实验一 MATLAB音频信号处理实验
- 格式:docx
- 大小:46.00 KB
- 文档页数:3
基于 MATLAB 的语音信号分析与处理的实验设计1.实验目的综合运用数字信号处理的理论知识进行频谱分析和滤波器设计,通过理论推导得出相应结论,再利用 MATLAB 作为编程工具进行计算机实现,从而加深对所学知识的理解,建立概念。
2.实验基本要求①学会 MATLAB 的使用,掌握 MATLAB 的程序设计方法。
②掌握在 Windows 环境下语音信号采集的方法。
③掌握数字信号处理的基本概念、基本理论和基本方法。
④掌握 MATLAB 设计 FIR 和 IIR 数字滤波器的方法。
⑤学会用 MATLAB 对信号进行分析和处理。
3.实验内容录制一段自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;给定滤波器的性能指标,采用窗函数法或双线性变换设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的语音信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;回放语音信号;最后,用MATLAB 设计一信号处理系统界面。
4、采集系统说明:MATLAB函数;麦克风输入方式MATLAB中提供了强大的数据采集工具箱(DAQ-Data Acquisition Toolbox),可满足控制声卡进行数据采集的要求:%记录声音 wavrecord(n,fs,ch,dtype)%发送向量信号 waveplay(y,fs)%读取wave文件 wavread(file)%写wave文件 wavwrite(file),文件的后缀名为.wav%sound(y,fs) %向扬声器送出音频信号滤波函数说明:采用Kaiser Window FIR:Sampling Frequency: 8192Type:LowpassFc:956.6Beta:5。
Matlab处理音频信号一、问题的提出:数字语音是信号的一种,我们处理数字语音信号,也就是对一种信号的处理,那信号是什么呢?信号是传递信息的函数。
一、问题的提出:数字语音是信号的一种,我们处理数字语音信号,也就是对一种信号的处理,那信号是什么呢?信号是传递信息的函数。
离散时间信号%26mdash。
%26mdash。
序列%26mdash。
%26mdash。
可以用图形来表示。
按信号特点的不同,信号可表示成一个或几个独立变量的函数。
例如,图像信号就是空间位置<二元变量)的亮度函数。
一维变量可以是时间,也可以是其他参量,习惯上将其看成时间。
信号有以下几种:<1)连续时间信号:在连续时间范围内定义的信号,但信号的幅值可以是连续数值,也可以是离散数值。
当幅值为连续这一特点情况下又常称为模拟信号。
实际上连续时间信号与模拟信号常常通用,用以说明同一信号。
<2)离时间信号:时间为离散变量的信号,即独立变量时间被量化了。
而幅度仍是连续变化的。
<3)数字信号:时间离散而幅度量化的信号。
语音信号是基于时间轴上的一维数字信号,在这里主要是对语音信号进行频域上的分析。
在信号分析中,频域往往包含了更多的信息。
对于频域来说,大概有8种波形可以让我们分析:矩形方波,锯齿波,梯形波,临界阻尼指数脉冲波形,三角波,余旋波,余旋平方波,高斯波。
对于各种波形,我们都可以用一种方法来分析,就是傅立叶变换:将时域的波形转化到频域来分析。
于是,本课题就从频域的角度对信号进行分析,并通过分析频谱来设计出合适的滤波器。
当然,这些过程的实现都是在MATLAB软件上进行的,MATLAB软件在数字信号处理上发挥了相当大的优势。
二、设计方案:利用MATLAB中的wavread命令来读入<采集)语音信号,将它赋值给某一向量。
再将该向量看作一个普通的信号,对其进行FFT变换实现频谱分析,再依据实际情况对它进行滤波。
对于波形图与频谱图<包括滤波前后的对比图)都可以用MATLAB画出。
基于MATLAB的音频信号分析与处理研究随着现代科技的迅速发展,人们生活中的技术产品越来越多,手机、电脑、智能家居等等产品无不需要用到音频信号的处理。
然而,音频信号的分析和处理技术仍然是一个重要的研究领域,MATLAB作为一个强大的科学计算软件,已经成为音频信号处理中不可或缺的工具。
音频信号处理的基础是信号的采样和量化。
信号采样是指将模拟信号转换为数字信号的过程,采样频率越高,则采样的足够密集。
量化是将连续的采样点转换为数字表示的过程。
MATLAB提供了丰富的函数,可以简化这个步骤的执行。
通过建立音频处理模型,可通过MATLAB工具进行处理,实现对音频信号的录制、剪辑、滤波、模拟等任务。
音频信号的分析是指在时域和频域上对音频信号进行数学处理分析的过程。
时域分析时,我们利用MATLAB绘制波形图,根据波形图的形状和变化,可以很直观地判断出音频信号的一些特征。
频域分析时,我们利用MATLAB FFT变换函数,将信号从时域转换为频域,进而得到信号频率分布的情况。
此外,MATLAB也提供了一些现成的工具箱,如信号处理工具箱和波形工具箱,可以帮助我们更方便地进行音频信号处理,简化代码编写过程。
音频信号处理应用广泛,如语音识别、音频噪声消除、歌曲推荐系统等等。
其中,语音识别是一个需要进行音频信号处理的重要领域。
语音识别的关键在于对语音信号进行唤醒和分割等预处理。
MATLAB可以用于实现这些预处理,并生成分割后的音频文件。
这些文件可以进一步被用于训练机器学习模型,从而完成语音识别的任务。
此外,音频噪声也是一个常见的处理问题。
MATLAB中提供了一些去噪函数,可以帮助我们去除环境噪声。
这些函数基于数字信号处理的原理,可以选择不同类型的滤波器,对噪声信号进行消除。
在处理时,我们需要根据实际情况来选择合适的参数来调整滤波器的参数。
总的来说,MATLAB提供了强大的工具,可以极大地简化音频信号的处理和分析工作。
在实际使用过程中,我们可以根据不同的需求,选择不同的函数进行使用。
MATLAB处理语⾳信号⼀、实验项⽬名称语⾳信号的处理⼆、实验⽬的综合运⽤数字信号处理课程的理论知识进⾏频谱分析以及滤波器设计,通过理论推导得出相应结论,并进⾏计算机仿真,从⽽复习巩固了课堂所学的理论知识,提⾼了对所学知识的综合应⽤能⼒。
三、实验内容1. 语⾳信号的采集2. 语⾳信号的频谱分析3. 设计数字滤波器和画出频率响应4. ⽤滤波器对信号进⾏滤波5. ⽐较滤波前后语⾳信号的波形及频谱6. 回放语⾳信号四、实验具体⽅案1.语⾳信号采集录制⼀段语⾳信号并保存为⽂件,长度控制在1秒,并对录制的信号进⾏采样;录制时使⽤Windows⾃带的录⾳机。
采样是将⼀个信号(即时间或空间上的连续函数)转换成⼀个数值序列(即时间或空间上的离散函数)。
采样定理指出,如果信号是带限的,并且采样频率⾼于信号带宽的两倍,那么,原来的连续信号可以从采样样本中完全重建出来。
如果信号带宽不到采样频率的⼀半(即奈奎斯特频率),那么此时这些离散的采样点能够完全表⽰原信号。
⾼于或处于奈奎斯特频率的频率分量会导致混叠现象。
⼤多数应⽤都要求避免混叠,混叠问题的严重程度与这些混叠频率分量的相对强度有关。
⽤Windows⾃带录⾳机录⼊⼀段⾳乐,2秒钟,⽤audioread读取⾳频内容,这⾥不使⽤waveread是因为他要求⾳频⽂件格式为.wav ,并且我进⾏了尝试但没有成功,画出⾳频信号的时域波形图[y1,fs]=audioread('F:\MATLAB\ren.m4a');figure(1);plot( y1 );title('Ô原语⾳信号时域波形图');xlabel('单位');ylabel('幅度');2.语⾳信号频谱分析⾸先画出语⾳信号的时域波形,然后对语⾳信号进⾏频谱分析。
在matlab中利⽤fft对信号进⾏快速傅⾥叶变换,得到信号的频谱特性。
Matlab的信号处理⼯具箱中的函数FFT可⽤于对序列的快速傅⾥叶变换分析,其调⽤格式是y=fft(x,N),其中,x是序列,y是序列的FFT变换结果,N为整数,代表做N点的FFT,若x为向量且长度⼩于N,则函数将x补零⾄长度N;若向量x长度⼤于N,则截断x使之长度为N。
《随机信号分析与处理》实验报告指导教师:班级:学号:姓名:2011-11-20实验一 熟悉MA TLAB 的随机信号处理相关命令一、实验目的1、熟悉GUI 格式的编程及使用。
2、掌握随机信号的简单分析方法3、熟悉语音信号的播放、波形显示、均值等的分析方法及其编程 二、实验原理 1、语音的录入与打开在MATLAB 中,[y,fs,bits]=wavread('Blip',[N1 N2]);用于读取语音,采样值放在向量y 中,fs 表示采样频率(Hz),bits 表示采样位数。
[N1 N2]表示读取从N1点到N2点的值。
2、时域信号的FFT 分析FFT 即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。
在MA TLABde 信号处理工具箱中函数FFT 的一种调用格式为Y=fft (x )其中X 是序列,Y 是序列的FFT 。
3、希尔伯特变换及性质x (t ) 的希尔伯特变换为x (t ) 与1/πt的卷积,即因此,对x (t ) 的希尔伯特变换可以看作为x (t ) 通过一个冲击响应为1/πt 的线性滤波器。
希尔伯特变换器在整个频域上具有恒为1 的幅频特性,为全通网络,在相位上则引入−π/2 和π/2的相移 三、实验结果分析00.511.522.5x 105-0.50.5原始语音信号时域图time nf u z h i n05010015020025030035040045050012原始语音信号频谱Hzf u d u01020304050607080901000.511.5原始语音信号幅值020040060080010001200-4-2024原始语音信号相位200400600800100012001400160018002000-2024频率(Hz )幅值N=128红和N=1024绿00.51 1.52 2.53 3.54 4.55x 105-0.50.51自相关函数5010015020025030035040045050000.020.040.060.080.1希尔伯特变换-0.12-0.1-0.08-0.06-0.04-0.020.020.040.060.08051015概率谱密度。
本科毕业设计说明书(论文)第I 页共I 页毕业设计说明书(论文)外文摘要本科毕业设计说明书(论文)第II 页共I 页目次1 引言 (1)1.1 研究背景 (1)1.2 本文主要研究内容 (1)2 MATLAB简介 (3)2.1 什么是MATLAB (3)2.2 MATLAB的发展历史 (3)2.3 MATLAB系统 (4)2.4 MATLAB的主要功能和特性 (6)3. 数字滤波器简介 (8)3.1 数字滤波器的定义及分类 (8)3.2 数字滤波器设计方法 (10)4.音频信号频谱分析的软件实现 (13)4.1 数字滤波器设计 (13)4.2 音频信号频谱分析 (17)4.3 界面设计 (37)结论 (43)致谢 (44)参考文献 (45)本科毕业设计说明书(论文)第1 页共45 页1 引言1.1 研究背景在计算机技术日新月异的今天,计算机已同人们的日常生活和工作越来越紧密的联系在一起。
而在工程计算领域中,计算机技术的应用正逐步把科技人员从繁重的计算工作中解放出来。
在科学研究和工程应用的过程中,往往需要进行大量的数学计算,传统的纸笔和计算器已根本不能满足海量计算的要求。
MATLAB的产生是与数学计算紧密联系在一起的, MATLAB由主包和功能各异的工具箱组成,其基本数据结构是矩阵,它具有非常强大的计算功能,正是凭借其杰出的性能,MATLAB现在已成为世界上应用最广泛的工程计算应用软件之一。
MATLAB在国外的高校已成为大学生、硕士生、博士生必须掌握的基本程序设计语言。
信号处理是科学研究和工程技术许多领域都需要进行的一个重要环节,这种处理包括信号的检测、变换、滤波、传输、信号提取等。
传统上对信号的处理大都采用模拟系统来实现,然而,随着人们对信号处理要求的不断提高,以及模拟信号处理中一些不可克服的缺点,对信号的许多处理转而采用数字的方法来进行。
信号处理技术是开发具有自主知识产权的各类先进产品的瓶颈,是一项关键技术。
利用MATLAB软件对音频信号进行频谱分析与处理一、简介频谱分析是通过对信号的频率成分进行分析,它允许我们了解信号的特性,计算信号的能量分布,同时还可以用来定位造成干扰的频率组件,以及检测和分析信号的变化。
MATLAB是一种编程语言和科学计算软件,它可以非常便捷地实现对音频信号的频谱分析和处理。
二、实现方法1.导入音频信号在使用MATLAB进行频谱分析时,首先需要先将音频信号导入MATLAB环境中。
可以使用audioplayer和audioread函数来完成这一步骤,示例代码如下:[audioData, fs] = audioread(‘AudioFile.wav’);player = audioplayer(audioData, fs);play(player);其中audioData表示从wav文件中读取的音频数据,fs表示采样率,player表示存储audioData和fs的audioplayer实例,play函数可以播放音频文件。
2.信号预处理针对所记录的音频信号,需要进行一些基本的信号处理操作,包括去噪、均衡、时域平均等。
去噪可以用MATLAB内置的函数完成,例如:audioData_NoiseRemoved = denoise(audioData,‘meanspectrum’);均衡是指将频谱的一些区域调整到更好的水平,可以用equalizer函数实现:audioData_Equalized = equalizer(audioData, ‘bandwidth’, 0.2);时域平均则可以使用conv函数实现:audioData_Meaned = conv(audioData, [1/N 1/N ... 1/N]);3.频谱分析频谱分析的主要工作是计算信号的谱密度,也就是每一个频率分量的能量。
MATLAB DSP实验报告介绍本实验报告将详细介绍在MATLAB环境下进行数字信号处理(DSP)的实验步骤和相关方法。
我们将通过逐步思考的方式,帮助读者理解和学习DSP的基本概念和技术。
实验环境和工具在进行DSP实验之前,我们需要准备以下环境和工具:1.MATLAB软件:确保已安装并配置好MATLAB软件,可以在MATLAB Command窗口中输入命令。
2.信号处理工具包:在MATLAB中,我们可以使用信号处理工具箱(Signal Processing Toolbox)来进行DSP实验和分析。
确保该工具箱已被安装并加载。
实验步骤下面是进行DSP实验的一般步骤:步骤一:加载信号首先,我们需要加载待处理的信号。
这可以通过在MATLAB中使用load命令加载一个音频文件或生成一个模拟信号实现。
例如,我们可以加载一个名为signal.wav的音频文件:load signal.wav步骤二:信号预处理在进行DSP之前,通常需要对信号进行预处理。
这可能包括去噪、滤波、均衡等操作。
例如,我们可以使用滤波器对信号进行降噪:filtered_signal = filter(filter_coefficients, signal);步骤三:信号分析一旦信号经过预处理,我们可以开始进行信号分析。
这可能涉及频域分析、时域分析、谱分析等。
例如,我们可以通过计算信号的快速傅里叶变换(FFT)获得其频谱:spectrum = fft(filtered_signal);步骤四:特征提取在信号分析之后,我们可以根据需要提取信号的特征。
这些特征可能包括幅度、频率、相位等。
例如,我们可以计算信号的能量:energy = sum(abs(filtered_signal).^2);步骤五:信号重构在完成信号分析和特征提取后,我们可以根据需要对信号进行重构。
这可能包括滤波、修复损坏的信号等。
例如,我们可以使用滤波器对信号进行重构:reconstructed_signal = filter(filter_coefficients, filtered_signal);步骤六:结果评估最后,我们需要评估重构后的信号和原始信号之间的差异。
基于MATLAB的音频信号处理算法优化研究一、引言音频信号处理是数字信号处理领域中的一个重要分支,其在语音识别、音乐处理、通信系统等领域有着广泛的应用。
而MATLAB作为一种强大的科学计算软件,被广泛应用于音频信号处理算法的设计与优化。
本文将围绕基于MATLAB的音频信号处理算法优化展开研究,探讨如何通过MATLAB工具提高音频信号处理算法的效率和性能。
二、MATLAB在音频信号处理中的应用MATLAB提供了丰富的工具箱和函数,可以方便地实现各种音频信号处理算法。
在音频信号处理中,常用的算法包括滤波、时域分析、频域分析、降噪、特征提取等。
通过MATLAB编程,可以快速实现这些算法,并进行可视化展示,有助于工程师和研究人员对音频信号进行深入分析。
三、音频信号处理算法优化方法1. 算法优化原则在进行音频信号处理算法优化时,需要遵循以下原则: - 提高算法效率:减少计算复杂度,降低内存占用,提高运行速度; - 保持算法准确性:优化后的算法结果应与原始算法结果保持一致; - 考虑实际应用场景:根据实际需求对算法进行优化,使其更适用于特定场景。
2. 优化方法(1) 算法并行化利用MATLAB中的并行计算工具,将算法中的循环结构或独立运算任务进行并行化处理,充分利用多核处理器资源,提高算法运行效率。
(2) 算法向量化通过向量化编程,将循环结构替换为矩阵运算,减少循环次数,提高计算速度。
MATLAB中提供了丰富的向量化函数和操作符,可以简化向量化编程过程。
(3) 算法内存优化优化算法内存占用,减少不必要的变量存储和内存拷贝操作。
可以通过MATLAB内置的内存监测工具对算法内存占用情况进行分析,并针对性地进行优化。
(4) 算法调试与性能分析利用MATLAB提供的调试工具和性能分析工具,对优化后的算法进行调试和性能评估。
及时发现并解决潜在问题,确保优化效果达到预期。
四、案例分析以语音信号降噪算法为例,介绍基于MATLAB的音频信号处理算法优化过程。
基于Matlab的音频信号处理与分析算法研究一、引言音频信号处理与分析一直是数字信号处理领域中的重要研究方向之一。
随着数字技术的不断发展和成熟,基于Matlab的音频信号处理与分析算法研究也日益受到关注。
本文将探讨在Matlab环境下进行音频信号处理与分析的相关算法研究。
二、Matlab在音频信号处理中的应用Matlab作为一种强大的科学计算软件,提供了丰富的工具箱和函数库,为音频信号处理与分析提供了便利。
在Matlab中,可以通过调用各种函数实现音频信号的读取、采样、滤波、时域分析、频域分析等操作。
同时,Matlab还支持自定义算法和函数,使得研究人员可以根据具体需求进行灵活的算法设计和实现。
三、音频信号处理算法研究1. 音频信号读取与播放在Matlab中,可以使用audioread函数读取音频文件,并通过sound函数进行播放。
这为后续的音频信号处理奠定了基础。
2. 音频信号滤波滤波是音频信号处理中常用的技术之一,可以通过设计数字滤波器实现对音频信号的去噪、降噪等操作。
在Matlab中,可以利用designfilt函数设计各种类型的数字滤波器,并通过filter函数实现滤波操作。
3. 音频信号时域分析时域分析是对音频信号在时间轴上的分析,常用于波形展示、能量计算等。
在Matlab中,可以通过绘制波形图、计算均方根能量等方式进行时域分析。
4. 音频信号频域分析频域分析是对音频信号在频率轴上的分析,常用于谱分析、频谱显示等。
在Matlab中,可以通过快速傅里叶变换(FFT)等方法实现对音频信号的频域分析。
5. 音频信号特征提取音频信号特征提取是对音频信号进行特征描述和表征的过程,常用于语音识别、情感识别等应用。
在Matlab中,可以通过短时傅里叶变换(STFT)、梅尔倒谱系数(MFCC)等方法提取音频信号的特征。
四、案例分析以语音情感识别为例,通过Matlab实现对语音数据集的特征提取和分类器设计,可以有效识别出不同情感状态下的语音信息。
matlab信号处理实验报告Matlab信号处理实验报告引言信号处理是一门研究如何获取、分析、变换和解释信号的学科。
在现代科技的发展中,信号处理在许多领域都扮演着重要的角色。
本文将以Matlab为工具,进行信号处理实验,并对实验结果进行分析和讨论。
实验一:信号的采样和重构在信号处理中,采样是指将连续时间的信号转化为离散时间的信号。
重构则是将离散时间的信号恢复为连续时间的信号。
我们选取了一个正弦信号进行实验。
首先,我们生成一个频率为10Hz的正弦信号,并对其进行采样。
使用Matlab的函数进行采样,可以得到离散时间的信号。
接下来,我们对采样后的信号进行重构。
使用Matlab的函数进行重构,可以得到连续时间的信号。
通过实验,我们可以观察到采样和重构过程中的信号失真情况。
信号的采样频率越高,重构后的信号越接近原始信号。
这是因为高采样频率可以提供更多的采样点,从而更好地还原原始信号。
实验二:信号的频谱分析频谱分析是信号处理中常用的一种方法,用于分析信号的频率成分。
我们选取了一个复杂的信号进行频谱分析。
首先,我们生成一个由多个正弦信号叠加而成的复杂信号。
使用Matlab的函数进行信号合成,可以得到复杂信号。
接下来,我们对复杂信号进行频谱分析。
使用Matlab的函数进行频谱分析,可以得到信号的频谱图。
通过实验,我们可以观察到复杂信号的频谱图中的不同频率成分。
频谱图上的峰值表示信号中的主要频率成分,而峰值的高度表示该频率成分的强度。
通过频谱分析,我们可以了解信号的频率特性,进而对信号进行进一步处理和分析。
实验三:信号的滤波处理滤波是信号处理中常用的一种方法,用于去除信号中的噪声或不需要的频率成分。
我们选取了一个包含噪声的信号进行滤波处理。
首先,我们生成一个包含噪声的信号。
使用Matlab的函数生成噪声信号,并将其与原始信号叠加,可以得到包含噪声的信号。
接下来,我们对包含噪声的信号进行滤波处理。
使用Matlab的函数进行滤波处理,可以得到去除噪声后的信号。
基于matlab的音频信号处理毕业设计(含源文件)毕业设计题目:基于matlab的音频信号处理专业:电子信息工程学号:作者:指导教师(职称):基于MATLAB的语音信号处理【摘要】Matlab语音信号处理是指利用matlab软件对音频信号进行读取,并对音频信号进行采样分析及离散傅里叶变换,以方便对其在频域上进行调制滤波等相关的操作.本次实验在提取音频信号后会对该信号使用在MATLAB软件中设计的滤波器进行滤波,并观察其效果,验证滤波器是否可行。
本次使用了MATLAB软件,综合运用GUI界面设计、各种函数调用等来实现音频信号的傅里叶变换及滤波,程序界面简练,操作简便,具有一定的实际应用意义.软件中自带的信号处理与分析工具箱为语音信号分析实验提供了丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化。
信号处理是MATLAB重要应用的领域之一。
【关键词】 matlab 语音信号处理数字滤波器傅里叶变换Based on MATLAB of the signal processingAudio processing design【Abstract】: The contents of the research is to filter the signal noise with using MATLAB software。
signal processing is to study the use of digital signal processing technology and knowledge of the voice signal voice processing of the emerging discipline is the fastest growing areas of information science one of the core technology。
matlab信号分析实验报告Matlab信号分析实验报告引言:信号分析是一门重要的学科,它研究的是信号的产生、传输和处理过程。
在实际应用中,信号分析可以用于音频、图像、视频等领域。
本实验报告将介绍使用Matlab进行信号分析的方法和步骤,并通过实例说明其应用。
一、信号的产生和采样在信号分析中,首先需要了解信号的产生和采样过程。
信号可以通过数学函数或实际物理过程生成。
在Matlab中,可以使用函数生成各种类型的信号,如正弦信号、方波信号等。
采样是指将连续时间信号转化为离散时间信号的过程。
在Matlab中,可以使用采样函数对信号进行采样。
通过信号的产生和采样,我们可以得到一组离散的信号数据,为后续的信号分析做准备。
二、信号的频域分析频域分析是信号分析中的重要内容,它可以将信号从时域转化为频域,得到信号的频谱信息。
在Matlab中,可以使用傅里叶变换对信号进行频域分析。
傅里叶变换可以将信号表示为一系列正弦和余弦函数的叠加,得到信号的频谱。
通过观察信号的频谱,我们可以了解信号的频率成分和能量分布情况。
频域分析在音频处理、图像处理等领域有广泛应用。
三、信号的滤波处理滤波是信号处理中常用的技术,它可以去除信号中的噪声或不需要的频率成分。
在Matlab中,可以使用滤波器对信号进行滤波处理。
滤波器可以分为低通滤波器、高通滤波器、带通滤波器等不同类型。
通过选择不同的滤波器类型和参数,可以实现对信号的不同滤波效果。
滤波处理在音频降噪、图像增强等领域有广泛应用。
四、信号的时频分析时频分析是信号分析中的一种综合方法,它可以同时观察信号在时域和频域的变化。
在Matlab中,可以使用小波变换对信号进行时频分析。
小波变换可以将信号分解成不同尺度和频率的小波系数,得到信号的时频图像。
通过观察时频图像,我们可以了解信号在不同时间和频率上的变化情况。
时频分析在音频信号的乐音识别、图像的纹理分析等领域有广泛应用。
五、实例分析:音频信号处理以音频信号处理为例,介绍Matlab在信号分析中的应用。
matlab 信号分析实验报告Matlab 信号分析实验报告引言:信号分析是一门重要的学科,它涉及到从原始信号中提取有用信息的技术和方法。
Matlab作为一种强大的数学计算工具,被广泛应用于信号分析领域。
本实验报告将介绍我在信号分析实验中使用Matlab所做的工作和实验结果。
一、实验目的本次实验的主要目的是通过Matlab对不同类型的信号进行分析,包括时域分析、频域分析和滤波处理。
通过这些实验,我们可以更好地理解信号分析的基本概念和方法,并掌握Matlab在信号分析中的应用技巧。
二、实验内容1. 时域分析时域分析是对信号在时间上的变化进行分析,主要包括信号的幅度、频率、相位等特征。
在实验中,我们使用Matlab绘制了一段正弦信号的波形图,并计算了其均值、方差和峰值等统计量。
通过这些分析,我们可以了解信号的基本特性。
2. 频域分析频域分析是对信号在频率上的变化进行分析,主要包括信号的频谱、频率分量等特征。
在实验中,我们使用Matlab对一段音频信号进行频谱分析,并绘制了其频谱图。
通过这些分析,我们可以了解信号的频率分布情况,进一步理解信号的特性。
3. 滤波处理滤波处理是对信号进行去噪或频率调整的处理方法。
在实验中,我们使用Matlab对一段包含噪声的信号进行滤波处理,并比较了滤波前后的信号波形和频谱。
通过这些分析,我们可以了解滤波处理对信号的影响,以及如何选择合适的滤波器进行处理。
三、实验结果1. 时域分析结果通过Matlab绘制正弦信号的波形图,我们可以观察到信号的周期性变化,并计算了其均值为0、方差为0.5和峰值为1的统计量。
这些结果表明该正弦信号的幅度和频率都比较稳定。
2. 频域分析结果通过Matlab绘制音频信号的频谱图,我们可以观察到信号在不同频率上的能量分布情况。
通过分析频谱图,我们可以判断音频信号中的主要频率分量,并进一步了解音频信号的特性。
3. 滤波处理结果通过Matlab对带噪声的信号进行滤波处理,我们可以观察到噪声被有效去除,并比较了滤波前后的信号波形和频谱。
语音信号处理实验班级:学号:姓名:实验一基于MATLAB的语音信号时域特征分析(2 学时)1)短时能量( 1)加矩形窗a=wavread('mike.wav');a=a(:,1);subplot(6,1,1),plot(a);N=32;for i=2:6h=linspace(1,1,2.^(i-2)*N);%形成一个矩形窗,长度为 2.^(i-2)*NEn=conv(h,a.*a);% 求短时能量函数Ensubplot(6,1,i),plot(En);if(i==2) ,legend('N=32' );elseif(i==3), legend('N=64' );elseif(i==4) ,legend('N=128' );elseif(i==5) ,legend('N=256' );elseif(i==6) ,legend('N=512' );endend1-10.5 1 1.5 2 2.54 x 102N=32 0 0.5 1 1.5 2 2.55 x 10N=64 0 0.5 1 1.5 2 2.510 x 1050.5 1 1.5 2 2.5 N=128 020 x 10100.5 1 1.5 2 2.5 N=256 040 x 1020N=5120 0.5 1 1.5 2 2.5x 10( 2)加汉明窗a=wavread('mike.wav');a=a(:,1);subplot(6,1,1),plot(a);N=32; 3 43 43 43 43 43 4for i=2:6h=hanning(2.^(i-2)*N);% 形成一个汉明窗,长度为 2.^(i-2)*NEn=conv(h,a.*a);% 求短时能量函数Ensubplot(6,1,i),plot(En);if(i==2), legend('N=32' );elseif(i==3), legend('N=64' );elseif(i==4) ,legend('N=128' );elseif(i==5) ,legend('N=256' );elseif(i==6) ,legend('N=512' );endend1-10.5 1 1.5 2 2.52 x 101N=32 0 0.5 1 1.5 2 2.54 x 102N=64 0 0.5 1 1.5 2 2.54 x 102N=128 0 0.5 1 1.5 2 2.510 x 105N=256 0 0.5 1 1.5 2 2.520 x 1010N=5120 0.5 1 1.5 2 2.5x 102)短时平均过零率a=wavread('mike.wav');a=a(:,1);n=length(a);N=320;subplot(3,1,1),plot(a);h=linspace(1,1,N);En=conv(h,a.*a); %求卷积得其短时能量函数Ensubplot(3,1,2),plot(En);for i=1:n-1if a(i)>=0 3 43 43 43 43 43 4elseb(i) = -1;endif a(i+1)>=0b(i+1)=1;elseb(i+1)= -1;endw(i)=abs(b(i+1)-b(i)); %求出每相邻两点符号的差值的绝对值endk=1;j=0;while (k+N-1)<nZm(k)=0;for i=0:N-1;Zm(k)=Zm(k)+w(k+i);endj=j+1;k=k+N/2; % 每次移动半个窗endfor w=1:jQ(w)=Zm(160*(w-1)+1)/(2*N); %短时平均过零率endsubplot(3,1,3),plot(Q),grid;1-100.51 1.52 2.5 34x 10201000.51 1.52 2.5 34x 100.50204060801001201401601803)自相关函数N=240y=wavread('mike.wav');y=y(:,1);x=y(13271:13510);x=x.*rectwin(240);R=zeros(1,240);for k=1:240for n=1:240-kR(k)=R(k)+x(n)*x(n+k);endendj=1:240;plot(j,R);grid;2.521.510.5-0.5-1-1.5050100150200250实验二基于 MATLAB 分析语音信号频域特征1)短时谱cleara=wavread('mike.wav');a=a(:,1);subplot(2,1,1),plot(a);title('original signal');gridN=256;h=hamming(N);for m=1:Nb(m)=a(m)*h(m)endy=20*log(abs(fft(b)))subplot(2,1,2)plot(y);title('短时谱 ');gridoriginal signal10.5-0.5-100.51 1.52 2.5 34x 10短时谱10.500.20.40.60.81 1.2 1.4 1.6 1.8 22)语谱图[x,fs,nbits]=wavread('mike.wav')x=x(:,1);specgram(x,512,fs,100);xlabel('时间 (s)');ylabel('频率 (Hz)' );title('语谱图 ');语谱图50004000)zH3000(率频200010000.51 1.5 2时间 (s) 3)倒谱和复倒谱(1)加矩形窗时的倒谱和复倒谱cleara=wavread('mike.wav',[4000,4350]);a=a(:,1);N=300;h=linspace(1,1,N);for m=1:Nb(m)=a(m)*h(m);endc=cceps(b);c=fftshift(c);d=rceps(b);d=fftshift(d);subplot(2,1,1)plot(d);title( '加矩形窗时的倒谱')subplot(2,1,2)plot(c);title( '加矩形窗时的复倒谱')加矩形窗时的倒谱1-1-2050100150200250300加矩形窗时的复倒谱105-5-10050100150200250300(2)加汉明窗时的倒谱和复倒谱 cleara=wavread('mike.wav',[4000,4350]);a=a(;,1);N=300;h=hamming(N);for m=1:Nb(m)=a(m)*h(m);endc=cceps(b);c=fftshift(c);d=rceps(b);d=fftshift(d);subplot(2,1,1)plot(d);title( '加汉明窗时的倒谱')subplot(2,1,2)plot(c);title( '加汉明窗时的复倒谱')加汉明窗时的倒谱1-1-2-3050100150200250300加汉明窗时的复倒谱105-5-10050100150200250300实验三基于 MATLAB 的 LPC 分析MusicSource = wavread('mike.wav');MusicSource=MusicSource(:,1);Music_source = MusicSource';N = 256; % window length, N = 100 -- 1000;Hamm = hamming(N); % create Hamming windowframe = input( '请键入想要处理的帧位置= ' );% origin is current frameorigin = Music_source(((frame - 1) * (N / 2) + 1):((frame - 1) * (N / 2) + N));Frame = origin .* Hamm';%%Short Time Fourier Transform%[s1,f1,t1] = specgram(MusicSource,N,N/2,N);[Xs1,Ys1] = size(s1);for i = 1:Xs1FTframe1(i) = s1(i,frame);endN1 = input( '请键入预测器阶数= ' ); % N1 is predictor's order[coef,gain] = lpc(Frame,N1); % LPC analysis using Levinson-Durbin recursionest_Frame = filter([0 -coef(2:end)],1,Frame); % estimate frame(LP)FFT_est = fft(est_Frame);err = Frame - est_Frame; % error% FFT_err = fft(err);subplot(2,1,1),plot(1:N,Frame,1:N,est_Frame,'-r');grid;title('原始语音帧 vs.预测后语音帧 ')subplot(2,1,2),plot(err);grid;title('误差 ');pause%subplot(2,1,2),plot(f',20*log(abs(FTframe2)));grid;title('短时谱 ')%%Gain solution using G^2 = Rn(0) - sum(ai*Rn(i)),i = 1,2,...,P%fLength(1 : 2 * N) = [origin,zeros(1,N)];Xm = fft(fLength,2 * N);X = Xm .* conj(Xm);Y = fft(X , 2 * N);Rk = Y(1 : N);PART = sum(coef(2 : N1 + 1) .* Rk(1 : N1));G = sqrt(sum(Frame.^2) - PART);A = (FTframe1 - FFT_est(1 : length(f1'))) ./ FTframe1 ; % inverse filter A(Z)subplot(2,1,1),plot(f1',20*log(abs(FTframe1)),f1',(20*log(abs(1 ./ A))),'-r');grid;title('短时谱 ');subplot(2,1,2),plot(f1',(20*log(abs(G ./ A))));grid;title( 'LPC谱 ');pause%plot(abs(ifft(FTframe1 ./ (G ./ A))));grid;title('excited')%plot(f1',20*log(abs(FFT_est(1 : length(f1')) .* A / G )));grid;%pause%%find_pitch%temp = FTframe1 - FFT_est(1 : length(f1'));%not move higher frequncepitch1 = log(abs(temp));pLength = length(pitch1);result1 = ifft(pitch1,N);% move higher frequncepitch1((pLength - 32) : pLength) = 0;result2 = ifft(pitch1,N);%direct do real cepstrum with errpitch = fftshift(rceps(err));origin_pitch = fftshift(rceps(Frame));subplot(211),plot(origin_pitch);grid;title( '原始语音帧倒谱 (直接调用函数 )');subplot(212),plot(pitch);grid;title( '预测误差倒谱 (直接调用函数 )');pausesubplot(211),plot(1:length(result1),fftshift(real(result1)));grid;title('预测误差倒谱 (根据定义编写,没有去除高频分量)');subplot(212),plot(1:length(result2),fftshift(real(result2)));grid;title('预测误差倒谱 (根据定义编写,去除高频分量 )');原始语音帧 vs. 预测后语音帧0.40.2-0.2-0.4050100150200250300误差0.20.1-0.1-0.2050100150200250300短时谱50-50-100010203040506070LPC 谱100806040010203040506070原始语音帧倒谱(直接调用函数)0.5-0.5-1050100150200250300预测误差倒谱(直接调用函数)0.5-0.5-1050100150200250300预测误差倒谱(根据定义编写,没有去除高频分量)0.2-0.2-0.4-0.6050100150200250300预测误差倒谱(根据定义编写,去除高频分量)0.1-0.1-0.2-0.3050100150200250300预测误差倒谱(根据定义编写,没有去除高频分量)0.2-0.2-0.4-0.6050100150200250300预测误差倒谱(根据定义编写,去除高频分量)0.1-0.1-0.2-0.3050100150200250300预测误差倒谱(根据定义编写,没有去除高频分量)0.2-0.2-0.4-0.6050100150200250300预测误差倒谱(根据定义编写,去除高频分量)0.1-0.1-0.2-0.3050100150200250300实验四基于 VQ 的特定人孤立词语音识别研究1、mfcc.mfunction ccc = mfcc(x)bank=melbankm(24,256,8000,0,0.5,'m' );bank=full(bank);bank=bank/max(bank(:));for k=1:12n=0:23;dctcoef(k,:)=cos((2*n+1)*k*pi/(2*24));endw = 1 + 6 * sin(pi * [1:12] ./ 12);w = w/max(w);xx=double(x);xx=filter([1 -0.9375],1,xx);xx=enframe(xx,256,80);for i=1:size(xx,1)y = xx(i,:);s = y' .* hamming(256);t = abs(fft(s));t = t.^2;c1=dctcoef * log(bank * t(1:129));c2 = c1.*w';m(i,:)=c2';enddtm = zeros(size(m));for i=3:size(m,1)-2dtm(i,:) = -2*m(i-2,:) - m(i-1,:) + m(i+1,:) + 2*m(i+2,:);enddtm = dtm / 3;ccc = [m dtm];ccc = ccc(3:size(m,1)-2,:);2、vad.mfunction [x1,x2] = vad(x)x = double(x);x = x / max(abs(x));FrameLen = 240;FrameInc = 80;amp1 = 10;amp2 = 2;zcr1 = 10;zcr2 = 5;maxsilence = 8; % 6*10ms = 30msminlen = 15; % 15*10ms = 150msstatus = 0;count = 0;silence = 0;tmp1 = enframe(x(1:end-1), FrameLen, FrameInc);tmp2 = enframe(x(2:end) , FrameLen, FrameInc);signs = (tmp1.*tmp2)<0;diffs = (tmp1 -tmp2)>0.02;zcr = sum(signs.*diffs, 2);amp = sum(abs(enframe(filter([1 -0.9375], 1, x), FrameLen, FrameInc)), 2); amp1 = min(amp1, max(amp)/4);amp2 = min(amp2, max(amp)/8);x1 = 0;x2 = 0;for n=1:length(zcr)goto = 0;switch statuscase {0,1}if amp(n) > amp1x1 = max(n-count-1,1);status = 2;silence = 0;count= count + 1;elseif amp(n) > amp2 | ...zcr(n) > zcr2status = 1;count = count + 1;elsestatus = 0;count= 0;endcase 2,if amp(n) > amp2 | ...zcr(n) > zcr2count = count + 1;elsesilence = silence+1;if silence < maxsilence count = count + 1;elseif count < minlenstatus = 0;silence = 0;count= 0;elsestatus = 3;endendcase 3,break;endendcount = count-silence/2;x2 = x1 + count -1;3、codebook.m%clear;function xchushi= codebook(m) [a,b]=size(m);[m1,m2]=szhixin(m);[m3,m4]=szhixin(m2);[m1,m2]=szhixin(m1);[m7,m8]=szhixin(m4);[m5,m6]=szhixin(m3);[m3,m4]=szhixin(m2);[m1,m2]=szhixin(m1);[m15,m16]=szhixin(m8);[m13,m14]=szhixin(m7);[m11,m12]=szhixin(m6);[m9,m10]=szhixin(m5);[m7,m8]=szhixin(m4);[m5,m6]=szhixin(m3);[m3,m4]=szhixin(m2);[m1,m2]=szhixin(m1);chushi(1,:)=zhixinf(m1);chushi(2,:)=zhixinf(m2);chushi(3,:)=zhixinf(m3);chushi(4,:)=zhixinf(m4);chushi(5,:)=zhixinf(m5);chushi(6,:)=zhixinf(m6);chushi(7,:)=zhixinf(m7);chushi(8,:)=zhixinf(m8);chushi(9,:)=zhixinf(m9);chushi(10,:)=zhixinf(m10);chushi(11,:)=zhixinf(m11);chushi(12,:)=zhixinf(m12);chushi(13,:)=zhixinf(m13);chushi(14,:)=zhixinf(m14);chushi(15,:)=zhixinf(m15);chushi(16,:)=zhixinf(m16);sumd=zeros(1,1000);k=1;dela=1;xchushi=chushi;while(k<=1000)sum=ones(1,16);for p=1:afor i=1:16d(i)=odistan(m(p,:),chushi(i,:));enddmin=min(d);sumd(k)=sumd(k)+dmin;for i=1:16if d(i)==dminxchushi(i,:)=xchushi(i,:)+m(p,:);sum(i)=sum(i)+1;endendendfor i=1:16xchushi(i,:)=xchushi(i,:)/sum(i); endif k>1dela=abs(sumd(k)-sumd(k-1))/sumd(k); endk=k+1;chushi=xchushi;endreturn4、 testvq.mclear;disp('这是一个简易语音识别系统,请保证已经将您的语音保存在相应文件夹中') disp('正在训练您的语音模版指令,请稍后...')for i=1:10fname = sprintf(海儿的声音\\%da.wav' ,i-1);x = wavread(fname);[x1 x2] = vad(x);m = mfcc(x);m = m(x1:x2-5,:);ref(i).code=codebook(m);enddisp('语音指令训练成功,恭喜!)?'disp('正在测试您的测试语音指令,请稍后...')for i=1:10fname = sprintf(海儿的声音\\%db.wav' ,i-1);x = wavread(fname);[x1 x2] = vad(x);mn = mfcc(x);mn = mn(x1:x2-5,:);%mn = mn(x1:x2,:)test(i).mfcc = mn;endsumsumdmax=0;sumsumdmin=0;disp('对训练过的语音进行测试')for w=1:10sumd=zeros(1,10);[a,b]=size(test(w).mfcc);for i=1:10for p=1:afor j=1:16d(j)=odistan(test(w).mfcc(p,:),ref(i).code(j,:));enddmin=min(d);sumd(i)=sumd(i)+dmin; %×üê§??endendsumdmin=min(sumd)/a;sumdmin1=min(sumd);sumdmax(w)=max(sumd)/a;sumsumdmin=sumdmin+sumsumdmax;sumsumdmax=sumdmax(w)+sumsumdmax;disp('正在匹配您的语音指令,请稍后...')for i=1:10if (sumd(i)==sumdmin1)switch (i)case 1fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'前 ', '前 ');case2fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'后 ', '后 ');case3fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'左 ', '左 ');case4fprintf( '您输入的语音指令为a:%s;识别结果为 %s\n' ,'右 ', '右 ');case5fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'东 ', '东 ');case6fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'南 ', '南 ');case7fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'西 ', '西 ');case8fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'北 ', '北 ');case9fprintf( '您输入的语音指令为a:%s;识别结果为 %s\n' ,'上 ', '上 ');case10fprintf( '您输入的语音指令为a:%s;识别结果为 %s\n' ,'下 ', '下 ');otherwisefprintf( 'error');endendendenddelamin=sumsumdmin/10;delamax=sumsumdmax/10;disp('对没有训练过的语音进行测试')disp('正在测试你的语音,请稍后...')for i=1:10fname = sprintf(o£ ?ùμ ?éùò?\\%db.wav' ,i-1);x = wavread(fname);[x1 x2] = vad(x);mn = mfcc(x);mn = mn(x1:x2-5,:);%mn = mn(x1:x2,:)test(i).mfcc = mn;endfor w=1:10sumd=zeros(1,10);[a,b]=size(test(w).mfcc);for i=1:10for p=1:afor j=1:16d(j)=odistan(test(w).mfcc(p,:),ref(i).code(j,:));enddmin=min(d);sumd(i)=sumd(i)+dmin; %×üê§??endendsumdmin=min(sumd);z=0;for i=1:10if (((sumd(i))/a)>delamax)||z=z+1;endenddisp('正在匹配您的语音指令,请稍后...')if z<=3for i=1:10if (sumd(i)==sumdmin)switch (i)case 1fprintf( '您输入的语音指令为:%s; 识别结果为%s\n' ,'前 ', '前 ');case2fprintf( '您输入的语音指令为 :%s; 识别结果为 %s\n' ,'后 ', '后 ');case3fprintf( '您输入的语音指令为 :%s; 识别结果为 %s\n' ,'左 ', '左 ');case4fprintf( '您输入的语音指令为a:%s;识别结果为%s\n' ,'右 ', '右 ');case5fprintf( '您输入的语音指令为:%s; 识别结果为%s\n' ,'东 ', '东 ');case6fprintf( '您输入的语音指令为:%s; 识别结果为%s\n' ,'南 ', '南 ');case7fprintf( '您输入的语音指令为:%s; 识别结果为%s\n' ,'西 ', '西 ');case8fprintf( '您输入的语音指令为 :%s; 识别结果为 %s\n' ,'北 ', '北 ');case9fprintf( '您输入的语音指令为a:%s;识别结果为%s\n' ,'上 ', '上 ');case10fprintf( '您输入的语音指令为a:%s;识别结果为%s\n' ,'下 ', '下 ');otherwisefprintf( 'error');endendendelsefprintf( '您输入的语音无效?\n'£)?endend(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的配合和支持)。
利用Matlab进行音频信号处理与分析研究音频信号处理与分析一直是数字信号处理领域中的一个重要研究方向。
随着数字技术的不断发展,利用Matlab进行音频信号处理与分析已经成为研究人员和工程师们的常用工具。
本文将介绍如何利用Matlab进行音频信号处理与分析的基本原理、方法和应用。
一、音频信号处理基础在开始讨论如何利用Matlab进行音频信号处理与分析之前,首先需要了解一些音频信号处理的基础知识。
音频信号是一种连续时间信号,通常以数字形式表示。
在数字化之前,音频信号需要经过采样、量化等步骤转换为数字信号,然后才能进行数字信号处理。
二、Matlab在音频信号处理中的应用Matlab作为一种功能强大的科学计算软件,提供了丰富的工具箱和函数,可以方便地进行音频信号处理与分析。
下面将介绍Matlab在音频信号处理中常用的几种功能:1. 音频文件读取与播放利用Matlab可以轻松读取各种格式的音频文件,如.wav、.mp3等,并进行播放。
通过读取音频文件,可以对音频信号进行可视化显示和分析。
2. 音频滤波滤波是音频信号处理中常用的技术之一,可以通过设计不同类型的滤波器对音频信号进行去噪、降噪等处理。
Matlab提供了丰富的滤波函数和工具箱,可以方便地实现各种滤波操作。
3. 音频特征提取在音频信号分析中,提取音频特征是非常重要的一步。
Matlab提供了各种特征提取函数,如时域特征、频域特征、时频域特征等,可以帮助用户快速准确地提取音频信号的特征信息。
4. 音频信号合成与分析除了对已有的音频信号进行处理外,Matlab还可以实现音频信号的合成与分析。
用户可以根据需要生成各种类型的声音,并对合成声音进行进一步分析。
三、案例分析:基于Matlab的语音情感识别作为一个典型的应用案例,我们以基于Matlab的语音情感识别为例进行介绍。
语音情感识别是近年来备受关注的研究领域,通过对语音信号进行分析和处理,可以准确地识别说话者的情感状态。
实验一MATLAB音频信号处理实验
一、实验目的
1、进一步加深DFT算法原理和基本性质的理解;
2、熟悉FFT算法原理;
3、理解掌握音频信号各参数的意义;
二、实验内容
1、对一个音频信号用FFT进行谱分析;
2、对该音频信号进行放大或衰减;
3、对该音频信号加入噪声与去掉噪声处理
三、实验要求
1.语音信号的读取、存储;
2.语音信号的播放;
3.FFT的MATLAB实现;
4.信号放大(6倍);
5.信号调制、产生高频信号;
6.信号叠加之后产生的带有噪声的语音信号;
7.绘制信号图像(时域与频域图像),包括原始信号图像,以及带有噪声的语音信号。
四、实验结果及代码
[S1,fs,bits]=wavread('C:\Users\1\Desktop\实验\handel.wav');
wavwrite(S1,'copy.wav');
F=fft(S1);
S1=S1*6;
fc=1000;
y1=modulate(S1,fc,fs,'fm');
Y1=fft(y1,40000);
y2=S1+y1;
Y2=fft(y2,40000);
figure(1);
subplot(221);
plot(S1);
title('原始的信号时域图');
subplot(222);
plot(abs(F));
title('原始的信号频域图');
subplot(223);
plot(y1);
title('调制后信号时域图');
subplot(224);
plot(abs(Y1));
title('调制后信号频域图');
figure(2)
subplot(221);
plot(y2);
title('加噪的信号时域图');
subplot(222);
plot(abs(Y2));
title('加噪的信号频域图');
运行结果如下图1-1
图1-1
五、实验总结
通过本次实验学习了如何使用MATLAB对音频信号进行处理。
包括语音信号
的读取、存储、播放、对一个音频信号用FFT进行谱分析、放大、信号调制、产生高频信号、产生带有噪声的信号等基本的操作。