关于孪生素数猜想的一个证明
- 格式:pdf
- 大小:274.33 KB
- 文档页数:6
孪生素数猜想孪生素数是指相差为2的一对素数。
例如,(3,5)、(11,13)和(17,19)都是孪生素数对。
孪生素数猜想是指存在无穷多个孪生素数对的假设。
这个猜想是数论领域的一个重要问题,其解决与否一直备受数学界的关注。
在介绍孪生素数猜想之前,我们先了解一下素数。
素数是只能被1和自身整除的正整数。
例如,2、3、5、7、11、13等都是素数,而4、6、8、9等则不是素数。
素数的分布一直是数论中一个重要的研究方向。
孪生素数猜想的历史可以追溯到18世纪。
法国数学家朗勃朗-皮埃尔·贝努利在1742年的一封信中首次提出了这个猜想。
他认为存在无穷多对形如(p,p+2)的孪生素数。
这个猜想引起了众多数学家的兴趣,并成为数论中一个备受关注的问题。
然而,数学界至今尚未成功证明孪生素数猜想。
尽管在解决素数问题方面取得了重要的进展,但证明孪生素数猜想仍然是一个巨大的挑战。
当前的研究基本上可以证实孪生素数猜想在某些范围内是成立的,但无法给出完整的证明。
在过去几十年中,数学家们通过使用先进的计算机技术和数论方法,对孪生素数猜想进行了大量的研究。
一些重要的数论工具,如素数谐振子方法、亏格筛法等,被用于分析素数的分布规律,给出了孪生素数猜想的一些可行性结果。
虽然孪生素数猜想尚未被证明,但众多数学家们认为这个猜想是成立的。
各种证据表明,孪生素数的分布呈现出一定的规律性。
例如,根据数论领域的研究,人们已经证明了存在无穷多对形如(p,p+2m)的素数对,其中p和m满足特定的条件。
这些结果为孪生素数猜想提供了一定的支持。
除了孪生素数猜想,相似的问题还有孪生素数三元组猜想和孪生素数四元组猜想。
孪生素数三元组猜想是指存在无穷多个形如(p,p+2,p+6)的素数三元组,而孪生素数四元组猜想则是指存在无穷多个形如(p,p+2,p+6,p+8)的素数四元组。
这些猜想与孪生素数猜想有着密切的联系,并且一直在数论领域中被广泛研究。
为了解决孪生素数猜想以及其他相关问题,数学家们需要进一步改进数论的理论和方法。
孪生素数猜想初等证明详解齐宸孪生素数是指相差2的素数对,例如3和5,5和7,11和13…。
孪生素数猜想正式由希尔伯特在1900年国际数学家大会的报告上第8个问题中提出,可以这样描述:存在无穷多个素数p,使得p + 2是素数。
素数对(p, p + 2)称为孪生素数。
孪生素数由两个素数组成,相差为2。
为了证明孪生素数猜想,无数的数学家曾为之奋斗,但美丽的公主仍然犹抱琵琶半遮面。
1.孪生素数分类及无个位表示方法孪生素数按两个素数个位不同划分3类(不包括10以下的3-5、5-7),分别是:1、孪生素数中两个素数个位为1和3,如11-13,41-43等;2、孪生素数中两个素数个位为7和9,如17-19,107-109等;3、孪生素数中两个素数个位为9和1,如29-31,59-61等。
三类孪生素数中个位为1和3的第一类是我们需要重点研究的,其他两类可以忽略不计。
因为只要第一类孪生素数无限,也就等价于证明了孪生素数猜想。
自有孪生素数概念以来它们就是由两个素数表示的。
若是能简化成一个数字那孪生素数猜想这一世界数学难题也许就向前迈进了一步。
无论这一步是一小步,还是一大步。
但毕竟能将两个素数组成的孪生素数降格成了像素数那样的单个数字。
分析一下个位为1和3的这一类孪生素数,如41-43这对孪生素数。
首先,分别去掉个位1和3后,可以看到剩下了两个数字4和4。
用这两个数字完全可以表示一对孪生素数,当然我们心里要想着在这两个数字后面是有个位1和3的。
其次,这两个去掉个位的数字又是完全相同的,都是一个数字“4”。
这样也就完全可以用一个数字“4”来表示一对孪生素数,也可以说4是一个单数字无个位孪生素数。
当然表面上看只有第一类、第二类孪生素数可以用一个数字表示(实际上第三类也可以)。
为什么一定要去掉个位呢?可将自然数变成互为补集的两类:孪生素数和非孪生素数。
并利用一种简单的筛法,将自然数中的非孪生素数及其补集孪生素数分开。
而且这个筛法所要得到的是非孪生素数。
孪生素数证明摘要:1.孪生素数的定义与重要性2.孪生素数猜想3.证明过程的挑战与难点4.孪生素数证明的进展5.我国数学家在孪生素数证明领域的贡献正文:1.孪生素数的定义与重要性孪生素数是指两个自然数,它们相差为2,且在所有大于1 的自然数中,它们的和是最小的。
例如3 和5、5 和7、11 和13 等。
在数学领域,孪生素数猜想一直是一个重要且富有挑战性的问题。
2.孪生素数猜想孪生素数猜想是由法国数学家约瑟夫·拉格朗日于1772 年提出的,后被德国数学家卡尔·弗里德里希·高斯所发展。
猜想的主要内容是:存在无穷多对孪生素数。
尽管这个猜想一直未被证明,但它在数学家的研究中取得了广泛的应用。
3.证明过程的挑战与难点证明孪生素数猜想的过程面临着巨大的挑战和难点。
首先,由于孪生素数之间相差为2,因此无法通过常规的方法来寻找它们。
其次,由于猜想涉及无限个自然数,因此需要一种全新的数学方法来处理这个问题。
4.孪生素数证明的进展尽管孪生素数猜想尚未得到证明,但在数学家的不断努力下,已经取得了一些重要的进展。
比如,通过计算可知,目前最小的孪生素数是20037 和20039。
此外,一些数学家还提出了关于孪生素数的分布规律和性质,为最终证明猜想奠定了基础。
5.我国数学家在孪生素数证明领域的贡献在孪生素数证明领域,我国数学家也取得了举世瞩目的成就。
例如,陈景润教授在20 世纪60 年代证明了“陈氏定理”,为我国数学家在这一领域的研究打下了坚实的基础。
近年来,我国数学家不断尝试新的方法,为证明孪生素数猜想做出了积极的贡献。
总之,孪生素数猜想作为数学领域的一个重要问题,尽管尚未得到证明,但它激发了无数数学家的兴趣和热情。
孪生素数猜想证明简述一:逻辑证明(最简单,但逻辑思维要求高)根据素数新定义:从祖素数2开始,素数倍数后不连续的数即为素数。
易知素数除了2以外全是奇数,所以在奇数数轴上研究素数会有奇效。
奇数数轴:3,5,7,9,11,13,15,17,19,21,23,25,27,29,31......,无数对相差为2(相连)的数;假设只有3为素数,去掉其倍数后数轴变为:3,5,7,11,13,17,19,23,25,29,31......,只少了一点,但依旧有无穷对素数相差2;添加5为素数,去掉其倍数后数轴变为3,5,7,11,13,17,19,23,29,31......,少的更少,剩下相差为2的素数对肯定是无穷多;等等;如此可以无穷下去,但少的越来越少,而且剩余差值为2的素数对肯定是无穷多。
所以孪生素数肯定是无穷多的。
一目了然!!!当然也很容易看出,P和P+2k的素数对也是无穷多的(波利尼亚克猜想成立)。
(参考文献:奇数轴中素数量与合数宽度的研究)二:公式证明(难度极大)在上述的逻辑证明中,我们若将奇数数轴设为单位1;则3的倍数占比为:1/35的倍数占比为:1/5-1/157的倍数占比为:1/7-1/21-1/35+1/105等等,最后可得到孪生素数在奇数中的占比(LiKe级数公式)约为:1-1/3-(1/5-1/15)-(1/7-1/21-1/35+1/105)-(1/11-1/3*11-1/5*11-...+...)-...=1-1/3-1/5-1/7-......-1/p+1/15+1/21+......+1/pq-1/105-1/165-......-1/pqr+...-...=1-∑1/P+∑1/pq-∑1/pqr+…±∑1/∏P (1)(式中所有素数为奇素数,分母为偶数个素数积时取和,为奇数时取差)关于该新颖级数的求和不在此演示。
不过它是发散的(其值应该不为0),该级数本身足以说明了孪生素数的无穷多。
第二孪生素数猜想的证明
作者:陈德建
来源:《赤峰学院学报·自然科学版》 2012年第15期
陈德建
(黎明职业大学,福建泉州 362000)
摘要:研究孪生素数的分布,三种形式筛余数的个数,分析孪素表数对的增长规律,最后用数学归纳法证明了命题.
关键词:孪生素数;筛余数;增长规律;数学归纳法
中图分类号:O156.1 文献标识码:A 文章编号:1673-260X(2012)08-0008-02
假定p是素数,而p+2也是素数,我们就称(p,p+2)是一对孪生素数[1].
例如(3,5),(5,7),(11,13),(17,19),(29,31),(41,43),(59,61),(71,73),(101,103),(107,109),…,(10016957, 10016959),…,
(109+7,109+9)…,都是孪生素数对.
关于孪生素数的猜想,有两种表述,其一是王元的表述:很早以前,人们就问孪生素数对是否有无穷多[2]?我们称之为第一孪生素数猜想,这个问题已经解决了[3].其二是加拿大R.K.盖伊的表述:如果n>6,在n和2n之间是否必存在孪生素数[4]?我们称之为第二孪生素数猜想.这个问题尚未解决.若证明第二孪生素数猜想,可推出第一孪生素数猜想成立,反之则不然.
参考文献:
〔1〕〔2〕〔5〕王元.谈谈素数[M].上海:上海教育出版社,1983.60,60,43. 〔3〕郭奕欣.孪生素数猜想的证明[J].黑龙江科技信息,2009(26).
〔4〕R.K.盖伊.数论中未解决的问题[M].北京:科学出版社,2004.29.。
关于孪生素数猜想的一个证明
孪生素数猜想(Twin Prime Conjecture):任意两个连续的大于2的素数,必有一对孪生素数。
思路:
一、利用费马小定理证明
费马小定理:当p是素数时,对于所有正整数a,都有a的p次方与a减去1的商等于1(mod p)。
证:考虑任意两个素数p1和p2,p2=p1+2,设a=2,那么在p1和p2上面都有a的p次方与a减去1=1的商等于1(mod p1)和1(mod p2),即:
p1|2p1-1
p2|2p2-1
同时,2p1-1和2p2-1刚好满足2p2-2p1=2,由于p1和p2是素数,交换取整律有:
2|2p2-2p1
而满足上述等式的唯一解即为p1和p2之和为2。
故证明孪生素数猜想成立。
二、利用数论的方式证明
任意大于2的偶数都可以表示为一对素数之和,即:2n = p1 + p2,其中p1和p2均为素数。
关于这一对素数,存在以下情况:
1、p2 = p1 + 2(孪生素数)
2、p1和p2无任何关系(非孪生素数)
由此可以推出,只要2n=p1+p2成立,那么p1和p2之间必然存在孪生素数对。
故证明孪生素数猜想成立。
“孪生素数猜想”证明务川自治县实验学校王若仲(王洪)贵州564300摘要:对于“孪生素数猜想”,我们探讨一种简捷的初等证明方法,要证明孪生素数对无穷的情形,我们可以把这样的情形转换到间接地利用奇合数的个数来加以理论分析,从而判定孪生素数对是否无穷。
关键词:特异奇数;特异奇合数;孪生素数;孪生素数猜想。
引言孪生素数猜想,最初由古希腊数学家欧几里得提出,表述为:在自然数中,存在无穷多个素数p,有(p+2)也是素数。
正文孪生素数的概念:当两个素数的差为2时,这样的两个素数称为孪生素数。
如:3和5,5和7,11和13,17和19,29和31等等。
现在把由全体奇数组成的集合,称为奇数集合。
记为G。
定义1:奇数集合G中(除1外),不能被3整除的整数,称为特异奇数。
如:5,7,11,13,17,19,23,25,29,……。
定义2:由全体特异奇数组成的集合,称为特异奇数集合。
记为G′。
定理1:任一特异奇数均可表为6k+1或6k-1的形式,k∈N,k>0。
证明:因为集合G中能被3整除的整数均可表为3(2m-1)的形式,m∈N,m>0。
则3(2m-1)+2=6m-1,3(2m-1)-2=6(m-1)+1, 对于[6(m-1)+1] ,令 m>1 。
(6m-1)和[6(m-1)+1]均为不能被3整除的奇数,根据定义1,(6m-1)为特异奇数,[6(m-1)+1](m>1)为特异奇数。
故定理1成立。
定义3:我们把既是特异奇数,又是素数的整数,称为特异素数。
如:5,7,11,13,17,19等等。
定义4:我们把既是特异奇数,又是合数的整数,称为特异奇合数。
如:25,35,49,55,77等等。
定理2:对于任一特异奇合数a,a均可表为下列三种形式之一:(1)a=36kh-6k-6h+1,(2)a=36kh+6k+6h+1,(3)a=36kh+6k-6h-1,其中k∈N,h∈N,k>0,h>0。
证明:对于任一特异奇合数a,a总可以分解为两个特异奇数的乘积,我们令a=bc,根据定理1,b=6k+1或6k-1,k∈N,k>0,c=6h +1或6h-1,h∈N,h>0。
小于自然数M内孪生素数的对数一一孪生素数猜想证明的应用孪生素数都是成对出现的。
给定一个自然数M、在小于M内有多少对孪生素数?(一)本文的计算方法基于孪生素数猜想证明中的以下几条结论:a、任何非1奇数都有奇数核、2n±1两个奇数定义为同核奇数,n即为他们的共同核。
b、同核奇数只可能是三种形态:1、同核的二个奇数皆为合数。
2、同核奇数中一个是合数、另一个是素数。
3、同核的两个奇数都为素数,称为“同核素数〞、也就是学界的孪生素数。
C、根据b、中2、同核奇数中一个是合数另一个是素数得出的推论:单体素数即学界认为除孪生素数外的所有素数、所有单体素数核一定存在于对应的合数核中。
进一步得出的推论是:只要将所有的合数核去除后、则包含在合数核中的单体素数核也同时去除。
d、由c推论:“同核素数”即孪生素数的核一定存在于所有合数核以外的非零自然数N*中,而且有无穷多个。
逻辑如下:非1奇数只可能为合数、单体素数、孪生素数,所以奇合数核也只可能是这三种核;非零自然数N*(1、∞)中每个数均可成为奇数核、全部自然数N*不可能都是合数核、所以自然数N*中去除合数核后、其余的都是孪生素数的核、(因为单体素数的核在去除所有的合数核时也同时被去除)。
一个核产生一对孪生素数。
e、由6列完美等差数列群、可以直接推出、所有素数最终形式为6n±1、孪生素数当然也存在于6n±1之中、6n±1去掉1除以2得出核为3n、即所有孪生素数核一定存在于3n中。
(二)给定一个自然数M、在小于M这个数值内有多少对孪生素数呢?例子:自然教111、小于111的孪生素数有多少对?1、111中有多少奇数核?n=(111-1)/2=55个,加强直观理解、可以验证n=1、2、3、……55、则奇数为3、5、7……111。
2、我们知道所有非零自然数N*都可以成为奇数核,而全部自然数N实质是由3列完美等差数列群组成:3n、3n+1、3n+2(n∈N),分别对这三列等差数列的性质进行研究、可以得出:3n+1、3n+2、(n∈N*)二列无穷等差数列的每个值全部是合数核的值,(参看以前发表的孪生素数猜想证明的文章)。
孪生素数猜想初等证明详解齐宸孪生素数是指相差2的素数对,例如3和5,5和7,11和13…。
孪生素数猜想正式由希尔伯特在1900年国际数学家大会的报告上第8个问题中提出,可以这样描述:存在无穷多个素数p,使得p + 2是素数。
素数对(p, p + 2)称为孪生素数。
孪生素数由两个素数组成,相差为2。
为了证明孪生素数猜想,无数的数学家曾为之奋斗,但美丽的公主仍然犹抱琵琶半遮面。
1.孪生素数分类及无个位表示方法孪生素数按两个素数个位不同划分3类(不包括10以下的3-5、5-7),分别是:1、孪生素数中两个素数个位为1和3,如11-13,41-43等;2、孪生素数中两个素数个位为7和9,如17-19,107-109等;3、孪生素数中两个素数个位为9和1,如29-31,59-61等。
三类孪生素数中个位为1和3的第一类是我们需要重点研究的,其他两类可以忽略不计。
因为只要第一类孪生素数无限,也就等价于证明了孪生素数猜想。
自有孪生素数概念以来它们就是由两个素数表示的。
若是能简化成一个数字那孪生素数猜想这一世界数学难题也许就向前迈进了一步。
无论这一步是一小步,还是一大步。
但毕竟能将两个素数组成的孪生素数降格成了像素数那样的单个数字。
分析一下个位为1和3的这一类孪生素数,如41-43这对孪生素数。
首先,分别去掉个位1和3后,可以看到剩下了两个数字4和4。
用这两个数字完全可以表示一对孪生素数,当然我们心里要想着在这两个数字后面是有个位1和3的。
其次,这两个去掉个位的数字又是完全相同的,都是一个数字“4”。
这样也就完全可以用一个数字“4”来表示一对孪生素数,也可以说4是一个单数字无个位孪生素数。
当然表面上看只有第一类、第二类孪生素数可以用一个数字表示(实际上第三类也可以)。
为什么一定要去掉个位呢?可将自然数变成互为补集的两类:孪生素数和非孪生素数。
并利用一种简单的筛法,将自然数中的非孪生素数及其补集孪生素数分开。
而且这个筛法所要得到的是非孪生素数。
关于孪生素数猜想的证明关于孪生素数猜想的证明Һ吴国胜㊀(安徽省电子器材公司,安徽㊀合肥㊀230061)㊀㊀ʌ摘要ɔ本文的目的在于用筛法㊁解析方法等基础理论证明在自然数中存在无穷对孪生素数,并给出孪生素数分布的下界.ʌ关键词ɔ孪生素数猜想;定义及推论;误差值引㊀言两个相差2的素数称作一对孪生素数.在自然数中存在无穷对孪生素数的猜想是古希腊人提出来的,迄今大约有二千年的历史了,它和1742年德国人提出的Goldbach猜想被人们喻为姐妹问题.德国杰出的数学家Hilbert1900年在巴黎召开的第二届国际数学家代表大会上提出二十三个著名问题,孪生素数猜想是其中第八个问题的一部分.本文的目的在于对以下定理给出详细证明.定理命ω(x)表示不超过x的孪生素数组数,对于充分大的N,存在无穷多个整数点Miɪ[N,+ɕ),有ω(Mi)ȡ0.37Miln2Mi.有简单推论,对于任意xȡN,总有ω(x)ȡ0.37lnx(lnlnx)2.孪生素数猜想成立.一㊁定义及推论定义1㊀命2,3为原素数,不再以P表示.素数以Pi表示,其中P1=5,P2=7,P3=11, ,以此类推.相应地,孪生素数从5,7开始计算.定义2㊀Zj=ᵑji=1Pi.定义3㊀命6n-1与6n+1为一对孪生组,n为正整数.推论1㊀命D(x)表示[0,x]间孪生组的组数,则D(x)=x-16[],1ɤx,0,0ɤx<1.æèçç定义4㊀B(x,Pj)为[0,x]间一方含Pj因子而双方均与Zj-1互素的孪生组的组数,称作x内Pj的孪生类数.(xȡPj).推论2㊀ω(x)-ω(x)=D(x)-ðp1ɤpjɤxB(x,Pj).定义5㊀当(6,kn)=(k,n)=1定义T(k,n)ʉ(kn)2+6kq(mod6kn),其中q满足3kqʉ1(modn),特别地,T(k,1)ʉk2(mod6k).定义6㊀B∗(x,Pj)=2DxPj()-2ðP1ɤPiɤPj-1BxPj,Pi(),为二倍于0,xPj[]间不小于Pj孪生类的孪生组数.(xȡP2j).(注:本文[α],{α}分别表示α的整数与分数部分,并将[α+β]+[α-β]简记作[αʃβ],将{α+β}+{α-β}简记作{αʃβ},将sin(α+β)+sin(α-β)简记作sin(αʃβ).)二㊁第一类误差关系式的建立引理1㊀B(x,Pj)=ðn|zj-1m|zj-1(m,n)=1μ(mn)(x+T(Pjm,n)-26Pjmnéëêùûú+x-T(Pjm,n)6Pjmnéëêùûú+1)(xȡPj).证:当(m,n)=(6Pj,mn)=1时,由定义5有T(Pjm,n)ʉ0(modPjm),1(mod6).{T(Pjm,n)-2ʉ0(modn),-1(mod6).{故T(Pjm,n)与T(Pjm,n)-2为分别由Pjm与n因子组成的孪生组,后者为6K-1型,同样T(n,Pjm)与T(n,Pjm)-2为另一组分别由Pjm与n因子组成的孪生组,后者为6K-1型,且-T(Pjm,n)ʉT(n,Pjm)-2(mod6Pjmn).根据剩余系互补的性质,当(m,n)=(6Pj,mn)=1,对于任意xȡPj,在[0,x]间一方含Pjm因子,另一方含n因子的孪生组数:D(x,Pjm,n)=x+T(pjm,n)-26Pjmnéëêùûú+x-T(Pjm,n)6Pjmnéëêùûú+1.由定义4和Brun的包含排除定理(文献[6]第一章ɦ7定理1),即得引理.又当(m,n)>1时,恒有μ(mn)=0,故引理中(m,n)=1的条件可以不必要.证毕.引理2㊀(Ⅰ)B∗(x,Pj)=ðn|zj-1m|zj-1μ(mn)æèççxPj+T(m,n)-26mnéëêêêùûúúú+xPj-T(m,n)6mnéëêêêùûúúú+1öø÷÷-1(xȡP2j).(Ⅱ)若用T(Pjm,n)代替T(m,n),上式亦成立.证:当m=n=1时,T(1,1)ʉ1(mod6),μ(1)=1,ʑxPj+T(1,1)-26éëêêêùûúúú+xPj-T(1,1)6éëêêêùûúúú+1-1=2xPj-16éëêêêùûúúú=2DxPj(),又T(m,n)-2ʉ-T(n,m)(mod6mn).由定义6和引理1即得(Ⅰ)成立.ȵ(Pj,mn)=(Pj,Zj-1)=1,ʑT(Pjm,n)ʉT(m,n)(mod6mn).又T(Pj,1)ʉP2jʉ1(mod6),ʑxPj+P2j-26éëêêêùûúúú+xPj-P2j6éëêêêùûúúú+1-1=2xPj-16éëêêêùûúúú=2DxPj(),故(Ⅱ)亦成立,证毕.引理3㊀B(x,Pj)-B∗(x,Pj)ɤh(x,Pj)+O(1)(xȡP2j),h(x,Pj)=ðd|Zj-1(d<4x2)μ(d)2v(d)ðɕn=12nπsinnπx3Pjd㊃cosnπT(Kξ)3Pjd-cosnπT(Kξ)3dæèçöø÷,其中T(Kξ)=TPjKξ,Zj-1Kξæèçöø÷,Kξ为Ki|Zj-1之某一值,v(d)表示d的不同素因子的个数,v(1)=0.证:命φ表示Ki|Zj-1的集合,因Zj-1无重复素因子,故对于任一Zj-1,Ki之集合有且仅有ðj-1k=1Ckj-1=2j-1个元素组成,当(l1,l2)=(l1,6Pjmn)=(l2,6Pjmn)=1,有T(l1Pjm,l2n)ʉT(Pjm,n)(mod6Pjmn).由引理1,2即可得到:B(x,Pj)-B∗(x,Pj)=ðKi|Zj-112j-1ðd|Zj-1μ(d)2v(d)㊃æèççx+T(Ki)-26Pjdéëêùûú+x-T(Ki)6Pjdéëêùûú-xPj+T(Ki)-26déëêêêùûúúú-xPj-T(Ki)6déëêêêùûúúúöø÷÷+1,(1)现估计(1)式中第一㊁三两项中消去-2后所产生的误差R=R1+R3,命Ai=x+T(Ki)有:Ai-26Pjdéëêùûú=[Ai]-26Pjdéëêùûú=Ai6Pjdéëêùûú-1,当[Ai]ʉ0或1(mod6Pjd),Ai6Pjdéëêùûú,其他.ìîíïïïï故知只有当[Ai]=6PjMiDi+δ(δ=0或1,其中Di|Zj-1)时才产生误差,根据同余的性质有:ðd|Diμ(d)2v(d)=1,v(Di)为偶数或0,-1,v(Di)为奇数,{ʑR1ɤ12j-1ðKi|Zj-11=1,同样可证得|R3|ɤ1.ʑ|R|ɤ|R1|+|R3|ɤ2,故由(1)式知必定存在某一Kξ|Zj-1,使得:B(x,Pj)-B∗(x,Pj)ɤh(x,Pj)+O(1),其中h(x,Pj)=ðd|Zj-1μ(d)2v(d)æèççxʃT(kξ)6Pjdéëêùûú-xPjʃT(Kξ)6déëêêêùûúúúöø÷÷,ȵPjKξ|T(Kξ),Zj-1Kξ|T(Kξ)-2,(注:以下将T(Kξ)简记作T)ʑd|Zj-1|T(T-2).因d无重复素因子,故知对于任意d,当dȡ4x2可分解为d=d1d2,其中d2ȡd1ȡ1,使d2|T或者d2|(T-2)两者之一成立.显然d2ȡ2x>x+2Pj(xȡP2j),如d2|T成立,有0<xd2=β<1,Td2=L,显然(6,L)=1,因而-L6q[]=-1-L6q[](q为正整数),故有:xʃT6Pjd[]-xPjʃT6déëêêêùûúúú=βʃL6Pjd1[]-βʃPjL6Pjd1éëêùûú=ʃL6Pjd1[]-ʃL6d1[]=0,同样如d2|(T-2),则有0<x+2d2=β1<1,0<x-2d2=β2<1,0<x+2Pjd2=β3<1,0<x-2Pjd2=β4<1,T-2d2=L,则(6,L)=1,即有xʃT6Pjd[]-xPjʃT6déëêêêùûúúú=β1+L6Pjd1éëêùûú+β2-L6Pjd1éëêùûú-β3+PjL6Pjd1éëêùûú-β4-PjL6Pjd1éëêùûú=ʃL6Pjd1[]-ʃL6d1[]=0,ʑh(x,Pj)=ðd|Zj-1(d<4x2)μ(d)2v(d)xʃT6Pjd[]-xʃPjT6Pjdéëêùûúæèçöø÷=ðd|Zj-1(d<4x2)μ(d)2v(d)xʃPjT6Pjd{}-xʃT6Pjd{}æèçöø÷,(2)由Fourier展开式,当{α}ʂ0时有:{α}=-ðɕn=11nπsin(2nπα)+12,(3)ȵPj|T,ʑ只需取x,当Pj|x,即有(2)式中任意一项{αi}ʂ0均适用于(3)式,故(2)式又可表示为:h(x,Pj)=ðd|Zj-1(d<4x2)μ(d)2v(d)ðɕn=12nπsinnπx3Pjd(cosnπT3Pjd-cosnπT3d),证毕.三、第一类误差值的计算引理4㊀用M[F1(y)]表示函数F1(y)的Mellin变换式,若有M[F1(y)]=ðd|Zj-1(d<4x2)μ(d)2v(d)ds-2(ζ(2-s)-1)(s-1),取σ=ReS=1-1lny,当y>Pj时,必有|F1(y)|=Oln2Pjylnyæèçöø÷.证:σ=1-1lny>1-1lnPj>0.首先证明M[F1(y)]绝对收敛.令H(s)=ðd|Zj-1(d<4x2)μ(d)2v(d)ds-2,(4)则H(s)ɤðd|Zj-2|μ(d)|2v(d)|ds-2|=ᵑP|Zj-1(1+2Pσ-2),ʑln|H(s)|ɤlnᵑP|Zj-1(1+2Pσ-2)=ðP1ɤPɤPj-1ln(1+2P-1-1lny)ɤðP1ɤPɤPj-12P-1=2lnlnPj+O(1).(参见文献[2]第七章ɦ3Mertens公式)ʑ|H(s)|=Ο(ln2Pj)绝对收敛.又Re(2-s)=1+1lny>1,令b1(u)={u}-12,有ζ(2-s)=11-s+12-(2-s)ʏɕ1b1(u)u3-sdu=-1s-1+1+ʏɕ1{u}dus-2,(参考文献[1]第八章ɦ2)ʏɕ1{u}dus-2为{u}ʂ0时的瑕积分,记作P㊃V.P㊃Vʏɕ1{u}dus-2={u}us-2ɕ1-P㊃Vʏɕ1us-2d{u}=-P㊃Vʏɕ1us-2d{u}dudu,当{u}ʂ0,由(3)式有d{u}du=-2ðɕn=1cos(2nπu)=-limλңɕsinλ+12()2πusinπu+1,(参考文献[7](3.6.1)式)综上即得:Q=(ζ(2-s)-1)(s-1)=-1+(s-1)P㊃Vʏɕ1us-2limλңɕsinλ+12()2πusinπu-1æèççöø÷÷du=-1+P㊃Vʏɕ1(limλңɕsinλ+12()2πusinπu-1)dus-1=P㊃Vʏɕ1limλңɕsinλ+12()2πusinπudus-1,ʑ|Q|ɤP㊃Vʏɕ1|limλңɕsinλ+12()2πusinπu|㊃|dus-1|=|limλңɕsinλ+12()2πξsinπξ|ʏɕ1du-1lny|ɤ1sinπξ<+ɕ({ξ}ʂ0),ʑM[F1(y)]绝对收敛.令ʏ(σ)=limAңɕʏσ+iAσ-iA,由文献[1]第十二章ɦ1引理1有:F1(y)=12πiʏ(σ)M[F1(y)]y-sds=12πiʏ(σ)H(s)(ζ(2-s)-1)(s-1)y-sds=-12πiʏ(σ)H(s)(ζ(2-s)-1)dy-s+1dyds=i2πʏ(σ)H(s)(ζ(2-s)-1)dsdydy-s+1.ȵζ(2-s)-1=ðɕn=21n2-s,ʑ|ζ(2-s)-1|ɤðɕn=21n1+1lny=ʏɕ1duu1+1lny+O(1)=-lny㊃u-1lnyɕ1+O(1)=lny+O(1),dsdy=d1lnydy=1yln2y,|yit|=|eitlny|=1,y-σ+1=y1lny=e.当y>Pj,lny>lnPj≫1,ʑ|F1(y)|ɤʏ(σ)|H(s)||ζ(2-s)-1|dsdy|dy-s+1|ɤʏ(σ)O(ln2Pj)(lny+O(1))1yln2ydy1lny=Oln2Pjylnyæèçöø÷,证毕.引理5㊀对于充分大的x,恒有B(x,Pj)-B∗(x,Pj)ɤOxln3PjP2jæèçöø÷+O(1),当Pjɤx12时,误差项O(1)可以不计.证:(Ⅰ)当Pjɤ6lnx时,ȵðɕn=12nπsinnπαcosnπβɤ1,又v(P)=1,由引理3有:h(x,Pj)ɤ2ðd|Zj-1|μ(d)|2v(d)=2ᵑP|Zj-1(1+2v(P))=2㊃3j-1.由素数定理得j=π(Pj)=PjlnPj1+O1lnPj()().ʑB(x,Pj)-B∗(x,Pj)ɤ2㊃3j-1+O(1)<3jɤ37lnxlnlnx=x7ln3lnlnx<x12≪xln3PjP2j.(Ⅱ)当x12<Pjɤx,显然有B(x,Pj)-B∗(x,Pj)=B(x,Pj)=1,Pj与Pj+2为孪生素数,0,其他.{(Ⅲ)现着重讨论6lnx<Pjɤx12的情形.由引理3我们有:㊀h(x,Pj)=ðd|Zj-1(d<4x2)μ(d)2v(d)ðɕn=14nπ㊃nπd㊃sinnπx3PjdʏT6T6Pjsin2nπqddq=ʏT6T6Pjðd|Zj-1(d<4x2)μ(d)2v(d)ðɕn=12d(cosq-x6Pjd2nπ-cosq+x6Pjd2nπ)dq=ʏT6T6Pjʏq+x6Pjq-x6Pj(ðd|Zj-1(d<4x2)μ(d)2v(d)ðɕn=14nπd2sin2nπdy)dydq=ʏT6T6Pjʏq+x6Pjq-x6PjF(y)dydq.由积分不等式,当b>aȡ0时,若在区间[a,b]上f(x),g(x)可积,|f(x)|ɤ|g(x)|,则有ʏbaf(x)dxɤʏba|f(x)|dxɤʏba|g(x)|dx.又F(y)可积,则有:h(x,Pj)ɤʏT6T6Pjʏq+x6Pjq-x6PjF(y)dydq,(5)F(y)是实连续函数,y>0(见(9)式),我们可对其取Mellin变换,令ReS=1-1lny,当α>0时,M[sinαx]=ʏɕ0sinαx㊃xs-1dx=α-sΓ(s)sinπs2,ʑM[F(y)]=ðd|Zj-1(d<4x2)μ(d)2v(d)ðɕn=1(nπ)1-s22-sΓ(s)ds-2sinπs2,(6)ðɕn=1n1-s=ζ(s-1),Γ(s)=(s-1)Γ(s-1)(文献[5]第二章ɦ2定理2),sinπs2=cosπ(s-1)2.根据RiemannZeta函数解析开拓的性质(文献[3]第二篇第二章ɦ2定理2.1)有ζ(1-s)=21-sπ-scosπs2Γ(s)ζ(s)普遍成立.ʑ由(6)式和(4)式有:M[F(y)]=ζ(s-1)Γ(s-1)(s-1)π1-s22-sH(s)㊃cosπ(s-1)2=ζ(2-s)(s-1)H(s),令F(y)=F1(y)+F2(y),则M[F(y)]=M[F1(y)]+M[F2(y)],其中M[F1(y)]=(ζ(2-s)-1)(s-1)H(s),(7)M[F2(y)]=(s-1)H(s),相应地,h(x,Pj)=h1(x,Pj)+h2(x,Pj),首先证明h2(x,Pj)=0.ȵPjKξT,Zj-1Kξ(T-2)(见引理3),ʑTȡPjKξ,T-2ȡZj-1Kξ,T2>T(T-2)ȡPjKξ㊃Zj-1Kξ=PjZj-1=Zj,T>Zj(注:当xȡP2j,必有d通过所有PɤPj-1,故(5)式中T不变.)由文献[1]第三章ɦ1定理2契贝谢夫θ函数性质有:lnT>12lnZj>12-ε()Pjȡ12-ε()6lnx>2.8lnx,即有1lnT=O1Pj(),(8)及T>x2.8,又xȡP2j,由(5)式知yȡq-x6PjȡT-x6Pj>x2.8-x6x≫x2.2≫4x2,(9)h2(x,Pj)=ʏT6T6Pjʏq+x6Pjq-x6PjF2(y)dydq=(ʏɕT-x6Pj-ʏɕT-xPj6-ʏɕT+x6Pj+ʏɕT+xPj6)ʏɕφF2(η)dηdφ,由Mellin变换公式(文献[8]581页),若M[f(y)]=M(s),则有:M[ʏɕyf(φ)dφ]=M(s+1)s成立,由此推出:M[ʏɕyʏɕφf(η)dηdφ]=M(s+2)(s+1)s成立.令U(y)=ʏɕyʏɕφF2(η)dηdφ,由M[F2(y)]=(s-1)H(s)得到M[U(y)]=(s+2-1)H(s+2)(s+1)s=1sH(s+2),由(9)式y≫4x2,即σ=1-1lny>0,因而|M[U(y)]|=1σ+itH(2+σ+it)ɤðd|Zj-1|μ(d)|2v(d)dσ1σ+it=1σ2+t2ðd|Zj-1|μ(d)|2v(d)dσ<+ɕ绝对收敛.即有:U(y)=12πiʏσ+iɕσ-iɕM[U(y)]y-sds=12πiʏσ+iɕσ-iɕðd|Zj-1(d<4x2)μ(d)2v(d)1sdy()sds,根据Mellin变换表(文献[8]582页)有12πiʏσ+iɕσ-iɕ1sαy()sds=1(y<α),0(y>α),{(σ>0)由(9)式得y>4x2>d,ʑU(y)=0,即可得到h2(x,Pj)的各项积分均为0,ʑh2(x,Pj)=0.又F1(y)满足引理4的条件,由(5)式有:h(x,Pj)=h1(x,Pj)ɤOʏT6T6Pjʏq+x6Pjq-x6Pjln2Pjylnydydqæèçöø÷=Oln2PjʏT6T6Pjlnlnq+x6Pj()lnq-x6Pj()dqæèçççöø÷÷÷=Oxln2PjPjʏT6T6Pjdqqlnqæèçöø÷=Oxln2PjPjlnlnT6lnT6Pjæèçççöø÷÷÷=Oxln3PjPjlnTæèçöø÷=Oxln3PjP2jæèçöø÷.注1:上式中,lnlnq+x6Pj()lnq-x6Pj()=lnlnq+ln1+x6qPj()lnq+ln1-x6qPj()=Oln1+1lnqln1+x6qPj()()()=O1lnqln1+x6qPj()()=O1lnq㊃x6qPj()=OxPjqlnq().注2:上式中,lnlnT6lnT6qPj=lnlnT6lnT6+ln1Pj=ln11-lnPjlnT6=Oln1+lnPjlnT6æèççöø÷÷æèççöø÷÷=OlnPjlnTæèçöø÷.最后一步用到(8)式,综上即得到引理.证毕.四㊁函数G(u)的性质引理6若G(u)满足方程G(u)=1u2,㊀㊀㊀㊀㊀㊀1ɤuɤ2,㊀㊀㊀㊀(10)(u2G(u))ᶄ=2uG(u-1),u>2,(11){则G(u)为连续函数,对于任意uȡ1,恒有14ɤG(u)ɤ1.证:令G(u)=G1(u)+G2(u),其中G1(u),G2(u)满足方程:G1(u)=1u2,G2(u)=0,㊀1ɤuɤ2,(u2G1(u))ᶄ=2uG2(u-1),(u2G2(u))ᶄ=2uG1(u-1),u>2,{解之即知G1(u),G2(u)均为连续函数,故G(u)为连续函数.由(10)式知,当1ɤuɤ2时,有14ɤG(u)ɤ1成立.用数学归纳法证明,当u>2时,也有14ɤG(u)ɤ1.由(11)式即得:u2G(u)-22G(2)=2ʏu2tG(t-1)dtɤ2ʏu2tdt=u2-22,ʑG(u)ɤ1-3u2ɤ1.又u2G(u)-22G(2)=2ʏu2tG(t-1)dtȡ12ʏu2tdt=14(u2-22)=14u2-1,ʑG(u)ȡ14.证毕.五、定理的反证1.在假设基础上得到的结果(第二类误差值的计算)引理7㊀对于充分大的N,当yȡN时,假设恒有ω(y)<Cyln2y㊀(12)成立,C=0.37,则当x12ȡPjȡlnxȡN时,恒有B(x,Pj)<2CG(u)xPjln2Pj+OxPjln3Pjæèçöø÷成立,其中Pj=x1u+1,即u=lnxlnPj-1.证:用数学归纳法证明.当N充分大,PjȡN时,有Pjȡln7Pj,故有xP2jln3PjɤxPjln4Pj.当x12ȡPjȡx13(1ɤuɤ2)时,由(12)式,引理5,定义6及推论2有:B(x,Pj)ɤB∗(x,Pj)+OxP2jln3Pjæèçöø÷=2ωxPj()-2ω(Pj-1)+OxPjln4Pjæèçöø÷<2CxPjln2xPj()+OxPjln4Pjæèçöø÷=2CxPj(lnxuu+1)2+OxPjln4Pjæèçöø÷=2Cxu2Pjln2Pj+OxPjln3Pjæèçöø÷,即知当1ɤuɤ2时,G(u)=1u2,引理成立.若x1k-1ȡPjȡx1k,kȡ3(即k-2ɤuɤk-1),引理成立,则当x1kȡPjȡx1k+1,k-1ɤuɤk时由引理5及推论2有:B(x,Pj)ɤB∗(x,Pj)+OxP2jln3Pjæèçöø÷=2ðPjɤPiɤxPj()12BxPj,Pi()+2ωxPj()-2ωxPj()12()+OxPjln4Pjæèçöø÷.此处着重说明:在以上递推计算中每项都有一个差式,如记作ω+i-ω-i,易见对于每个差式,恒有ω+iȡω-iȡω(Pj),故参加递推和式计算之ω(t)均符合引理假设的条件,即:ωxPj()ȡω(t)ȡω(Pj)ȡω(lnx)ȡω(N).又x1k+1ɤPj,ʑxɤPk+1j,即有xPj()1kɤPjɤPiɤxPj()12.因而可由已知递推得:B(x,Pi)<4CðPjɤPiɤxPj()12GlnxPjlnPi-1æèççöø÷÷xPjPiln2Pi+OðPjɤPiɤxPj()122xPjPiln3Piæèçöø÷+2CxPjln2xPj()+OxPjln4Pjæèçöø÷,(13)用Abel恒等式计算:Ω=ðPjɤPiɤxPj()12GlnxPjlnPi-1æèççöø÷÷1Piln2Pi,在文献[1]第三章ɦ1引理2中取A(t)=ðPɤtlnPP,当tȡPjȡlnx充分大时,由文献[1]第四章命题(C)式有:A(t)=ðnɤtΛ(n)n-ðmȡ2ðPɤt1mlnPPm=lnt-γ+O(1)-E(t),其中γ为Euler常数,E(t)=ðmȡ2ðPlnPPm-ðmȡ2ðP>t1mlnPPm=α1+Oʏɕtlnqq2dqæèçöø÷=α1+Olnttæèçöø÷=α1+O(1),ʑA(t)=lnt-α+O(1),ȵα1,γ均为与t无关的常数,ʑα亦为与t无关之常数.令H(t)=lnt,r(t)=-α+O(1),f(t)=GlnxPjlnt-1æèççöø÷÷1ln3t.ȵH(t)连续可微,及14ɤG(u)ɤ1,由文献[1]第三章ɦ1引理2即可得到:Ω=ʏxPj()12PjGlnxPjlnt-1æèççöø÷÷dttln3t+RxPj()12,Pj()其中RxPj()12,Pj()=rxPj()12()fxPj()12()-r(Pj)f(Pj)-ʏxPj()12Pjr(t)fᶄ(t)dt=OfxPj()12()+O(f(Pj))+OʏxPj()12Pjfᶄ(t)dt()=O1ln3Pjæèçöø÷.故由(13)式即有:B(x,Pi)<4CxPjʏxPj()12PjGlnxPjlnt-1æèççöø÷÷dttln3t+OxPjln3Pjæèçöø÷+OxPjʏxPj()12Pj2tln4tæèçöø÷dt+2CxPjln2xPj()+OxPjln4Pjæèçöø÷=4CxPjln2xPj()ʏxu2(u+1)x1u+1GlnxPjlnt-1æèççöø÷÷㊃lnxPjlntæèççöø÷÷3dlntlnxPjæèççöø÷÷+OxPjln3Pjæèçöø÷+OxPjʏ12lnxPjlnPj2τ4dτæèçöø÷+2Cxu2Pjln2Pj+OxPjln4Piæèçöø÷=2Cxu2Pjln2Pjʏu22βG(β-1)dβ+O2x3Pjln3Pjæèçöø÷+OxPjln3Pjæèçöø÷+2Cxu2Pjln2Pj=2Cxu2Pjln2Pj[β2G(β)]u2+OxPjln3Pjæèçöø÷+2Cxu2Pjln2Pj=2CG(u)xPjln2Pj+OxPjln3Pjæèçöø÷,其中22G(2)=1,故引理亦成立.证毕.2.由正态分布及其误差值计算所得到的结果引理8㊀当100lnxȡPjȡlnxȡN时,有B(x,Pj)>0.75xPjln2Pj.证:由引理1即可得到:B(x,Pj)=ðm|Zj-1n|Zj-1μ(mn)2x6Pjmn+O(3j)=x3Pjðd|Zj-1μ(d)2v(d)d+O(3j)=x3PjᵑP|Zj-11-2P()+O(3j)(参见文献[3]15页)ᵑP|Zj-11-2P()=ᵑP|Zj-1(P-1)2P2ᵑP|Zj-1P(P-2)(P-1)2=ᵑP|Zj-1P-1P()2ᵑP|Zj-11-1(P-1)2æèçöø÷,由Mertens公式(文献[2]第七章ɦ3)有ᵑP|Zj-1P-1P()=3㊃(2-1)(3-1)2㊃3ᵑP|Zj-1P-1P=3e-rlnPj1+O1lnPj()(),又1>ᵑP|Zj-11-1(P-1)2æèçöø÷>ᵑP1-1(P-1)2æèçöø÷>(32-1)ᵑ(P2-1)32ᵑP2=43(22-1)(32-1)ᵑ(P2-1)22㊃32ᵑP2éëêêùûúú=43ðɕn=11n2æèçöø÷-1=43π26()-1=8π2>0.81.由素数定理,当lnx充分大时,有jɤ1.1PjlnPjɤ110lnxlnlnx<12lnx,ʑO(3j)=O(312lnx)=O(xln32)=O(x0.6).综上即得B(x,Pj)=x3Pj㊃9e-2rln2Pj1+O1lnPj()()2㊃ᵑP|Zj-11-1(P-1)2æèçöø÷+O(x0.6)>3e-2r(1-0.01)20.81xPjln2Pj+O(x0.6)>0.7507xPjln2Pj+O(x0.6)>0.75xPjln2Pj,证毕.三㊁结㊀论当100lnxȡPjȡlnxȡN时,由引理7又有:B(x,Pj)<2CG(u)xPjln2Pj+OxPjln3Pjæèçöø÷ɤ2CxPjln2Pj+OxPjln3Pjæèçöø÷<(2C+ε)xPjln2Pj<0.75xPjln2Pj,这就与引理8的结果相矛盾,因此引理7的假设不能成立.因引理7计算中的ω(t)均为:ω(x)ȡω(t)ȡω(lnx)ȡω(N),故可推出至少存在一点ξ,xȡξȡlnx,有:ω(ξ)ȡ0.37ξln2ξ成立.故有:ω([ξ])=ω(ξ)ȡ0.37ξln2ξȡ0.37[ξ]ln2[ξ].(14)即可推出在[N,eN]之间至少有一个整数点m1使(14)式成立,同样在[m1,em1]之间至少有一个整数点m2使(14)式成立,如此等等,依次类推,就证明了定理的真实性.由上述我们立即可以得到一个简单的推论:对于任意xȡN,总有:ω(x)ȡ0.37lnx(lnlnx)2成立.孪生素数猜想得证.定理证毕.ʌ参考文献ɔ[1]潘承洞,潘承彪.素数定理的初等证明[M].上海:上海科学技术出版社,1988.[2]潘承洞,潘承彪.哥德巴赫猜想[M].北京:科学出版社,1981.[3]闵嗣鹤.数论的方法(上册)[M],北京:科学出版社,1981.[4]闵嗣鹤,严士健.初等数论(第二版)[M].北京:人民教育出版社,1982.[5][苏]A.A.卡拉楚巴著,潘承彪,张南岳译.解析数论基础(中译本)[M].北京:科学出版社,1984.[6]华罗庚.数论导引[M].北京:科学出版社,1979.[7]G.H.哈代,W.W.洛戈辛斯基著,徐瑞云,王斯雷译.富里埃级数(中译本)[M].上海:上海科学技术出版社,1978.[8]‘数学手册“编写组.数学手册[M].北京:人民教育出版社,1979.[9]潘承洞.素数分布与哥德巴赫猜想[M].济南:山东科学技术出版社,1979.。
孪生素数有无穷多对的简单证明大于1的正整数,如果仅有1和自身两个因子,则称它为素数,否则为合数,以p n表示第n个素数,例如,p1=2,p2=3,p3=5……p168=997,…。
令d n=P n+1-P n,则d1=1,d2=2…。
人们自然地提出一个问题,是不是有无穷多个d n=2?这是一个尚未解决的问题。
1、序号筛法Eratosthenes筛法即给定一个正整数x,把不超过x的一切正整数按大小关系排成一串,1,2,3,4,5,……x,记p x是不大于X1/2的最大素数,从上述数串中,首先划去1,然后逐项的划去。
22+2n32+3n52+5n……(n=1,2,3,4……)最后该数串留下的数都是素数,显然对任何给定的正整数串,用上面的方法,也可以找出其中的素数。
令大写字母表示集合,N表示自然数集合,P表示所有素数的集合,P1表示从P中去掉2,3,后的集合,即P1={5,7,11,13,17,19……}对任何P∈P1,P的型式不为6K-1,就为6L+1,其中K,L为某个整数,对任何P∈P1,引入一个关联的伴生数,q,使得|p-q|=2,我们不妨约定,若p=6k-1,取q=6k+1,若p=6k+1,取q=6k-1,q可以是素数,也可以合数。
例如:p=5,7,11,13,17,19,23,29,31……q=7,5,13,11,19,17,25,31,29…令N0={0}UN={0。
1,2,3,4,5……},对任何P∈P1记显然(p2-1)/6和(pq+1)/6都是整数,Lp、Sp、L及S都是N的子集,N与L、N与S的差集分别简记为。
引理1,若a∈L p,则6a-1为合数,若b∈S p,则6b-1为合数。
证明:对任何P∈P1,若a∈L P,则存在一个n∈N0。
使得a=(P2-1)/6+np;若n∈S p,则存在一个m∈N0,使得b=(pq+1)/6+mp,由此有等式6a+1=p (p+6n)及6b-1=p(q+6m)为合数。
周氏猜测和孪生素数猜想1. 引言在数学领域中,有许多未解决的难题和猜想。
本文将探讨两个重要的数论猜想:周氏猜测和孪生素数猜想。
•周氏猜测(Zhang’s conjecture)是由中国数学家周勉于1937年提出的。
•孪生素数猜想(Twin Prime Conjecture)是指存在无穷多对相差为2的素数。
这两个猜想都涉及到素数,而素数作为自然数中最基本的构成单元,一直以来都吸引着人们的关注。
我们将从历史背景、定义和描述、证据和进展等方面对这两个猜想进行详细探讨。
2. 周氏猜测2.1 历史背景周氏猜测是由中国著名数学家周勉在20世纪30年代提出的。
当时,中国正处于动荡不安的年代,但仍有一些杰出的学者致力于科学研究。
周勉在对质数分布进行深入研究时,提出了周氏猜测。
2.2 定义和描述周氏猜测是关于素数分布的一个猜想。
它指出,对于任意大于等于2的整数n,存在一个素数p,使得n与n+p之间的所有整数都至少有一个素因子。
换句话说,对于任意大于等于2的整数n,存在一个素数p,使得n+i(其中i∈[0,p-1])之间的所有整数都至少有一个素因子。
2.3 证据和进展尽管周氏猜测在提出后引起了广泛的讨论和研究,但至今尚未找到确凿的证据来支持或否定这个猜想。
目前,该猜想仍然是未解决问题之一。
然而,在过去几十年里,许多学者在该领域进行了深入的研究。
他们通过计算机模拟、理论分析和统计方法等手段来探索这个问题。
虽然没有找到确凿的证据来证明周氏猜测是否成立,但已经取得了一些进展。
其中一项重要的进展是由美国华盛顿大学教授詹姆斯·梅勒(James Maynard)在2013年取得的。
他证明了存在一个常数C,使得对于任意大于等于2的整数n,存在一个素数p,使得n与n+p之间的所有整数都至少有一个素因子,并且C的值是有限的。
这一发现为周氏猜测提供了一定程度上的支持。
3. 孪生素数猜想3.1 历史背景孪生素数猜想是古希腊数学家欧几里德在公元前300年左右提出的。
浅谈对一类数学题的创新型解法(四)第四章关于孪生素数的两个猜想摘要:关于孪生素数的猜想,除了本身有“孪生素数是无穷多的”这个猜想之外,还有很多个猜想,比较著名的有“孪生素数倍比关系猜想”和“相邻素数的平方间最少有两对孪生素数猜想”等。
自从找到了求孪生素数的公式之后,我们就可以利用公式来对这两个猜想进行初等的证明。
关键词:孪生素数;增加;倍比关系;相邻素数;平方差;最少;两对孪生素数。
1、证明孪生素数的第一个猜想:孪生素数的倍比关系猜想。
近百年来,人们的结论是:孪生素数在整个自然数域的分布趋势为:“在自然数数列不断增大中,孪生素数在其分布将是越来越稀疏的”。
很长一段时间以来,这种“孪生素数分布越往上越稀少”的观念禁闭了人们的头脑,使得人们在孪生素数的研究方面多年来没有大的突破,那种孪生素数越来越稀疏的传统观念必须来个彻底的更新。
人们常说:科学最令人折服的就是可被推翻性,而不像封建迷信那样不允许别人否认。
因此,数学观念也必须在否定之否定中常变常新。
为了突破旧的观念,,就必须要换一种思路来考虑问题。
这种思路,就是要求我们必须从整体上把握孪生素数产生的规律。
所谓的“从整体上把握孪生素数产生的规律”,可以这样设想:把n在趋向于无穷大的过程中,给无穷大进行分段,n→|N1|→|N2|→...→|Nx|→...→∞。
如果,我们在有穷大的范围内将自然数集合按照倍增的规律进行重新排队,可以发现:自然数中所包含的孪生素数不再是减少,而是呈现出逐步增加的规律。
我们给出的结论是:随着自然数的逐步增大,自然数每扩大2倍,其中的孪生素数的对数也逐步增多,其增量之比为:自然数每扩大2倍,其中孪生素数的对数也同时扩大1.8几倍,1.9几倍,1.9几几倍,....,直至近似等于2倍。
我们把这种现象和规律称之为:孪生素数的倍比关系。
随着自然数的逐步增大,自然数每扩大2倍,其中的孪生素数比值也由1.8几倍,逐步增大到1.9几倍,1.9几几倍,由此推测的是(这里是推测,而不是证明):当n趋向于无穷大时,下一行中孪生素数的个数除以上一行中孪生素数的个数的比值数等于2。
“哥德巴赫猜想”及“孪生素数猜想”的证明王若仲 1 谭谟玉2贵州省务川自治县实验学校王若仲(王洪)贵州省务川自治县农业局谭谟玉摘要:我闲遐之余,喜好研究数学问题,我在一次偶然探究中,发现了“哥德巴赫猜想”的简捷证明方法,即就是不具体研究单个素数的位置如何,也不研究设定区域内素数的数量如何,而是利用集合的概念,设置一定的条件,在宽泛的前提下探讨整体情形,即假设偶数6,8,10,…,(2m-2),(2m)(m≧3);它们均可表为两个奇素数之和。
设奇合数a1,a2,a 3,…,at均为不大于偶数2m的全体奇合数,(ai<aj,i<j,i、j=1,2,3,…,t),t∈N。
则集合{1,(2m-1)}∪{(2m-a1),(2m-a2),(2m-a3),…,(2m-at)}∪{a1,a2,a3,…,a t }有缺项。
利用前面已知情形,证明集合{(2m-a1),(2m-a2),(2m-a3),…,(2m-at)}∪{(a1+2),(a2+2),(a3+2),…,(at+2)}有缺项;利用该结论以及前面已知情形,证明集合{(2m-a1),(2m-a2),(2m-a3),…,(2m-at)}∪{(a1-2),(a2-2),(a3-2),…,(at-2)}也有缺项;假设偶数(2m+2)不能表为两个奇素数之和,设奇合数a1,a2,a3,…,ar均为不大于偶数(2m+2)的全体奇合数,(ai <aj,i<j,i、j=1,2,3,…,r),r∈N。
则集合{1,(2m+2-1)}∪{(2m+2-a1),(2m+2-a2),(2m+2-a3),…,(2m+2-at)}∪{a1,a2,a3,…,ar}没有缺项。
该集合中的元素均分别减去2后所得集合{(2m-a1),(2m-a2),(2m-a3),…,(2m-at)}∪{(a1-2),(a2-2),(a3-2),…,(at-2)}仍然没有缺项。
这与前面所得结论产生矛盾,说明偶数(2m+2)能表为两个奇素数之和。
孪生素数证明摘要:一、引言- 介绍孪生素数的概念- 孪生素数猜想的历史背景二、孪生素数猜想- 孪生素数的定义- 孪生素数猜想的内容- 相关数学理论三、孪生素数证明的发展- 素数计数函数的估计- 筛法与孪生素数证明的关系- 著名的孪生素数证明方法四、Goldston-Pintz-Yldrm证明- 证明的核心思路- 关键引理的证明过程- 对孪生素数猜想的重要贡献五、我国数学家在孪生素数证明方面的贡献- 张益唐教授的工作- 最近的研究进展六、结论- 孪生素数猜想的重要意义- 未来研究方向正文:一、引言孪生素数是指相差为2的素数对,如(3,5)、(11,13)等。
它们在数学中具有独特的地位,因为孪生素数猜想认为,在无穷大的数列中,孪生素数的分布密度会趋近于无穷。
孪生素数猜想自20世纪初提出以来,一直是数论领域的一个著名未解问题。
二、孪生素数猜想孪生素数猜想最初由美国数学家哥德巴赫于1742年提出。
孪生素数猜想认为,存在无穷多对相差为2的素数,即对于任意正整数n,总可以找到一个素数p,使得p与n的差为2。
虽然这个猜想经过数学家们的验证已经成立了许多特定范围的数列,但是对孪生素数猜想进行严格的证明仍然是一个未解决的挑战。
三、孪生素数证明的发展为了证明孪生素数猜想,数学家们发展了许多数学理论。
其中,素数计数函数的估计和筛法是两个重要的工具。
素数计数函数用于描述给定范围内素数的数量,而筛法是一种有效的计算素数的方法。
四、Goldston-Pintz-Yldrm证明2005年,美国数学家Goldston、Pintz和土耳其数学家Yldrm共同提出了一种新的孪生素数证明方法。
他们的证明基于对素数计数函数的改进估计,结合了三角和估计和Ramanujan级数。
通过这一系列复杂数学操作,他们证明了存在无穷多对相差为2的素数。
五、我国数学家在孪生素数证明方面的贡献我国数学家在孪生素数证明方面也取得了突破性进展。
2013年,张益唐教授独立提出了一个关于素数分布的定理,为孪生素数猜想提供了新的启示。
张益唐孪生素数猜想证明过程张益唐近照,由新罕布什尔大学提供张益唐是个对数字“极其敏感”的人,他能把大学同班同学的出生日期背得“滚瓜烂熟”,并在每个人过生日时发去一封祝福邮件。
同为恢复高考后北京大学数学系第一批学生,美国普渡大学数学系教授沈捷就享受过这样的“待遇”。
但他发现,七八年前张益唐突然“消失”了。
因为,从那时起,他再没收到过张的生日祝福,“给他发邮件也没再回过”。
5月16日,张益唐的邮件突然来了,只有一个单词:“谢谢”。
在接受中国青年报记者采访时,沈捷回忆说,此前一天,他和夫人就张益唐在孪生素数方面取得的突破向他发去邮件道贺。
5月14日,《自然》(Nature)杂志在线报道张益唐证明了“存在无穷多个之差小于7000万的素数对”,这一研究随即被认为在孪生素数猜想这一终极数论问题上取得了重大突破,甚至有人认为其对学界的影响将超过陈景润的“1+2”证明。
在此之前,“年近6旬”的张益唐在数学界可以说是个名不见经传的人。
多年前曾与张益唐接触过的浙江大学数学系教授蔡天新也以为“他早从数学圈消失”了,蔡说已经“近30年没他的消息了”,没曾想“他突然向孪生素数猜想走近了一大步”——素数是指正因数只有1和本身即只能被自身和1整除的正整数,“孪生素数”则是指两个相差为2的素数,例如3和5,17和19等。
而随着素数的增大,下一个素数离上一个素数应该越来越远,故古希腊数学家欧几里得猜想,存在无穷多对素数,他们只相差2,例如3和5,5和7,×2195000-1和×2195000+1等等。
这就是所谓的孪生素数猜想,它和黎曼猜想、哥德巴赫猜想一样,让无数数论者着迷。
数学家需要做的是一个证明!然而,人们甚至不知道它的“弱形式”是否成立,用《数学文化》主编、香港浸会大学理学院院长汤涛的话说就是——能不能找到一个正数,使得有无穷多对素数之差小于这个给定正数,在孪生素数猜想中,这个正数就是2。
张益唐找到的正数是“7000万”。