究其最大值即可得.【详解】(1)当3a =时,()21e 4e 352x xf x x =-+--,()()()2e 4e 3e 1e 3x x x x f x =-+-=---',则当()()e 0,13,x∞∈⋃+,即()(),0ln 3,x ∞∞∈-⋃+时,()0f x '<,当()e 1,3x∈,即()0,ln 3x ∈时,()0f x '>,故()f x 的单调递减区间为(),0∞-、()ln 3,∞+,单调递增区间为()0,ln 3;(2)()2e 4e x x f x a -+'=-,令e x t =,即()24f x t t a '=-+-,令11e x t =,22e xt =,则1t 、2t 是方程240t t a -+=的两个正根,则()2Δ441640a a =--=->,即4a <,有124t t +=,120t t a =>,即04a <<,则()()1122221212121211e 4e 5e 4e 522x x x xf x f x x x ax ax x x +++=-+---+--++()()()()22121212141ln ln 102t t t t a t t =-+++--+-()()()2121212121241ln 102t t t t t t a t t ⎡⎤=-+-++---⎣⎦()()1162161ln 102a a a =--+---()1ln 2a a a =---,要证()()12120f x f x x x +++<,即证()()1ln 2004a a a a ---<<<,令()()()1ln 204g x x x x x =---<<,则()111ln ln x g x x x x x-⎛⎫=-+='- ⎪⎝⎭,令()()1ln 04h x x x x=-<<,则()2110h x x x '=--<,则()g x '在()0,4上单调递减,又()11ln111g =-=',()12ln 202g =-<',故存在()01,2x ∈,使()0001ln 0g x x x =-=',即001ln x x =,则当()00,x x ∈时,()0g x '>,当()0,4x x ∈时,()0g x '<,故()g x 在()00,x 上单调递增,()g x 在()0,4x 上单调递减,则()()()()000000000111ln 2123g x g x x x x x x x x x ≤=---=--⨯-=+-,又()01,2x ∈,则00152,2x x ⎛⎫+∈ ⎪⎝⎭,故()000130g x x x =+-<,即()0g x <,即()()12120f x f x x x +++<.【点睛】关键点点睛:本题关键点在于借助换元法,令e x t =,11e x t =,22e xt =,从而可结合韦达定理得1t 、2t 的关系,即可用a 表示()()1212f x f x x x +++,构造相关函数后借助导数研究其最大值即可得.13.(2024·广东广州·模拟预测)已知函数()()e ,xf x x kx k =-∈R .(1)当0k =时,求函数()f x 的极值;(2)若函数()f x 在()0,∞+上仅有两个零点,求实数k 的取值范围.【答案】(1)极小值为1e-,无极大值(2)()e,+∞【分析】(1)求出导函数,然后列表求出函数的单调区间,根据极值定义即可求解;(2)把原函数有两个零点转化为()e xg x kx =-在()0,∞+上仅有两个零点,分类讨论,利用导数研究函数的单调性,列不等式求解即可.【详解】(1)当0k =时,()e (xf x x x =∈R ),所以()()1e x f x x ='+,令()0f x '=,则=1x -,x(),1∞--1-()1,∞-+()f x '-+()f x 单调递减极小值单调递增所以()1min 1()1e ef x f -=-=-=-,所以()f x 的极小值为1e-,无极大值.(2)函数()()e xf x x kx =-在()0,∞+上仅有两个零点,令()e xg x kx =-,则问题等价于()g x 在()0,∞+上仅有两个零点,易知()e xg x k '=-,因为()0,x ∞∈+,所以e 1x >.①当(],1k ∈-∞时,()0g x '>在()0,∞+上恒成立,所以()g x 在()0,∞+上单调递增,所以()()01g x g >=,所以()g x 在()0,∞+上没有零点,不符合题意;②当()1,k ∞∈+时,令()0g x '=,得ln x k =,所以在()0,ln k 上,()0g x '<,在()ln ,k ∞+上,()0g x '>,所以()g x 在()0,ln k 上单调递减,在(ln ,)+∞k 上单调递增,所以()g x 的最小值为()ln ln g k k k k =-⋅.因为()g x 在()0,∞+上有两个零点,所以()ln ln 0g k k k k =-⋅<,所以e k >.因为()()()222010,ln ln 2ln g g kkk k k k k =>=-⋅=-,令()2ln h x x x =-,则()221x h x x x'-=-=,所以在()0,2上,()0h x '<,在()2,∞+上,()0h x '>,所以()h x 在()0,2上单调递减,在()2,∞+上单调递增,所以()222ln2lne ln40h x ≥-=->,所以()()2ln 2ln 0g k k k k =->,所以当e k >时,()g x 在()0,ln k 和(ln ,)+∞k 内各有一个零点,即当e k >时,()g x 在()0,∞+上仅有两个零点.综上,实数k 的取值范围是()e,∞+.【点睛】方法点睛:求解函数单调区间的步骤:(1)确定()f x 的定义域.(2)计算导数()f x '.(3)求出()0f x '=的根.(4)用()0f x '=的根将()f x 的定义域分成若干个区间,判断这若干个区间内()f x '的符号,进而确定()f x 的单调区间.()0f x '>,则()f x 在对应区间上单调递增,对应区间为增区间;()0f x '<,则()f x 在对应区间上单调递减,对应区间为减区间.如果导函数含有参数,那么需要对参数进行分类讨论,分类讨论要做到不重不漏.14.(2024·江苏南通·二模)已知函数()ln f x x ax =-,()2g x ax=,0a ≠.(1)求函数()f x 的单调区间;(2)若0a >且()()f x g x ≤恒成立,求a 的最小值.【答案】(1)答案见解析(2)32e .【分析】(1)求导后,利用导数与函数单调性的关系,对0a >与0a <分类讨论即可得;(2)结合函数的单调性求出函数的最值,即可得解.【详解】(1)()11axf x a x x'-=-=(0a ≠),当0a <时,由于0x >,所以()0f x '>恒成立,从而()f x 在()0,∞+上递增;当0a >时,10x a<<,()0f x '>;1x a >,()0f x '<,从而()f x 在10,a ⎛⎫ ⎪⎝⎭上递增,在1,a ∞⎛⎫+ ⎪⎝⎭递减;综上,当0a <时,()f x 的单调递增区间为()0,+∞,没有单调递减区间;当0a >时,()f x 的单调递增区间为10,a ⎛⎫ ⎪⎝⎭,单调递减区间为1,a ∞⎛⎫+ ⎪⎝⎭.(2)令()()()2ln h x f x g x x ax ax =-=--,要使()()f x g x ≤恒成立,只要使()0h x ≤恒成立,也只要使()max 0h x ≤.()()()221212ax ax h x a x ax ax -+-=-+=',由于0a >,0x >,所以10ax +>恒成立,当20x a <<时,()0h x '>,当2x a<<+∞时,()0h x '<,所以()max 22ln 30h x h a a ⎛⎫==-≤ ⎪⎝⎭,解得:32e a ≥,所以a 的最小值为32e.15.(2024·山东济南·二模)已知函数()()()22l ,n 1e x f x ax x g x x ax a =--=-∈R .(1)讨论()f x 的单调性;(2)证明:()()f x g x x +≥.【答案】(1)答案见详解(2)证明见详解【分析】(1)求导可得()221ax f x x='-,分0a ≤和0a >两种情况,结合导函数的符号判断原函数单调性;(2)构建()()(),0F x f x g x x x =+->,()1e ,0xh x x x =->,根据单调性以及零点存在性定理分析()h x 的零点和符号,进而可得()F x 的单调性和最值,结合零点代换分析证明.【详解】(1)由题意可得:()f x 的定义域为()0,∞+,()21212ax f x ax x x ='-=-,当0a ≤时,则2210ax -<在()0,∞+上恒成立,可知()f x 在()0,∞+上单调递减;当0a >时,令()0f x '>,解得x >()0f x '<,解得0x <<可知()f x 在⎛ ⎝上单调递减,在∞⎫+⎪⎪⎭上单调递增;综上所述:当0a ≤时,()f x 在()0,∞+上单调递减;当0a >时,()f x在⎛ ⎝上单调递减,在∞⎫+⎪⎪⎭上单调递增.(2)构建()()()e ln 1,0xF x f x g x x x x x x =+-=--->,则()()()111e 11e xx F x x x x x ⎛⎫=+--=+- ⎝'⎪⎭,由0x >可知10x +>,构建()1e ,0xh x x x=->,因为1e ,xy y x==-在()0,∞+上单调递增,则()h x 在()0,∞+上单调递增,且()120,1e 102h h ⎛⎫==- ⎪⎝⎭,可知()h x 在()0,∞+上存在唯一零点01,12x ⎛⎫∈ ⎪⎝⎭,当00x x <<,则()0h x <,即()0F x '<;当0x x >,则()0h x >,即()0F x '>;可知()F x 在()00,x 上单调递减,在()0,x ∞+上单调递增,则()()00000e ln 1xF x F x x x x ≥=---,又因为001e 0x x -=,则00001e ,e x x x x -==,01,12x ⎛⎫∈ ⎪⎝⎭,可得()000001ln e 10x F x x x x -=⨯---=,即()0F x ≥,所以()()f x g x x +≥.16.(2024·福建·模拟预测)已知函数()ln f x a x bx =-在()()1,1f 处的切线在y 轴上的截距为2-.(1)求a 的值;(2)若()f x 有且仅有两个零点,求b 的取值范围.【答案】(1)2(2)20,e b ⎛⎫∈ ⎪⎝⎭【分析】(1)借助导数的几何意义计算即可得;(2)借助函数与方程的关系,可将()f x 有且仅有两个零点转化为方程2ln xb x=有两个根,构造对应函数。
一、选择题1.已知函数()()11332cos 1x x x f x --+=+--,则()()0.52310.5log 9log 2f f f -⎛⎫ ⎪⎝⎭、、的大小关系( ) A .()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭B .0.5321(log )(0.5)(log 9)2f f f ->>C .0.5321(0.5)(log )(log 9)2f f f ->>D .0.5231(log 9)(0.5)(log )2f f f ->>2.已知函数2()1(0)f x ax x a =-+≠,若任意1x ,2[1x ∈,)+∞且12x x ≠都有1212()()1f x f x x x ->-,则实数a 的取值范围( )A .[1,)+∞B .(0,1]C .[2,)+∞D .(0,)+∞3.已知定义域为R 的偶函数()f x ,其导函数为fx ,对任意[)0,x ∈+∞,均满足:()()2xf x f x >-'.若()()2g x x f x =,则不等式()()21g x g x <-的解集是( )A .(),1-∞-B .1,3⎛⎫-∞ ⎪⎝⎭C .11,3⎛⎫- ⎪⎝⎭D .()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭4.定义域为R 的连续可导函数()f x 满足()()xf x f x e '-=,且()00f =,若方程()()21016m f x f x ++=⎡⎤⎣⎦有四个根,则m 的取值范围是( ) A .2416e e m -<<B .42em <<C .216e m e >-D .2e m >5.直线()0x a a =>分别与曲线21y x =+,ln y x x =+相交于A ,B 两点,则AB的最小值为() A .1B .2C D 6.若函数1()ln f x x a x =-+在区间(1,)e 上存在零点,则常数a 的取值范围为( ) A .01a <<B .11a e<< C .111a e-<< D .111a e+<< 7.函数y =x 3+x 的递增区间是( )A .(0,+∞)B .(-∞,1)C .(-∞,+∞)D .(1,+∞)8.内接于半径为R 的球且体积最大的圆柱体的高为( ) ABCD9.奇函数()f x 满足0x ≥时,()cos 0f x x '+<,且()3,2f π=-则不等式()cos 22f x x π+>--的解集为( )A .(,0)-∞B .(,)π-∞-C .(,)2π-∞-D .(,)π-∞10.已知f (x )=-x 3-ax 在(-∞,-1]上递减,且g (x )=2x-ax在区间(1,2]上既有最大值又有最小值,则a 的取值范围是( ) A .2a >-B .3a -≤C .32a -≤<-D .32a --≤≤11.已知0a >,函数()225,0,2,0,x a x f x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()2f x a x =-恰有2个互异的实数解,则a 的取值范围为( )A .14a <<B .24a <<C .48a <<D .28a <<12.已知函数()3242xx f x x x e e=-+-,其中e 是自然对数的底数,若()()2210f a f a +--≤,则实数a 的取值范围为( )A .1,12⎡⎤-⎢⎥⎣⎦B .11,2⎡⎤-⎢⎥⎣⎦C .[]2,1-D .[]1,2-二、填空题13.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )+xf '(x )>0,且f (3)=0,则不等式xf (x )>0的解集是_____.14.若函数()()2212ln 1f x ax a x x =+---只有一个零点,则实数a 的取值范围是______.15.已知函数()f x 是定义在(0,)+∞上的单调函数,()f x '是()f x 的导函数,且对任意的(0,)x ∈+∞都有2(())2f f x x -=,若函数()()2()3F x xf x f x '=--的一个零点0(,1)x m m ∈+,则整数m 的值是__________.16.已知函数()()2ln 2f x x x g x x x a ==-++,,若∀x 1,x 2∈(0,+∞),f (x 1)≥g(x 2)恒成立,则实数a 的取值范围为__________17.已知函数32()1f x x ax x =+++在区间21,33⎛⎫-- ⎪⎝⎭内是减函数,则实数a 的取值范围是________.18.设函数()'f x 是偶函数()(0)f x x ≠的导函数,(1)0f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是__________.19.已知函数()1ln f x x a x x=-+,存在不相等的常数m ,n ,使得()()''0f m f n ==,且10,m e ⎛⎤∈ ⎥⎝⎦,则()()f m f n -的最小值为____________.20.设函数()2()1xf x x e =-,当0x ≥时,()1(0)f x ax a ≤+>恒成立,则a 的取值范围是________.三、解答题21.设函数3222ln 11(),()28a x x f x g x x x x +==-+. (1)若曲线()y f x =在点(1,(1))f 处的切线与30x y -+=垂直,求函数()f x 的解析式;(2)如果对于任意的1213,[,]22x x ∈,都有112()()x f x g x ⋅≥成立,试求实数a 的取值范围.22.设函数()ln 1x f x x+=, (1)求曲线()y f x =在点()(),e f e 处的切线方程;(2)当1≥x 时,不等式()()211a x f x x x--≥恒成立,求a 的取值范围. 23.已知函数()2xf x eax b =-+(0a >,b R ∈,其中e 为自然对数的底数).(1)求函数()f x 的单调递增区间;(2)若函数()f x 有两个不同的零点12,x x ,当a b =时,求实数a 的取值范围.24.已知函数22()ln a f x a x x x=⋅++(0a ≠).(1)若曲线()y f x =在点(1,(1))f 处的切线与直线20x y -=垂直,求实数a 的值;(2)讨论函数()f x 的单调性;(3)当(,0)a ∈-∞时,记函数()f x 的最小值为()g a ,求证:21()2g a e ≤. 25.已知函数321()12f x x x ax =-++. (1)当2a =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(2)若函数()f x 在1x =处有极小值,求函数()f x 在区间32,2⎡⎤-⎢⎥⎣⎦上的最大值.26.已知函数ln xy x=(0x >). (1)求这个函数的单调区间;(2)求这个函数在区间21,e e⎡⎤⎢⎥⎣⎦的最大值与最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先设函数()(1)332cos x x g x f x x -=+=+-,判断函数是偶函数,利用导数判断函数的单调性,根据平移关系,可判断函数()y f x =的对称性和单调性,再将2log 9,0.50.5-,以及31log 2转化在同一个单调区间,根据单调性比较大小. 【详解】令()(1)332cos x x g x f x x -=+=+-,()()g x g x -=,所以()g x 是偶函数; ()ln3(33)2sin x x g x x -'=-+,当(0,)x π∈时,()0g x '>,()g x 在(0,)π上是增函数, 将()g x 图像向右平移一个单位得到()f x 图像, 所以()f x 关于直线1x =对称,且在(1,1)π+单调递增. ∵23log 94<<,0.50.5-=()3312log 2log 22,32-=+∈, ∴0.52314log 92log 0.512->>->>, ∴()()0.5231log 92log 0.52f f f -⎛⎫>-> ⎪⎝⎭, 又∵()f x 关于直线1x =对称,∴3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,∴()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭. 故选:A【点睛】思路点睛:本题是一道函数单调性,奇偶性,对称性,判断大小的习题,本题所给函数()()11332cos 1x x x f x --+=+--,看似很复杂,但仔细观察就会发现,通过换元后可判断函数()1y f x =+是偶函数,本题的难点是判断函数的单调性,关键点是能利用对称性,转化3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.2.A解析:A 【分析】求出函数的导数,通过讨论a 的范围,得到关于a 的不等式,解出即可. 【详解】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,等价于()'211f x ax =-≥,1x 时恒成立, 0a时,()'0f x <,不合题意,0a >时,只需211ax -,即1ax在[1,)+∞恒成立, 故max 1()1a x=,故a 的范围是[1,)+∞, 故选:A 【点睛】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,由此考虑利用导数进行求解.3.C解析:C 【解析】试题分析:[)0,x ∈+∞时()()()()()22(2)0g x xf x x f x x f x xf x =+='+'>',而()()2g x x f x =也为偶函数,所以()()()()21212121321013g x g x g x g x x x x x x <-⇔<-⇔<-⇔+-<⇔-<<,选C.考点:利用函数性质解不等式【方法点睛】利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e =,()()0f x f x '+<构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等4.A解析:A 【分析】构造函数()()xf x x b e =+,根据()00f =求出0b =,利用导数判断函数的单调性,作出其大致图像,令()t f x =,只需21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭,利用二次函数根的分布即可求解. 【详解】由()()()()()()()()221x xxxxx x f x e f x e f x f x e e f x e ef x e '-'-=-=⇒'=⇒,则()()()()1xx xf x f x x b x x b e e e f ⎡⎤=⇒=+=+⎢⎥⎣⎦⇒, 由()000f b =⇒=,则()xf x e x =⋅.由()()1xf x e x '=+,当()1,x ∈-+∞,()0f x '>,()f x 单调递增;当(),1x ∈-∞-,()0f x '<,()f x 单调递减,当x →-∞,()0f x <,x →+∞,()0f x >,如图所示:令()t f x =,则21016mt t ++=,由已知可得 21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭,令()2116g t mt t =++,由12121001016t t m m t t m ⎧+=-<⎪⎪⇒>⎨⎪⋅=>⎪⎩, 则()21000,41601102g e e g m e em ⎧⎛⎫-> ⎪⎪⎝⎭⎪⎛⎫⎪>⇒∈-⎨⎪∆>⎝⎭⎪⎪-<-<⎪⎩. 故选:A 【点睛】本题考查了构造函数判断函数的单调性、根据方程根的个数求参数的取值范围,考查了二次函数根的分布,此题综合性比较强,属于中档题.5.B解析:B 【分析】设A (a ,2 a+1),B (a ,a+lna ),求出|AB |,利用导数求出|AB |的最小值. 【详解】设A (a ,2a+1),B (a ,a+lna ),∴|AB |=211a a lna a lna +-+=+-(), 令y 1x lnx =+-,则y ′=11x-, ∴函数在(0,1)上单调递减,在(1,+∞)上单调递增, ∴x =1时,函数y 的最小值为20>,∴|AB |=2111a a lna a lna a lna +-+=+-=+-(),其最小值为2.故选B . 【点睛】本题考查导数知识的运用,考查学生分析解决问题的能力及转化思想,利用求导得到函数的单调性进而求得最值是关键.6.C解析:C 【分析】先利用导数判断出函数()f x 在区间()1,e 上为增函数,再解不等式(1)ln110f a =-+<,1()ln 0f e e a e=-+>,即得解.【详解】由题得211()0f x x x '=+>在区间()1,e 上恒成立, 所以函数1()ln f x x a x=-+在区间()1,e 上为增函数, 所以(1)ln110f a =-+<,1()ln 0f e e a e=-+>, 可得111a e-<<. 故选:C. 【点睛】本题主要考查利用导数研究函数的单调性和零点,意在考查学生对这些知识的理解掌握水平.7.C解析:C 【解析】y ′=3x 2+1>0对于任何实数都恒成立.8.A解析:A 【分析】根据圆柱的高,底面半径以及球半径之间的关系,建立圆柱的高与圆柱体积之间的函数关系,利用导数求体积取得最大值时对应的自变量即可. 【详解】根据题意,设圆柱底面半径为r ,圆柱的高为h ,作出示意图如下所示:显然满足2224h r R =-,故圆柱的体积()23214h r h h R h πππ=⨯=-+,故可得()223,(02)4V h h R h R ππ<'=-+<,令()0V h '>,解得0h <<,故此时()V h 单调递增,令()0V h '<2h R <<,故此时()V h 单调递减.故()maxV h V ⎫=⎪⎪⎝⎭.即当3h R =时,圆柱的体积最大. 故选:A . 【点睛】本题考查圆柱的外接球以及利用导数求体积的最大值,属综合中档题.9.A解析:A 【分析】构造函数()()sin h x f x x =+,根据其单调性,求解目标不等式即可. 【详解】不妨令()()sin h x f x x =+,因为()()cos 0h x f x x =+'<'在[)0,+∞恒成立, 即()h x 在[)0,+∞单调递减;又()f x 是奇函数,sin y x =是奇函数, 故()h x 是奇函数,且()h x 是R 上的单调减函数.由()3,2f π=-故可得22h π⎛⎫=- ⎪⎝⎭,又()cos 22f x x π+>--,即22h x h ππ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭, 故22x ππ+<,则0x <.故选:A . 【点睛】本题考查构造函数法,涉及利用导数研究函数单调性以及利用单调性解不等式,属综合中档题.10.C解析:C 【分析】利用()f x 导数小于等于零恒成立,求出a 的范围,再由()2'2ag x x x =+在(]1,2上有零点,求出a 的范围,综合两种情况可得结果. 【详解】因为函数()3f x x ax =--在(],1-∞-上单调递减,所以()2'30f x x a =--≤对于一切(],1x ∈-∞-恒成立,得23,3x a a -≤∴≥-, 又因为()2ag x x x=-在区间(]1,2上既有最大值,又有最小值, 所以,可知()2'2ag x x x =+在(]1,2上有零点, 也就是极值点,即有解220ax x+=,在(]1,2上解得32a x =-, 可得82,32a a -≤<-∴-≤<-,故选C. 【点睛】本题主要考查“分离常数”在解题中的应用以及利用单调性求参数的范围,属于中档题. 利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间[],a b 上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围. 11.D解析:D 【分析】根据分段函数,看成函数()f x 与直线()2y a x =-的交点问题,分0x =,0x ≤,0x >讨论求解.【详解】当0x =时,()502f a =,对于直线()2y a x =-,2y a =,因为0a >,所以无交点; 当0x ≤时,()2f x x '=,令2x a =-,解得 2ax =-,要使方程()()2f x a x =-恰有2个互异的实数解,则252222a a a a ⎛⎫⎛⎫-+<+ ⎪ ⎪⎝⎭⎝⎭,解得 2a >;当0x >时,()2f x x '=-,令2x a -=-,解得 2ax =,因为0x ≤时,方程()()2f x a x =-恰有2个互异的实数解,则0x >时,无交点, 则2222a a a ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,解得 8a <,综上:a 的取值范围为28a <<故选:D 【点睛】关键点点睛:本题关键是由0a >和直线()2y a x =-过定点()2,0,确定方程()()2f x a x =-恰有2个互异的实数解只有一种情况:当0x ≤时,方程恰有2个互异的实数解,当0x >时,方程无实数解.12.A解析:A 【分析】先求得函数()f x 是R 上的奇函数,把不等式转化为()22(1)f a f a ≤+,再利用导数求得函数的单调性,在把不等式转化为221a a ≤+,即可求解. 【详解】由题意,函数32()42xxf x x x e e =-+-的定义域为R , 又由3322()42e (42)()e x xx xf x x x x x e f x e -=-++-=--+-=-, 所以()f x 是R 上的奇函数,又因为2222()3423430x x f x x e x x e '=-++≥-+=≥, 当且仅当0x =时取等号,所以()f x 在其定义域R 上的单调递增函数,因为()22(1)0f a f a +--≤,可得()22(1)(1)f a f a f a ≤---=+,所以221a a ≤+,解得112a ≤≤, 故实数a 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.故选:A 【点睛】利用函数的基本性质求解与函数有关的不等式的方法及策略: 1、求解函数不等式的依据是函数的单调性的定义. 具体步骤:①将函数不等式转化为12()()f x f x >的形式;②根据函数()f x 的单调性去掉对应法则“f ”转化为形如:“12x x >”或“12x x <”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.二、填空题13.(﹣∞﹣3)∪(3+∞)【分析】令当x >0时可得x ∈(0+∞)上函数单调递增由可得由函数是定义在R 上的奇函数可得函数是定义在R 上的偶函数进而得出不等式的解集【详解】解:令当x >0时∴x ∈(0+∞)上解析:(﹣∞,﹣3)∪(3,+∞) 【分析】令()()g x xf x =,()()()g x f x xf x ''+=,当x >0时,()()0f x xf x '+>,可得x ∈(0,+∞)上,函数()g x 单调递增.由()30f =,可得()30g =.由函数()f x 是定义在R 上的奇函数,可得函数()g x 是定义在R 上的偶函数.进而得出不等式的解集. 【详解】解:令()()g x xf x =,()()()g x f x xf x ''+= 当x >0时,()()0f x xf x '+>∴x ∈(0,+∞)上,函数()g x 单调递增.()30f =,∴()30g =.∵函数()f x 是定义在R 上的奇函数, ∴函数()g x 是定义在R 上的偶函数. 由()()03g x g >=,即()()3g x g >, ∴|x |>3,解得x >3,或x <﹣3.∴不等式()0xf x >的解集是()(),33-,-∞⋃+∞. 故答案为:()(),33-,-∞⋃+∞. 【点睛】本题考查了利用导数研究函数的单调性、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于中档题.14.或【分析】首先求出函数的导函数当时可得在定义域上单调递减再根据零点存在性定理可得在上存在唯一的零点当时由导数可得函数的单调性及最小值为令利用导数说明的单调性即可求出参数的值;【详解】解:因为定义域为解析:0a ≤或1a = 【分析】首先求出函数的导函数,当0a ≤时,可得()f x 在定义域上单调递减,再根据零点存在性定理可得()f x 在()0,1上存在唯一的零点,当0a >时,由导数可得函数()f x 的单调性及最小值为()min 1112ln f x f a a a ⎛⎫==+-⎪⎝⎭,令()112ln g a a a =+-,()0,a ∈+∞利用导数说明()g a 的单调性,即可求出参数a 的值; 【详解】解:因为()()2212ln 1f x ax a x x =+---,定义域为()0,∞+,所以()()()()()222122112221ax a x ax x f x ax a x x x+---+'=+--== 当0a ≤时,()0f x '<恒成立,即()f x 在定义域上单调递减,()()1310f a =-<,当0x +→时,20ax →,()210a x -→,2ln x -→+∞,所以()f x →+∞,所以()f x 在()0,1上存在唯一的零点,满足条件; 当0a >时,令()()()2110ax x f x x -+'=>,解得1x a >即函数在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,令()()()2110ax x f x x-+'=<,解得10x a <<即函数在10,a ⎛⎫⎪⎝⎭上单调递减,则()f x 在1x a =取值极小值即最小值,()min 1112ln f x f a a a ⎛⎫==+- ⎪⎝⎭, 令()112ln g a a a =+-,()0,a ∈+∞,则()2221210a g a a a a +'=+=>恒成立,即()112ln g a a a=+-在定义域上单调递增,且()112ln110g =+-=, 所以要使函数()()2212ln 1f x ax a x x =+---只有一个零点,则()min 1112ln 0f x f a a a ⎛⎫==+-= ⎪⎝⎭,解得1a =,综上可得0a ≤或1a =; 故答案为:0a ≤或1a = 【点睛】本题考查利用导数研究函数的零点问题,考查分类讨论思想,属于中档题.15.2【分析】先通过已知求出得到再利用导数研究得到函数在内没有零点函数的零点在内即得的值【详解】因为函数是定义在上的单调函数且对任意的都有所以是一个定值设所以所以或(舍去)所以所以所以所以函数在是增函数解析:2 【分析】先通过已知求出2()=+1,f x x 得到3()33F x x x =--,再利用导数研究得到函数()F x 在(0,1)内没有零点,函数()F x 的零点在(2,3)内,即得m 的值.【详解】因为函数()f x 是定义在(0,)+∞上的单调函数,且对任意的(0,)x ∈+∞都有2(())2f f x x -=,所以2()f x x -是一个定值,设2()f x x t -=, 所以2()=+f x x t ,()2f t =所以2()=+2,1f t t t t =∴=或2t =-(舍去). 所以2()=+1,()2f x x f x x '=,所以23()(1)22333F x x x x x x =+-⨯-=--, 所以2()33=3(1)(1)F x x x x '=-+-,所以函数()F x 在(1,)+∞是增函数,在(0,1)是减函数,因为(0)30,(1)50F F =-<=-<,所以函数()F x 在(0,1)内没有零点.因为(2)86310,(3)2712150F F =--=-<=-=>,函数()F x 在(1,)+∞是增函数, 所以函数()F x 的零点在(2,3)内, 所以2m =. 故答案为:2 【点睛】本题主要考查函数的单调性的应用,考查利用导数求函数的单调区间,考查利用导数研究零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.16.【分析】求导后即可求得根据二次函数的性质可得再由恒成立问题的解决方法可得即可得解【详解】求导得则当时函数单调递减;当时函数单调递增;所以;函数为开口向下对称轴为的二次函数所以当时;由题意可知即故答案解析:11a e≤--【分析】求导后即可求得()()11f x f ee --≥=-,根据二次函数的性质可得()()11g x g a ≤=+,再由恒成立问题的解决方法可得11a e -+≤-,即可得解. 【详解】求导得()ln 1f x x '=+,则当()10,x e -∈时,()0f x '<,函数()f x 单调递减;当()1,x e -∈+∞时,()0f x '>,函数()f x 单调递增;所以()()11f x f e e--≥=-;函数()22g x x x a =-++为开口向下,对称轴为1x =的二次函数,所以当()0,x ∈+∞时,()()11g x g a ≤=+; 由题意可知11a e -+≤-即11a e -≤--. 故答案为:11a e -≤--. 【点睛】本题考查了利用导数解决不等式恒成立问题,考查了推理能力,属于中档题.17.【分析】求导得转化条件为在区间内恒成立令求导后求得即可得解【详解】函数在区间内是减函数在区间内恒成立即在区间内恒成立令则当时单调递减;当时单调递增;又故答案为:【点睛】本题考查了导数的综合应用考查了 解析:2a ≥【分析】求导得2()321f x x ax '=++,转化条件为1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,求导后求得()max 2g x =即可得解. 【详解】32()1f x x ax x =+++,∴2()321f x x ax '=++,函数()f x 在区间21,33⎛⎫-- ⎪⎝⎭内是减函数, ∴()0f x '≤在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,即1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,则()2221312232x x x x g -++='=-,∴当2,3x ⎛∈- ⎝⎭时,()0g x '<,()g x 单调递减;当13x ⎛⎫∈- ⎪ ⎪⎝⎭时,()0g x '>,()g x 单调递增;又2734g ⎛⎫-= ⎪⎝⎭,123g ⎛⎫-= ⎪⎝⎭,∴()2g x <,∴2a ≥.故答案为:2a ≥. 【点睛】本题考查了导数的综合应用,考查了运算求解能力与推理能力,属于中档题.18.【分析】构造函数讨论单调性和奇偶性结合特殊值即可求解【详解】设函数是偶函数所以函数是奇函数且当时即当时单调递减所以当时当时是偶函数所以当时当时所以使得成立的的取值范围是故答案为:【点睛】此题考查利用解析:()()1,00,1-⋃【分析】 构造函数()()f x F x x=,讨论单调性和奇偶性,结合特殊值即可求解. 【详解】 设函数()()f x F x x =,()f x 是偶函数,()()()()f x f x F x F x x x--=-=-=-, 所以函数()F x 是奇函数,且()()()()1110,10F f f F ==-=-=, 当0x >时,()2()()0xf x f x F x x'-'=<, 即当0x >时,()F x 单调递减,()01F =, 所以当01x <<时,()()0f x F x x=>,()0f x >, 当1x >时,()()0f x F x x=<,()0f x <, ()f x 是偶函数,所以当10x -<<时,()0f x >,当1x <-时,()0f x <,所以使得()0f x >成立的x 的取值范围是()()1,00,1-⋃. 故答案为:()()1,00,1-⋃ 【点睛】此题考查利用导函数讨论函数的单调性解决不等式相关问题,关键在于准确构造函数,需要在平常的学习中多做积累,常见的函数构造方法.19.【分析】求出由已知可得为的两根求出关系并将用表示从而把表示为关于的函数设为利用的单调性即可求解【详解】因为的定义域为令即因为存在使得且即在上有两个不相等的实数根且所以∴令则当时恒成立所以在上单调递减解析:4e【分析】求出()f x ',由已知可得,m n 为()0f x '=的两根,求出,,m n a 关系,并将,n a 用m 表示,从而把()()f m f n -表示为关于m 的函数设为()h m ,利用()h m 的单调性,即可求解. 【详解】 因为()1ln f x x a x x=-+的定义域为()0,∞+, ()22211'1a x ax x x xf x ++=++=, 令()'0f x =,即210x ax ++=,()0,x ∈+∞,因为存在m ,n ,使得()()''0f m f n ==,且10,m e⎛⎤∈ ⎥⎝⎦,即210x ax ++=在()0,x ∈+∞上有两个不相等的实数根m ,n , 且m n a +=-,1⋅=m n ,所以1n m =,1a m m=--, ∴()()11111ln ln f m f m m m m m m m m m m n ⎛⎫⎛⎫=-+---+--- ⎪ ⎪-⎝⎭⎝⎭ 11l 2n m m m m m ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦=,令()112ln h m m m m m m ⎡⎤⎛⎫=--+- ⎪⎢⎥⎝⎭⎣⎦, 则()()()22211121ln l 'n m m m m h m m m -+⎛⎫=-=⎪⎝⎭, 当10,m e⎛⎤∈ ⎥⎝⎦时,()'0h m <恒成立, 所以()h m 在10,m e ⎛⎤∈ ⎥⎝⎦上单调递减,∴()min 14h m h e e ⎛⎫== ⎪⎝⎭,即()()f m f n -的最小值为4e. 故答案为:4e. 【点睛】本题考查最值问题、根与系数关系、函数的单调性,应用导数是解题的关键,意在考查逻辑推理、计算求解能力,属于中档题.20.【分析】求得在处的切线的斜率结合图像求得的取值范围【详解】函数对于一次函数令解得(负根舍去)所以在上递增在上递减画出的图像如下图所示由图可知要使当时恒成立只需大于或等于在处切线的斜率而所以故答案为: 解析:[1,)+∞【分析】求得()f x 在0x =处的切线的斜率,结合图像,求得a 的取值范围. 【详解】函数()2()1xf x x e =-,()01f =.对于一次函数()()10g x ax a =+>,()01g =.()()'221,0x f x xx e x =--+⋅≥,令'0f x,解得01x (负根舍去),所以()f x 在()00,x 上递增,在()0,x +∞上递减,画出()f x 的图像如下图所示.由图可知,要使当0x ≥时,()1(0)f x ax a ≤+>恒成立,只需a 大于或等于()f x 在0x =处切线的斜率.而()'01f=,所以1a ≥.故答案为:[1,)+∞【点睛】本小题主要考查利用导数求解不等式恒成立问题,考查数形结合的数学思想方法,属于中档题.三、解答题21.(1)21ln ()x x f x x+=;(2)12a ≥. 【分析】 (1)求导3ln 4()x x x a f x x --'=,由已知得(1)1f '=-,求出12a =得解(2)求导2()34g x x x '=-得到()g x 在(12)32, 上的最大值为1()12g = 转化11()1,x f x ⋅≥ 得到1112ln a x x x ≥-在113[,]22x ∈恒成立.构造函数1111()ln ,h x x x x =-求得1()h x 的最大值为(1)1h =,得解【详解】 (1)3ln 4()x x x af x x --'=,∵曲线()y f x =在点(1,(1))f 处的切线与30x y -+=垂直,∴(1)1f '=-, 12a ∴=.21ln ()x x f x x +∴= (2)2()34g x x x '=-,∴14(,)23x ∈,()0g x '<,43(,)32x ∈,()0g x '>,∴()g x 在14(,)23上递减,在43(,)32上递增, ∴()g x 在14(,)23上的最大值为131()1,()224g g ==较大者,即()1g x ≤, ∵对于任意的113[,]22x ∈,都有112()()x f x g x ⋅≥成立, ∴11()1,x f x ⋅≥ 1112ln 1,a x x x +∴≥ 即对任意的111113(,),2ln 22x a x x x ∈≥-成立. 令1111()ln ,h x x x x =-,11()ln h x x '=-,∴11(,1)2x ∈,1()0h x '>,13(1,)2x ∈,1()0h x '<,∴1()h x 在1(,1)2上递增,在3(1,)2上递减,1()h x 的最大值为(1)1h =, ∴21a ≥,12a ≥. 【点睛】本题考查函数导数几何意义及利用导数研究函数最值及不等式恒成立求参数范围.属于基础题.22.(1)230x e y e +-=(2)(,0]-∞ 【详解】试题分析:(1)先求函数导数,再根据导数几何意义得切线斜率为()'f e ,最后根据点斜式求切线方程(2)构造函数()()2ln 1g x x a x =--,利用导数并按0a ≤,10<2a <,12a ≥进行分类讨论,通过函数的单调性以及最值进行与0比较,可得结果. 试题(1)根据题意可得,()2f e e=, ()2ln 'xf x x -=,所以()22ln 1'e f e e e -==-,即21k e=-, 所以在点()(),e f e 处的切线方程为()221y x e e e-=--,即230x e y e +-=. (2)根据题意可得,()()()221ln 110a x x a x f x x x x-----=≥在1≥x 恒成立,令()()2ln 1g x x a x =--,()1x ≥,所以()12g x ax x-'=, 当0a ≤时,()0g x '>,所以函数()y g x =在[)1,+∞上是单调递增, 所以()()10g x g ≥=, 所以不等式()()21a x f x x->成立,即0a ≤符合题意;当0a >时,令120ax x-=,解得x =1=,解得12a =,当10<2a <1,所以()g x '在⎛ ⎝上()0g x '>,在+⎫∞⎪⎪⎭上()0g x '<,所以函数()y g x =在⎛ ⎝上单调递增,在+⎫∞⎪⎪⎭上单调递减,21111ln 1ln g a a a a a a a ⎛⎫⎛⎫⎛⎫=--=--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令()1ln h a a a a =--+,()222111'10a a h a a a a-+=-++=>恒成立,则()h a 在10,2⎛⎫ ⎪⎝⎭单调递增 所以()1111ln 2ln2202222h a h ⎛⎫<=--+=+-<⎪⎝⎭, 所以存在10g a ⎛⎫< ⎪⎝⎭, 所以102a <<不符合题意;②当12a ≥1≤ ()0g x '≤在[)1,+∞上恒成立,所以函数()y g x =在[)1,+∞上是单调递减,所以()()10g x g ≤= 显然12a ≥不符合题意; 综上所述,a 的取值范围为{}|0a a ≤ 23.(1)1ln ,22a ⎛⎫+∞⎪⎝⎭(2)32a e >【分析】(1)直接求出函数的导函数,令()0f x '>,解不等式即可;(2)由题意容易知道2102222a ln a a a f ln e ln a ⎛⎫=-+< ⎪⎝⎭,解出即可求得实数a 的取值范围; 【详解】解:(1)因为()2x f x e ax b =-+所以()()220x f x e a a '=->,令()0f x '>,得1ln 22a x >,∴函数()f x 的单调递增区间为1ln ,22a ⎛⎫+∞ ⎪⎝⎭(2)由(1)知,函数()f x 在1,ln 22a ⎛⎫-∞ ⎪⎝⎭递减,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭递增, ∴x →-∞时,()f x →+∞;x →+∞,()f x →+∞,∵函数()f x 有两个零点12,x x ,∴1ln 022a f ⎛⎫< ⎪⎝⎭,又a b =, ∴ln 21ln ln 02222a a a a f e a ⎛⎫=-+< ⎪⎝⎭, 即ln 0222a a a a -+< 所以3ln02a -< 所以32a e >【点睛】本题考查利用导数研究函数的单调性及最值问题,考查导数中零点问题,考查转化思想及运算求解能力,属于中档题.24.(1)1a =-或32a =;(2)答案不唯一,具体见解析;(3)证明见解析. 【分析】(1)利用导数几何意义列方程解得结果;(2)先求导函数,再根据a 的正负分类讨论,对应确定导函数符号,进而确定单调性; (3)根据(2)单调性确定()g a 解析式,再利用导数求()g a 最大值,即证得结果.【详解】(1)()f x 的定义域为(0,)+∞,222()1a a f x x x =-+', 根据题意有(1)2f '=-,则2230a a --=,解得1a =-或32a =; (2)22222222()(2)()1a a x ax a x a x a f x x x x x+--+=-'+==,①当0a >时,∵0x >,由()0f x '>得()(2)0x a x a -+>,解得x a >,由()0f x '<得()(2)0x a x a -+<,解得0x a <<,∴()f x 在(,)a +∞上单调递增,在(0,)a 上单调递减,②当0a <时,∵0x >,由()0f x '>得()(2)0x a x a -+>,解得2x a >-, 由()0f x '<得()(2)0x a x a -+<,解得02x a <<-,∴()f x 在(2,)a -+∞上单调递增,在(0,2)a -上单调递减,(3)证明:由(2)知,当(,0)a ∈-∞时()f x 的最小值为(2)-f a , 即22()(2)ln(2)2ln(2)32a g a f a a a a a a a a=-=⋅-+-=⋅---, 2()ln(2)3ln(2)22g a a a a a -=-+⋅=-'---,令()0g a '=,得212a e =-, 当21(,)2a e ∈-∞-时()0g a '>,当21(,0)2a e ∈-时()0g a '<, 则212a e =-是()g a 在(,0)-∞上的唯一极值点,且是极大值点, 从而也是()g a 的最大值点, ∴22222max 11111()()ln[2()]3()22222g a g e e e e e =-=-⋅-⨯--⨯-=, ∴当(,0)a ∈-∞时,21()2g a e ≤恒成立. 【点睛】本题考查导数几何意义、利用导数求单调性、利用导数求函数最值与证不等式,考查综合分析求解与论证能力,属中档题.25.(1)210x y -+=;(2)4927. 【分析】(1)利用导数的几何意义求切线的斜率,再利用点斜式方程即可求出切线方程。
1、设函数11ln )(--+-=x a ax x x f (1)当210<<a 时,讨论)(x f 的单调区间,(2)当31=a 时,设12522)(--=bx x x g 且对],0(1e x ∈∀,]1,0[2∈∃x ,使得)()(21x g x f ≥成立,求实数b 的取值范围2、32()ln ,()3a f x x x g x x x x=+=-- (1)若存在12,[0,2]x x ∈使得12()()g x g x M -≥成立,求满足上述条件的最大整数M ;(2)如果任意1,[,2]2s t ∈,都有()()f s g t ≥恒成立,求实数a 的取值范围。
3、函数x x e e x f --=)((1)求)(x f '的取值范围,(2)若对所有的0≥x ,都有ax x f ≥)(,求实数a 的取值范围。
4、设函数1()(0ln f x x x x=>且1)x ≠ (1)求()f x 的单调区间;(2)对1(0,1),2a x x x ∀∈>恒成立,求实数m 的取值范围5、已知函数1ln )(++=x x b a x f 在点))1(,1(f 处的切线方程为2=+y x (1)求a ,b 的值,(2)若xm x f <)(恒成立,求求实数m 的取值范围。
6、已知函数21()2ln (2),2f x x a x a x a R =-+-∈ (1)当0a ≤时,讨论()f x 的单调性;(2)是否存在实数a ,对任意12,0+x x ∈∞(,)且12x x ≠有2121()()f x f x a x x ->-恒成立?若存在,求实数a 的取值范围。
7、函数()x f x e =(1)直线1y kx =+与()f x 反函数图像相切,求k 值;(2)设0x >,讨论曲线()y f x =与2(0)y mx m =>公共点个数;(3)设a b <,比较()()2f a f b +与()()f b f a b a--的大小,并证明。
高中数学导数练习题含答案一、解答题 1.已知函数()()2ln 0f x a x ax a =+-> (1)求()f x 的最大值(2)若()0f x ≤恒成立,求a 的值 2.求下列函数的导数: (1)221()(31)y x x =-+; (2)2321xy x -=+; (3)e cos x y x =3.设函数()()2()ln 1f x x a x x =++-,其中R a ∈.(1)1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)讨论函数()f x 极值点的个数,并说明理由; (3)若()0,0x f x ∀>成立,求a 的取值范围. 4.已知函数()e 1x f x ax =--,a ∈R . (1)当2a =时,求()f x 的单调区间;(2)若()f x 在定义域R 内单调递增,求a 的取值范围. 5.已知函数2()ln f x x x ax =-.(1)若()0f x ≤恒成立,求实数a 的取值范围; (2)若()112212ln 2ln 200x ax x ax x x -=-=>>,证明:()1212ln ln 10ln 2x x x x ⋅<<.6.已知函数2()2ln f x x x =-+,()()ag x x a x =+∈R . (1)求函数()f x 的单调区间;(2)若函数()f x 与()g x 有相同的极值点,求函数()g x 在区间1[,3]2上的最值.7.已知函数()()()()e 0=+->xf x x b a b 在()()1,1f --处的切线方程为()e 1e e 10x y -++-=.(1)求a ,b 的值;(2)若方程()f x m =有两个实数根12,x x , ①证明:12m >-;②当0m <时,2121x x m ->+是否成立?如果成立,请简要说明理由.8.已知函数2()e 1)(x f x ax x =-+.(1)求曲线()y f x =在点(0,(0))f 处的切线的方程; (2)若函数()f x 在0x =处取得极大值,求a 的取值范围; (3)若函数()f x 存在最小值,直接写出a 的取值范围. 9.已知函数2()ln (2)(R)f x a x x a x a =+-+∈. (1)若1a =,求()f x 在区间[]1,e 上的最大值; (2)求()f x 在区间[]1,e 上的最小值()g a .10.已知函数()321623f x x ax x =+-+在2x =处取得极值. (1)求()f x 的单调区间;(2)求()f x 在[]4,3-上的最小值和最大值.【参考答案】一、解答题1.(1)22ln 2ln 2a a --+ (2)2a = 【解析】 【分析】(1)求导求解单调性即可求出最值;(2)要使()0f x ≤成立必须()22ln 2ln 20a a a ϕ=--+≤,求单调性求解即可. (1)因为()()2ln 0f x a x ax a =+->,所以()()20axf x a x-'=>, 由()0f x '>得20x a <<;()0f x '<得2x a>;所以()f x 在20,a⎛⎫⎪⎝⎭上单调递增,在2,a ⎛⎫+∞ ⎪⎝⎭上单调递减,故()222ln 2ln 2max f x f a a a ⎛⎫==--+ ⎪⎝⎭,即()()22ln 2ln 20a a a a ϕ=--+>.(2)要使()0f x ≤成立必须()22ln 2ln 20a a a ϕ=--+≤, 因为()2a a aϕ-'=,所以当02a <<,()0a ϕ'<;当2a >时,()0a ϕ'>.所以()a ϕ在()0,2上单调递减,在()2,+∞上单调递增. 所以()()20min a ϕϕ==,所以满足条件的a 只有2,即2a =. 【点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式; (3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用. 2.(1)21843x x +-;(2)222262(1)x x x --+;(3)e (cos sin )x x x -. 【解析】 【分析】(1)(2)(3)由基本初等函数的导数公式,结合求导的乘除法则求各函数的导函数. (1)2222(21)(31)(21)(31)4(31)3(21)1843y x x x x x x x x x '''=-++-+=++-=+-.(2)2222222222(32)(1)(32)(1)2(1)2(32)262(1)(1)(1)x x x x x x x x x y x x x ''-+--+-+----'===+++.(3)(e )cos e (cos )e (cos sin )x x x y x x x x '''=+=-.3.(1)322ln230x y -+-=(2)当0a <时,函数()f x 有一个极值点; 当809a ≤≤时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点. (3)0,1 【解析】 【分析】(1)将1a =代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件,对a 进行分类讨论,利用导数法求函数极值的步骤及函数极值的定义即可求解;(3)根据()0,0x f x ∀>成立,转化为()min 0,0x f x ∀>即可,再利用第(2)的结论即可求解. (1)当1a =时,()2()ln 1f x x x x =++-()()21ln 1111ln 2f =++-=,所以切点为()1,ln2,()()11321,12111112f x x k f x ''=+-∴==+⨯-=++, 所以曲线()y f x =在点()()1,1f 处的切线的斜率为()312k f ='=, 所以曲线()y f x =在点()1,ln2处的切线的斜率切线方程为()3ln212y x -=-,即322ln230x y -+-= (2)由题意知函数()f x 的定义域为()1,-+∞,()()21212111ax ax a f x a x x x +-+=+-='++,令()()221,1,g x ax ax a x =+-+∈-+∞,(i )当0a =时,()10f x '=>,函数()f x 在()1,-+∞单调递增,无极值点 (ii )当0a >时,()Δ98a a =-,①当809a <≤时,()()Δ0,0,0g x f x '≤≥≥, 所以函数()f x 在()1,-+∞单调递增,无极值点; ②当89a >时,Δ0>,设方程2210ax ax a +-+=两根1212,,x x x x ==此时12x x <()121211111,,,110,12444x x x x g x +=-∴---=>-<<∴<->()()121,,,x x x ∴∈-+∞时,()()0,0g x f x '>>,函数()f x 单调递增;()12,x x x ∈时,()()0,0g x f x '<<,函数()f x 单调递减. ∴函数有两个极值点;③当0a <时,()Δ980a a =->,设方程2210ax ax a +-+=两根1212,,x x x x ==此时12x x >()12110,1x g x -=>∴-<<()11,x x ∴∈-时,()()0,0g x f x '>>,函数()f x 单调递增; ()1,x x ∈+∞时,()()0,0g x f x '<<,函数()f x 单调递减.∴函数有一个极值点;综上所述:当0a <时,函数()f x 有一个极值点; 当809a ≤≤时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点. (3)由()0,0x f x ∀>成立等价于()min 0,0x f x ∀>≥即可. ①当809a ≤≤时,函数()f x 在()0,+∞上单调递增,()()00,0,f x =∴∈+∞时,()0f x >,符合题意;②当819a <≤时,由()00g >,得20x ≤,∴函数()f x 在()0,+∞上单调递增,又()()00,0,f x =∴∈+∞时,()0f x >,符合题意; ③当1a >时,由()00<g ,得20x >()20,x x ∴∈时, ()f x 单调递减,()()200,0,f x x =∴∈时,()0f x <时,不合题意;④当0a <时,设()()ln 1h x x x =-+,()0,x ∈+∞,时,()()110,11x h x h x x x =-=>∴+'+在()0,+∞上单调递增. ∴当()0,x ∞∈+时,()()00h x h >=,即()ln 1x x +<,可得()()()221f x x a x x ax a x <+-=+-,当11x a>-时,()210ax a x +-<,此时()0f x <,不合题意.综上,a 的取值范围是0,1. 【点睛】解决此题的关键是第一问利用导数的几何意义及点斜式即可,第二问主要是对参数进行分类讨论,再结合利用导数法求函数的极值的步骤即可,第三问主要将恒成立问题转化为最值问题再结合第二问的结论即可求解.4.(1)2a = 时,函数 () f x 的单调增区间是(ln2,)+∞ ,递减区间为 (,ln2)-∞ ; (2)a 的取值范围为 (], 0-∞ 【解析】 【分析】(1)将2a =代入,对()f x 求导,根据导数正负,确定函数增减即可; (2)()x f x e a '=-,根据题意函数单调增,所以需要()0f x '≥在R 上恒成立,利用参变分离即可求解. (1)当2a = 时,()e 21x f x x =--,()e 2x f x '∴=-.令()0f x '> ,即e 20x -> ,解得 : ln 2x > ; 令()0f x '< ,即e 20x -< ,解得 :ln 2x < ;()f x ∴ 在ln 2x =时取得极小值,亦为最小值,即(ln 2)12ln 2f =- .∴ 当2a = 时,函数()f x 的单调增区间是(ln2,)+∞,递减区间为(,ln2)-∞.(2)()e 1x f x ax =-- ()e .x f x a ∴-'=()f x 在R 上单调递增,()e 0x f x a ∴='-≥ 恒成立,即e x a ≤在x ∈R 恒成立,x ∈R时,e (0,)x ∈+∞,0a ∴≤.即 a 的取值范围为(],0∞-.5.(1)1,e∞⎡⎫+⎪⎢⎣⎭(2)证明见解析 【解析】 【分析】(1)()0f x ≤恒成立,等价于ln xa x ≥恒成立,即max ln x a x ⎛⎫≥ ⎪⎝⎭,令()ln x g x x=,利用导数求出函数()g x 的最大值,即可得出答案;(2)()112212ln 2ln 200x ax x ax x x -=-=>>,即()1212,0x x x x >>为函数ln 2y x ax =-的两个零点,即()1212,0x x x x >>为方程ln 2x a x =的两个根,由(1)知102ea <<,且1201x x <<<,则要证()1212ln ln 10ln 2x xx x ⋅<<,只需证()1212ln 2ln ln x xx x >⋅,即证2122112212ln x x x x x x ->,令12,1x t t x =>,则要证22n 1l t tt ->,令()()12ln 1t t t t t ϕ=-->,利用导数证明()min 0t ϕ>即可. (1)解:因为函数()f x 的定义域为()0,∞+,所以()0f x ≤恒成立, 等价于ln xa x ≥恒成立,所以maxln x a x ⎛⎫≥ ⎪⎝⎭, 令()ln x g x x =,则()21ln x g x x-'=, 当()0,e x ∈时,()0g x '>,()g x 单调递增; 当()e,x ∈+∞时,()0g x '<,()g x 单调递减, 所以()()max 1e eg x g ==,故1ea ≥,即实数a 的取值范围是1,e∞⎡⎫+⎪⎢⎣⎭;(2)证明:()112212ln 2ln 200x ax x ax x x -=-=>>, 即()1212,0x x x x >>为函数ln 2y x ax =-的两个零点, 即()1212,0x x x x >>为方程ln 20x ax -=的两个根, 即()1212,0x x x x >>为方程ln 2xa x=的两个根, 由(1)知102ea <<,即102ea <<,且1201x x <<<, 由11ln 2x ax =,22ln 2x ax =,得()1212ln ln 2x x a x x -=-, 所以1212ln ln 2x x a x x -=-, 要证()1212ln ln 10ln 2x x x x ⋅<<,只需证()1212ln 2ln ln x x x x >⋅,即证121212ln ln 112ln ln ln ln x x x x x x +=+>⋅,即1211222ax ax +>, 即12114a x x +>,也就是121212ln ln 112x x x x x x -+>⨯-,整理得221211222ln x x x x x x ->,即证2122112212ln x x xx x x ->, 令12,1x t t x =>,则要证2112ln t t t t t -=->, 令()()12ln 1t t t t tϕ=-->,则()()222221122110t t t t t t t tϕ--+'=+-==>, 所以()t ϕ在()1,+∞上单调递增,所以()()10t ϕϕ>=, 所以当t >1时,12ln t t t->,故原结论成立,即()1212ln ln 10ln 2x x x x ⋅<<.【点睛】本题考查了不等式恒成立问题和不等式的证明问题,考查了利用导数求函数的最值,考查了分离参数法,考查了转化思想,考查了学生的数据分析能力和逻辑推理能力,难度较大.6.(1)单增区间为(0,1),单减区间为(1,)+∞(2)min ()2g x =,max 10()3g x =【解析】 【分析】(1)求导之后,分别令()0f x '>,()0f x '<即可求出()f x 的单调区间; (2)由有相同的极值点求出a 的值,再利用对勾函数的单调性求出()g x 在区间1,32⎡⎤⎢⎥⎣⎦上的最值. (1)()f x 的定义域:()0,∞+()()22122x f x x x x--'=-+=,由()0f x '>得01x <<,由()0f x '<得1x >, ∴()f x 的单增区间为()0,1,单减区间为()1,+∞. (2)()21ag x x ='-,由(1)知()f x 的极值点为1.∵函数()f x 与()g x 有相同的极值点, ∴()10g '=,即10a -=,∴1a =,从而()1g x x x =+,()g x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,在(]1,3上递增,又1522g ⎛⎫= ⎪⎝⎭,()1033g =,∴在区间1,32⎡⎤⎢⎥⎣⎦上,()()min 12g x g ==,()max 103g x =.7.(1)1a =,1b =(2)①证明见解析,②成立,理由见解析 【解析】 【分析】(1)求出导函数,再根据导数的几何意义及切点即在切线上又再曲线上,解出方程,解之即可;(2)①,由(1)求得函数的解析式及导数,利用导数求出函数()f x 的单调区间,从而可求得函数()f x 的最值,再根据方程()f x m =有两个实数根12,x x ,可得函数()f x 的最值m 的关系,即可得证;②,分别求出当直线过()1,0-,()()00,x f x 时和直线过()0,0,()()00,x f x 时割线方程,从而得1243x x x x ->-结合①即可得出结论. (1)解:()()1e xf x x b a =++-',因为函数()f x 在()()1,1f --处的切线方程为()e 1e e 10x y -++-=,所以()111e eb f a '-=-=-,()()1110ef b a ⎛⎫-=--= ⎪⎝⎭,∴1a =,1b =或1e=a ,2e b =-(舍), 所以1a =,1b =; (2)①证明:由(1)可知()()()1e 1x f x x =+-,()()2e 1xf x x '=+-, 令()()()2e 1xg x f x x '==+-,则()()3e xg x x '=+,令()0g x '=,得3x =-,所以函数()g x 在(),3-∞-上递减,在()3,-+∞上递增, 所以()()min 3g x g =-,即()()3min 3e 10f x f -''=-=--<,又x →+∞,()f x '→+∞,3x <-,()0f x '<, 且()010f '=>,()1110ef '-=-<,∴()01,0x ∃∈-,使得()00f x '=,即()002e 10xx +-=,即01e 2x x =+,当0x x <时,()0f x '<,当0x x >时,()0f x '>, 所以函数()f x 在()0,x -∞上递减,在()0,x +∞上递增,所以()()()()()0000min011e 1112x f x f x x x x ⎛⎫==+-=+- ⎪+⎝⎭()()()()()22000000211122222x x x x x x +-⎡⎤+⎡⎤⎣⎦=-=-=-++-⎢⎥+++⎣⎦, ∵()01,0x ∈-,∴()021,2x +∈, 令()()1,1,2h x x x x=+∈, 则()()2110,1,2h x x x '=->∈ , 所以函数()h x 在()1,2上递增, 故()001522,22x x ⎛⎫++∈ ⎪+⎝⎭,所以()001122,022x x ⎡⎤⎛⎫-++-∈-⎢⎥ ⎪+⎝⎭⎣⎦, 即()min 12f x >-, ∴12m >-;②解:成立,理由如下:当直线过()1,0-,()()00,x f x 时割线方程为()()()00112x y x mx +=-+=+, 得()()030211m x x x -+=-+,当直线过()0,0,()()00,x f x 时割线方程为()()200012x y x m x x -+==+, 得()()0042021mx x x x -+=+,∴()()()0124320002112111222m x mx x x x m x x x +->-=+=+>++++-+.【点睛】本题考查了导数得几何意义,考查了利用导数解决方程的根的问题,考查了不等式的证明问题,,考查了数据分析和处理能力,考查了转化思想,计算量比较大,属于难题.8.(1)1y = (2)1(,)2-∞ (3)10,4⎛⎤⎥⎝⎦【解析】【分析】(1)先求导后求出切线的斜率'(0)0f =,然后求出直线上该点的坐标即可写出直线方程;(2)根据函数的单调性和最值分类讨论;(3)分情况讨论,根据函数的单调性和极限求解.(1)解:由题意得:22'e 121)e 2)()((x x ax x a f x ax x x ax =-++-=+-'(0)0f =,(0)1f = 故曲线()y f x =在点(0,(0))f 处的切线的方程1y =.(2)由(1)得要使得()f x 在0x =处取得极大值,'()f x 在0x <时应该'()0f x >,'()f x 在0x >时应该'()0f x <,'e 2(1)()x x x ax f a =+-故①0a <且120a a -<,解得0a < ②0a >且120a a->,解得102a << 当0a =时,'()e x f x x =-,满足题意; 当12a =时,'21(e )2x f x x =,不满足题意; 综上:a 的取值范围为1(,)2-∞.(3)可以分三种情况讨论:①0a ≤②102a <<③12a ≥若0a ≤,()f x 在12(,)a a --∞上单调递减,在12(,0)a a -单调递增,在(0,)+∞上单调递减,无最小值; 若102a <<时,当0x <时,x 趋向-∞时,()f x 趋向于0;当0x > ,要使函数取得存在最小值121221212112()[(41)0e ()]e a a a a a a a f a a a a a a -----=-=-≤+,解得104a <≤,故 12a x a -=处取得最小值,故a 的取值范围10,4⎛⎤ ⎥⎝⎦. 若12a ≥时,()f x 在x 趋向-∞时,()f x 趋向于0,又(0)1f =故无最小值;综上所述函数()f x 存在最小值, a 的取值范围10,4⎛⎤⎥⎝⎦. 9.(1)2e 3e 1-+(2)()()221,2ln ,22e 241e e 2e,2e a a a a g a a a a a a --≤⎧⎪⎪=--<<⎨⎪-+-≥⎪⎩ 【解析】【分析】(1)利用导数求得()f x 在区间[]1,e 上的最大值.(2)由()'f x 对a 进行分类讨论,由此求得()f x 在区间[]1,e 上的最小值()g a .(1)当1a =时,()()2ln 31e f x x x x x =+-≤≤,()()()'123123x x f x x x x--=+-=, 所以()f x 在区间()()'31,,0,2f x f x ⎛⎫< ⎪⎝⎭递减;在区间()()'3,e ,0,2f x f x ⎛⎫> ⎪⎝⎭递增. ()()212,e e 3e 10f f =-=-+>,所以()f x 在区间[]1,e 上的最大值为2e 3e 1-+.(2)2()ln (2)(R,1e)f x a x x a x a x =+-+∈≤≤,()()()()'1222x x a a f x x a x x --=+-+=, 当1,22aa ≤≤时,()f x 在区间()()()'1,e ,0,f x f x >递增,所以()f x 在区间[]1,e 上的最小值为()()1121f a a =-+=--. 当1e,22e 2a a <<<<时,()f x 在区间()()'1,,0,2a f x f x ⎛⎫< ⎪⎝⎭递减;在区间()',e ,02af x ⎛⎫> ⎪⎝⎭,()f x 递增. 所以()f x 在区间[]1,e 上的最小值为()22ln 2ln 222224a a a a a a f a a a a ⎛⎫⎛⎫=+-+⋅=-- ⎪ ⎪⎝⎭⎝⎭. 当e,2e 2a a ≥≥时,()f x 在区间()()()'1,e ,0,f x f x <递减,所以()f x 在区间[]1,e 上的最小值为()()()22e e 2e 1e e 2e f a a a =+-+=-+-. 所以()()221,2ln ,22e 241e e 2e,2e a a a a g a a a a a a --≤⎧⎪⎪=--<<⎨⎪-+-≥⎪⎩. 【点睛】利用导数求解函数的单调性、最值,若导函数含有参数,则需要对参数进行分类讨论,分类讨论标准的制定,可以考虑利用导函数的零点分布来进行分类. 10.(1)增区间为(),3-∞-,()2,+∞,减区间为()3,2-(2)()max 312f x =,()min 163f x =- 【解析】【分析】(1)根据题意得()20f '=,进而得12a =,再根据导数与单调性的关系求解即可;(2)由(1)知[]4,3x ∈-时,()f x 的增区间为[)4,3--,(]2,3,减区间为()3,2-,进而求解()4f -,()3f -,()2f ,()3f 的值即可得答案.(1)解:(1)()226f x x ax '=+-, 因为()f x 在2x =处取得极值,所以()24460f a '=+-=,解得12a =. 检验得12a =时,()f x 在2x =处取得极小值,满足条件.所以()26f x x x '=+-, 令()0f x '>,解得3x <-或2x >,令()0f x '<,解得32x -<<,所以()f x 的增区间为(),3-∞-,()2,+∞,减区间为()3,2-;(2)解:令()260f x x x '=+-=,解得3x =-或2x =,由(1)知()f x 的增区间为(),3-∞-,()2,+∞,减区间为()3,2-;当[]4,3x ∈-时,()f x 的增区间为[)4,3--,(]2,3,减区间为()3,2- 又()()()()321138444642323f -=⨯-+⨯--⨯-+=, ()()()()321131333632322f -=⨯-+⨯--⨯-+=, ()321116222622323f =⨯+⨯-⨯+=-, ()32115333632322f =⨯+⨯-⨯+=-, 所以()max 312f x =,()min 163f x =-.。
《数学》必会基础题型——《导数》
【知识点】
1.导数公式:'0C = '1()n n x nx -= '(sin )cos x x = '(cos )sin x x =-
'()x x e e = '()ln x x a a a = '1(ln )x x = '1(log )ln a x x a
= 2.运算法则:'''()u v u v +=+ '''()u v u v -=- '''()uv u v uv =+
3.3.复合函数的求导法则:(整体代换)例如:已知2()3sin (2)3
f x x π=+,求'()f x 。
4.导数的物理意义:位移的导数是速度,速度的导数是加速度。
5.导数的几何意义:导数就是切线斜率。
6.用导数求单调区间、极值、最值、零点个数:对于给定区间[,]a b 内,若'()0f x >,则()f x 在[,]a b 内是增函数;若'()0f x <,则()f x 在[,]a b 内是减函数。
【题型一】求函数的导数 (1)ln x y x = (2)2sin(3)4
y x π=- (3)2(1)x y e x =- (4)3
235y x x =-- (5)231x x y x -=+ (6)2211()y x x x x =++ 【题型二】导数的物理意义的应用
1.已知物体的运动方程为223s t t
=+(t 是时间,s 是位移),则物体在时刻2t =时的速度为 。
【题型三】导数与切线方程(导数的几何意义的应用)
2.曲线32y x x =+-在点(2,8)A 处的切线方程是 。
3.若(1,)B m 是32y x x =+-上的点,则曲线在点B 处的切线方程是 。
4.若32y x x =+-在P 处的切线平行于直线71y x =+,则点P 的坐标是 。
5.若2
3ln 4
x y x =-的一条切线垂直于直线20x y m +-=,则切点坐标为 。
6.函数12+=ax y 的图象与直线x y =相切, 则a = 。
7.已知曲线11
x y x +=-在(3,2)处的切线与0ax y m ++=垂直,则a = 。
8.已知直线y x m =+与曲线321y x x =-+相切,求切点P 的坐标及参数m 的值。
9.若曲线)(x h y =在点(,()a h a )处切线方程为012=++y x ,那么( )
A .0)('<a h B. 0)('>a h C. 0)('=a h D. )('a h 的符号不定
10.曲线46323+++=x x x y 的所有切线中, 斜率最小的切线的方程是 。
11.求曲线3231y x x =-++过点(1,1)和(2,5)的切线方程。
【易错题】
【题型四】导数与单调区间
12.函数13)(23+-=x x x f 的减区间为 。
13.函数)0,0(≥>=-x n e x y x n 的单调递增区间为 。
14.判断函数cos sin y x x x =-在下面哪个区间内是增函数( ) A.3(,)22ππ B.(,)22
ππ- C.(,2)ππ D.(0,)π 15.已知函数32321y x x =+-在区间(,0)m 上为减函数, 则m 的取值范围是 。
【题型五】导数与极值、最值
16.函数3125y x x =-+在x = 时取得极大值 ,在x = 时取得极小值 。
17.函数32()23f x x x =-+在[1,1]-上的最大值是 ,与最小值是 。
18.函数)0(≥-=x x x y 的最大值为 。
19.函数93)(23-++=x ax x x f 在3-=x 时取得极值, 则=a 。
20.已知a a x x x f (62)(23+-=为常数)在]2,2[-上有最大值是3, 那么]2,2[-在上的最小值是 。
21.已知函数322+--=x x y 在区间[,2]a 上的最大值为154
, 则a = 。
22.函数⎥⎦
⎤⎢⎣⎡-∈-=2,2,2sin ππx x x y 的最大值是 ,最小值是 。
23.若1)2(33)(23++++=x a ax x x f 既有极大值又有极小值,求a 的取值范围。
【题型六】导数与零点,恒成立问题
零点定理:若函数()f x 在区间[,]a b 上满足()()0f a f b ⋅<,则()f x 在区间[,]a b 上是至少有一个零点。
(即()0f x =在区间[,]a b 上是至少有一个解)
25.判断函数2()log (2)f x x x =+-在[1,3]上是否存在零点?
26.已知[1,3]x ∈-,且144234++-≤x x x a 恒成立,则a 的最大值为 。
27.证明ln x x < (0)x >恒成立。
练习:证明x e x > (0)x >恒成立
28.已知函数321()22
f x x x x c =--+,若对于[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围。
29.若函数3()3f x x x a =-+有3个不同的零点,求实数a 的取值范围。
30.是否存在实数m ,使得函数2()8f x x x =-+与()6ln g x x m =+的图像有且只有三个不同的交点?若存在求出m 的范围,若不存在说明理由。
【题型七】综合应用题
31.已知1=x 是函数1)1(3)(23+++-=nx x m mx x f (0)m <的一个极值点,
(1)求m 与n 的关系式; (2)求)(x f 的单调区间; (3) 当[1,1]x ∈-时, 函数)(x f y =的图象上任意一点的切线斜率恒大于m 3, 求m 的取值范围。
32.已知某工厂生产x 件产品的成本为++=x c 200250002401
x 元,
(1)要使平均成本最低,应生产多少件产品?
(2)若产品以每件500元售出,要使利润最大,应生产多少件产品?。