三角函数与正余弦定理
- 格式:doc
- 大小:243.70 KB
- 文档页数:4
三角函数的基本关系式三角函数是解析几何和三角学中重要的数学工具,主要由正弦函数、余弦函数和正切函数构成。
它们之间存在着一系列的基本关系式,对于解决各种三角函数计算和推导问题具有重要的作用。
本文将详细介绍这些基本关系式,以帮助读者更好地理解和应用三角函数。
1. 正弦函数的基本关系式在任意的三角形ABC中,设a、b、c分别为边BC、CA、AB的长度,以A为顶点的角为角A,角的对边和邻边分别为a和b。
根据正弦定理可知:sinA = a/csinB = b/csinC = a/b由于三角形的内角之和为180度,所以有:A +B +C = 180度2. 余弦函数的基本关系式根据余弦定理,可以得到三角形任意一边的平方等于另外两边的平方和减去两倍的两边长度的乘积的余弦值,即:c^2 = a^2 + b^2 - 2abcosCa^2 = b^2 + c^2 - 2bccosAb^2 = a^2 + c^2 - 2accosB同时,余弦函数也有以下基本关系式:cosA = (b^2 + c^2 - a^2) / 2bccosB = (a^2 + c^2 - b^2) / 2accosC = (a^2 + b^2 - c^2) / 2ab3. 正切函数的基本关系式正切函数(tan)是最常用的三角函数之一。
根据正弦函数和余弦函数之间的关系,可以得到正切函数的基本关系式:tanA = sinA / cosAtanB = sinB / cosBtanC = sinC / cosC此外,三角函数还有其他一些重要的性质和关系式,如三角函数的周期性、奇偶性、对称性等,这些性质对于解决各类数学问题具有重要的作用。
总结起来,三角函数的基本关系式是解析几何和三角学中重要的概念,能够帮助我们计算和推导各种三角函数问题。
通过正弦函数、余弦函数和正切函数之间的关系,我们可以更好地理解三角形的性质和角度之间的关系。
熟练掌握这些基本关系式,可以在解决实际问题时提高计算的准确性和效率。
三角函数正余弦定理公式大全三角函数是数学中的一项重要内容,其常用到的公式有正弦定理和余弦定理。
这两个定理在解决三角形问题时起着非常关键的作用,可以帮助我们求解三角形的各个边长和角度。
下面将详细介绍三角函数的正弦定理和余弦定理的公式及其应用。
1.正弦定理:在任意三角形ABC中,边长分别为a,b,c,对应的角度为A,B,C,则有以下公式成立:sinA / a = sinB / b = sinC / c其中,a,b,c为三角形ABC的边长,A,B,C为对应的角度。
正弦定理可以用来求解三角形的边长或角度,只要已知任意两个角或边长即可。
应用1:已知三角形两边和夹角的情况下,可以利用正弦定理求解第三边的长度。
例如:已知三角形ABC中,边AB = 5 cm,边AC = 7 cm,∠BAC = 60°,求边BC的长度。
解:根据正弦定理可得:sin∠BAC / 5 = sin∠ABC / BC将∠BAC=60°代入,可得:sin60° / 5 = sin∠ABC / BC√3 / 2 / 5 = sin∠ABC / BC√3 / 10 = sin∠ABC / BC再将sin∠ABC的值代入,求得BC的值。
2.余弦定理:在任意三角形ABC中,边长分别为a,b,c,对应的角度为A,B,C,则有以下公式成立:c^2 = a^2 + b^2 - 2ab * cosC其中,a,b,c为三角形ABC的边长,A,B,C为对应的角度。
余弦定理可以用来求解三角形的边长或角度,只要已知任意一个角的两边长度即可。
应用2:已知三角形两边和夹角的情况下,可以利用余弦定理求解第三边的长度。
例如:已知三角形ABC中,边AB = 5 cm,边AC = 7 cm,∠BAC = 60°,求边BC的长度。
解:根据余弦定理可得:BC^2 = AB^2 + AC^2 - 2 * AB * AC * cos∠BAC将已知数值代入,可得:BC^2 = 5^2 + 7^2 - 2 * 5 * 7 * cos60°BC^2=25+49-70*0.5BC^2=25+49-35BC^2=39BC=√39求得边BC的长度。
正弦定理和余弦定理【考点梳理】1.正弦定理和余弦定理(1)S=12a·h a(h a表示边a上的高);(2)S=12ab sin C=12ac sin B=12bc sin A.(3)S=12r(a+b+c)(r为内切圆半径).【考点突破】考点一、利用正、余弦定理解三角形【例1】在△ABC中,∠BAC=3π4,AB=6,AC=32,点D在BC边上,AD=BD,求AD的长.[解析] 设△ABC的内角∠BAC,B,C所对边的长分别是a,b,c,由余弦定理得a2=b2+c2-2bc cos∠BAC=(32)2+62-2×32×6×cos 3π4=18+36-(-36)=90,所以a=310.又由正弦定理得sin B=b sin∠BACa=3310=1010,由题设知0<B<π4,所以cos B=1-sin 2B=1-110=31010.在△ABD中,因为AD=BD,所以∠ABD=∠BAD,所以∠ADB=π-2B,故由正弦定理得AD=AB·sin Bsin(π-2B)=6sin B2sin B cos B=3cos B=10.【类题通法】1.正弦定理是一个连比等式,只要知道其比值或等量关系就可以运用正弦定理通过约分达到解决问题的目的.2.(1)运用余弦定理时,要注意整体思想的运用.(2)在已知三角形两边及其中一边的对角,求该三角形的其它边角的问题时,首先必须判断是否有解,如果有解,是一解还是两解,注意“大边对大角”在判定中的应用.【对点训练】1.已知a,b,c分别为△ABC三个内角A,B,C的对边,且(b-c)(sin B +sin C)=(a-3c)sin A,则角B的大小为()A.30°B.45°C.60°D.120°[答案]A[解析] 由正弦定理a sin A =b sin B =csin C 及(b -c )·(sin B +sin C )=(a -3c )sin A 得(b -c )(b +c )=(a -3c )a ,即b 2-c 2=a 2-3ac ,∴a 2+c 2-b 2=3ac .又∵cos B =a 2+c 2-b 22ac ,∴cos B =32,∴B =30°.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.[答案] 2113[解析] 在△ABC 中,∵cos A =45,cos C =513,∴sin A =35,sin C =1213,∴sin B =sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365.又∵a sin A =b sin B ,∴b =a sin B sin A =1×636535=2113.考点二、判断三角形的形状【例2】(1)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,满足a cos A =b cos B ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形(2)设角A ,B ,C 是△ABC 的三个内角,则“A +B <C ”是“△ABC 是钝角三角形”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] (1)D (2)A[解析] (1)因为a cos A =b cos B ,由正弦定理得sin A cos A =sin B cos B ,即sin 2A =sin 2B ,所以2A =2B 或2A +2B =π,即A =B 或A +B =π2,所以△ABC 为等腰三角形或直角三角形,故选D.(2)由A +B +C =π,A +B <C ,可得C >π2,故三角形ABC 为钝角三角形,反之不成立.故选A. 【类题通法】1.判定三角形形状的途径:(1)化边为角,通过三角变换找出角之间的关系.(2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.2.无论使用哪种方法,都不要随意约掉公因式;要移项提取公因式,否则会有漏掉一种形状的可能. 【对点训练】1.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若2sin A cos B =sin C ,那么△ABC 一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形[答案] B[解析] 法一:由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B .法二:由正弦定理得2a cos B =c ,再由余弦定理得2a ·a 2+c 2-b 22ac =c ⇒a 2=b 2⇒a =b .2.在△ABC 中,c =3,b =1,∠B =π6,则△ABC 的形状为( )A.等腰直角三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形[答案] D[解析]根据余弦定理有1=a2+3-3a,解得a=1或a=2,当a=1时,三角形ABC为等腰三角形,当a=2时,三角形ABC为直角三角形,故选D.考点三、与三角形面积有关的问题【例3】已知a,b,c分别为△ABC内角A,B,C的对边,sin2B=2sin A sinC.(1)若a=b,求cos B;(2)设B=90°,且a=2,求△ABC的面积.[解析] (1)由题设及正弦定理可得b2=2ac.又a=b,可得b=2c,a=2c.由余弦定理可得cos B=a2+c2-b22ac=14.(2)由(1)知b2=2ac.因为B=90°,由勾股定理得a2+c2=b2,故a2+c2=2ac,进而可得c=a= 2.所以△ABC的面积为12×2×2=1.【类题通法】三角形面积公式的应用方法:(1)对于面积公式S=12ab sin C=12ac sin B=12bc sin A,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【对点训练】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(1)求C;(2)若c=7,△ABC的面积为332,求△ABC的周长.[解析] (1)由已知及正弦定理得2cos C(sin A cos B+sin B cos A)=sin C,即2cos C sin(A+B)=sin C,故2sin C cos C=sin C.可得cos C=12,所以C=π3.(2)由已知得12ab sin C=332.又C=π3,所以ab=6.由已知及余弦定理得a2+b2-2ab cos C=7,故a2+b2=13,从而(a+b)2=25.所以△ABC的周长为5+7.。
第七节 正弦定理和余弦定理一、基础知识 1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径).正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ; (4)a +b +c sin A +sin B +sin C =a sin A. 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C . 3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高);(2)S △ABC =12ab sin C =12bc sin A =12ac sin B ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).二、常用结论汇总——规律多一点 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.第一课时 正弦定理和余弦定理(一) 考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形[典例] (1)(2019·江西重点中学联考)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.[解析] (1)由正弦定理可得sin B =b sin A a =2×sin 30°3=13,∵a =3>b =2,∴B <A ,即B为锐角,∴cos B =1-sin 2B =223. (2)∵sin B =12且B ∈(0,π),∴B =π6或B =5π6,又∵C =π6,∴B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即3sin 2π3=b sinπ6,解得b =1. [答案] (1)223 (2)1考法(二) 余弦定理解三角形[典例] (1)(2019·山西五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)(2018·泰安二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b2c -a=sin Asin B +sin C,则角B =________.[解析](1)∵b cos A +a cos B =c 2,∴由余弦定理可得b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac=c 2,整理可得2c 2=2c 3,解得c =1,则△ABC 的周长为a +b +c =2+2+1=5.(2)由正弦定理可得c -b 2c -a =sin A sin B +sin C =ab +c, ∴c 2-b 2=2ac -a 2,∴c 2+a 2-b 2=2ac ,∴cos B =a 2+c 2-b 22ac =22,∵0<B <π,∴B =π4.[答案] (1)D (2)π4[题组训练]1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24B .-24C.34D .-34解析:选B 由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12 B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以t a n A =-1, 因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin Aa =2×222=12, 又0<C <π4,所以C =π6.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.解:(1)由正弦定理可得b 2+c 2=a 2+bc ,由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C 得c =a sin C sin A=3×3+2232×6=1+263.考点二 判定三角形的形状[典例] (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[解析] (1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.[答案] (1)B (2)C[变透练清] 1.变条件若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________.解析:根据正弦定理可得a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角,所以△ABC 是钝角三角形. 答案:钝角三角形 2.变条件若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.解析:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0, 所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形. 答案:等腰或直角三角形 3.变条件若本例(2)条件改为“cos A cos B =ba=2”,那么△ABC 的形状为________.解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又因为A ,B ∈(0,π),所以2A =π-2B ,即A +B =π2,所以C =π2,于是△ABC是直角三角形.答案:直角三角形[课时跟踪检测]A 级1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.(2018·重庆六校联考)在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形解析:选A 因为cos B =ac ,由余弦定理得a 2+c 2-b 22ac =a c ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3, cos B =23,则b =( )A .14B .6 C.14D.6解析:选D ∵b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,∴b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,∴b = 6.5.(2019·莆田调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C+c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sin C sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6. 6.(2019·山西大同联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A.5 B .3 C.10D .4解析:选B 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C , ∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.7.在△ABC 中,AB =6,A =75°,B =45°,则AC =________. 解析:C =180°-75°-45°=60°, 由正弦定理得AB sin C =ACsin B ,即6sin 60°=AC sin 45°,解得AC =2. 答案:28.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sinB ,则c =________.解析:∵3sin A =2sin B ,∴3a =2b . 又∵a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝⎛⎭⎫-14=16,∴c =4. 答案:49.(2018·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sinB =________,c =________.解析:由正弦定理a sin A =bsin B ,得sin B =b a ·sin A =27×32=217.由余弦定理a 2=b 2+c 2-2bc cos A , 得7=4+c 2-4c ×cos 60°,即c 2-2c -3=0,解得c =3或c =-1(舍去). 答案:2173 10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.解析:因为sin A ,sin B ,sin C 成等差数列,所以2sin B =sin A +sin C .由正弦定理得a +c =2b ,又因为a =2c ,可得b =32c ,所以cos A =b 2+c 2-a 22bc=94c 2+c 2-4c 22×32c 2=-14.答案:-1411.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.解:(1)证明:因为A =2B ,所以由正弦定理a sin A =b sin B ,得a sin 2B =bsin B ,所以a =2b cos B .(2)由余弦定理,a 2=b 2+c 2-2bc cos A , 因为b =2,c =4,A =2B ,所以16c os 2B =4+16-16cos 2B ,所以c os 2B =34,因为A +B =2B +B <π,所以B <π3,所以cos B =32,所以B =π6.12.(2019·绵阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,结合正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 又由余弦定理,得a 2=b 2+c 2-2bc cos A , 所以bc =-2bc cos A ,即cos A =-12.由于A 为△ABC 的内角,所以A =2π3.(2)由已知2a sin A =(2b +c )sin B +(2c +b )sin C ,结合正弦定理,得2sin 2A =(2sin B +sin C )sin B +(2sin C +sin B )sin C , 即sin 2A =sin 2B +sin 2C +sin B sin C =sin 22π3=34.又由sin B +sin C =1,得sin 2B +sin 2C +2sin B sin C =1,所以sin B sin C =14,结合sin B +sin C =1,解得sin B =sin C =12.因为B +C =π-A =π3,所以B =C =π6,所以△ABC 是等腰三角形.B 级1.(2019·郑州质量预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D .6解析:选A 由2c os 2A +B2-cos 2C =1,得1+c os(A +B )-(2c os 2C -1)=2-2c os 2C -cos C =1,即2c os 2C +cos C -1=0,解得cos C =12或cos C =-1(舍去).由4sin B =3sin A及正弦定理,得4b =3a ,结合a -b =1,得a =4,b =3.由余弦定理,知c 2=a 2+b 2-2ab cos C =42+32-2×4×3×12=13,所以c =13.2.(2019·长春模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n Cc,若sin(A -B )+sin C =2sin 2B ,则a +b =________. 解析:∵2sin A a =t a n C c =sin C c cos C ,且由正弦定理可得a =2R sin A ,c =2R sin C (R 为△ABC的外接圆的半径),∴cos C =12.∵C ∈(0,π),∴C =π3.∵sin(A -B )+sin C =2sin 2B ,sin C =sin(A +B ),∴2sin A cos B =4sin B cos B .当cos B =0时,B =π2,则A =π6,∵c =3, ∴a =1,b =2,则a +b =3.当cos B ≠0时,sin A =2sin B ,即a =2b .∵cos C =a 2+b 2-c 22ab =12,∴b 2=1,即b =1,∴a =2,则a +b =3.综上,a +b =3.答案:33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b . (1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解:(1)2a cos C -c =2b ⇒2sin A cos C -sin C =2sin B ⇒2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C , ∵sin C ≠0,∴cos A =-12,又A ∈(0,π),∴A =2π3.(2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A ,∴sin ∠ADB =AB sin A BD =22.又∠ADB ∈(0,π),A =2π3,∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,b =c =2,由余弦定理,得a 2=c 2+b 2-2c ·b ·cos A =(2)2+(2)2-2×2×2c os 2π3=6,∴a = 6.第二课时 正弦定理和余弦定理(二) 考点一 有关三角形面积的计算[典例] (1)(2019·广州调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos B =34,则△ABC 的面积等于( )A .37 B.372C .9D.92(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若△ABC 的面积为34(a 2+c 2-b 2),则B =________.[解析] (1)法一:由余弦定理b 2=a 2+c 2-2ac cos B ,代入数据,得a =3,又cos B =34,B ∈(0,π),所以sin B =74,所以S △ABC =12ac sin B =372. 法二:由cos B =34,B ∈(0,π),得sin B =74,由正弦定理b sin B =csin C 及b =7,c =4,可得sin C =1,所以C =π2,所以sin A =cos B =34,所以S △ABC =12bc sin A =372.(2)由余弦定理得cos B =a 2+c 2-b 22ac ,∴a 2+c 2-b 2=2ac cos B . 又∵S =34(a 2+c 2-b 2),∴12ac sin B =34×2ac cos B , ∴t a n B =3,∵B ∈()0,π,∴B =π3.[答案] (1)B (2)π3[变透练清] 1.变条件本例(1)的条件变为:若c =4,sin C =2sin A ,sin B =154,则S △ABC =________. 解析:因为sin C =2sin A ,所以c =2a ,所以a =2,所以S △ABC =12ac sin B =12×2×4×154=15.答案:15 2.变结论本例(2)的条件不变,则C 为钝角时,ca的取值范围是________.解析:∵B =π3且C 为钝角,∴C =2π3-A >π2,∴0<A <π6 .由正弦定理得ca =sin ⎝⎛⎭⎫2π3-A sin A=32cos A +12sin A sin A =12+32·1t a n A.∵0<t a n A <33,∴1t a n A>3, ∴c a >12+32×3=2,即ca >2. 答案:(2,+∞)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.解:(1)由已知及正弦定理得(2sin B -sin A )cos C =sin C cos A , 即2sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sin B , ∵B ∈(0,π),∴sin B >0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由(1)知,C =π3,故S =12ab sin C =12ab sin π3=433,解得ab =163.由余弦定理可得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab , 又c =3,∴(a +b )2=c 2+3ab =32+3×163=25,得a +b =5.∴△ABC 的周长为a +b +c =5+3=8.[解题技法]1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. 考点二 平面图形中的计算问题[典例] (2018·广东佛山质检)如图,在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1. (1)若AC =5,求△ABC 的面积; (2)若∠ADC =π6,CD =4,求sin ∠CAD .[解] (1)在△ABC 中,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·c os ∠ABC , 即5=1+BC 2+2BC ,解得BC =2,所以△ABC 的面积S △ABC =12AB ·BC ·sin ∠ABC =12×1×2×22=12.(2)设∠CAD =θ,在△ACD 中,由正弦定理得AC sin ∠ADC =CDsin ∠CAD ,即AC sin π6=4sin θ, ① 在△ABC 中,∠BAC =π2-θ,∠BCA =π-3π4-⎝⎛⎭⎫π2-θ=θ-π4, 由正弦定理得AC sin ∠ABC =ABsin ∠BCA ,即AC sin 3π4=1sin ⎝⎛⎭⎫θ-π4,② ①②两式相除,得sin 3π4sin π6=4sin ⎝⎛⎭⎫θ-π4sin θ,即4⎝⎛⎭⎫22sin θ-22cos θ=2sin θ,整理得sin θ=2cos θ. 又因为sin 2θ+c os 2θ=1,所以sin θ=255,即sin ∠CAD =255.[解题技法]与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.[提醒] 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.[题组训练]1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________.解析:设AB =a ,∵AB =AD,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a 3. 在△ABD 中,c os ∠ADB =a 2+4a 23-a22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63. 在△BDC 中,BD sin C =BCsin ∠BDC, ∴sin C =BD ·sin ∠BDC BC =66.答案:662.如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列.(1)求sin ∠CED ; (2)求BE 的长. 解:设∠CED =α.因为∠CBE ,∠BEC ,∠BCE 成等差数列, 所以2∠BEC =∠CBE +∠BCE ,又∠CBE +∠BEC +∠BCE =π,所以∠BEC =π3.(1)在△CDE 中,由余弦定理得EC 2=CD 2+DE 2-2CD ·DE ·c os ∠EDC , 即7=CD 2+1+CD ,即CD 2+CD -6=0, 解得CD =2(CD =-3舍去). 在△CDE 中,由正弦定理得EC sin ∠EDC =CDsin α,于是sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知0<α<π3,由(1)知cos α=1-sin 2α=1-2149=277,又∠AEB =π-∠BEC -α=2π3-α,所以c os ∠AEB =c os ⎝⎛⎭⎫2π3-α=c os 2π3cos α+sin 2π3sin α=-12×277+32×217=714. 在Rt △EAB 中,c os ∠AEB =EA BE =2BE =714,所以BE =47.考点三 三角形中的最值、范围问题[典例] (1)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B -A )=2sin 2A ,则角A 的取值范围为( )A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π4 C.⎣⎡⎦⎤π6,π4D.⎣⎡⎦⎤π6,π3(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2A +cos 2B =2cos 2C ,则cos C 的最小值为( )A.32B.22C.12D .-12[解析] (1)在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin 2A ,即2sin B cos A =22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理得,b=2a ,所以A 为锐角.又因为sin B =2sin A ∈(0,1],所以sin A ∈⎝⎛⎦⎤0,22,所以A ∈⎝⎛⎦⎤0,π4. (2)因为cos 2A +cos 2B =2cos 2C ,所以1-2sin 2A +1-2sin 2B =2-4sin 2C ,得a 2+b 2=2c 2,cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12,当且仅当a =b 时等号成立,故选C. [答案] (1)B (2)C[解题技法]1.三角形中的最值、范围问题的解题策略解与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角取值范围等求解即可.2.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解, 已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,b -c <a <b +c ,三角形中大边对大角等.[题组训练]1.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A = b sin A ,则sin A +sin C 的最大值为( )A.2B.98C .1D.78解析:选B ∵a cos A =b sin A ,由正弦定理可得,sin A cos A =sin B sin A ,∵sin A ≠0,∴cos A =sin B ,又B 为钝角,∴B =A +π2,sin A +sin C =sin A +sin(A +B )=sin A +cos 2A =sin A +1-2sin 2A =-2⎝⎛⎭⎫sin A -142+98,∴sin A +sin C 的最大值为98. 2.(2018·哈尔滨三中二模)在△ABC 中,已知c =2,若sin 2A +sin 2B -sin A sin B =sin 2C ,则a +b 的取值范围为________.解析:∵sin 2A +sin 2B -sin A sin B =sin 2C ,∴a 2+b 2-ab =c 2,∴cos C =a 2+b 2-c 22ab =12,又∵C ∈(0,π),∴C =π3.由正弦定理可得a sin A =b sin B =2sin π3=433,∴a =433sin A ,b =433sin B .又∵B =2π3-A ,∴a +b =433sin A +433sin B =433sin A +433sin ⎝⎛⎭⎫2π3-A =4sin ⎝⎛⎭⎫A +π6.又∵A ∈⎝⎛⎭⎫0,2π3,∴A +π6∈⎝⎛⎭⎫π6,5π6,∴sin ⎝⎛⎭⎫A +π6∈⎝⎛⎦⎤12,1,∴a +b ∈(2,4]. 答案:(2,4]3.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos B b +cos C c =sin A 3sin C .(1)求b 的值;(2)若cos B +3sin B =2,求△ABC 面积的最大值.解:(1)由题意及正、余弦定理得a 2+c 2-b 22abc +a 2+b 2-c 22abc =3a 3c ,整理得2a 22abc =3a3c ,所以b = 3.(2)由题意得cos B +3sin B =2sin ⎝⎛⎭⎫B +π6=2, 所以sin ⎝⎛⎭⎫B +π6=1, 因为B ∈(0,π),所以B +π6=π2,所以B =π3.由余弦定理得b 2=a 2+c 2-2ac cos B , 所以3=a 2+c 2-ac ≥2ac -ac =ac , 即ac ≤3,当且仅当a =c =3时等号成立. 所以△ABC 的面积S △ABC =12ac sin B =34ac ≤334,当且仅当a =c =3时等号成立.故△ABC 面积的最大值为334.考点四 解三角形与三角函数的综合应用考法(一) 正、余弦定理与三角恒等变换[典例] (2018·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 b sin A =ac os ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. [解] (1)在△ABC 中,由正弦定理a sin A =b sin B ,可得b sin A =a sin B .又因为b sin A =ac os ⎝⎛⎭⎫B -π6, 所以a sin B =ac os ⎝⎛⎭⎫B -π6, 即sin B =32cos B +12sin B , 所以t a n B = 3.因为B ∈(0,π),所以B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,得b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =ac os ⎝⎛⎭⎫B -π6,可得sin A =37. 因为a <c ,所以cos A =27. 所以sin 2A =2sin A cos A =437,cos 2A =2c os 2A -1=17.所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314. 考法(二) 正、余弦定理与三角函数的性质[典例] (2018·辽宁五校联考)已知函数f (x )=c os 2x +3sin(π-x )c os(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.[解] (1)f (x )=c os 2x -3sin x cos x -12=1+cos 2x 2-32sin 2x -12=-sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,又∵x ∈[0,π],∴函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π. (2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π6, ∴f (A )=-sin ⎝⎛⎭⎫2A -π6=-1, ∵△ABC 为锐角三角形,∴0<A <π2,∴-π6<2A -π6<5π6,∴2A -π6=π2,即A =π3.又∵b sin C =a sin A ,∴bc =a 2=4, ∴S △ABC =12bc sin A = 3.[对点训练]在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2a -c )cos B -b cos C =0. (1)求角B 的大小;(2)设函数f (x )=2sin x cos x cos B -32cos 2x ,求函数f (x )的最大值及当f (x )取得最大值时x 的值.解:(1)因为(2a -c )cos B -b cos C =0, 所以2a cos B -c cos B -b cos C =0, 由正弦定理得2sin A cos B -sin C cos B -cos C sin B =0, 即2sin A cos B -sin(C +B )=0,又因为C +B =π-A ,所以sin(C +B )=sin A . 所以sin A (2cos B -1)=0.在△ABC 中,sin A ≠0,所以cos B =12,又因为B ∈(0,π),所以B =π3.(2)因为B =π3,所以f (x )=12sin 2x -32cos 2x =sin ⎝⎛⎭⎫2x -π3, 令2x -π3=2k π+π2(k ∈Z),得x =k π+5π12(k ∈Z),即当x =k π+5π12(k ∈Z)时,f (x )取得最大值1.[课时跟踪检测]A 级1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则 △ABC 的面积为( )A.12 B.14C .1D .2解析:选A 由cos 2A =sin A ,得1-2sin 2A =sin A ,解得sin A =12(负值舍去),由bc =2,可得△ABC 的面积S =12bc sin A =12×2×12=12.2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若(2a +c )cos B +b cos C =0,则角B 的大小为( )A.π6 B.π3C.2π3D.5π6解析:选C 由已知条件和正弦定理,得(2sin A +sin C )cos B +sin B cos C =0.化简,得2sin A cos B +sin A =0.因为角A 为三角形的内角,所以sin A ≠0,所以cos B =-12,所以B =2π3. 3.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =3,S △ABC =22,则b 的值为( )A .6B .3C .2D .2或3解析:选D 因为S △ABC =12bc sin A =22,所以bc =6,又因为sin A =223,A ∈⎝⎛⎭⎫0,π2, 所以cos A =13,因为a =3,所以由余弦定理得9=b 2+c 2-2bc cos A =b 2+c 2-4,b 2+c 2=13,可得b =2或b =3. 4.(2018·昆明检测)在△ABC 中,已知AB =2,AC =5,t a n ∠BAC =-3,则BC 边上的高等于( )A .1 B.2 C.3D .2解析:选A 法一:因为t a n ∠BAC =-3,所以sin ∠BAC =310,c os ∠BAC =-110.由余弦定理,得BC 2=AC 2+AB 2-2AC ·ABc os ∠BAC =5+2-2×5×2×⎝⎛⎭⎫-110=9,所以BC =3,所以S △ABC =12AB ·AC sin ∠BAC =12×2×5×310=32,所以BC 边上的高h =2S △ABCBC =2×323=1.法二:在△ABC 中,因为t a n ∠BAC =-3<0,所以∠BAC 为钝角,因此BC 边上的高小于2,结合选项可知选A.5.(2018·重庆九校联考)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,且a sin B =3b cos A ,当b +c =4时,△ABC 面积的最大值为( )A.33B.32C.3D .23解析:选C 由a sin B =3b cos A ,得sin A sin B =3sin B cos A ,∴t a n A =3,∵0<A <π,∴A =π3,故S △ABC =12bc sin A =34bc ≤34⎝⎛⎭⎫b +c 22=3(当且仅当b =c =2时取等号),故选C.6.(2019·安徽名校联盟联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( )A .2+3B .2+2C .3D .3+2解析:选A 由b +2c cos A =0,得b +2c ·b 2+c 2-a 22bc =0,整理得2b 2=a 2-c 2.由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+3c 24ac ≥23ac 4ac =32,当且仅当a =3c 时等号成立,此时角B 取得最大值,将a =3c 代入2b 2=a 2-c 2可得b =c .又因为bc =1,所以b =c =1,a =3,故△ABC 的周长为2+ 3.7.在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:由余弦定理知72=52+BC 2-2×5×BC ×cos 120°, 即49=25+BC 2+5BC ,解得BC =3(负值舍去). 故S △ABC =12AB ·BC sin B =12×5×3×32=1534.答案:15348.(2019·长春质量检测)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若 12b cos A =sin B ,且a =23,b +c =6,则△ABC 的面积为________.解析:由题意可知cos A 2=sin B b =sin Aa ,因为a =23,所以t a n A =3,因为0<A <π,所以A =π3,由余弦定理得12=b 2+c 2-bc =(b +c )2-3bc ,又因为b +c =6,所以bc =8,从而△ABC 的面积为12bc sin A =12×8×sin π3=2 3.答案:239.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠BAC =π2,点D 在边BC上,AD =1,且BD =2DC ,∠BAD =2∠DAC ,则sin Bsin C=________.解析:由∠BAC =π2及∠BAD =2∠DAC ,可得∠BAD =π3,∠DAC =π6.由BD =2DC ,令DC =x ,则BD =2x .因为AD =1,在△ADC 中,由正弦定理得1sin C =x sin π6,所以sin C =12x,在△ABD 中,sin B =sin π32x =34x ,所以sin B sin C =34x 12x=32.答案:3210.(2018·河南新乡二模)如图所示,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,若DE =22,则cos A =________.解析:∵AD =DB ,∴∠A =∠ABD ,∠BDC =2∠A .设AD =DB =x , ∴在△BCD 中,BC sin ∠BDC =DB sin C,可得4sin 2A =xsin π3. ①在△AED 中,DE sin A =AD sin ∠AED ,可得22sin A =x1. ② 联立①②可得42sin A cos A =22sin A 32,解得cos A =64.答案:6411.(2019·南宁摸底联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知 c (1+cos B )=b (2-cos C ).(1)求证:2b =a +c ;(2)若B =π3,△ABC 的面积为43,求b .解:(1)证明:∵c (1+cos B )=b (2-cos C ),∴由正弦定理可得sin C +sin C cos B =2sin B -sin B cos C , 即sin C cos B +sin B cos C +sin C =sin(B +C )+sin C =2sin B , ∴sin A +sin C =2sin B ,∴a +c =2b .(2)∵B =π3,∴△ABC 的面积S =12ac sin B =34ac =43,∴ac =16.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac =(a +c )2-3ac . ∵a +c =2b ,∴b 2=4b 2-3×16,解得b =4. 12.在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长; (2)求c os ⎝⎛⎭⎫A -π6的值. 解:(1)因为cos B =45,0<B <π,所以sin B =35.由正弦定理得AC sin B =AB sin C ,所以AB =AC ·sin Csin B =6×2235=5 2.(2)在△ABC 中,因为A +B +C =π,所以A =π-(B +C ), 又因为cos B =45,sin B =35,所以cos A =-c os(B +C )=-c os ⎝⎛⎭⎫B +π4=-cos Bc os π4+sin B sin π4=-45×22+35×22=-210.因为0<A <π,所以sin A =1-c os 2A =7210. 因此,c os ⎝⎛⎭⎫A -π6=cos Ac os π6+sin A sin π6=-210×32+7210×12=72-620. B 级1.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2ba的取值范围是( )A .(2,2)B .(2,6)C .(2,3)D .(6,4)解析:选B ∵B =2A ,∴sin B =sin 2A =2sin A cos A ,∴ba =2cos A .又C =π-3A ,C为锐角,∴0<π-3A <π2⇒π6<A <π3,又B =2A ,B 为锐角,∴0<2A <π2⇒0<A <π4,∴π6<A <π4,22<cosA <32,∴2<b a <3,∴2<2ba< 6. 2.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +bc os 2A =2a ,则角A 的取值范围是________.解析:由已知及正弦定理得sin 2A sin B +sin Bc os 2A =2sin A ,即sin B (sin 2A +c os 2A )=2sin A ,∴sin B =2sin A ,∴b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc =4a 2+c 2-a 24ac =3a 2+c 24ac ≥23ac 4ac =32,当且仅当c =3a 时取等号.∵A 为三角形的内角,且y =cos x 在(0,π)上是减函数,∴0<A ≤π6,则角A 的取值范围是⎝⎛⎦⎤0,π6. 答案:⎝⎛⎦⎤0,π6 3.(2018·昆明质检)如图,在平面四边形ABCD 中,AB ⊥BC ,AB =2,BD =5,∠BCD =2∠ABD ,△ABD 的面积为2.(1)求AD 的长; (2)求△CBD 的面积.解:(1)由已知S △ABD =12AB ·BD ·sin ∠ABD =12×2×5×sin ∠ABD =2,可得sin ∠ABD =255,又∠BCD =2∠ABD ,所以∠ABD ∈⎝⎛⎭⎫0,π2,所以c os ∠ABD =55. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2·AB ·BD ·c os ∠ABD ,可得AD 2=5,所以AD = 5.(2)由AB ⊥BC ,得∠ABD +∠CBD =π2,所以sin ∠CBD =c os ∠ABD =55. 又∠BCD =2∠ABD ,所以sin ∠BCD =2sin ∠ABD ·c os ∠ABD =45,∠BDC =π-∠CBD -∠BCD =π-⎝⎛⎭⎫π2-∠ABD -2∠ABD =π2-∠ABD =∠CBD , 所以△CBD 为等腰三角形,即CB =CD .在△CBD 中,由正弦定理BD sin ∠BCD =CDsin ∠CBD ,得CD =BD ·sin ∠CBDsin ∠BCD=5×5545=54, 所以S △CBD =12CB ·CD ·sin ∠BCD =12×54×54×45=58.。
三角函数中的正弦定理与余弦定理三角函数是数学中常用的一种函数,在几何学中也起着重要的作用。
本文将探讨三角函数中的两个关键定理:正弦定理和余弦定理。
这两个定理在解决各种三角形问题时非常有用,通过它们可以计算出未知的边长和角度。
一、正弦定理正弦定理是一个关于三角形边长和角度之间关系的定理,它适用于所有的三角形。
正弦定理表达的是三角形中一个角的正弦值与其对边的比例关系。
设三角形的三边分别为a、b、c,相应的角为A、B、C,那么正弦定理可以表示为:a/sinA = b/sinB = c/sinC这个定理的一种形式是:a/sinA = 2R其中,R是三角形外接圆的半径。
正弦定理的应用非常广泛,例如可以通过已知两边和一个角度,求解未知边长或者角度。
同时,它也常用于解决三角形的面积问题。
二、余弦定理余弦定理是另一个与三角形边长和角度之间关系的定理,与正弦定理相比,余弦定理更加灵活,适用于各种类型的三角形。
余弦定理表达的是三角形中一个角的余弦值与其对边的平方和其他两边的乘积之间的关系。
设三角形的三边分别为a、b、c,相应的角为A、B、C,那么余弦定理可以表示为:a^2 = b^2 + c^2 - 2bc*cosAb^2 = a^2 + c^2 - 2ac*cosBc^2 = a^2 + b^2 - 2ab*cosC余弦定理的应用非常广泛,可以通过已知三边求解未知角度或者通过已知两边和一个夹角求解未知边长。
三、正弦定理与余弦定理的关系正弦定理和余弦定理在解决三角形问题时可以互相补充使用。
根据正弦定理,我们可以求解任意一个角的正弦值,通过求解余弦,我们可以得知其他两个角的余弦值。
进而,我们可以通过余弦定理求解三角形的边长。
例如,在解决三角形的边长问题时,我们可以首先使用正弦定理求解一个角的正弦值,然后使用余弦定理求解其他两个角的余弦值。
通过已知角度的余弦值,我们可以应用余弦定理求解未知边长。
在实际应用中,我们常常需要通过这两个定理来解决与三角形相关的问题。
三角函数的正弦定理与余弦定理三角函数是数学中一门重要的分支,在几何学、物理学等领域有广泛的应用。
其中,正弦定理与余弦定理是三角函数的重要定理之一,可以用于求解各种三角形的边长和角度。
本文将分别介绍正弦定理与余弦定理的概念与应用。
一、正弦定理正弦定理是用来求解三角形的边长与角度之间的关系的定理。
对于任意三角形ABC,其三条边分别为a、b、c,对应的角度为A、B、C。
正弦定理可以表示为:a/sinA = b/sinB = c/sinC = 2R其中,R为该三角形外接圆的半径。
利用正弦定理,我们可以在已知两边和一个夹角的情况下,求解出第三条边的长度,或者在已知三边长度的情况下,求解出三个角度的大小。
这在实际问题求解中非常有用。
例如,已知一个三角形的两条边分别为3和4,夹角为60°,我们可以利用正弦定理来求解第三条边的长度。
根据正弦定理可知:a/sinA = b/sinB = c/sinC那么代入已知条件,我们可以得到:3/sin60° = c/sinC进而可以得到:c = (3 * sinC) / sin60°通过计算,我们可以求得c的值。
二、余弦定理余弦定理是用来求解三角形的边长和角度之间的关系的定理。
对于任意三角形ABC,其三条边分别为a、b、c,对应的角度为A、B、C。
余弦定理可以表示为:c^2 = a^2 + b^2 - 2abcosC利用余弦定理,我们可以在已知两边和一个夹角的情况下,求解出第三条边的长度,或者在已知三边长度的情况下,求解出三个角度的大小。
例如,我们已知一个三角形的两条边分别为3和4,夹角为60°,我们可以利用余弦定理来求解第三条边的长度。
根据余弦定理可知:c^2 = a^2 + b^2 - 2abcosC代入已知条件,我们可以得到:c^2 = 3^2 + 4^2 - 2 * 3 * 4 * cos60°通过计算,我们可以求得c的值。
三角函数的正弦定理与余弦定理三角函数是数学中重要的概念和工具,可以用来描述和计算各种角度和三角形的相关性质。
在三角函数中,正弦定理和余弦定理是两个基本定理,它们在解决三角形问题中起着重要作用。
接下来,我们将详细介绍正弦定理和余弦定理的定义及应用。
一、正弦定理正弦定理基于三角形的边与角之间的关系,给出了它们之间的数学表达式。
对于任意一个三角形ABC,其三个内角分别为∠A,∠B,∠C,对应的边长分别为a,b,c。
则有以下正弦定理的表述:a/sin∠A = b/sin∠B = c/sin∠C = 2R (R为三角形外接圆的半径)该定理表明,在三角形中,任意一条边的长度和其对应的角的正弦值之间存在一个比例关系,且该比例关系对于所有三边和三角角度都成立。
这个比例关系可以用来求解未知边长或角度大小,或者验证已知三角形的性质。
二、余弦定理余弦定理是另一个三角形中边与角之间的关系定理,它描述了三角形的边与角之间的关系,并且与正弦定理有一定的联系。
对于任意一个三角形ABC,其三个内角分别为∠A,∠B,∠C,对应的边长分别为a,b,c。
则有以下余弦定理的表述:c² = a² + b² - 2abcos∠C该定理表明,在三角形中,任意一边的平方等于其他两边平方之和减去两倍的两边的乘积与对应角的余弦值的乘积。
该定理在解决三角形问题中应用广泛,可以求解未知边长或角度大小,或者验证已知三角形的性质。
三、正弦定理与余弦定理的应用举例1. 求解三角形的边长和角度通过正弦定理和余弦定理,我们可以求解三角形中的各边长和角度大小。
以已知两边和一个夹角的情况为例,通过正弦定理可以求解出第三条边的长度,而通过余弦定理可以求解出未知角的大小。
这样,我们可以完整地确定三角形的大小和形状。
2. 验证三角形的性质在几何学中,我们有时需要验证一个三角形是否满足某些性质,比如是否为直角三角形或等边三角形。
通过正弦定理和余弦定理,我们可以计算出三角形的各边长和角度大小,然后根据已知的性质进行验证。
正弦与余弦定理和公式三角函数正弦与余弦的学习,在数学中只要记住相关的公式即可。
日常考试正弦和余弦的相关题目一般不会很难,是很多数学基础不是很牢的同学拿分的好题目。
但对于有些同学来说还是很难拿分,那是为什么呢?首先,我们要了解下正弦定理的应用领域在解三角形中,有以下的应用领域:(1)已知三角形的两角与一边,解三角形(2)已知三角形的两边和其中一边所对的角,解三角形(3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦正弦定理在△ABCxx,角A、B、C所对的边分别为a、b、c,则有a/sinA=b/sinB=c/sinC=2R(其中R 为三角形外接圆的半径)其次,余弦的应用领域余弦定理余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。
正弦定理的变形公式(1) a=2RsinA, b=2RsinB, c=2RsinC;(2) sinA :sinB :sinC = a :b :c;在一个三角形中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径已知三角形是确定的,利用正弦定理解三角形时,其解是唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及“大边对大角,大角对大边”定理和三角形内角和定理去考虑解决问题(3)相关结论:a/sinA=b/sinB=c/sinC=(a+b)/(sinA+sinB)=(a+b+c)/(sinA+sinB+sinC)c/sinC=c/sinD =BD=2R(R为外接圆半径)(4)设R为三角外接圆半径,公式可扩展为:a/sinA=b/sinB=c/sinC=2R,即当一内角为90°时,所对的边为外接圆的直径。
第6讲 正弦定理和余弦定理1.考查正、余弦定理的推导过程.2.考查利用正、余弦定理判断三角形的形状. 3.考查利用正、余弦定理解任意三角形的方法. 【复习指导】1.掌握正弦定理和余弦定理的推导方法.2.通过正、余定理变形技巧实现三角形中的边角转换,解题过程中做到正余弦定理的优化选择.基础梳理1.正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R 等形式,以解决不同的三角形问题. 2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角A 为钝角或直角图形关系 式 a <b sin Aa =b sin Ab sin A <a <ba ≥ba >ba ≤b解的 个数无解 一解 两解 一解 一解 无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角. 两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A 版教材习题改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ). A .5 2 B .10 2 C.1063D .5 6解析 由A +B +C =180°,知C =45°, 由正弦定理得:a sin A =csin C , 即1032=c 22.∴c =1063. 答案 C2.在△ABC 中,若sin A a =cos Bb ,则B 的值为( ). A .30° B .45° C .60° D .90° 解析 由正弦定理知:sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.答案 B3.(2011·郑州联考)在△ABC 中,a =3,b =1,c =2,则A 等于( ). A .30° B .45° C .60° D .75° 解析 由余弦定理得:cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,∵0<A <π,∴A =60°. 答案 C4.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ). A .3 3 B .2 3 C .4 3 D. 3 解析 ∵cos C =13,0<C <π, ∴sin C =223, ∴S △ABC =12ab sin C=12×32×23×223=4 3. 答案 C5.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________. 解析 ∵a 2+b 2-c 2=-3ab , ∴cos C =a 2+b 2-c 22ab =-32, 故C =150°为三角形的最大内角. 答案 150°考向一 利用正弦定理解三角形【例1】►在△ABC 中,a =3,b =2,B =45°.求角A ,C 和边c .[审题视点] 已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°, ∴sin A =32. ∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°, c =b sin Csin B =6+22;当A =120°时,C =180°-45°-120°=15°, c =b sin Csin B =6-22.(1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.【训练1】 (2011·北京)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________.解析 因为△ABC 中,tan A =2,所以A 是锐角, 且sin Acos A =2,sin 2A +cos 2A =1, 联立解得sin A =255, 再由正弦定理得a sin A =bsin B , 代入数据解得a =210.答案255 210考向二 利用余弦定理解三角形【例2】►在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c .(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.[审题视点] 由cos B cos C =-b2a +c ,利用余弦定理转化为边的关系求解.解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac , cos C =a 2+b 2-c 22ab .将上式代入cos B cos C =-b2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c , 整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12. ∵B 为三角形的内角,∴B =23π. (2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B , 得b 2=(a +c )2-2ac -2ac cos B , ∴13=16-2ac ⎝ ⎛⎭⎪⎫1-12,∴ac =3.∴S △ABC =12ac sin B =334.(1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.【训练2】(2011·桂林模拟)已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2A2+cos A=0.(1)求角A的值;(2)若a=23,b+c=4,求△ABC的面积.解(1)由2cos2A2+cos A=0,得1+cos A+cos A=0,即cos A=-1 2,∵0<A<π,∴A=2π3.(2)由余弦定理得,a2=b2+c2-2bc cos A,A=2π3,则a2=(b+c)2-bc,又a=23,b+c=4,有12=42-bc,则bc=4,故S△ABC =12bc sin A= 3.考向三利用正、余弦定理判断三角形形状【例3】►在△ABC中,若(a2+b2)sin(A-B)=(a2-b2)sin C,试判断△ABC的形状.[审题视点] 首先边化角或角化边,再整理化简即可判断.解由已知(a2+b2)sin(A-B)=(a2-b2)sin C,得b2[sin(A-B)+sin C]=a2[sin C-sin(A-B)],即b2sin A cos B=a2cos A sin B,即sin2B sin A cos B=sin2A cos B sin B,所以sin 2B=sin 2A,由于A,B是三角形的内角.故0<2A<2π,0<2B<2π.故只可能2A=2B或2A=π-2B,即A=B或A+B=π2.故△ABC 为等腰三角形或直角三角形.判断三角形的形状的基本思想是;利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.【训练3】 在△ABC 中,若a cos A =b cos B =ccos C ;则△ABC 是( ). A .直角三角形 B .等边三角形 C .钝角三角形D .等腰直角三角形解析 由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C (R 为△ABC 外接圆半径).∴sin A cos A =sin B cos B =sin C cos C .即tan A =tan B =tan C ,∴A =B =C . 答案 B考向三 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.[审题视点] 第(1)问根据三角形的面积公式和余弦定理列出关于a ,b 的方程,通过方程组求解;第(2)问根据sin C +sin(B -A )=2sin 2A 进行三角恒等变换,将角的关系转换为边的关系,求出边a ,b 的值即可解决问题. 解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎨⎧ a 2+b 2-ab =4,ab =4,解得⎩⎨⎧a =2,b =2. (2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A , 即sin B cos A =2sin A cos A .当cos A =0,即A =π2时,B =π6, a =433,b =233;当cos A ≠0时,得sin B =2sin A , 由正弦定理,得b =2a .联立方程组⎩⎨⎧a 2+b 2-ab =4,b =2a ,解得⎩⎪⎨⎪⎧a =233,b =433.所以△ABC 的面积S =12a b sin C =233.正弦定理、余弦定理、三角形面积公式对任意三角形都成立,通过这些等式就可以把有限的条件纳入到方程中,通过解方程组获得更多的元素,再通过这些新的条件解决问题.【训练3】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2. (1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值. 解 (1)因为cos B =45,所以sin B =35. 由正弦定理a sin A =b sin B ,可得a sin 30°=103, 所以a =53.(2)因为△ABC 的面积S =12ac ·sin B ,sin B =35, 所以310ac =3,ac =10.由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20.所以(a+c)2-2ac=20,(a+c)2=40.所以a+c=210.阅卷报告4——忽视三角形中的边角条件致错【问题诊断】考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件., 【防范措施】解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC中,a,b,c分别为内角A,B,C所对的边长,a =3,b=2,1+2cos(B+C)=0,求边BC上的高.错因忽视三角形中“大边对大角”的定理,产生了增根.实录由1+2cos(B+C)=0,知cos A=12,∴A=π3,根据正弦定理asin A=bsin B得:sin B=b sin Aa=22,∴B=π4或3π4.以下解答过程略.正解∵在△ABC中,cos(B+C)=-cos A,∴1+2cos(B+C)=1-2cos A=0,∴A=π3.在△ABC中,根据正弦定理asin A=bsin B,∴sin B=b sin Aa=22.∵a>b,∴B=π4,∴C=π-(A+B)=5 12π.∴sin C=sin(B+A)=sin B cos A+cos B sin A=22×12+22×32=6+24.∴BC边上的高为b sin C=2×6+24=3+12.【试一试】(2011·辽宁)△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos2A=2a.(1)求b a;(2)若c2=b2+3a2,求B.[尝试解答](1)由正弦定理得,sin2A sin B+sin B cos2A=2sin A,即sin B(sin2A+cos2A)=2sin A.故sin B=2sin A,所以ba= 2.(2)由余弦定理和c2=b2+3a2,得cos B=(1+3)a2c.由(1)知b2=2a2,故c2=(2+3)a2.可得cos2B=12,又cos B>0,故cos B=22,所以B=45°.。
三角函数正弦定理和余弦定理正弦定理和余弦定理是解决三角形的重要工具。
这些定理是数学中最耳熟能详的公式之一。
这篇文章将探讨正弦定理和余弦定理的定义、公式和应用。
一、正弦定理正弦定理表明三角形中任意两个角的正弦值与对应边的比例相等。
具体来说,正弦定理是指:对于任意三角形ABC,设三角形的三边分别为a、b和c,α、β和γ为三边相对的角,则有:\frac{a}{\sin \alpha}=\frac{b}{\sin \beta}=\frac{c}{\sin \gamma}这个公式常常用于计算三角形的任意一个角的正弦值,或者计算一个角的度数。
例如,假设三角形的三边分别为3、4和5,那么正弦定理可以写成:\frac{3}{\sin A}=\frac{4}{\sin B}=\frac{5}{\sin C}如果我们想知道角A的正弦值,我们只需要解出等式中的$\sin A$,就可以得到:\sin A=\frac{3}{5}这就是三角函数正弦定理的应用。
二、余弦定理余弦定理表明三角形中的一个角的余弦值等于与此角相对的两条边的平方和与第三条边平方差的比例。
具体来说,余弦定理是指:对于任意三角形ABC,设三角形的三边分别为a、b和c,α、β和γ为三边相对的角,则有:a^2=b^2+c^2-2bc\cos \alphab^2=a^2+c^2-2ac\cos \betac^2=a^2+b^2-2ab\cos \gamma可以根据需要使用任何一个等式,计算三角形的边长或角度。
例如,假设我们知道一个三角形的两条边a和b,以及它们之间的夹角γ,我们可以使用余弦定理求出第三条边c的长度。
具体来说,如果我们知道:a=3,b=4,γ=90°则可以使用余弦定理的第三个等式来求解c的长度:c^2=3^2+4^2-2\times 3\times 4\times \cos 90°=9+16-24\cos 90°=25因此,c的长度为5。
高中三角函数八大定理一、正弦定理(Sine Rule)设∠A、∠B、∠C分别为三角形ABC的内角,a、b、c分别为AC、BC、AB对应的边长,则有以下关系式:a/sin∠A = b/sin∠B = c/sin∠C二、余弦定理(Cosine Rule)设∠A、∠B、∠C分别为三角形ABC的内角,a、b、c分别为AC、BC、AB对应的边长,则有以下关系式:a² = b² + c² - 2bc*cos∠Ab² = a² + c² - 2ac*cos∠Bc² = a² + b² - 2ab*cos∠C三、正切定理(Tangent Rule)设∠A、∠B、∠C分别为三角形ABC的内角,a、b、c分别为AC、BC、AB对应的边长,则有以下关系式:tan∠A = (b*sin∠A)/(a - b*cos∠A)tan∠B = (a*sin∠B)/(b - a*cos∠B)tan∠C = (a*sin∠C)/(c - a*cos∠C)四、正弦余弦关系(Sine-Cosine Relationship)对于任意角θ,有以下关系式:sin²θ + cos²θ = 1五、正切关系(Tangent Relationship)对于任意角θ,有以下关系式:tanθ = sinθ/cosθ六、余切关系(Cotangent Relationship)对于任意角θ,有以下关系式:cotθ = cosθ/sinθ七、和差化积公式(Sum-Difference To Product Formulas)对于任意角θ和φ,有以下关系式:sin(θ+φ) = sinθ*cosφ + cosθ*sinφsin(θ-φ) = sinθ*cosφ - cosθ*sinφcos(θ+φ) = cosθ*cosφ - sinθ*sinφcos(θ-φ) = cosθ*cosφ + sinθ*sinφ八、倍角公式(Double Angle Formulas)对于任意角θ,有以下关系式:sin(2θ) = 2*sinθ*cosθcos(2θ) = cos²θ - sin²θ = 2*cos²θ - 1 = 1 - 2*sin²θtan(2θ) = (2*tanθ)/(1 - tan²θ)以上就是高中三角函数的八大定理,它们在解决三角形问题、证明三角函数性质等方面具有重要作用。
锐角三角函数与正弦定理余弦定理应用三角函数是数学中一类重要的函数,而锐角三角函数是指与直角三角函数相对应的三角函数,它在解决各种实际问题时发挥着重要的作用。
本文将探讨锐角三角函数及其应用中的正弦定理和余弦定理。
一、锐角三角函数1. 正弦函数在锐角三角函数中,正弦函数(sin)是我们最为熟悉的函数之一。
正弦函数是通过一个锐角对应的直角三角形中的对边与斜边的比值来定义的。
我们用sin表示正弦函数,其中角度表示为θ,那么正弦函数的定义可以表示为:sin(θ) = 对边/斜边正弦函数在几何学和物理学中有广泛的应用,例如在力学领域中,它可以用于描述物体在斜面上的运动。
2. 余弦函数与正弦函数相似,余弦函数(cos)也是锐角三角函数中的一种。
余弦函数是通过一个锐角对应的直角三角形中的邻边与斜边的比值来定义的。
我们用cos表示余弦函数,其中角度表示为θ,那么余弦函数的定义可以表示为:cos(θ) = 邻边/斜边余弦函数也在各个领域中有广泛的应用,比如电路中的交流电信号可以用余弦函数来描述。
二、正弦定理与余弦定理除了锐角三角函数之外,正弦定理和余弦定理也是解决三角形相关问题时常用的定理。
1. 正弦定理正弦定理是用来描述三角形中边与角之间的关系的。
对于一个任意的三角形ABC,其边长分别为a、b、c,对应的角度分别为A、B、C。
那么正弦定理可以表示为:a/sin(A) = b/sin(B) = c/sin(C)正弦定理的应用范围较广,在测量角度时,我们可以利用正弦定理来计算无法直接测量的角度。
2. 余弦定理余弦定理是用来描述三角形中边与角之间的关系的。
对于一个任意的三角形ABC,其边长分别为a、b、c,对应的角度分别为A、B、C。
那么余弦定理可以表示为:c^2 = a^2 + b^2 - 2ab*cos(C)余弦定理的应用非常广泛,特别是在解决三角形的边长和角度之间的关系问题时。
三、锐角三角函数与正弦定理余弦定理的应用在实际问题中,锐角三角函数及其应用通常用于解决各种三角形相关的计算及测量问题。
三角函数的正弦定理与余弦定理三角函数是数学中一个重要的概念,在解决三角形相关问题时得以广泛应用。
其中,正弦定理与余弦定理是求解三角形边长和角度的重要工具。
本文将详细介绍三角函数的正弦定理和余弦定理,并举例说明它们在实际问题中的应用。
一、正弦定理正弦定理是指在任意三角形中,三条边的长度与其对应的正弦值之间存在着一定的关系。
设三角形的边长分别为a、b、c,对应的内角为A、B、C,则正弦定理可以表达为:a/sinA = b/sinB = c/sinC其中,等式两边分别为三个边长与对应内角的正弦值的比值,且比值相等。
正弦定理常用于解决无法直接通过角度计算的三角形问题。
例如,在一个三角形中已知两个边长和它们之间的夹角,可以利用正弦定理求解第三边的长度。
二、余弦定理余弦定理是指在任意三角形中,三条边的长度与其对应的余弦值之间存在着一定的关系。
设三角形的边长分别为a、b、c,对应的内角为A、B、C,则余弦定理可以表达为:c^2 = a^2 + b^2 - 2abcosC其中,等式右侧的式子表示两条边长的平方和与它们对应夹角的余弦值的乘积,等于第三边长的平方。
余弦定理常用于求解三角形的边长和角度。
例如,已知一个三角形的三个边长,可以利用余弦定理计算出其中一个内角的大小。
应用实例:例1:已知三角形ABC中,边长a=5cm,边长b=7cm,夹角C=30°,求第三边c的长度。
解:根据正弦定理可得:c/sinC = a/sinAc/sin30° = 5cm/sinAsinA = (5cm/sin30°) * sinAsinA = 2.5cm此时可以利用反正弦函数求解A的大小:A = arcsin(2.5cm) = 39.24°同理可得,B = 180° - A - C = 110.76°因此,三角形ABC中,边长c的长度约为4.33cm,角A约为39.24°,角B约为110.76°。
三角公式总结⒈L 弧长=αR=nπR 180 S 扇=21L R=21R 2α=3602R n ⋅π ⒉正弦定理:A asin =B b sin =Cc sin = 2R (R 为三角形外接圆半径)⒊余弦定理:a 2=b 2+c2-2bcAcos b 2=a 2+c 2-2ac B cosc 2=a 2+b2-2abC cosbca cb A 2cos 222-+=⒋S⊿=21a ah ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin Bsin C sin=ACB a sin 2sin sin 2=BC A b sin 2sin sin 2=CB A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r为三角形内切圆半径)⒌同角关系:⑴商的关系:①θtg =x y =θθcos sin =θθsec sin ⋅ ②θθθθθcsc cos sin cos ⋅===y x ctg ③θθθtg ry⋅==cos sin④θθθθcsc cos 1sec ⋅===tg x r⑤θθθctg rx⋅==sin cos⑥θθθθsec sin 1csc ⋅===ctg y r⑵倒数关系:1sec cos csc sin =⋅=⋅=⋅θθθθθθctg tg ⑶平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg⑷)sin(cos sin 22ϕθθθ++=+b a b a (其中辅助角ϕ与点(a,b )在同一象限,且a b tg =ϕ)⒍函数y=++⋅)sin(ϕωx A k 的图象及性质:(0,0>>A ω)振幅A ,周期T=ωπ2, 频率f=T 1, 相位ϕω+⋅x ,初相ϕ⒎五点作图法:令ϕω+x 依次为ππππ2,23,,20 求出x 与y , 依点()y x ,作图 ⒏诱导公式 三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限⒐和差角公式①βαβαβαsin cos cos sin )sin(±=±②βαβαβαsin sin cos cos )cos(=± ③βαβαβαtg tg tg tg tg ⋅±=± 1)(④)1)((βαβαβαtg tg tg tg tg ⋅±=± ⑤γβγαβαγβαγβαγβαtg tg tg tg tg tg tg tg tg tg tg tg tg ⋅-⋅-⋅-⋅⋅-++=++1)( 其中当A+B+C=π时,有: i).tgC tgB tgA tgC tgB tgA ⋅⋅=++ii).1222222=++Ctg B tg C tg A tg B tg A tg⒑二倍角公式:(含万能公式)①θθθθθ212cos sin 22sin tg tg +==②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg⑤22cos 1cos 2θθ+=⒒三倍角公式:①sin)60sin(sin 4sin 4sin 33sin 3θθθθθ-︒=-= ②)60cos()60cos(cos 4cos 4cos 33cos 3θθθθθθ+︒-︒=+-=③)60()60(313323θθθθθθθ+⋅-⋅=--=tg tg tg tg tg tg tg⒓半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sinθθ-±= ②2cos 12sin 2θθ-=③2cos 12cosθθ+±=④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg⒔积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++=()[]βαβαβα--+-=cos )cos(21sin sin⒕和差化积公式: ①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos2cos2cos cos βαβαβα-+=+ ④2sin2sin2cos cos βαβαβα-+-=-⒖反三角函数:⒗最简单的三角方程最新文件仅供参考已改成word文本。
α D C B
A
β 三角函数与正余弦定理专项练习 一、选择题(共5小题)
1、已知23)2cos(=+ϕπ
,且2
πϕ<,则=ϕtan ( ) A 、23-
B 、33
C 、3-
D 、3 2、若x x sin |sin |+|cos |cos x x +x
x tan |tan |=-1,则角x 一定不是( ) A .第四象限角
B .第三象限角
C .第二象限角
D .第一象限角 3、如果函数)2cos(3ϕ+=x y 的图象关于点⎪⎭⎫ ⎝⎛0,34π中心对称,那么ϕ的最小值为( ) A 、6π B 、4π C 、3π D 、2
π 4、为了得到⎪⎭⎫ ⎝⎛
-=32sin πx y 的图象,只需把函数⎪⎭⎫ ⎝
⎛+=62sin πx y 的图象( ) A 、向左平移
4π个长度单位 B 、向右平移4
π个长度单位 C 、向左平移2π个长度单位 D 、向右平移2π个长度单位 5、如右图,D,C,B 三点在地面同一直线上,DC=a,从C,D 两点测得A 点仰角分别是β,α(α<β),则A 点离地面的高度AB 等于 ( )
A 、()αββα-sin sin sin a
B 、()βαβα-cos sin sin a
C 、()αββα-sin cos sin a
D 、()βαβα-cos sin cos a 二、填空题(共6小题)
1、已知α是第二象限角,3
4)2tan(-=+απ,则=αtan . 2、在△ABC 中,若a cos A 2 =b cos B 2 =c cos C 2
,则△ABC 的形状是_____________. 3、已知20,2πβπαπ<<<<,,13
5)cos(,43tan =--
=αβα则=βsin . 4、已知的对边,,的三个内角为C B A ABC ,,∆c b a ,向量)1,3(-=m ,)sin ,(cos A A n = ,若n m
⊥,且C c A b B a s i n c o s c o s =+,则角B= .
5、在△ABC 中,已知cos A =53,sin B =135,则cos C 的值为
6、在△ABC 中,tan A tan B = 2 c -b b
,则∠A 等于 . 三、解答题(共3小题)
1、函数()34
sin 324cos 4sin 22+-=x x x x f . (1)求()x f 的最小正周期及单调区间。
(2)令⎪⎭
⎫ ⎝⎛+
=3)(πx f x g ,判断)(x g 的奇偶性,并说明理由。
2、在ABC ∆中,a 、b 、c 分别为内角A 、B 、C 的对边,且.sin )2(sin )2(sin 2C b c B c b A a +++= (1)求A 的大小
(2)求C B sin sin +的最大值,并说出此时角B 的大小.
3、在△ABC 中,BC=a , AC=b , a, b 是方程02322=+-x x 的两个根,且2cos(A+B)=1 . 求:(1)角C 的度数 (2)AB 的长度 (3)△ABC 的面积
参考答案
一、选择题:C D A B A
二、填空题:
1、21-
2、等边三角形
3、65
63 4、6π 5、6516- 6、4π 三、解答题:
1、解:)32sin(2322cos 1322
sin )(π+=+-⋅-=x x x x f (1))(x f 最小正周期ππω
π42122===T ,
单调递增区间:()Z ∈⎥⎦
⎤⎢⎣⎡++-k k k ππππ43,435 单调递减区间:()Z ∈⎥⎦
⎤⎢⎣⎡++k k k ππππ437,43 (2)2cos 23)3(2
1sin 2)3()(x x x f x g =⎥⎦⎤⎢⎣⎡++=+=πππ,)(x g 的定义域为R ,关于原点对称,且)()2
cos(2)2cos(2)(x g x x x g ==-=-,所以)(x g 为偶函数。
2、解:(1) 由正弦定理,得()()c b c b c b a +++=2222,即.222bc c b a ++=
由余弦定理,得A bc c b a cos 2222-+=,所以.120︒=A
(2)因为︒=120A ,所以︒=+60C B ,故B C -︒=60 )60sin(sin 2
1cos 23)60sin(sin sin sin B B B B B C B +︒=+=-︒+=+ 所以当︒=30B 时,C B sin sin +取得最大值1 3、解:(1)cosC=cos[π-(A+B)]=-cos(A+B)=-
21 ∴C=120︒ (2)由题设:⎩⎨⎧=-=+2
32b a b a
∴AB 2=AC 2+BC 2-2AC •BC •cosC
120cos 222ab b a -+= ab b a ++=22102)32()(22=-=-+=ab b a 即AB=10
(3)S △ABC =2323221120sin 21sin 21=⋅⋅== ab C ab。