机械振动专题
- 格式:docx
- 大小:366.77 KB
- 文档页数:6
《机械振动》期末复习专题高2015届班姓名:一、知识回顾:(一)机械振动物体(质点)在某一中心位置(平衡位置)两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。
回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。
产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。
b、阻力足够小。
(二)简谐运动1. 定义:物体跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐运动。
简谐运动是最简单,最基本的振动。
研究简谐运动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。
因此简谐运动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-kx,其中“-”号表示力方向跟位移方向相反。
2. 简谐运动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。
3. 简谐运动是一种特殊的机械振动,有关机械振动的概念和规律都适用,简谐运动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。
(三)描述振动的物理量1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐运动在振动过程中,动能和势能相互转化而总机械能守恒。
2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。
振动的周期T跟频率f之间是倒数关系,即T=1/f。
振动的周期和频率都是描述振动快慢的物理量,简谐运动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。
(四)单摆:摆角小于5°的单摆是典型的简谐运动。
细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。
机械振动专题归纳Newly compiled on November 23, 2020一、题型归纳1. 巧用时间的对称性[例1]一质点在平衡位置O 点两侧做简谐运动,在它从平衡位置O 出发向最大位移A 处运动过程中经s 15.0第一次通过M 点,再经s 1.0第2次通过M 点。
则此后还要经多长时间第3次通过M 点,该质点振动的频率为多大解析:由于质点从A M →和从M A →的时间是对称的,结合题设条件可知A M →所需时间为s 05.0,所以质点从平衡位置A O →的时间为s s t t t MA OM OA 2.0)05.015.0(=+=+=,又因为4Tt OA =,所以质点的振动周期为s T 8.0=,频率Hz T f 25.11==。
根据时间的对称性可知O M →与M O →所需时间相等为s 15.0,所以质点第3次通过M 点所需时间为s t T t OM 7.022=+=。
2. 巧用加速度的对称性[例3] 如图3所示,质量为m 的物体放在质量为M 的平台上,随平台在竖直方向上做简谐运动,振幅为A ,运动到最高点时,物体m 对平台的压力恰好为零,当m 运动到最低点时,求m 的加速度。
解析:我们容易证明,物体m 在竖直平面内做简谐运动,由小球运动到最高点时对M 的压力为零,即知道物体m 在运动到最高点时的加速度为g ,由简谐运动的对称性知道,物体m 运动到最低点时的加速度和最高点的加速度大小相等,方向相反,故小球运动到最低点时的加速度的大小为g ,方向竖直向上。
[例4]轻弹簧(劲度系数为k )的下端固定在地面上,其上端和一质量为M 的木板B 相连接,在木板B 上又放有一个质量为m 的物块P 。
当系统上下振动时,欲使P 、B 始终不分离,则轻弹簧的最大压缩量为多大解析:从简谐运动的角度看,木板B 和物块P 的总重力与弹簧弹力的合力充当回复力,即kx F =合;从简单连接体的角度看,系统受到的合外力产生了系统的加速度a ,即a m M F )(+=合,由以上两式可解为a m M kx )(+=。
初中物理机械振动知识点详解1. 什么是机械振动机械振动指的是物体在受到外力作用后产生的周期性运动。
在机械振动中,物体会围绕某个平衡位置做往复运动。
2. 机械振动的基本特征机械振动具有以下基本特征:- 振动的物体有一个平衡位置,即物体在没有外力作用时所处的位置。
- 振动的物体围绕平衡位置做往复运动,即在两个极端位置之间来回运动。
- 振动是周期性的,即在一定的时间内重复发生。
- 振动的物体有一个振动的幅度,即离开平衡位置的最大距离。
3. 机械振动的分类机械振动可以分为以下几类:- 自由振动:物体在没有外力作用下的振动,例如摆钟。
- 强迫振动:物体在外力的作用下进行的振动,例如摩擦力使得弹簧振子振动。
- 受迫振动:物体在外力周期性作用下的振动,例如风吹树木摆动。
4. 机械振动的重要参数在机械振动中,有几个重要的参数需要了解:- 振动周期(T):振动完成一个往复运动所需的时间。
- 振动频率(f):振动完成一个往复运动所需的次数。
- 振动幅度(A):物体离开平衡位置的最大距离。
- 振动角频率(ω):振动频率与2π的乘积。
- 振动频率与周期的关系:f = 1 / T,频率和周期是倒数关系。
5. 机械振动的过程机械振动的过程包括以下几个阶段:- 起始阶段:物体受到外力的作用,开始从平衡位置偏离。
- 最大位移阶段:物体离开平衡位置,达到最大偏离距离。
- 回复阶段:物体开始回到平衡位置,速度逐渐减小。
- 平衡阶段:物体回到平衡位置,速度为零。
6. 机械振动的影响因素机械振动受以下几个因素影响:- 物体的质量:质量越大,振动的惯性越大。
- 物体的弹性恢复力:恢复力越大,振动的频率越高。
- 外力的大小和方向:外力的大小和方向会改变振动的幅度和方向。
- 空气阻尼:空气的阻力会减弱振动的幅度和周期。
7. 机械振动的应用机械振动在生活中有着广泛的应用,例如:- 摇篮摇晃:通过摇篮的周期性摆动,帮助婴儿入睡。
- 震动筛分:将颗粒品进行分离,根据颗粒的大小进行筛选。
机械振动专题一、机械振动:在平衡位置附近做周期性的往复运动。
二、简谐运动:1、位移—时间图像满足正弦规律2、回复力满足:3、加速度满足:三、弹簧振子——理想化模型1、回复力(效果力):弹簧振子中的回复力即为合外力,方向总是指向平衡位置。
2、平衡位置:弹簧振子中的平衡位置即为弹簧原长处。
3、振动位移:相对于平衡位置的位移,位移起点为平衡位置。
4、振幅(A):标量,反映振动系统能量的大小。
5、能量转化:机械能守恒。
6、振动图像及表达式:由图可知:①振子在任一时刻的位移。
②T、A、计时起点、表达式③平衡位置():振幅位置():④判断任一时刻速度方向:看下一时刻质点的位置。
⑤一个周期内速度方向改变两次。
⑥时间、速度、位移及加速度均具有对称性。
四、证明简谐运动:例1:把倾角为θ的光滑斜面上的小球沿斜面拉开一段距离,然后松开,试证明小球的运动是简谐运动。
例2:粗细均匀的一根木筷,下端绕几组铁丝,竖直浮在较大的筒中,把木筷向上提一段距离后,木筷就在水中上下振动,证明其运动为简谐运动。
五、单摆——实际摆的理想化模型1、单摆做简谐运动的条件:摆角<5°(10°)2、回复力:G沿圆弧切线方向的分力或合外力沿运动方向的分力3、周期:其中:l为悬点到摆球球心间的距离g为当地重力加速度4、秒摆:周期为2S的单摆,在地球上其摆长约为1m。
5、等效摆长:六、阻尼振动(减幅振动):特点:受阻力,振幅逐渐减小。
阻尼越大,振幅减小的越快。
振动频率(周期):由振动系统自身决定,与振幅无关,即固有频率(周期)。
七、无阻尼振动(等幅振动):特点:不受阻力,振幅不变。
八、受迫振动:特点:在驱动力作用下的振动。
振动频率(周期):等于驱动力的频率(周期),与系统的固有频率(周期)无关。
九、自由振动(固有振动):特点:在内部回复力作用下的振动(有无阻尼均可)。
振动频率(周期):固有频率(周期)十、共振:受迫振动中的一种现象。
大学物理学中的机械振动是指物体在受到外力作用后,产生周期性的来回振动运动的现象。
以下是关于机械振动的一些基本概念和内容:
1. 振动的基本特征
-周期性:振动是一个周期性的过程,即物体在围绕平衡位置来回振动。
-频率:振动的频率指的是单位时间内振动的周期数,通常用赫兹(Hz)表示。
-振幅:振动的振幅是物体从平衡位置最大偏离的距离。
2. 单自由度振动系统
-弹簧振子:是一种经典的单自由度振动系统,由弹簧和质点组成,受到弹簧的恢复力驱使质点振动。
-简谐振动:在没有阻尼和外力干扰的情况下,弹簧振子的振动是简谐的,即振动周期固定,频率与系统的固有频率相关。
3. 振动的参数和描述
-角频率:振动描述中常用的参数之一,表示振动的快慢程度,与频率之间有一定的关系。
-相位:描述振动状态的参数,表示振动的相对位置或状态。
-能量:振动系统具有动能和势能,能量在振动过程中不断转换,影响着振动的特性。
4. 阻尼振动和受迫振动
-阻尼振动:在振动系统中存在阻尼,会导致振动逐渐减弱,最终趋于稳定。
-受迫振动:当振动系统受到外力周期性作用时,会产生受迫振动,其频率与外力频率相同或有关。
5. 振动的应用
-工程领域:振动理论在工程领域有着广泛的应用,如建筑结构的抗震设计、机械系统的振动分析等。
-科学研究:振动理论也在物理学、工程学、生物学等领域中发挥重要作用,帮助解释和研究各种现象和问题。
以上是关于大学物理学中机械振动的一些基本内容和相关概念,希望能帮助您更好地理解这一领域的知识。
2023届高三物理一轮复习重点热点难点专题特训专题42 机械振动特训目标特训内容 目标1简谐运动的基本规律(1T —4T ) 目标2简谐运动的图像(5T —8T ) 目标3单摆模型(9T —12T ) 目标4 受迫振动和共振(13T —16T )【特训典例】一、简谐运动的基本规律1.如图所示,两根完全相同的弹簧和一根张紧的细线将甲、乙两物块束缚在光滑水平面上,已知甲的质量是乙的质量的2倍,弹簧振子做简谐运动的周期2m T kπ=,式中m 为振子的质量,k 为弹簧的劲度系数。
当细线突然断开后,两物块都开始做简谐运动,在运动过程中( )A .甲的振幅大于乙的振幅B .甲的振幅小于乙的振幅C .乙的最大速度是甲的最大速度的2倍D .甲的振动周期是乙的振动周期的2倍【答案】C【详解】AB .细线断开前,两根弹簧伸长的长度相同,离开平衡位置的最大距离相同,即两物块的振幅一定相同,故AB 错误;C .细线断开的瞬间,两根弹簧的弹性势能相同,到达平衡位置时,甲、乙的动能最大且相同,由于甲的质量是乙的质量的2倍,根据2k 12E mv =可知,乙的最大速度一定是甲的最大速度的2倍,故C 正确;D .根据2m T kπ=可知,甲的振动周期是乙的振动周期的2倍,故D 错误。
故选C 。
2.如图所示,劲度系数为k 的轻弹簧下端悬挂一质量为M 的圆盘,圆盘处于静止状态。
现将质量为m 的粘性小球自离圆盘h 高处静止释放,与盘发生完全非弹性碰撞,不计空气阻力,下列说法正确的是( )A .圆盘将以碰后瞬时位置作为平衡位置做简谐运动B .圆盘做简谐运动的振幅为mg kC .振动过程中圆盘的最大速度为2m gh M m+ D .碰后向下运动过程中,小球和圆盘的重力势能与弹簧的弹性势能总和先减小后增大【答案】D【详解】A .以小球和圆盘组成的系统为研究对象,系统做简谐运动,平衡位置处合外力应为零,而碰后瞬间,系统合外力不为零,A 错误;B .上述分析可知,开始的位置不是最大位移处,开始时0Mg kx =球粘在盘子上一起静止的位置满足2()m M g kx +=所以从开始碰撞到平衡位置距离为mg x k ∆=故振幅应大于mg k,B 错误;C .小球自h 处静止释放,与盘发生完全非弹性碰撞,由动量守恒1()mv m M v =+由匀变速直线运动,速度位移关系22v gh =联立解得12m gh v M m =+两者碰撞瞬间由牛顿第二定律0()m M g kx ma +-=即碰后两者做加速度减小的加速运动,当=0a 时,速度最大,之后做减速运动到最低点,故振动过程中,圆盘的速度应大于2m gh M m+,C 错误; D .设小球和圆盘所具有的的总能量为E ,则由能量守恒可知p k p E E E E =++重弹因为系统速度读先增大后减小,故小球的动能先增大后减小,所以小球和圆盘的重力势能与弹簧的弹性势能总和先减小后增大。
一、题型归纳1. 巧用时间的对称性[例1]一质点在平衡位置O 点两侧做简谐运动,在它从平衡位置O出发向最大位移A 处运动过程中经s 15.0第一次通过M 点,再经s 1.0第2次通过M 点。
则此后还要经多长时间第3次通过M 点,该质点振动的频率为多大?解析:由于质点从A M →和从M A →的时间是对称的,结合题设条件可知A M →所需时间为s 05.0,所以质点从平衡位置A O →的时间为s s t t t MA OM OA 2.0)05.015.0(=+=+=,又因为4Tt OA =,所以质点的振动周期为s T 8.0=,频率Hz T f 25.11==。
根据时间的对称性可知O M →与M O →所需时间相等为s 15.0,所以质点第3次通过M 点所需时间为s t T t OM 7.022=+=。
2. 巧用加速度的对称性[例3] 如图3所示,质量为m 的物体放在质量为M 的平台上,随平台在竖直方向上做简谐运动,振幅为A ,运动到最高点时,物体m 对平台的压力恰好为零,当m 运动到最低点时,求m 的加速度。
解析:我们容易证明,物体m 在竖直平面内做简谐运动,由小球运动到最高点时对M 的压力为零,即知道物体m 在运动到最高点时的加速度为g ,由简谐运动的对称性知道,物体m 运动到最低点时的加速度和最高点的加速度大小相等,方向相反,故小球运动到最低点时的加速度的大小为g ,方向竖直向上。
[例4]轻弹簧(劲度系数为k )的下端固定在地面上,其上端和一质量为M 的木板B 相连接,在木板B 上又放有一个质量为m 的物块P 。
当系统上下振动时,欲使P 、B 始终不分离,则轻弹簧的最大压缩量为多大?解析:从简谐运动的角度看,木板B 和物块P 的总重力与弹簧弹力的合力充当回复力,即kx F =合;从简单连接体的角度看,系统受到的合外力产生了系统的加速度a ,即a m M F )(+=合,由以上两式可解为a m M kx )(+=。
36 机械振动及其规律(解析版)机械振动及其规律(解析版)机械振动是指物体在某一平衡位置附近以固有频率振动的现象,它在现代工程领域中有着广泛的应用。
本文将对机械振动的基本原理、规律和应用进行解析,以帮助读者更好地理解和应用机械振动。
一、机械振动的基本原理机械振动是由于某种力的作用使得物体偏离平衡位置而产生的振动。
通常,机械振动可以分为自由振动和受迫振动两种形式。
1. 自由振动自由振动是指物体在无外力作用下,在固有频率下进行的振动。
在自由振动中,物体将按照一定的频率、振幅和相位进行周期性的振动。
自由振动的周期性是由物体的质量、弹性系数和阻尼等参数决定的。
2. 受迫振动受迫振动是指物体在受到外力作用后进行的振动。
外力可以是周期性的,也可以是非周期性的。
当外力与物体的固有频率相同时,会出现共振现象,使得振幅变得很大。
受迫振动广泛应用于振动传感器、振动筛选等领域。
二、机械振动的规律机械振动具有一定的规律性,对于分析和应用机械振动十分重要。
以下是常见的机械振动规律:1. 振动频率与周期振动频率是指单位时间内振动的次数,通常用赫兹(Hz)来表示。
振动周期是指完成一次完整振动所需的时间,是振动频率的倒数。
振动频率和周期之间有着简单的关系,可以通过实验或计算得到。
2. 振动幅度与振动能量振动幅度是指物体在振动过程中达到的最大位移,它与振动能量有直接的关系。
振动幅度越大,物体的振动能量越高,对周围环境的影响也越大。
因此,在实际应用中需要合理控制振动幅度,以避免对系统产生不利影响。
3. 振动的相位振动的相位是指物体在振动过程中的位置关系或时间关系。
相位的改变可以描述振动之间的相对位置差异或时间差异。
相位差越大,振动之间的差异越明显。
相位差为0或2π时,物体处于同一振动状态。
三、机械振动的应用机械振动在工程领域有着广泛的应用,常见的应用包括:1. 振动传感器振动传感器可以用于测量和监测机械设备的振动状态,以判断设备是否正常工作。
2023年高考物理二轮复习讲练测专题11 机械振动和机械波(精练)一、单项选择题1.如图所示是某水平弹簧振子做简谐运动的x t -图像,M 、P 、N 是图像上的3个点,分别对应1t 、2t 、3t 时刻。
下列说法正确的是( )A .该振子的周期是0.2s ,振幅是8cmB .在2t 时刻振子的速度方向就是图像上P 点的切线方向C .在1t 到2t 过程振子的速度先增大后减小D .在2t 到3t 过程振子的加速度逐渐减小 【答案】D【详解】A .由振动图像可知,该振子的周期是0.2s T =,振幅是4cm A =,故A 错误;B .振动图像不是弹簧振子的运动轨迹,所以在2t 时刻振子的速度方向不是图像上P 点的切线方向,在2t 时刻振子的速度方向指向振子的平衡位置,故B 错误;C .由振动图像可知,在1t 到2t 过程振子先向正向最大位移方向运动,达到正向最大位移处后接着又朝着平衡位置运动,所以振子的速度先减小后增大,故C 错误;D .在2t 到3t 过程振子朝着平衡位置方向运动,振子偏离平衡位置的位移x 逐渐减小,根据kxa m=可知,振子的加速度逐渐减小,故D 正确。
故选D 。
2.如图甲所示为以O 点为平衡位置,在A 、B 两点间运动的弹簧振子,图乙为这个弹簧振子的振动图像,由图可知下列说法中正确的是( )A .在t =0.2s 时,弹簧振子的加速度为正向最大B .在t =0.1s 与t =0.3s 两个时刻,弹簧振子的速度相同C .从t =0到t =0.2s 时间内,弹簧振子做加速度增大的减速运动D .在t =0.6s 时,弹簧振子有最小的位移 【答案】C【详解】A .在t =0.2s 时,弹簧振子的位移为正向最大,加速度为负向最大,A 错误;B .在t =0.1s 与t =0.3s 两个时刻,弹簧振子的位移相同,说明弹簧振子在同一位置,速度大小相等,方向相反,B 错误;C .从t =0到t =0.2s 时间内,弹簧振子的位移增大,加速度增大,速度减小,所以弹簧振子做加速度增大的减速运动,C 正确;D .在t =0.6s 时,弹簧振子的位移为负向最大,D 错误。
机械振动的原理及应用实例1. 机械振动的定义机械振动是指物体在某一点偏离其平衡位置并产生周期性的往复运动的现象。
它是由物体的势能和动能相互转换引起的,具有频率、振幅和相位等重要特征。
2. 机械振动的原理机械振动的原理主要涉及以下几个方面:•弹簧振子的原理–当物体受到外力作用偏离其平衡位置时,弹簧会产生恢复力,使物体向平衡位置做往复运动。
•谐振的原理–当外力的频率与物体固有频率相等时,物体会受到共振作用,振幅会不断增大,达到最大值。
•阻尼的原理–阻尼是指外力对物体振动产生的衰减作用,它可以分为无阻尼、临界阻尼和过阻尼三种。
•受迫振动的原理–当外力的频率与物体固有频率不同时,物体会发生受迫振动,产生共振现象。
3. 机械振动的应用实例机械振动在工程领域有着广泛的应用,以下是一些实际应用的例子:•汽车悬挂系统–汽车悬挂系统中的弹簧和减震器能够吸收道路不平坦所产生的振动,提高行驶的舒适性和稳定性。
•桥梁和建筑物的抗震设计–在桥梁和建筑物的抗震设计中,利用减震器和振动吸收器来减小地震产生的影响,保护结构的安全性。
•电动机–电动机中的转子受到的电力驱动会产生机械振动,通过控制振动的频率和振幅,可以实现电动机的正常运转。
•机械加工–在机械加工中,通过振动刀具和工件之间的相对运动,可以提高加工效率和表面质量。
•医疗领域–机械振动在医疗领域也有一定的应用,例如超声波治疗和体外震波碎石等。
•音乐产生–乐器中的声音是通过乐器的振动产生的,振动的频率和振幅决定了乐器发出的声音。
4. 结论机械振动作为一种物理现象,具有很多重要的应用。
从汽车悬挂系统到医疗领域,机械振动都发挥着重要的作用。
了解机械振动的原理和应用实例,可以帮助我们更好地应对相关问题,提高工作效率和生活质量。
机械振动专题归纳Organized at 3pm on January 25, 2023Only by working hard can we be better一、题型归纳1. 巧用时间的对称性例1一质点在平衡位置O 点两侧做简谐运动,在它从平衡位置O 出发向最大位移A 处运动过程中经s 15.0第一次通过M 点,再经s 1.0第2次通过M 点;则此后还要经多长时间第3次通过M 点,该质点振动的频率为多大解析:由于质点从A M →和从M A →的时间是对称的,结合题设条件可知A M →所需时间为s 05.0,所以质点从平衡位置A O →的时间为s s t t t MA OM OA 2.0)05.015.0(=+=+=,又因为4T t OA =,所以质点的振动周期为s T 8.0=,频率Hz T f 25.11==;根据时间的对称性可知O M →与M O →所需时间相等为s 15.0,所以质点第3次通过M 点所需时间为s t T t OM 7.022=+=;2. 巧用加速度的对称性例3 如图3所示,质量为m 的物体放在质量为M 的平台上,随平台在竖直方向上做简谐运动,振幅为A ,运动到最高点时,物体m 对平台的压力恰好为零,当m 运动到最低点时,求m 的加速度;解析:我们容易证明,物体m 在竖直平面内做简谐运动,由小球运动到最高点时对M 的压力为零,即知道物体m 在运动到最高点时的加速度为g ,由简谐运动的对称性知道,物体m 运动到最低点时的加速度和最高点的加速度大小相等,方向相反,故小球运动到最低点时的加速度的大小为g ,方向竖直向上;例4轻弹簧劲度系数为k 的下端固定在地面上,其上端和一质量为M 的木板B 相连接,在木板B 上又放有一个质量为m 的物块P ;当系统上下振动时,欲使P 、B 始终不分离,则轻弹簧的最大压缩量为多大解析:从简谐运动的角度看,木板B 和物块P 的总重力与弹簧弹力的合力充当回复力,即kx F =合;从简单连接体的角度看,系统受到的合外力产生了系统的加速度a ,即a m M F )(+=合,由以上两式可解为a m M kx )(+=;当P 和B 在平衡位置下方时,系统处于超重状态,P 不可能和B 分离,因此P 和B 分离的位置一定在上方最大位移处,且P 和B 一起运动的最大加速度g a m =;由加速度的对称性可知弹簧压缩时最大加速度也为g a m =,所以轻弹簧的最大压缩量应满足关系式m m a m M g m M kx )()(+=+-,即得k g m M x m )(2+=;3. 巧用速度的对称性例5 如图所示是一水平弹簧振子在s 5内的振动图象;从图象中分析,在给定的时间内,以s 5.0为起点的哪段时间内,弹力所做的功为零;解析:由速度的对称性可知,图5中与s 5.0具有相同速率的时刻为s 5.1、s 5.2、s 5.3、s 5.4;结合动能定理可知,从s 5.0到以上时刻所对应的时间内弹力所作的功均为零;4. 巧用回复力的对称性例6在质量为M 的无下底的木箱顶部用一轻弹簧悬挂质量均为)(m M m ≥的A 、B 两物块,箱子放在水平地面上,平衡后剪断A 、B 间细线,此后A 将做简谐运动;当A 运动到最高点时,木箱对地面的压力为A.MgB.g m M )(-C.g m M )(+D.g m M )2(+解析:剪断细线后的瞬间,弹簧对A 的弹力为mg kx 2=,所以A 受到向上的合外力回复力为mg ;当A 运动到上方最大位移处时,由于简谐运动的回复力的对称性,A 将受到竖直向下的合外力回复力,其大小仍为mg ,也就是说,此时弹簧中没有弹力,所以木箱对地面的压力为Mg ;选项A 正确;例7质量为m 的木块放在弹簧上端,在竖直方向上做简谐运动,当振幅为A 时,物体对弹簧的压力的最大值是物体重力的5.1倍,则物体对弹簧的最小压力是_____;欲使物体在弹簧振动中不离开弹簧,其振幅不能超过_____;分析与解答:物体对弹簧压力最大应是物体振动到最低点时,最小应是物体振动到最高点时;对物体进行受力分析,在最低点受两个力:重力和弹簧弹力,根据题中信息可知这两个力的合力大小为mg 5.0,方向向上,充当回复力;根据力大小的对称性可知,物体振动到最高点时,回复力大小也应为mg 5.0,方向向下,则物体在最高点所受弹簧的弹力应为mg 5.0,方向向上,根据牛顿第三定律物体对弹簧的最小压力为mg 5.0;物体脱离弹簧时应是弹簧恢复到自由伸长时,根据弹力x k F ∆=可知,在原来的基础上弹簧再伸长一个振幅A 就可恢复到原长,所以欲使物体不离开弹簧,其振幅不能超过A 2;例8用质量不计的弹簧把质量为m 3的木板A 与质量为m 的木板B 连接组成如图所示的装置,B 板置于水平地面上,现用一个竖直向下的力F 向下压木板A ,撤消F 后,B 板恰好被提离地面,由此可知力F 的大小是A. mg 7B. mg 4C. mg 3D.mg 2解析:没撤去力F 时,物体A 静止,所受合力为零,把力F 撤去,物体A 受合力大小为F ,方向向上,开始向上振动,所以最大回复力为F ,根据力大小的对称性,A 振动到最高点时,回复力大小也为F ,对物体A 在最高点进行受力分析:重力mg 3和弹簧的弹力F ',合力为F ;即mg F F 3+'=;再对物体B 进行受力分析,B 恰好被提离地面可得:mg F =',所以力F 的大小为mg 4;选项B 正确;5. 巧用能量的对称性例9 一轻弹簧直立在地面上,其劲度系数为m N k /400=,弹簧的上端与盒子A 连接在一起,盒子内装物体B ,B 的上下表面恰好与盒子接触,A 和B 的质量kg m m B A 1==,2/10s m g =,不计阻力,先将A 向上抬高使弹簧伸长cm 5后从静止释放,A 和B 一起做上下方向的简谐运动,已知弹簧的弹性势能决定于弹簧的形变大小;试求:1A 的振幅;2B 的最大速率;3在最高点和最低点时A 对B 的作用力;解析:1设A 和B 做简谐运动到平衡位置时,弹簧的压缩量为0x ,由平衡条件g m m kx B A )(0+=,得cm x 50=,故A 的振幅为cm A 10=;2当B 运动到平衡位置时速率最大,A 和B 由静止释放到平衡位置过程中,弹簧的伸长量与压缩量相等,弹性势能不变,由动能定理2)(21)(v m m gA m m B A B A +=+,得s m v /2=;3设A 、B 一起运动的最大加速度大小最高点和最低点为a ,由牛顿第二定律a m m kx g m m B A B A )()(1+=++,得2/20s m a =;取B 为研究对象,在最高点时有a m F g m B B =+1,得A 对B 的作用力N F 101=,方向向下;在最低点时有a m g m F B B =-2,得A 对B 的作用力N F 302=,方向向上;例10质量分别为kg m A 2=和kg m B 3=的A 、B 两物块,用劲度系数为k 的轻弹簧相连后竖直放在水平面上,今用大小为N F 45=的力把物块A 向下压而使之处于静止,突然撤去压力,则A. 物块B 有可能离开水平面B. 物块B 不可能离开水平面C. 只要k 足够小,物块B 就可能离开水平面D. 只要k 足够大,物块B 就可能离开水平面解析:撤去压力后,物体A 在竖直方向上做简谐运动,下压的的初始位置即为振幅位置,此时最大回复力为N F 45=学生可类比水平方向得出结论,也可间接由受力分析得出,由回复力的对称性特点,当A 运动到最高点时,回复力也为N 45,方向向下,设此时弹簧中的弹力为x F ,有g m F F A x +=,得N F x 25=,g m F B x <,因此,物体B 不可能离开水平面;6.简谐振动的图象和能量例11一个质点在平衡位置O 点附近做简谐运动,若从O 点开始记时,经过s 3质点第一次经过M 点;再继续运动,又经过s 2,它第二次经过M 点;则该质点第三次经过M 点所需的时间是A. s 8B. s 4C. s 14D. s 310解析:设图2中a 、b 两点为质点振动过程中的最大位移,若开始记时时刻质点从O点向右运动,M O →运动过程经历s 3,M b M --过程经历s 2,显然s T 44=,s T 16=,质点第三次经过M 点所需的时间s s s s T t 1421623=-=-=∆,故C 正确;若开始记时时刻质点从O 点向左运动,M O a O ---运动过程经历了s 3,M b M --过程经历s 2,显然s T T 424=+,s T 316=,质点第三次经过M 点所需的时间s s s s T t 310231623=-=-='∆,故D 正确;因此选C 、D;例12 如图是一个单摆的共振曲线,则该单摆的摆长约为多大共振时单摆的振幅多大共振时摆球的最大加速度和最大速度分别为多大2/10s m g =解析:这是一道根据共振曲线所给信息和单摆振动规律进行推理和综合分析的题目,本题涉及到的知识点有受迫振动、共振的概念和规律、单摆摆球做简谐运动及固有周期、频率、能量的规律等;由题意可知,当单摆振动时频率Hz f 5.0=,即Hz f f 5.0==固,振幅m cm A 08.08==,由g l T π2=,解得m f g L 1422==π;如图5所示,当最大摆角共振时m θ很小时,L mgAmg mg F m m ===θθsin ,其中m θ为弧度;当m θ很小时,m m θθ=sin ,弦A 近似为弧长;图5其最大加速度2/8.0sin s m L gA g a m m ===θ根据机械能守恒有)cos 1(22m m mgL mv θ-=且22222)2(22sin 2cos 1L A m m m ===-θθθm θ很小,所以s m v m /25.0= 二.2012高考题型归类 1.简谐运动基本概念解图像问题1.2012·北京17一个弹簧振子沿x 轴做简谐运动,取平衡位置O 为x 轴坐标原点.从某时刻开始计时,经过四分之一的周期,振子具有沿x 轴正方向的最大加速度;能正确反映振子位移x 与时间t 关系的图像是解析:由振子受到的力,则加速度;加速度与位移成正比,方向与位移方向相反;根据以上四幅图可知答案为A; 点评:振动与波动是每年的必考题,以往北京出题都是振动图像和波动图像一起出现的,而今年只出现的振动图像,考察的也是比较基础的质点振动时的加速度问题,没有变型,比较常见,所以其实题目的难度和前几年高考相比是有所下降了;2.2012·重庆14装有砂粒的试管竖直静立于小面,如题14图所示,将管竖直提起少许,然后由静止释放并开始计时,在一定时间内试管在竖直方向近似做简谐运动;若取竖直向上为正方向,则以下描述试管振动的图象中可能正确的是解析:试管竖直提起少许后释放,说明试管从正向最大位移处开始做简谐运动运动,从以上选项可得D 正确2.单摆问题3.2012上海卷在“利用单摆测重力加速度”的实验中1某同学尝试用DIS 测量周期;如图,用一个磁性小球代替原先的摆球,在单摆下方放置一个磁传感器,其轴线恰好位于单摆悬挂点正下方;图中磁传感器的引出端A 应接到__________;使单摆做小角度摆动,当磁感应强度测量值最大时,磁性小球位于__________;若测得连续N 个磁感应强度最大值之间的时间间隔为t ,则单摆周期的测量值为__________地磁场和磁传感器的影响可忽略;2多次改变摆长使单摆做小角度摆动,测量摆长L 及相应的周期T ;虎后,分别取L 和T 的对数,所得到的1g T -1g L 图线为______填“直线”、“对数曲线”或“指数曲线”;读得图线与纵轴交点的纵坐标为c ,由此得到该地的重力加速度g =__________; 答案:1数据采集器,最低点或平衡位置,,2直线,42/102c ;解析:1只有小球在最低点时,磁感应器中的磁感强度才最大;连续N 个磁感应强度最大值应有N-1个时间间隔,这段时间应为N-1/2个周期,即:因此T=2根据:,取对数得:因此图象为一条直线;图象与纵坐标交点为C,则整理得:;4. 2012·全国大纲25一单摆在地面处的摆动周期与在某矿井底部摆动周期的比值为k;设地球的半径为R;假定地球的密度均匀;已知质量均匀分布的球壳对壳内物体的引力为零,求矿井的深度d;解析:单摆在地面处的摆动周期,在某矿井底部摆动周期,已知,根据,;表示某矿井底部以下的地球的质量,表示某矿井底部处的重力加速度,又由,联立解得:三.2013新题演练1.若单摆的摆长不变,摆球的质量由20g 增加为40g,摆球离开平衡位置的最大角度由4°减为2°,则单摆振动的A.频率不变,振幅不变B.频率不变,振幅改变C.频率改变,振幅不变D.频率改变,振幅改变解析:单摆的摆长不变时,单摆振动的周期gl T π2=不变,频率f=1/T 不变;摆长不变时,摆角越大,振幅越大,选项B 正确;本题答案为B;2.关于单摆的运动有下列说法,正确的是①单摆的回复力是摆线的拉力与重力的合力O A B C x ②单摆的回复力是重力沿摆球运动轨迹切向的分力③单摆的周期与质量无关与振幅无关,与摆长和当地的重力加速度有关④单摆做简谐运动的条件是摆角很小如小于5°⑤在山脚下走时准确的摆钟移到高山上走时将变快A .①③④B .②③④C .③④⑤D .①④⑤3.沿x 轴方向的一条细绳上有O 、A 、B 、C 四点,AB OA =,AB BC 5=,质点O 在垂直于x 轴方向做简谐运动,沿x 轴传播形成横波.t = 0时刻,O 点开始向上运动,经t = ,O 点第一次到达上方最大位移处,这时A 点刚好开始运动.那么在t = 时刻,关于质点B 和C 运动情况, 以下描述中正确的是A .B 点位于x 轴下方 B .C 点位于x 轴下方C .B 点正向上运动D .C 点正向上运动解析:根据题意,机械波的振动周期T =4t =,波长λ=4AB ,在t 1=时刻,B 点刚好开始向上运动,在t = 时刻,即再经过=T 852,B 点位于x 轴下方,且正向下运动,所以选项A 正确,C 错误;在t 2=时刻,C 点刚好开始向上运动,在t = 时刻,即再经过=T 831,C 点位于x 轴上方,且正向下运动,所以选项BD 错误;本题答案为A;4.如图所示,两根完全相同的弹簧和一根张紧的细线将甲、乙两物块束缚在光滑水平面上,已知甲的质量大于乙的质量.当细线突然断开后,两物块都开始做简谐运动,在运动过程中A .甲的振幅大于乙的振幅B .甲的振幅小于乙的振幅C .甲的最大速度小于乙的最大速度D .甲的最大速度大于乙的最大速度5.一水平弹簧振子在平衡位置O 点附近做简谐运动,它离开O 点经过 s 后第一次到达M 点,再经过 s 第二次到达M 点,从弹簧振子离开O 点开始计时,则A .t 1 = s 时刻和t 2 = s 时刻弹簧长度可能相同B .振子第三次到达M 点还要经过的时间可能是 sC .t 1 =31s 时刻和t 2 =32s 时刻振子的动量一定相同D .t 1 =31s 时刻和t 2 =32s 时刻振子加速度大小一定相等6.振源A 带动细绳上各点上下做简谐运动,t = 0时刻绳上形成的波形如图所示;规定绳上质点向上运动的方向为x 轴的正方向,则P 点的振动图象是7.质点P 以O 点为平衡位置竖直向上作简谐运动,同时质点Q 也从O 点被竖直上抛,它们恰好同时到达最高点,且高度相同,在此过程中,两质点的瞬时速度v P 与v Q 的关系应该是A .v P >v QB .先v P >v Q ,后v P <v Q ,最后v P =v Q AC .v P <v QD .先v P <v Q ,后v P >v Q ,最后v P =v Q解析:在此过程中,质点P 做加速度逐渐增大的减速运动,而质点Q 做匀减速直线运动,它们的末速度均为零,运动时间相等,位移也相等,据此可在同一坐标系中作出它们的v-t 图象,如上图所示,其中两图线与坐标轴围成图形的面积是相等的,据图可知,选项D 正确;本题答案为D;8.正在做简谐运动的单摆,摆球到达最高点时的机械能为E 1,摆线对摆球的拉力大小为F 1;摆球通过最低点时的机械能为E 2,摆线对摆球的拉力大小为F 2,若不计空气阻力,以下结论正确的是=E 2,F 1<F 2 <E 2,F 1<F 2 <E 2,F 1>F 2 =E 2,F 1=F 2解析:摆球摆动过程中,只有重力做功,机械能守恒,所以E 1=E 2;设摆球质量为m ,摆长为l ,摆角为θ,摆球通过最低点时的速度为v ,则F 1=mg cos θ,F 2=mg+mv 2/l ,显然F 1<F 2;本题答案为A;9.某弹簧振子在水平方向上做简谐运动,其位移x 随时间t 变化的关系式为x=A sin ωt ,图象如图所示,则A .弹簧在第ls 末与第5s 末的长度相同B .简谐运动的圆频率4π=ωrad/sC .第3s 末弹簧振子的位移大小为22AD .第3s 末至第5s 末弹簧振子的速度方向都相同解析:在x-t 图象中,位移x 具有方向性,即有正、负之分,这里的正、负表示弹簧被拉伸或压缩,所以弹簧在第ls 末与第5s 末时,虽然位移大小相等,但方向不同,所以弹簧长度不同,选项A 错误;根据x-t 图象可知,周期T =8s,所以,圆频率ω=4π2=πT rad/s,选项B 正确;x=A sin 4πt ,将t=3s 代入可得,x =22A ,选项C 正确;弹簧振子在第3s 末至第5s 末这段时间内,沿同一方向经过平衡位置,所以选项D 正确;本题答案为BCD;10.如图所示;曲轴上挂一个弹簧振子,转动摇把,曲轴可带动弹簧振子上下振动;开始时不转动摇把,让振子自由振动,测得其频率为2Hz;现匀速转动摇把,转速为240r/min;则: v t Ov Qv P11.如图所示,单摆的摆线长为L是绝缘的,摆球带正电,可视为质点,单摆悬挂于O点,当它摆过竖直线OC时,便进入或离开一个匀强磁场,磁场的方向垂直于单摆的摆动平面,在摆角小于5°时,摆球在AB间来回摆动,下列说法正确的是。
专题一机械振动基础1. 单自由度系统无阻尼自由振动2. 求系统固有频率的方法3. 单自由度系统的有阻尼自由振动4. 单自由度系统的无阻尼强迫振动5. 单自由度系统的有阻尼强迫振动4. 单自由度系统的无阻尼强迫振动4.1 强迫振动的概念4.2 无阻尼强迫振动微分方程及其解4.3 稳态强迫振动的主要特性4. 单自由度系统的无阻尼强迫振动4.1 强迫振动的概念4.2 无阻尼强迫振动微分方程及其解4.3 稳态强迫振动的主要特性)sin(ϕω+=t H F 强迫振动:在外加激振力作用下的振动。
简谐激振力:φ—激振力的初相位H —力幅ω—激振力的圆频率4.1 强迫振动的概念无阻尼强迫振动微分方程的标准形式,二阶常系数非齐次线性微分方程。
)sin(ϕω++−=t H kx x m 则令 , 2m Hh m k n ==ω)sin(2ϕωω+=+t h x x n 4.2 无阻尼强迫振动微分方程及其解全解为:稳态强迫振动21x x x +=)sin(1θω+=t A x n )sin(2ϕω+=t b x 为对应齐次方程的通解为特解)sin(22222ϕωωωωω+−=−=t h x h b n n ,)sin()sin(22ϕωωωθω+−++=t h t A x n n(3) 强迫振动的振幅大小与运动初始条件无关,而与振动系统的固有频率、激振力的频率及激振力的力幅有关。
(1) 在简谐激振力下,单自由度系统强迫振动亦为简谐振动。
(2) 强迫振动的频率等于简谐激振力的频率,与振动系统的质量及刚度系数无关。
4.3 稳态强迫振动的主要特性)sin(222ϕωωω+−=t h x n 稳态响应(1) ω=0时(2) 时,振幅b 随ω增大而增大;当时,n ωω<(3)时,振动相位与激振力相位反相,相差。
n ωω>b 随ω增大而减小;kHh b n ==20ωn ωω →∞→b rad π22ωω−=n hb β:振幅比或动力系数λ:频率比β−λ曲线:幅频响应曲线(幅频特性曲线)10 ; , 20→∞→==b b b n 时时ωωω)sin(222ϕωωω+−=t hx n(4)共振现象,这种现象称为共振,无稳态解。
一、机械振动和机械波1.简谐运动的图象信息(1)由图象可以得出质点做简谐运动的振幅、周期。
(2)可以确定某时刻质点离开平衡位置的位移。
(3)可以根据图象确定某时刻质点回复力、加速度和速度的方向。
2.机械波的传播特点(1)波传到任意一点,该点的起振方向都和波源的起振方向相同。
(2)介质中每个质点都做受迫振动,因此,任一质点振动频率和周期都和波源的振动频率和周期相同。
(3)波从一种介质进入另一种介质,由于介质的情况不同,它的波长和波速可能改变,但频率和周期都不会改变。
(4)波经过一个周期T完成一次全振动,波恰好向前传播一个波长的距离,所以v=λT=λf。
二、光的折射和全反射对折射率的理解(1)公式:n=sin θ1 sin θ2(2)折射率由介质本身的性质决定,与入射角的大小无关。
(3)折射率与介质的密度没有关系,光密介质不是指密度大的介质,光疏介质不是指密度小的介质。
(4)折射率的大小不仅与介质本身有关,还与光的频率有关。
同一种介质中,频率越大的色光折射率越大,传播速度越小。
(5)同一种色光,在不同介质中虽然波速、波长不同,但频率相同。
(6)折射率大小不仅反映了介质对光的折射本领,也反映了光在介质中传播速度的大小v=c n。
三、光的波动性1.三种现象:光的干涉现象、光的衍射现象和光的偏振现象。
2.光的干涉(1)现象:光在重叠区域出现加强或减弱的现象。
(2)产生条件:两束光频率相同、相位差恒定。
(3)典型实验:杨氏双缝实验。
3.光的衍射(1)现象:光绕过障碍物偏离直线传播的现象。
(2)产生条件:障碍物或孔的尺寸与波长相差不多或更小。
(3)典型实验:单缝衍射、圆孔衍射和不透明圆盘衍射。
四、电磁波1.电磁波是横波:在传播方向上的任一点,E和B随时间做正弦规律变化,E与B彼此垂直且与传播方向垂直。
2.电磁波的传播不需要介质:电磁波在真空中的传播速度与光速相同,即c=3×108 m/s。
3.电磁波具有波的共性:能产生干涉、衍射等现象。
简谐运动的规律和图像一、简谐运动的基本规律1.简谐运动的特征2.注意:(1)弹簧振子(或单摆)在一个周期内的路程一定是4A,半个周期内路程一定是2A,四分之一周期内的路程不一定是A。
(2)弹簧振子周期和频率由振动系统本身的因素决定(振子的质量m和弹簧的劲度系数k ),与振幅无关。
二、简谐运动的图像1.简谐运动的数学表达式:x=A sin(ωt+φ)2.根据简谐运动图象可获取的信息(1)振幅A、周期T(或频率f)和初相位φ(如图所示).(2)某时刻振动质点离开平衡位置的位移.(3)某时刻质点速度的大小和方向:曲线上各点切线的斜率的大小和正负分别表示各时刻质点的速度的大小和速度的方向,速度的方向也可根据下一时刻物体的位移的变化来确定.(4)某时刻质点的回复力、加速度的方向:回复力总是指向平衡位置,回复力和加速度的方向相同,在图象上总是指向t轴.(5)某段时间内质点的位移、回复力、加速度、速度、动能和势能的变化情况.3.简谐运动图象问题的两种分析方法法一图象-运动结合法解此类题时,首先要理解x -t 图象的意义,其次要把x -t 图象与质点的实际振动过程联系起来.图象上的一个点表示振动中的一个状态(位置、振动方向等),图象上的一段曲线对应振动的一个过程,关键是判断好平衡位置、最大位移及振动方向.法二 直观结论法简谐运动的图象表示振动质点的位移随时间变化的规律,即位移-时间的函数关系图象,不是物体的运动轨迹.三、针对练习1、一个小物块拴在一个轻弹簧上,并将弹簧和小物块竖直悬挂处于静止状态,以此时小物块所处位置为坐标原点O ,以竖直向下为正方向建立Ox 轴,如图所示。
先将小物块竖直向上托起使弹簧处于原长,然后将小物块由静止释放并开始计时,经过s 10π,小物块向下运动20cm 第一次到达最低点,已知小物块在竖直方向做简谐运动,重力加速度210m /s g =,忽略小物块受到的阻力,下列说法正确的是( )A .小物块的振动方程为0.1sin 102x t π⎛⎫=+ ⎪⎝⎭(m ) B .小物块的最大加速度为2gC 2m /sD .小物块在0~1330s π的时间内所经过的路程为85cm2、(多选)某弹簧振子在水平方向上做简谐运动,其位移x 随时间变化的关系式为x =A sin ωt ,如图所示,则( )A .弹簧在第1 s 末与第5 s 末的长度相同B .简谐运动的频率为18Hz C .第3 s 末,弹簧振子的位移大小为22A D .第3 s 末至第5 s 末,弹簧振子的速度方向不变3、(多选)如图甲所示,悬挂在竖直方向上的弹簧振子,在C 、D 两点之间做简谐运动,O 点为平衡位置。
工程力学中的机械振动和结构振动问题工程力学是研究物体受力、运动和相互作用的学科,在实际工程应用中起着至关重要的作用。
其中,机械振动和结构振动问题是工程力学中的一个重要分支,涵盖了许多实际工程中常见的振动现象和振动控制方法。
一、机械振动问题机械振动问题涉及到机械系统中的物体在受到外力或被激励时产生的振动现象。
机械振动问题的研究对于机械系统的设计和性能优化具有重要意义。
1. 自由振动自由振动是指机械系统在无外力作用下的振动现象。
在自由振动中,物体会以一定的振动频率和振幅进行振动。
自由振动的频率与系统的属性相关,可通过工程设计来控制。
2. 强迫振动强迫振动是指机械系统在受到外界激励力作用下的振动现象。
外界激励力的频率可以与系统的固有频率相同,也可以不同。
强迫振动问题的研究主要涉及到激励力的传递和系统的响应。
3. 阻尼振动阻尼振动是指机械系统受到外力作用后逐渐减弱直至停止振动的过程。
阻尼振动的研究需要考虑阻尼对振动特性的影响,并进行合适的振动控制。
二、结构振动问题结构振动问题指的是工程结构受到外力作用后发生的振动现象。
结构振动问题是建筑和桥梁等工程结构设计中需要重点关注的问题。
1. 自由振动结构的自由振动指的是结构在受到外力作用后,没有任何限制条件下的振动现象。
自由振动的分析可以预测结构的振动频率和振型,为结构设计和抗震设计提供依据。
2. 强迫振动结构的强迫振动是指结构在受到外界激励力作用下产生的振动现象。
强迫振动会导致结构受力变化,需要进行结构控制和减振设计。
3. 阻尼振动结构的阻尼振动是指结构振动过程中能量逐渐损失,振动幅度减小的现象。
阻尼振动问题的研究可以帮助减小振动对结构的影响,提高结构的稳定性和安全性。
综上所述,工程力学中的机械振动和结构振动问题是研究机械系统和工程结构中振动现象的重要内容。
通过对机械振动和结构振动的研究,可以优化系统设计,提高工程结构的性能和安全性。
同时,也为振动控制和减振设计提供了理论基础和实用方法。
机械振动1、按激励的情况振动可分为哪几类(至少五类)。
(5)绪论答:(答出5个)固有振动:无激励时系统所有可能的运动集合.固有振动不是现实的振动,它仅反映系统的固有属性自由振动:系统在初始激励下或原有的激励消失后的振动。
强迫振动:系统在持续的外界激励作用下产生的振动自激振动:系统受到由其自身运动诱发出来的激励作用而产生和维持的振动.参数振动:激励因素以系统本身的参数随时间变化的形式出现的振动随机振动:系统在非确定性的随机激励下所作的振动2、振动中两个简谐振动的合成分几种情况,简单阐述其性质。
(9)第一章答:1、两个相同频率的简谐振动的合成仍然是简谐振动,并且保振原来的频率2、频率不同的两个简谐振动的合成不再是简谐振动,振动比为有理数时,合成为周期振动;频率比为无理数时,合成为非周期振动。
3、频率很接近的两个简谐振动的合成会出现“拍”的现象3、阐述等效刚度和等效质量的概念。
(6)第二章答:使系统在选定的坐标上产生单位位移而需要在此坐标方向上施加的力,叫做系统在这个坐标上的等效刚度使系统在选定的坐标上产生单位加速度而需要在此坐标方向上施加的力,叫做系统在这个坐标上的等效质量二、计算题:1、质量弹簧系统,W= 150N,= 1cm,= 0.8cm,= 0.16cm。
求阻尼系数c。
(10)第二章过阻尼例3解:由于ζ很小,2、橡皮金属减振器在额定重量下静位移为1.6mm,用作航空仪表隔振。
飞机振动范围20~200Hz;求:(1)最低隔振效率?(2)当隔振效率为50%时,对应的频率是多少?(15)第三章第二类隔振例1解:这是第二类隔振问题(1)仪表隔振系统的固有频率为:求用λ,由~λ曲线可见,当λ>1以后λ越大(激励频率越高),隔振效果提高;因此最低隔振效率发生在f=20Hz处。
忽略阻尼,则:(2)若 , 则由,得:;则:3、建立右图系统的运动微分方程(15)解:受力分析:4、图示三个数学摆串联,,摆长,求:系统作微幅摆动时的运动微分方程。
第四期 机械振动1.如图,一根用绝缘材料制成的轻弹簧,劲度系数为k ,一端固定,另一端与质量为m 、带电荷量为+q 的小球相连,静止在光滑绝缘水平面上的A 点.当施加水平向右的匀强电场E 后,小球从静止开始在A 、B 之间做简谐运动,在弹性限度内下列关于小球运动情况说法中正确的是( )A .小球在A 、B 的速度为零而加速度相同B .小球简谐振动的振幅为kqE 2 C .从A 到B 的过程中,小球和弹簧系统的机械能不断增大D .将小球由A 的左侧一点由静止释放,小球简谐振动的周期增大2.如图所示,由轻质弹簧下面悬挂一物块组成一个竖直方向振动的弹簧振子,弹簧的上端固定于天花板,当物块处于静止状态时,取它的重力势能为零,现将物块向下拉一小段距离后放手,此后振子在平衡位置附近上下做简谐运动,不计空气阻力,则A .振子速度最大时,振动系统的势能为零B .振子速度最大时,物块重力势能与弹簧弹性势能相等C .振子经平衡位置时,振动系统的势能最小D .振子在振动过程中,振动系统的机械能不守恒3.水平放置的作简谐运动的弹簧振子,其质量为m ,振动过程中的最大速率为v ,下列说法中正确的是A .从某时刻算起,在半个周期的时间内,弹力做的功可能是02之间的某个值 B .从某时刻算起,在半个周期的时间内,弹力做的功一定为零C .从某时刻算起,在半个周期的时间内,速度的变化量大小可能为 0~2v 间的某个值D .从某时刻算起,在半个周期的时间内,速度变化量大小一定为零4.如图所示,一轻质弹簧一端固定在墙上的O 点,另一端可自由伸长到B 点。
今使一质量为m 的小物体靠着弹簧,将弹簧压缩到A 点,然后释放,小物体能在水平面上运动到C 点静止,已知AC=L ;若将小物体系在弹簧上,在A 点由静止释放,则小物体将做阻尼振动直到最后静止,设小物体通过的总路程为s ,则下列说法中可能的是( )A .s >LB .s =LC .s <LD .无法判断。
5.如右图所示,置于地面上的一单摆在小振幅条件下摆动的周期为T 0.下列说法中正确的是( )A.单摆摆动过程中,绳子的拉力始终大于摆球的重力B.单摆摆动过程中,绳子的拉力始终小于摆球的重力C.将该单摆置于高空中相对于地球静止的气球中,其摆动周期T >T 0D.将该单摆悬挂在匀加速上升的升降机中,其摆动周期T <T 06.如图所示,在光滑水平面上的O点系一长为l的绝缘细线,线的另一端系一质量为m、电荷量为q的小球.当沿细线方向加上场强为E的匀强电场后,小球处于平衡状态.现给小球一垂直细线的初速度v0,使小球在水平面上开始运动,若v0很小,则小球再次回到平衡位置所需的时间为()B.π D.π7.劲度系数为k的轻弹簧下端挂一个质量为m的小球,静止时,小球距地面高为h,h远小于弹簧总长.现用手竖直向下拉球,使球刚好与地接触,静止时放手,若弹簧始终在弹性限度内,则()A.球上升能达到距地面的最大高度为hB.球上升过程中其机械能守恒C.球距地面高h时,其速度最大D.8.图(A)是利用砂摆演示简谐运动图象的装置。
当盛砂的漏斗下面的薄木板被水平匀速拉出时,做简谐运动的漏斗漏出的砂在板上形成的曲线显示出砂摆的振动位移随时间变化的关系。
第一次以速度v1匀速拉动木板,图(B)给出了砂摆振动的图线;第二次仅使砂摆的振幅减半,再以速度v2匀速拉动木板,图(C)给出了砂摆振动的图线。
由此可知,砂摆两次振动的周期T1和T2以及拉动木板的速度v1和v2的关系是A.T1∶T2=2∶1 B.T1∶T2=1∶2C.v1∶v2=1∶2 D.v1∶v2=2∶19.如图所示为一个竖直放置的弹簧振子物体沿竖直方向在A、B之间做简谐运动,O点为平衡位置,A点位置恰好为弹簧的原长。
物体由C点运动到D点(C、D两点未在图上标出)的过程中,弹簧的弹性势能增加了3.0J,重力势能减少了2.0J。
对于这段过程说法正确的是()A.物体的动能增加1.0J B.C点的位置可能在平衡位置以上C.D点的位置可能在平衡位置以上 D.物体经过D点时的运动方向可能指向平衡位置10.将一个力电传感器接到计算机上,可以测量快速变化的力.用这种方法测得的某单摆摆动过程中悬线上拉力大小随时间变化的曲线如图所示.由此图线提供的信息作出下列判断中正确的是()A.t=0.2 s时刻,摆球正经过最低点B.t=1.1 s时刻,摆球正处于最低点C.摆球摆动过程中机械能时而增加时而减少D.摆球摆动的周期约是T=1.2 s11.如图所示,单摆摆球的质量为m,做简谐运动的周期为T,摆球从最大位移A处由静止开始释放,摆球运动到最低点B时的速度为v,则:A.摆球从A运动到BB.摆球运动到B时重力的瞬时功率是2mgvC.摆球运动到B时重力的瞬时功率是mgvD.摆球从A运动到B12.如图甲所示是用沙摆演示振动图像的实验装置,此装置可视为摆长为L的单摆,沙摆的运动可看作简谐运动,实验时在木板上留下图甲所示的结果。
若用手拉木板做匀速运动,速度大小是v。
图乙所示的一段木板的长度是s。
下列说法正确的是A. 可估算出这次实验所用沙摆对应的摆长B. 若增大手拉木板的速度,则沙摆的周期将变大C. 若减小沙摆摆动时的最大摆角,则沙摆的周期将变小D. 若增大沙摆的摆长,保持拉动木板的速度不变,则仍将得到与图乙完全相同的图样13.如图所示,固定曲面AC是一段半径为4.0米的光滑圆弧形成的,圆弧与水平方向相切于A点,AB=10cm,现将一小物体先后从圆弧顶端C和中点D处由静止释放,到达曲面低端时速度分别为v1和v2,所需时间为t1和t2,以下说法正确的是( )BAA.v1 > v2 , t1= t2 B.v1 > v2 , t1 > t2C.v1 < v2 , t1= t2 D.v1 < v2 , t1 > t214.如图所示,在O点悬一根细长直杆,杆上穿着一个弹性小球A,用长为l的细线系着另一个小球B,上端也固定在O点,将B拉开,使细线偏离竖直方向一个小角度,将A停在距O B第一次回到平衡位置时与A正好相碰(g取10 m/s2,π2取10),则( ).A.A球与细杆之间不应有摩擦力 B.A球的加速度必须等于4 m/s2C.A球受到的摩擦力等于其重力的0.6倍 D.A球受的摩擦力等于其重力的0.4倍15.如图所示,单摆甲放在空气中,周期为T甲,单摆乙带正电,放在匀强磁场中,周期为T乙,单摆丙带正电,放在匀强电场中,周期T丙,单摆丁放在静止在水平面上的光滑斜面上,周期为T丁,那么( )A.T甲>T乙>T丙=>T丁B.T乙>T甲=T丙>T丁C.T丙>T甲>T丁=>T乙D.T丁>T甲=T乙>T丙16.如图所示,用绝缘细丝线悬吊着的带正电小球在匀强磁场中做简谐运动,则()A.当小球每次通过平衡位置时,动能相同B.当小球每次通过平衡位置时,动量相同C.当小球每次通过平衡位置时,丝线的拉力相同D.撤消磁场后,小球摆动的周期不变17.下列关于单摆周期的说法正确的是()A.用一个装满砂的漏斗和长细线做成一个单摆,在摆动时砂从漏斗中缓慢漏出,周期不变B.当升降机向上匀加速运动时(a<g)单摆的周期小于电梯匀速运动时单摆的周期C.将摆由赤道移到北极,单摆振动周期减小D.将单摆的摆角由5°增加到10°(不计空气阻力),单摆的周期减小18.用长为L的细线把一个小球悬挂在倾角为θ的光滑斜面上,然后将小球偏离自然悬挂的位置拉到A点,偏角α≤5°,如图所示.当小球从A点无初速释放后,小球在斜面上往返振动的周期为( )19.如图所示,将小球甲、乙、丙(都可视为质点)分别从A、B、C三点由静止同时释放,最后都到达竖直面内圆弧的最低点D,其中甲是从圆心A出发做自由落体运动,乙沿弦轨道从一端B到达另一端D,丙沿圆弧轨道从C点运动D,且C点很靠近D点。
如果忽略一切摩擦阻力,那么下列判断正确的是:( )A.甲球最先到达D点,乙球最后到达D点B.甲球最先到达D点,丙球最后到达D点C.丙球最先到达D点,乙球最后到达D点D.甲球最先到达D点,无法判断哪个球最后到达D点20.关于单摆的运动有下列说法,正确的是()①单摆的回复力是摆线的拉力与重力的合力②单摆的回复力是重力沿摆球运动轨迹切向的分力③单摆的周期与质量无关与振幅无关,与摆长和当地的重力加速度有关④单摆做简谐运动的条件是摆角很小如小于5°⑤在山脚下走时准确的摆钟移到高山上走时将变快①④ B.②③④C.③④⑤D.①④⑤21.如图所示,A 、B 分别为单摆做简谐振动时摆球的不同位置.其中,位置A 为摆球摆动的最高位置,虚线为过悬点的竖直线.以摆球最低位置为重力势能零点,则摆球在摆动过程中A 、位于B 处时动能最大 B 、位于A 处时势能最大C 、在位置A 的势能大于在位置B 的动能D 、在位置B 的机械能大于在位置A 的机械能22.有一摆长为L 的单摆,悬点正下方某处有一小钉,当摆球经过平衡位置向左摆动时,摆线的上部将被挡住,使摆长发生变化.现使摆球做小角度摆动,图为摆球从右边最高点M 摆至左边最高点N 的闪光照片(悬点与小钉未被摄入),P 为摆动中的最低点,每相邻两次的时间间隔相等,则小钉距悬点距离为( )A. 4LB. 2LC. 34L D .无法确定23.摆长为L 的单摆做简谐运动,若从某时刻开始计时(取t =0),当振动至t 时,摆球具有负向最大速度,则单摆的振动图象是图中的 ( )24.关于单摆的运动有下列说法,正确的是①单摆的回复力是摆球重力沿轨迹切线方向的分力 ②单摆做简谐运动位于平衡位置时,摆球所受合力为零 ③单摆的周期与质量无关与振幅无关,与摆长和当地的重力加速度有关④单摆做简谐运动的过程中回复力有时等于合力 ⑤在山脚下走时准确的摆钟移到高山上走时将变快A .①③④B .②③④C .③④⑤D .①④⑤25.甲乙两人同时观察同一单摆的振动,甲每经过2.0S 观察一次摆球的位置,发现摆球都在其平衡位置处;乙每经过 3.0S 观察一次摆球的位置,发现摆球都在平衡位置右侧的最高处,由此可知该单摆的周期可能是 ( )A .0.5SB .1.0SC .2.0SD .3.0S26.如图所示,质量为m 的物块放在水平木板上,木板与竖直弹簧相连,弹簧另一端固定在水平面上,今使m 随M 一起做简谐运动,且始终不分离,则物块m 做简谐运动的回复力是由 提供的,当振动速度达最大时,m 对M 的压力为 。
27.用质量不计的弹簧把质量为3m 的木板A 与质量为m 的木板B 连接组成如图所示装置,B 板置于水平地面上,现用一个竖直向下的力F 下压木板A ,撤销F 后,B 板恰好被提离地面,由此可知力F 的大小是___________.28.如图所示,质量为m 的木块放在弹簧上,与弹簧一起在竖直方向上做简谐运动。