基于Matlab的语音信号处理
- 格式:ppt
- 大小:411.00 KB
- 文档页数:15
基于MATLAB的语音信号处理与识别系统设计与实现一、引言语音信号处理与识别是人工智能领域中的重要研究方向之一,随着深度学习和人工智能技术的不断发展,基于MATLAB的语音信号处理与识别系统设计与实现变得越来越受到关注。
本文将介绍如何利用MATLAB进行语音信号处理与识别系统的设计与实现。
二、MATLAB在语音信号处理中的应用MATLAB作为一种强大的科学计算软件,提供了丰富的工具箱和函数库,可以方便地进行语音信号处理。
在语音信号处理中,MATLAB可以用于语音信号的采集、预处理、特征提取、模型训练等各个环节。
通过MATLAB提供的工具,可以高效地对语音信号进行分析和处理。
三、语音信号处理流程1. 语音信号采集在语音信号处理系统中,首先需要对语音信号进行采集。
通过MATLAB可以实现对声音的录制和采集,获取原始的语音信号数据。
2. 语音信号预处理采集到的语音信号数据通常包含噪声和杂音,需要进行预处理以提高后续处理的准确性。
预处理包括去噪、降噪、滤波等操作,可以有效地净化语音信号数据。
3. 特征提取在语音信号处理中,特征提取是一个关键步骤。
通过MATLAB可以提取出语音信号的频谱特征、时域特征等信息,为后续的模式识别和分类打下基础。
4. 模型训练与识别利用MATLAB可以构建各种机器学习模型和深度学习模型,对提取出的特征进行训练和识别。
通过模型训练,可以实现对不同语音信号的自动识别和分类。
四、基于MATLAB的语音信号处理与识别系统设计1. 系统架构设计基于MATLAB的语音信号处理与识别系统通常包括数据采集模块、预处理模块、特征提取模块、模型训练模块和识别模块。
这些模块相互配合,构成一个完整的系统架构。
2. 界面设计为了方便用户使用,可以在MATLAB中设计用户友好的界面,包括数据输入界面、参数设置界面、结果展示界面等。
良好的界面设计可以提升系统的易用性和用户体验。
五、基于MATLAB的语音信号处理与识别系统实现1. 数据准备首先需要准备好用于训练和测试的语音数据集,包括正样本和负样本。
基于MATLAB的音频处理技术研究第一章引言音频处理技术是数字信号处理领域的一个重要分支,在音频信号采集、分析、增强和合成等方面有着广泛的应用。
随着数字信号处理技术的不断发展,基于MATLAB的音频处理技术也得到了快速的发展和应用。
本文将介绍MATLAB在音频处理领域的应用和研究,然后重点分析基于MATLAB的音频信号预处理和特征提取技术。
第二章 MATLAB在音频处理中的应用MATLAB是一种强大的数学仿真软件,其内置了丰富的数学分析工具和信号处理库,可以广泛应用于信号处理、数字通信、嵌入式系统设计等领域。
在音频处理领域,MATLAB提供了丰富的函数和工具箱,可以对音频进行采集、分析、合成和处理等任务。
2.1 音频采集MATLAB提供了嵌入式硬件支持包,可以连接各种类型的音频设备,如麦克风、音频接口等。
用户可以使用MATLAB编写程序,对音频进行实时采集和录制,并实时在MATLAB的界面上进行显示和处理。
2.2 音频分析MATLAB提供了许多用于音频信号分析的工具箱,如信号处理工具箱、音频工具箱和语音处理工具箱等。
用户可以利用这些工具箱进行频域分析、时域分析、滤波、FFT、STFT和解调等操作,以及进行各种音频信号的特征提取和分类。
2.3 音频合成MATLAB提供了各种音频合成的工具箱,如声学模型工具箱、可重复性工具箱和音频合成器等。
用户可以利用这些工具箱进行音频信号的合成和生成,例如混响效果、合成乐器音效等。
第三章基于MATLAB的音频信号预处理技术MATLAB提供了许多音频信号预处理的工具,这些工具可以在进行音频信号分析和特征提取之前对信号进行预处理,如降噪、去混响、去噪声,以及去掉杂音等。
3.1 降噪降噪是去除音频信号中的噪音干扰,使得信号更加清晰的重要步骤。
MATLAB提供了多种降噪算法,例如小波阈值法、基于分量分析的降噪方法和基于统计学习的降噪方法等。
这些算法可以对音频信号进行有效的降噪,从而提高信号的质量,提高后续分析的准确性。
专题研讨四、信号与系统综合应用确定题目(根据个人兴趣、结合实际确定题目,可从下面参考题目中选择,也可自由确定):基于matlab的语音信号的基本处理参考题目:题目1:含噪信号滤波题目2:双音多频信号的产生与检测题目3:磁盘驱动系统仿真题目4:卡尔曼滤波器的应用题目5:应用反馈扩大放大器的带宽(以上只是本专题的部分题目)开题报告课题实施过程记录包括仿真程序、仿真结果、结果分析、方案完善等 ○1语音信号的制作及描述 1) 制作语音文件:用windows 录音机录制一小段语音文件"333.wav ”,内容为"信号与信息系统",由一同学播音. 2) 用matlab 播放”333.wav ”仿真程序:3) [y,Fs,bits]=wavread('333.wav'); sound(y,Fs);pause;4) 绘画出语音文件的时域和频域波形: 仿真程序:[y,Fs,bits]=wavread('333.wav'); plot(y);仿真结果:0123456789x 104-0.8-0.6-0.4-0.20.20.40.6结果分析:随着时间变化,声音能量图形 方案完善:1.时间轴有问题,与实际的时间不一样.2.语音信号的频域分析更清楚.仿真程序:[y,Fs,bits]=wavread('333.wav'); y=y(:,1);sLength=length(y); Y = fft(y,sLength);Pyy = Y.* conj(Y) / sLength; halflength=floor(sLength/2); f=Fs*(0:halflength)/sLength; figure;plot(f,Pyy(1:halflength+1));xlabel('Frequency(Hz)'); t=(0:sLength-1)/Fs; figure;plot(t,y);xlabel('Time(s)');仿真结果:0.51 1.52 2.5x 104Frequency(Hz)00.20.40.60.81 1.2 1.4 1.6 1.82-0.8-0.6-0.4-0.20.20.40.6Time(s)结果分析:频域分析是从另一个角度观察信号;语音信号的一般频域范围"200~2000"Hz ○2语音信号抽取及倍插仿真程序:[y,Fs,bits]=wavread('111.wav'); sound(y,Fs/2);pause;[y,Fs,bits]=wavread('111.wav'); sound(y,2*Fs);pause;仿真结果与分析:以Fs/2及2*Fs 播放的语音信号存在失真, 方案完善:需要做出波形,做更直观的观察. ○3语音信号的加噪1)语音信号加高频噪音及播放. 仿真程序:[y,Fs,bits]=wavread('333.wav'); y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.5;d=A*cos(2*pi*f*t)';y=y+d;sound(y,Fs);仿真结果:播放时伴有尖锐的”吱吱”声.结果分析:由于加入高频成分余弦信号,信号叠加后出现了尖锐的噪音.2)加噪后的语音信号的时域和频域波形.仿真程序:[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.05;d=A*cos(2*pi*f*t)';y1=y+d;sLength=length(y1);Y = fft(y1,sLength);Pyy = Y.* conj(Y) / sLength;halflength=floor(sLength/2);f=Fs*(0:halflength)/sLength;figure;plot(f,Pyy(1:halflength+1));xlabel('Frequency(Hz)');仿真结果:00.20.40.60.81 1.2 1.4 1.6 1.82-0.8-0.6-0.4-0.20.20.40.6Time(s)0.51 1.522.5x 10405101520253035404550Frequency(Hz)结果分析:时域波形跟加噪前没有什么明显的区别.在频域上我们发现有一个近6000Hz的高频成分,这是产生的噪音的根本所在.方案完善:运用subplot将加噪前和加噪后的时域和频域波形进行对比,效果会更好.○4数字滤波这一部分我们学习了函数BUTTER,进行了最简单的数字滤波.[b,a]=butter(N,wc);代表数字低通滤波器,wc代表归一化频率(0<wc<=1,等于一时为奈奎斯特频率);N为滤波器的阶数.y2=filter(b,a,y1);对信号y1进行巴特滤波,滤波器为[b,a]系统滤波后信号的效果播放.仿真程序:[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.05;d=A*cos(2*pi*f*t)';y1=y+d;N=2;wc=[0.01,0.07];[b,a]=butter(N,wc);y2=filter(b,a,y1);sound(y2,Fs);仿真结果:原先的噪声消失,语音信号变回原样.滤波器为低通滤波器,滤去高频成分.方案完善:1.画出滤波后的时域和频域波形2. 对滤波器进行系统分析1.画出滤波后的时域和频域波形仿真程序:[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.05;d=A*cos(2*pi*f*t)';y1=y+d;plot(t,y);xlabel('Time(s)');N=2;wc=[0.01,0.07];[b,a]=butter(N,wc);y2=filter(b,a,y1); sLength1=length(y2); Y1 = fft(y2,sLength1);Pyy = Y1.* conj(Y1) / sLength1; halflength1=floor(sLength1/2); f1=Fs*(0:halflength1)/sLength1; figure;plot(f,Pyy(1:halflength+1));xlabel('Frequency(Hz)'); t=(0:sLength-1)/Fs; figure;plot(t,y2);xlabel('Time(s)');仿真结果:00.51 1.52 2.5x 1040.511.522.53Frequency(Hz)00.20.40.60.81 1.2 1.4 1.6 1.82-0.8-0.6-0.4-0.20.20.40.6Time(s)结果分析:基本效果良好,有少许失真. 2. 对滤波器进行系统分析 仿真程序:w=linspace(0,6000,10000); wc=[0.01 0.07]; N=2;[b,a]=butter(N,wc); H=freqz(b,a,w); plot(w,abs(H)); axis([0 2500 0 1.5]);仿真结果:010002000300040005000600000.511.5○3RC 模拟滤波(物理形式熟悉) [y,Fs,bits]=wavread('333.wav');%¶Á³öÐźţ¬²ÉÑùÂʺͲÉÑùλÊý¡£y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.5;d=A*cos(2*pi*f*t)';y1=y+d;RC=0.001;b=1/RC;a=[1,1/RC];sys=tf(b,a);y2=lsim(sys,y1,t);sound(y2,Fs);结果:效果良好,声音恢复.RC 滤波器的波特图RC=0.001;w=linspace(0,2,1024);b=1/RC;a=[1,1/RC];g=tf(b,a);bode(g);xlabel('w');ylabel('H(jw)');-40-30-20-100M a g n i t u d e (d B)101102103104105H (j w ) (d e g )Bode Diagramw (rad/sec)总结报告摘要:利用所学的知识对实际语音信号进行时域,频域分析;体会信号的抽样定理,即信号的抽取和倍插;运用信号叠加对信号进新加噪(高频),并用数字滤波器butter 滤去高频成分去噪;课题原理框图:课题最终仿真程序:○1语音信号的制作及描述; [y,Fs,bits]=wavread('333.wav');sound(y,Fs);pause;[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y);Y = fft(y,sLength);Pyy = Y.* conj(Y) / sLength;halflength=floor(sLength/2);f=Fs*(0:halflength)/sLength;figure;plot(f,Pyy(1:halflength+1));xlabel('Frequency(Hz)');t=(0:sLength-1)/Fs;figure;plot(t,y);xlabel('Time(s)');○2语音信号抽取及倍插; [y,Fs,bits]=wavread('111.wav');sound(y,Fs/2);pause;[y,Fs,bits]=wavread('111.wav');sound(y,2*Fs);pause;○3语音信号的加噪;[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.05;d=A*cos(2*pi*f*t)';y1=y+d;N=2;wc=[0.01,0.07];[b,a]=butter(N,wc);y2=filter(b,a,y1);sound(y2,Fs);[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.05;d=A*cos(2*pi*f*t)';y1=y+d;sLength=length(y1);Y = fft(y1,sLength);Pyy = Y.* conj(Y) / sLength;halflength=floor(sLength/2);f=Fs*(0:halflength)/sLength;figure;plot(f,Pyy(1:halflength+1));xlabel('Frequency(Hz)');○4滤波器.[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.05;d=A*cos(2*pi*f*t)';y1=y+d;N=2;wc=[0.01,0.07];[b,a]=butter(N,wc);y2=filter(b,a,y1);sound(y2,Fs);[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.05;d=A*cos(2*pi*f*t)';y1=y+d;plot(t,y);xlabel('Time(s)');N=2;wc=[0.01,0.07];[b,a]=butter(N,wc);y2=filter(b,a,y1);sLength1=length(y2);Y1 = fft(y2,sLength1);Pyy = Y1.* conj(Y1) / sLength1;halflength1=floor(sLength1/2);f1=Fs*(0:halflength1)/sLength1;figure;plot(f,Pyy(1:halflength+1));xlabel('Frequency(Hz)');t=(0:sLength-1)/Fs;figure;plot(t,y2);xlabel('Time(s)');w=linspace(0,6000,10000);wc=[0.01 0.07];N=2;[b,a]=butter(N,wc);H=freqz(b,a,w);plot(w,abs(H));axis([0 2500 0 1.5]);[y,Fs,bits]=wavread('333.wav');%¶Á³öÐźţ¬²ÉÑùÂʺͲÉÑùλÊý¡£y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.5;d=A*cos(2*pi*f*t)';y1=y+d;RC=0.001;b=1/RC;a=[1,1/RC];sys=tf(b,a);y2=lsim(sys,y1,t);sound(y2,Fs);RC=0.001;w=linspace(0,2,1024);b=1/RC;a=[1,1/RC];g=tf(b,a);bode(g);xlabel('w');ylabel('H(jw)');课题成果:1)了解了语音信号matlab处理的基本过程及思路,重点复习了波形绘制,系统响应;2)体会到理论与实践的结合,语音信号的处理和实际生活接近,趣味性强.本课题还存在哪些问题?1)对matlab的一些函数比较模糊,比如信号的长度估计,butter滤波函数的运用2)对于信号的滤波只是在很理想的高频情形下,过于单一简单,对实际的噪声滤波还有很多需要完善的.研究性学习自我体会与评价通过研究性学习你在哪些方面有所收获?(如学习方法、合作精神、探索精神、创新意识等)。
MATLAB课程设计报告课题:语音信号采集与处理目录一、实践目的 (3)二、实践原理: (3)三、课题要求: (3)四、MATLAB仿真 (4)1、频谱分析: (4)2、调制与解调: (5)3、信号变化: (8)快放: (8)慢放: (8)倒放: (8)回声: (8)男女变声: (9)4、信号加噪 (10)5、用窗函数法设计FIR滤波器 (11)FIR低通滤波器: (12)FIR高通滤波器: (13)FIR带通滤波: (14)一、实践目的本次课程设计的课题为《基于MATLAB的语音信号采集与处理》,学会运用MATLAB的信号处理功能,采集语音信号,并对语音信号进行滤波及变换处理,观察其时域和频域特性,加深对信号处理理论的理解,并为今后熟练使用MATLAB进行系统的分析仿真和设计奠定基础。
此次实习课程主要是为了进一步熟悉对matlab软件的使用,以及学会利用matlab对声音信号这种实际问题进行处理,将理论应用于实际,加深对它的理解。
二、实践原理:利用MATLAB对语音信号进行分析和处理,采集语音信号后,利用MATLAB软件平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。
语音信号的“短时谱”对于非平稳信号, 它是非周期的, 频谱随时间连续变化, 因此由傅里叶变换得到的频谱无法获知其在各个时刻的频谱特性。
如果利用加窗的方法从语音流中取出其中一个短断, 再进行傅里叶变换, 就可以得到该语音的短时谱。
三、课题要求:○1利用windows 自带的录音机或者其它录音软件,录制几段语音信号(要有几种不同的声音,要有男声、女声)。
○2对录制的语音信号进行频谱分析,确定该段语音的主要频率范围,由此频率范围判断该段语音信号的特点(低沉or 尖锐)。
○3利用采样定理,对该段语音信号进行采样,观察不同采样频率(过采样、欠采样、临界采样)对信号的影响。
数字信号处理课程设计报告--基于MATLAB的语音去噪处理《数字信号处理》课程设计报告基于MATLAB的语音去噪处理专业: 通信工程班级: 通信1101班组次: 第7组姓名及学号: 胡政权(2011013825) 姓名及学号: 潘爽(2011013836)第1页组员承担任务负责程序的编写,并检验程序是否错误,利用课余时间去图书馆或上网查阅课题相关资料,深入理解课题含义及设计要求,注意材料收集胡政权与整理,对课程设计要求进行最后审核。
负责课程设计实验MATLAB仿真对实验结果进行分析,上网查阅材料对实验发表自己看法同时对实验要求进行扩展。
对论文进行抒写,排版潘爽使实验课程设计更加完善。
指导教师评价意见第2页基于MATLAB的语音去噪处理1、设计目的(1)巩固所学的数字信号处理理论知识,理解信号的采集、处理、加噪、去噪过程; (2)综合运用专业及基础知识,解决实际工程技术问题的能力; (3)学习资料的收集与整理,学会撰写课程设计报告。
2、设计任务(1)语音信号的录制。
(2)在MATLAB平台上读入语音信号。
(3)绘制频谱图并回放原始语音信号。
(4)利用MATLAB编程加入一段正弦波噪音,设计滤波器去噪。
(5)利用MATLAB 编程加入一段随机噪音信号,设计FIR和IIR滤波器去噪,并分别绘制频谱图、回放语音信号。
(6)通过仿真后的图像以及对语音信号的回放,对比两种去噪方式的优缺点。
其大概流程框图可如下表示:(图2-1)图2-1 课程设计的流程第3页3、设计原理3.1 去噪原理3.1.1 采样定理在进行模拟/数字信号的转换过程中,当采样频率fs.max大于信号中,最高频率fmax的2倍时,即:fs.max>=2fmax,则采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5,10倍;采样定理又称奈奎斯特定理。
1924年奈奎斯特(Nyquist)就推导出在理想低通信道的最高大码元传输速率的公式: 理想低通信道的最高大码元传输速率=2W*log2 N (其中W是理想低通信道的带宽,N是电平强度)为什么把采样频率设为8kHz?在数字通信中,根据采样定理, 最小采样频率为语音信号最高频率的2倍频带为F的连续信号 f(t)可用一系列离散的采样值f(t1),f(t1?Δt),f(t1?2Δt),...来表示,只要这些采样点的时间间隔Δt?1/2F,便可根据各采样值完全恢复原来的信号f(t)。
(完整word版)基于matlab的语音信号处理(2) 数字信号处理设计报告题目:基于Matlab的语音信号处理系别信息工程学院专业班级通信工程1342学生姓名范泉指导教师吉李满提交日期2016年6月10日(完整word版)基于matlab的语音信号处理(2)摘要数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。
因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现.而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。
数字信号处理的算法需要利用计算机或专用处理设备如数字信号处理器(DSP)和专用集成电路(ASIC)等。
数字信号处理技术及设备具有灵活、精确、抗干扰强、设备尺寸小、造价低、速度快等突出优点,这些都是模拟信号处理技术与设备所无法比拟的。
本设计的具体内容是基于MATLAB的语音信号处理,核心算法是离散傅立叶变换(DFT),是DFT使信号在数字域和频域都实现了离散化,从而可以用通用计算机处理离散信号。
然后添加噪声信号,选用合适的滤波器对噪声信号进行滤除,使数字信号处理从理论走向实用。
MATLAB功能强大,可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。
用MATLAB来解算问题要比用其他语言简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。
在新的版本中也加入了对C,FORTRAN,C++ ,JAVA的支持。
可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。
关键词:数字信号处理器;离散傅立叶变换;MATLAB目录第一章绪论 (1)1.1课题研究的目的 (1)1。
毕业论文(设计)题目:基于matlab语音信号的采集与分析姓名:学院:理学与信息科学学院专业:电子信息科学与技术班级:学号:指导教师:目录摘要 (I)ABSTRACT. .......................................................................................................................................... I I 1 绪论 (1)1.1选题的背景和意义 (1)1.2语音信号处理的进展 (2)2 系统设计的可行性研究 (4)2.1语音信号处理的概念 (4)2.2语音信号的特点 (4)2.3语音信号处理的要求及可行性 (5)2.4M ATLAB仿真软件简介 (5)3 系统设计 (7)3.1系统设计的理论依据 (7)3.2系统的详细设计 (9)3.2.1图形用户界面制作 (9)3.2.2 系统功能的实现 (10)4 系统调试及运行 (16)总结 (25)致谢 (27)参考文献: (28)基于matlab语音信号的采集与分析电子信息科学与技术专业马晓敏指导教师曹红波摘要:语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科。
语音信号处理的目的是得到某些参数以便高效传输或存储,或者是用于某种应用,如人工合成出语音、辨识出讲话者、识别出讲话内容、进行语音增强等[1]。
本文简要介绍了语音信号采集与分析的发展史以及语音信号的特征、采集与分析方法,并通过PC机录制一段声音,采集语音信号后,在MATLAB软件平台上进行频谱分析,并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。
利用MATLAB来读入(采集)语音信号,将它赋值给某一向量。
再将该向量看作一个普通的信号,对其进行FFT变换实现频谱分析,再依据实际情况对它进行滤波。
数字信号处理课程设计课程名称数字信号处理基于MATLAB 的语音去噪处理题目名称专业班级13级通信工程本一学生姓名学号指导教师二○一五年十二月二十七日引言滤波器设计在数字信号处理中占有极其重要的地位,FIR数字滤波器和IIR滤波器是滤波器设计的重要组成部分。
利用MATLAB信号处理工具箱可以快速有效地设计各种数字滤波器。
课题基于MATLAB有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪声语音信号进行时域、频域分析和滤波。
通过理论推导得出相应结论,再利用MATLAB 作为编程工具进行计算机实现。
在设计实现的过程中,使用窗函数法来设计FIR数字滤波器,用巴特沃斯、切比雪夫和双线性变法设计IIR数字滤波器,并利用MATLAB 作为辅助工具完成设计中的计算与图形的绘制。
通过对对所设计滤波器的仿真和频率特性分析,可知利用MATLAB信号处理工具箱可以有效快捷地设计FIR和IIR数字滤波器,过程简单方便,结果的各项性能指标均达到指定要求。
关键词数字滤波器 MATLAB 窗函数法巴特沃斯切比雪夫双线性变换目录1 绪论 (4)2 课程设计内容 (5)3 课程设计的具体实现 (5)3.1 语音信号的采集 (4)3.2 语音信号的时频分析 (4)3.3 语音信号加噪与频谱分析 (6)3.4 利用双线性变换法设计低通滤波器 (8)3.5 用滤波器对加噪语音信号进行滤波 (9)3.6 分析滤波前后语音信号波形及频谱的变化 (10)3.7回放语音信号 (10)3.8小结 (11)结论 ···········································································错误!未定义书签。
基于matlab的语音信号分析与处理摘要:滤波器设计在数字信号处理中占有极其重要的地位,FIR数字滤波器和IIR 滤波器是滤波器设计的重要组成部分。
Matlab功能强大、编程效率高, 特别是Matlab具有信号分析工具箱,不需具备很强的编程能力,就可以很方便地进行信号分析、处理和设计。
基于MATLAB有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪声语音信号进行时域、频域分析和滤波。
使用窗函数法来设计FIR数字滤波器,用巴特沃斯、切比雪夫和双线性变法设计IIR 数字滤波器,并利用MATLAB作为辅助工具完成设计中的计算与图形的绘制。
关键词:数字滤波器;MATLAB;切比雪夫Abstract:Filter design in digital signal processing plays an extremely important role, FIR digital filters and IIR filter is an important part of filter design. Matlab is powerful, programming efficiency, Matlab also has a particular signal analysis toolbox, it need not have strong programming skills can be easily signal analysis, processing and design. MATLAB based on the noise issue speech signal processing design and implementation of digital signal processing integrated use of the theoretical knowledge of the speech signal plus noise, time domain, frequency domain analysis and filtering. The corresponding results obtained through theoretical derivation, and then use MATLAB as a programming tool for computer implementation.Implemented in the design process, using the windowfunction method to design FIR digital filters with Butterworth, Chebyshev and bilinear Reform IIR digital filter design and use of MATLAB as a supplementary tool to complete the calculation and graphic design Drawing.Keywords:digital filter; MATLAB; Chebyshev语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。
摘要语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴学科,是目前发展最为迅速的学科之一,通过语音传递信息是人类最重要,最有效,最常用和最方便的交换信息的手段,所以对其研究就显得尤为重要。
Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以讲声音文件变成离散的数据文件,然后用其强大的矩阵运算能力处理数据。
这为本次课程设计提供了强大并良好的环境。
本设计要求自己通过手机清唱一段歌曲,并用windows自带的录音机录制下来,保存格式为.wav格式,而且要求对所录的语音进行频率均衡和加入混响效果。
从网上下载相应的歌曲伴奏,经过截取、加噪、消噪后,与混响后的清唱语音进行合成,制作成一首歌曲。
采用语音合成可帮助学生加强理解,MATLAB里面有很多应用示波器滤波,利用这些滤波器可以很容易地实现语音信号的消噪过程,利用MATLAB的声音处理函数设计一组语音合成实验,配合Windows操作系统支持的语音媒体播放器可以很方便地将经过数字处理后的语音效果直观地体现出来,对于学生深刻理解数字信号处理中抽象数学运算的现实物理意义很有帮助。
关键字:信号处理语音合成加噪混响一、设计目的与任务录制各自的一段清唱歌曲语音信号,并对其进行频谱分析;然后在时域用数字信号处理的方法将信号加入延时与混响。
然后从网上下载一段该歌曲的伴奏,对伴奏进行截取、格式转换、加噪和去噪后,与伴唱歌曲进行合成,制作成一首歌曲,在分析其频谱,并与原始伴唱语音信号频谱进行比较。
通过数字信号处理的课程设计,巩固和运用数字信号处理课程中的理论知识和实践技能,掌握最基本的运用Matlab软件处理信号的理论和方法,培养发现问题,分析问题和解决问题的能力。
二、设计的基本要求1.录制的语音清晰,分析语音信号的特点;2.探讨语音分析、加噪、去噪、混响以及合成的基本方法;3.写出各个步骤的Matlab的程序代码;4.分析录制的语音信号的时域波形与频谱;分析加噪、去噪与合成前后的语音信号波形与频谱;5.熟悉加强滤波器的设计原理和滤波的过程;三、设计思路图-1语音合成的方案设计方框图整体设计思路:将录制的语音信号进行频谱分析,并进行频率均衡和加入混响效果。