有理数总复习知识讲解
- 格式:ppt
- 大小:3.42 MB
- 文档页数:36
有理数的五大概念知识导航:1、正数与负数;2、有理数;3、数轴;4、相反数;5、绝对值.方法技巧:熟练掌握有理数五大概念,依据定义解题.一、正数和负数定义:① 我们把其中一种意义的量规定为正,用正数表示;那么与它相反意义的量就可以用负数表示. ② 正数是比0大的数,负数是比0小的数; ③ 0既不是正数,也不是负数. 技方法巧:①确定规定为正的量以及零点;②区分“正负”与“加减”:它们虽然写法相同,但是实质却不同。
读正负,我们称之为性质称号;读加减,我们称之为运算符号. 知识点一 正数与负数的概念 1. 下列各数中为负数的是( ) A. 1B. -2018C. 0.2D.212. 下列结论中正确的是( ) A. 0既是正数也是负数 B. 0是最大的负数C. 0是最小的正数D. 0既不是正数,也不是负数3. 下列各数中:π--+-,,,,,3122.0031,负数一共有( ) A. 1个B. 2个C. 3个D. 4个4. 下列各数:.3.031232.18010236.0•-+--+-,,,,,,,%,,,π 正数有: ; 负数有: .知识点二 用正负数表示相反意义的量5. 《九章算术》中注有“今两算得失相反,要令正负以名之”,意思就是:今有两数若其意义相反,则分别叫做正数与负数.若气温为零上10℃记作+10℃,则-3℃表示气温为( ) A. 零上3℃B. 零下3℃C. 零上7℃D. 零下7℃6. 如果向东走2m 记为+2m ,则向西走3m 可记为( ) A. +3mB. +2mC. -3mD. -2m7. 陆地上最高处是珠穆朗玛峰顶,它高出海平面8848m ,记为 +8848m ;陆地上最低处是地处亚洲西部的死海,它低于海平面约415m ,记为( ) A. +415mB. -415mC. ±415mD. -8848m8. 下列不是具有相反意义的量是( ) A. 前进5米和后退5米 B. 收入30元和支出10元 C. 向东走10米和向北走10米D. 超出5克和不足2克9. 长江水位降了1.8m ,可以表示为( ) A. 1.8mB. -1.8mC. -1.8m 或1.8mD. 无法表示10. 如果+5℃表示比0℃高5℃,那么比0℃低7℃记作 ℃. 11. 如果-60元表示支出60元,那么+100元表示 .12. 长江水位高于正常水位7.6m 时记作+7.6m,那么低于正常水位5m,应记作 ;-8.2m 表示 ;0m 表示 . 真题训练:13. 在一次数学测验中,小明所在班级的平均分为83分,把高出平均分的部分若记作正数,则小明98分,应记为 分;小华记作-4分,他的实际得分为 分.14. 若规定海平面的高度为0米,且规定高出海平面的高度为正,一潜水艇在水面下40米处航行,一条鲨鱼在潜水艇上方10米处游动,用正负数分别表示潜水艇和鲨鱼的高度分别为 , ,鲨鱼比潜水艇高出 米.15. 通常高于海平面的地方,用正数表示它的高度,低于海平面的地方,用负数表示它的高度已知甲、乙、丙三地的海拔高度分别为+100米、10米和-80米,下列说法中不正确的是( ) A.甲地高出海平面100米 B.丙地最低C.乙地比甲地低90米D.乙地比丙地高70米16. 下列各数:8512073129.5,,,,,--+ 中,正数的个数是( ) A. 1个 B. 2个C. 3个D. 4个17. 大于4且小于3的所有整数有( ) A. 3个B. 4个C. 5个D. 6个18. 一条东西走向的跑道上,小虎先向东走了8米,记作“+8米”,又向西走了10米,此时他的位置可记作( ) A. +2mB. -2mC. 10mD. -10m19. 某项科学研究需要以30分钟为一个时间单位,并将研究那天的上午10时记为0,10时以前记为负,10时以后记为正.例如那天的9:30记为1,10:30记为+1,等等,依此类推,那天上午7:30应记为( ) A. -2.5B. -5C. +5D. +2.520. 一艘潜水艇所在的海拔高度为-50m ,若一条鲨鱼在潜水艇下方10m 处,则鲨鱼所在的海拔高度为( ) A. -60mB. -40mC. 10mD. -10m21. 观察下面排列的一列,请写出后面的数:(1);,,,,,,,, 5413211--- (2);,,,,,,,, 6554433221-- 22. 某中学对七年级男生进行引体向上测试,8个为达标标准,超过的个数用正数表示,不足的个数用负数表示,其中10名男生的成绩分别为:2,-1,0,3,-2,1,3,-3,2,0. (1)这10名男生中有几名达到标准?达标率是多少? (2)他们共做了多少个引体向上?综合拓展:23. 下表给出了初一某班6名同学身高情况(其中空白和字母表示未知信息):(1)由表中信息可知a= ,b= ,c= ,d= ,f= ; (2)这六名学生中最高身高比最矮身高高 cm ; (3)求这六名学生的平均身高.二、有理数知识导航:有理数:整数和分数统称有理数.(形如pq这类的数,其中p 和q 为互质整数且p ≠0) 1.按定义分类 2.按性质分类 正整数 正整数整数0 正有理数负整数正分数 有理数 的有理数 0正分数 负整数分数 负有理数负分数负分数非负数:正数和0统称非负数; 非负整数:正整数和0统称非负整数; 非正数:负数和0统称非正数; 非正整数:负整数和0统称非正整数知识点一 有理数的概念1. 在41,-1,0,-3.2 这四个数中,属于负分数的是( ) A. 41 B. -1 C. 0D. -3.22. 下列说法错误的是( ) A. -3是负有理数B. 0不是整数C.32是正有理数 D. 0.15是负分数3. 下列各数中,既是分数又是正数的是( ) A. +2 B. 314C. 0D. -2.3知识点二有理数的分类4. 下列说法中,正确的是( ) A. 正数、负数统称为有理数 B. 3.14不是分数C. 正整数和负整数统称为整数D. 整数和分数统称为有理数5. 下列说法中不正确的是( ) A. -3.14既是负数,分数,也是有理数B.0既不是正数,也不是负数,是整数C. -2000既是负数,也是整数,但不是有理数D.0是非正数6. 给出下列说法:①0是整数;②312-是负分数;③4.2不是正数:④自然数一定是正数; ⑤负分数一定是负有理数. 其中正确的有( ) A. 1个B. 2个C. 3个D. 4个7. 把下列各数分别填在相应的横线上:2004168.013.23078932551321.01----,,,,,,,, 正数有: 分数有: 负数有: 正整数有: 非正数有: 负整数有: 非负数有:负分数有:真题训练:8. 下列关于“0”的叙述,不正确的是( ) A. 0是非负数,也是非正数 B. 0是整数C. 0是最小的有理数D. 0是最小的自然数 9. 下列语句:①所有整数都是正数;②分数是有理数;③所有的正数都是整数:④在有理数中,除了负数就是正数,其中正确的结论个数为( ) A. 1个B. 2个C. 3个D. 4个10. 下列各数中:05.0432.34,,,,--既不是正数,又不是分数的是 . 11. 在有理数中,是负数但不是分数的数是 . 12. 任意写出3个数(不能重复),同时满足下列三个条件: ①其中2个数是非正数; ②其中2个数是非负数;③3个数都是有理数.综合拓展:13. 15.将一组数列: 7654321----,,,,,,排列成下列形式-1 2 -3 4 -5 6 -7 8 -9 10-1112-1314-1516按照上述规律排下去:(1)第5行最中间的一个数是 ; (2)第10行从左边数第9个数是多少?三、数轴知识导航:数轴:规定了原点、正方向和单位长度的直线叫数轴。
第一章有理数知识网络结构图知识点1:有理数的基本概念中考要求:有理数 理解有理数的意义会比较有理数的大小数轴 能用数轴上的点表示有理数;知道实数与数轴上的点的对应关系会借助数轴比较有理数的大小相反数 会用有理数表示具有相反意义的量,借助数轴理解相反数的意义,会求实数的相反数掌握相反数的性质绝对值 借助数轴理解绝对值的意义,会求实数的绝对值会利用绝对值的知识解决简单的化简问题知识点总结:正数、负数、有理数随着同学们视野的拓展,小学学过的自然数、分数和小数已经不能满足认知需要了.譬如一些具有相反意义的量,收入300元和支出200元,向东50米和向西30米,零上6C ︒和零下4C ︒等等,它们不但意义相反,而且表示一定的数量,怎么表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的量规定为负的,这样就产生了正数和负数.正数:像3、1、0.33+等的数,叫做正数.在小学学过的数,除0外都是正数.正数都大于0.负数:像1-、 3.12-、175-、2008-等在正数前加上“-”(读作负)号的数,叫做负数.负数都小于0.0既不是正数,也不是负数.一个数字前面的“+”,“-”号叫做它的符号. 正数前面的“+”可以省略,注意3与3+表示是同一个正数. 用正、负数表示相反意义的量:如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然. 譬如:用正数表示向南,那么向北3km 可以用负数表示为3km -. “相反意义的量”包括两个方面的含意:一是相反意义;二是相反意义的基础上要有量.有理数:按定义整数与分数统称有理数. ()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数注:⑴正数和零统称为非负数;⑵负数和零统称为非正数; ⑶正整数和零统称为非负整数; ⑷负整数和零统称为非正整数.板块一、基本概念 例题讲解1、选择下面是关于0的一些说法,其中正确说法的个数是( )①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;④0是最小的非负数;⑤0既不是奇数也不是偶数.2、下面关于有理数的说法正确的是( ). A .有理数可分为正有理数和负有理数两大类.B. 正整数集合与负整数集合合在一起就构成整数集合C. 整数和分数统称为有理数D. 正数、负数和零的统称为有理数 板块二、数轴、相反数、倒数、绝对值3、a 和b 是满足ab ≠0的有理数,现有四个命题: ①224a b -+的相反数是224a b -+;②a b -的相反数是a 的相反数与b 的相反数的差; ③ab 的相反数是a 的相反数和b 的相反数的乘积;④ab 的倒数是a 的倒数和b 的倒数的乘积.其中真命题有( )A. 1个B. 2个C. 3个D. 4个4、一个数的绝对值大于它本身,那么这个数是( )A 、正有理数B 、负有理数C 、零D 、不可能 5、数轴上离开原点2个单位长度的点表示的数是____________; 6、有理数-3,0,20,,,-∣-12∣,-(-5)中,正整数有________个, 非负数有______个;7、绝对值最小的有理数是________;绝对值等于3的数是______; 绝对值等于本身的数是_______;绝对值等于相反数的数是_________数;一个数的绝对值一定是________数。
《有理数》全章复习与巩固(提高)知识讲解【学习目标】1.理解正负数的意义,掌握有理数的概念.2.理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的混合运算.3.学会借助数轴来理解绝对值、有理数比较大小等相关知识.4. 理解科学记数法及近似数的相关概念并能灵活应用;5. 体会数学知识中体现的一些数学思想.【知识网络】【要点梳理】要点一、有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;作用举例表示数的性质0是自然数、是有理数表示没有3个苹果用+3表示,没有苹果用0表示2.数轴:规定了原点、正方向和单位长度的直线. 要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如π.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可. (3)多重符号的化简:数字前面“-”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负. 4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a 的绝对值记作a .(2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离. 要点二、有理数的运算 1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a÷b=a·1b(b≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0. (6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行; ③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36. (3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: 2(3)9-=, 3(3)27-=-.2.运算律:(1)交换律: ① 加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ; (2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab )c=a(bc)(3)分配律:a(b+c)=ab+ac 要点三、有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法.要点四、科学记数法、近似数及精确度1.科学记数法:把一个大于10的数表示成10na ⨯的形式(其中110a ≤<,n 是正整数),此种记法叫做科学记数法.例如:200 000=5210⨯.2.近似数:接近准确数而不等于准确数的数,叫做这个精确数的近似数或近似值.如长江的长约为6300㎞,这里的6300㎞就是近似数.要点诠释:一般采用四舍五入法取近似数,只要看要保留位数的下一位是舍还是入.3.精确度:一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确到的这一位也叫做这个近似数的精确度. 要点诠释:(1)精确度是指近似数与准确数的接近程度.(2)精确度有两种形式:①精确到哪一位.②保留几个有效数字.这两种的形式的意义不一样,一般来说精确到哪一位可以表示误差绝对值的大小,例如精确到0.1米,说明结果与实际数相差不超过0.05米,而有效数字往往用来比较几个近似数哪个更精确些. 【典型例题】类型一、有理数相关概念1.已知x 与y 互为相反数,m 与n 互为倒数,|x+y |+(a-1)2=0,求a 2-(x+y+mn)a+(x+y)2009+(-mn)2010的值.【思路点拨】(1)若有理数x 与y 互为相反数,则x+y =0,反过来也成立. (2)若有理数m 与n 互为倒数,则mn =1,反过来也成立. 【答案与解析】解:因为x 与y 互为相反数,m 与n 互为倒数,(a-1)2≥0, 所以x+y =0,mn =1,a =1,所以a 2-(x+y+mn)a+(x+y)2009+(-mn)2010=a 2-(0+1)a+02009+(-1)2010=a 2-a+1.∵a=1,∴原式=12-1+1=1【总结升华】要全面正确地理解倒数,绝对值,相反数等概念. 举一反三: 【变式1】选择题 (1)已知四种说法:①|a|=a 时,a>0;|a|=-a 时, a<0. ②|a|就是a 与-a 中较大的数. ③|a|就是数轴上a 到原点的距离. ④对于任意有理数,-|a|≤a≤|a|. 其中说法正确的个数是( ) A .1 B .2 C .3 D .4(2)有四个说法:①有最小的有理数 ②有绝对值最小的有理数 ③有最小的正有理数 ④没有最大的负有理数 上述说法正确的是( )A .①② B.③④ C.②④ D.①② (3)已知(-ab)3>0,则( )A .ab<0B .ab>0C .a>0且b<0D .a<0且b<0 (4)若|x-1|+|y+3|+|z-5|=0,则(x+1)(y-3)(z+5)的值是( ) A .120 B .-15 C .0 D .-120 (5)下列各对算式中,结果相等的是( )A .-a 6与(-a)6B .-a 3与|-a|3C .[(-a)2]3与(-a 3)2D .(ab)3与ab 3【答案】(1)C ;(2)C ;(3)A ;(4)D ;(5)C【变式2】(呼伦贝尔)中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 . 【答案】9.6×106.2.(江西校级模拟)如果m ,n 互为相反数,那么|m+n ﹣2016|=________. 【思路点拨】先用相反数的意义确定出m+n=0,从而求出|m+n ﹣2016|. 【答案】2016.【解析】解:∵m ,n 互为相反数, ∴m+n=0,∴|m+n ﹣2016|=|﹣2016|=2016; 故答案为2016.【总结升华】此题是绝对值题,主要考查了绝对值的意义,相反数的性质,熟知相反数的意义是解本题的关键.类型二、有理数的运算3.(1)211143623324⎛⎫⎛⎫⎛⎫⎛⎫-----+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)5153()( 1.5)()1244-÷⨯-÷- ()()23541(3)24121522⎛⎫-÷-⨯-⨯-+ ⎪⎝⎭(4)137775111 2.534812863⎡⎤⎛⎫⎛⎫⎛⎫+--÷--÷⨯- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(5)()1003221511221132⎛⎫----÷- ⎪⎝⎭+--⨯【答案与解析】 解:(1)原式21111143622332412=-++-= (2)原式543421215239=-⨯⨯⨯=-(3)原式3132(4)12(1516)104=-÷-⨯-⨯-+=-(4)原式12561[1(2)1]()233253=+-++-⨯⨯-=(5)1125112()41192---÷-=+--⨯原式 3.9=-【总结升华】有理数的混合运算有很多技巧,如:正、负数分别相加;分数中,同分母或分母有倍数关系的分数结合相加;除法转化为乘法、正向应用乘法分配律:a(b+c)=ab+ac ;逆向应用分配律:ab+ac =a(b+c)等. 举一反三: 【变式】(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--(2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯【答案】解:(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--251471834()199(2)492584929=⨯⨯-⨯-⨯- 118343()199(2)449292=-⨯-⨯-⨯20(3)3=--2033=-+123=(2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯955515()()()()499289=⨯---⨯-+-⨯5951()()942817224=-⨯++=-4. 先观察下列各式:11111434⎛⎫=- ⎪⨯⎝⎭;111147347⎛⎫=- ⎪⨯⎝⎭; 11117103710⎛⎫=- ⎪⨯⎝⎭;…;1111(3)33n n n n ⎛⎫=- ⎪++⎝⎭,根据以上观察,计算: 1111447710+++⨯⨯⨯ (1)20052008+⨯的值. 【答案与解析】 解:原式111111111111343473710320052008⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭… 111111111344771020052008⎛⎫=-+-+-+⋅⋅⋅+- ⎪⎝⎭1113200812007320086692008⎛⎫=- ⎪⎝⎭=⨯=【总结升华】根据题中提供的拆项方法把每一项拆成11133n n ⎛⎫- ⎪+⎝⎭的形式,然后再进行计算.举一反三:【变式】用简单方法计算:120180148124181++++ 【答案】解:原式=1111111111115(...)244668810101222446101224++++=-+-++-=⨯⨯⨯⨯⨯ 类型三、数学思想在本章中的应用5.(香洲区校级二模)(1)阅读下面材料:点A ,B 在数轴上分别表示实数a ,b ,A ,B 两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④解方程|x+1|+|x﹣2|=5.【答案与解析】解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3;数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4.②数轴上表示x和﹣1的两点A和B之间的距离是|x﹣(﹣1)|=|x+1|,如果|AB|=2,那么x为1或﹣3.③当代数式|x+1|十|x﹣2|取最小值时,∴x+1≥0,x﹣2≤0,∴﹣1≤x≤2.④当x≤﹣1时,﹣x﹣1﹣x+2=5,解得x=﹣2;当﹣1<x≤2时,3≠5,不成立;当x>2时,x+1+x﹣2=5,解得x=3.故答案为:3,3,4,|x+1|,1或﹣3,﹣1≤x≤2.【总结升华】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,体现了数形结合的优点.类型四、规律探索6.下面两个多位数1248624…,6248624…都是按照如下方法得到的:将第1位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ).A.495 B.497 C.501 D.503【思路点拨】多位数1248624…是怎么来的?当第1个数字是1时,将第1位数字乘以2得2,将2写在第2位上,再将第2位数字2乘以2得4,将其写在第3位上,将第3位数字4乘以2的8,将8写在第4位上,将第4位数字8乘以2得16,将16的个位数字6写在第5位上,将第5位数字6乘以2得12,将12的个位数字2写在第6位上,再将第6位数字2乘以2得4,将其写在第7位上,以此类推.根据此方法可得到第一位是3的多位数后再求和. 【答案】A【解析】按照法则可以看出此数为362 486 248…,后面6248循环,所以前100位的所有数字之和是3+(6+2+4+8)×24+6+2+4=495,所以选A .【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并表示出来. 举一反三:【变式】世界上著名的莱布尼茨三角形如图所示,则排在第10行从左边数第3个位置上的数是( ).A .1132 B .1360 C .1495 D .1660【答案】B 提示:观察发现:分子总是1,第n 行的第一个数的分母就是n ,第二个数的分母是第一个数的(n-1)倍,第三个数的分母是第二个数的分母的(1)2n-倍.根据图表的规律,则第10行从左边数第3个位置上的数是111094360=⨯⨯.。
专题01 有理数【专题目录】技巧1绝对值的八种常见应用技巧2 有理数中的六种易错类型【题型】一、有理数概念理解【题型】二、用数轴上的点表示有理数【题型】三、求一个数的相反数【题型】四、求一个数的绝对值【题型】五、有理数的加减乘除混合运算【题型】六、科学记数法【考纲要求】1、了解有理数的概念,知道有理数与数轴上的点一一对应.2、借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.【考点总结】一、有理数【注意】数轴1、数轴的三要素:原点、正方向、单位长度(重点)2、任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。
3、数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数.【考点总结】二、有理数四则运算【注意】1、有理数的加减混合运算规则:运用减法法则将加减混合运算统一为加法进行运算步骤:(1)减法化加法;(2)省略括号和加号;(3)运用加法运算律使计算简便; (4)运用有理数加法法则进行计算。
注:运用加法运算律时,可按如下几点进行: (1)同号的先结合;(2)同分母的分数或者比较容易通分的分数相结合; (3)互为相反数的两数相结合; (4)能凑成整数的两数相结合;(5)带分数一般化为假分数或者分为整数和分数两部分,再分别相加。
2、多个有理数相乘的法则及规律:(1) 几个不是0的数相乘,负因数的个数是奇数时,积是负数;负因数的个数是偶数时,积是正数。
确定符号后,把各个因数的绝对值相乘。
(2)几个数相乘,有一个因数为0,积为0;反之,如果积为0,那么至少有一个因数是0. 注:带分数与分数相乘时,通常把带分数化成假分数,再与分数相乘。
【技巧归纳】技巧1:绝对值的六种常见应用【类型】一、已知一个数求这个数的绝对值 1.化简:(1)|-(+7)|; (2)-|-8|;【类型】二、已知一个数的绝对值求这个数 2.若|a|=2,则a =________.3.若|x|=|y|,且x =-3,则y =________. 【类型】三、 绝对值在求字母的取值范围中的应用 4.若|x|=-x ,则x 的取值范围是________. 5.若|x -2|=2-x ,则x 的取值范围是________. 【类型】四、绝对值在比较大小中的应用6.把-(-1),-23,-⎪⎪⎪⎪-45,0,用“>”连接正确的是( ) A .0>-(-1)>-⎪⎪⎪⎪-45>-23 B .0>-(-1)>-23>-⎪⎪⎪⎪-45 C .-(-1)>0>-23>-⎪⎪⎪⎪-45 D .-(-1)>0>-⎪⎪⎪⎪-45>-23【类型】五、绝对值的非负性在求字母值中的运用 7.若⎪⎪⎪⎪a -12+⎪⎪⎪⎪b -13+⎪⎪⎪⎪c -14=0,求a +b -c 的值. 【类型】六、绝对值的非负性在求最值中的应用 8.根据|a|≥0这条性质,解答下列问题:(1)当a =________时,|a -4|有最小值,此时最小值为________; 参考答案1.解:(1)原式=7. (2)原式=-8. 2.±2 3.±3 4.x≤0 5.x≤2 6.C7.解:由题意知a =12,b =13,c =14,所以a +b -c =12+13-14=712.8.解:(1)4;0(2)因为a ,b 互为相反数,所以b =-a.又因为a <0,b >0. 所以|a -b|+2a +|b|=|2a|+2a +|b|=-2a +2a +b =b. 技巧2: 有理数中的六种易错类型【类型】一、对有理数有关概念理解不清造成错误 1.下列说法正确的是( ) A .最小的正整数是0 B .-a 是负数C .符号不同的两个数互为相反数D .-a 的相反数是a【类型】二、 误认为|a|=a ,忽略对字母a 分情况讨论 2.如果一个数的绝对值等于它本身,那么这个数一定是( ) A .负数 B .负数或零 C .正数或零D .正数【类型】三、对括号使用不当导致错误 3.计算:2-⎝⎛⎭⎫-15+14-12. 【类型】四、忽略或不清楚运算顺序4.计算:-5-(-5)×110÷110×(-5).【类型】五、乘法运算中确定符号与加法运算中的符号规律相混淆5.计算:-36×⎝⎛⎭⎫712-56-1. 【类型】六、除法没有分配律6.计算:24÷⎝⎛⎭⎫13-18-16. 参考答案 1.D 2.C3.解:原式=2+15-14+12=2920.4.解:原式=-5-(-5)×110×10×(-5)=-30.5.解:原式=-36×712-(-36)×56-(-36)×1=-21+30+36 =45.6.解:原式=24÷⎝⎛⎭⎫824-324-424 =24÷124=576.方法指导:解本题时往往会出现将乘法分配律运用到除法运算中的错误,从而出现“原式=24÷13-24÷18-24÷16=72-192-144=-264”这样的错误.【题型讲解】【题型】一、有理数概念理解例1、在下列实数:2π227、﹣0.0010001中,有理数有( )A .1个B .2个C .3个D .4个【答案】D【提示】由题意根据有理数的定义:整数与分数统称有理数,进行提示即可判断. 【详解】解:34,227,﹣0.0010001是有理数,其它的是无理数.有理数有4个. 故选:D .【题型】二、用数轴上的点表示有理数例2、如图,数轴上两点,M N 所对应的实数分别为,m n ,则m n -的结果可能是( )A .1-B .1C .2D .3【答案】C【提示】根据数轴确定m 和n 的范围,再根据有理数的加减法即可做出选择. 【详解】解:根据数轴可得0<m <1,2-<n <1-,则1<m n -<3。
115,(1),1,( 3.5),22------+-1.2 有理数【目标导航】1.进一步加深对有理数的理解、并将有理数分类.2.会画数轴、并正确使用数轴。
3.理解相反数、绝对值的意义。
【要点梳理】知识点一:有理数的概念、及其分类;⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 知识点二:数轴及其应用;知识点三:相反数的意义; 知识点四:绝对值的意义。
【例题讲解】例1把下列各数填在相应的大括号里。
+8,0.275,-|-2|,0,-1.04,-(-10),0.1010010001…,-(-2)2,722,-31,+43,∙1.0正整数集合{ +8, -(-10), ……}整数集合{ +8,-|-2|,0, -(-10), -(-2)2, …} 负整数集合{ -|-2|, -(-2)2 …}正分数集合{ 0.275, 722,43,∙1.0 ……}例2.把下列各数及它们的相反数表示在数轴上。
解:例3.(1)如果一个数的平方等于它的倒数,那么这个是 1 ;(2)若a ,b 两数互为倒数,c,d 两数互为相反数,则2(c +d )2-3ab = -1 . (3)数轴上一对相反数所表示的两点之间的距离是8,它们到表示-2的点的距离各是 2或6 .(4)在足球循环赛中,红队胜黄队4:1,黄 队胜蓝队1:0,蓝队胜红队1:0,则黄队的净 胜球数为_____-2_______. (5)比较大小:)43(--<⎥⎦⎤⎢⎣⎡-+-)54(,722- < -3.14. 例4 已知有理数a,b,c 在数轴上对应点如图化简||||2||a b c a a ++---。
解:a <0, b < 0, c>0原式= a +2(a-c )-(b+a), =b-2c例5若x y y x -=-||,且4||=x ,3||=y ,求2009)(y x +的值。
第一章 有理数1、正数和负数的有关概念(1)正数:比0大的数叫做正数;负数:比0小的数叫做负数;0既不是正数,也不是负数。
(2)正数和负数表示相反意义的量。
2、有理数的概念及分类有理数是整数和分数的统称。
通常有两种分类:0⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数负整数有理数正分数分数负分数⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正数正分数有理数负整数负数负分数 3、有关数轴(1)数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。
4、绝对值与相反数(1)绝对值:在数轴上表示数a 的点与原点的距离,叫做a 的绝对值,记作:a 。
一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(2)相反数:符号不同、绝对值相等的两个数互为相反数。
若a 、b 互为相反数,则a+b=0;相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。
(3)绝对值最小的数是0;绝对值是本身的数是非负数。
任何数的绝对值是非负数。
本身之迷①倒数是它本身的数是±1②绝对值是它本身的数是非负数(正数和0)③平方等于它本身的数是0,1 ④立方等于经本身的数是±1,0 ⑤偶数次幂等于本身的数是0、1 ⑥奇数次幂等于本身的数是±1,0 ⑦相反数是它本身的数是0数之最①最小的正整数是1 ②最大的负整数是-1 ③绝对值最小的数是0 ④平方最小的数是0 ⑤最小的非负数是0 ⑥最大的非正数0 ⑦没有最大和最小的有理数 ⑧没有最大的正数和最小的负数5、利用绝对值比较大小两个正数比较:绝对值大的那个数大;两个负数比较:先算出它们的绝对值,绝对值大的反而小。
新华师大版七年级上册数学第2章有理数2.1有理数知识点、题型总结与习题讲练一.本节知识点(1)相反意义的量.(2)正数和负数.(3)有理数的概念及其分类.二、本节题型(1)判断具有相反意义的量.(2)正数和负数的识别.(3)用正数和负数表示具有相反意义的量.(4)有理数的概念及分类.三、知识点讲解知识点一相反意义的量相反意义的量必须满足以下两个条件:(1)是同类量;(2)成对出现,意义相反,数量不一定相等.注意:具有相反意义的量必须是成对出现的,且一定不要漏掉单位和数量.知识点二正数和负数用正数和负数表示具有相反意义的量.做法是:先规定其中一种意义为正,那么与它相反的意义为负.用正数、负数表示具有相反意义的量的三个特性:(1)任意性哪种意义的量为正,可以任意选择.(2)成对性具有相反意义的量是成对出现的.(3)不等性具有相反意义的两个量,其数据可以不相等.注意:(1)正数的前面加正号,负数的前面加负号.正号可以省略不写,负号不可以省略. (2)正数和负数可以用来表示具有相反意义的量,哪种意义的量为正可以任意选择,但习惯上把上升、提高、增加、盈利、收入等量为正.零既不是正数,也不是负数.知识点三 有理数的概念及其分类整数和分数统称为有理数.整数分为正整数、零和负整数.分数分为正分数和负分数.正整数和零统称为自然数,又叫非负整数.有限小数和无限循环小数都属于分数.⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数,或按正、负分类为:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 有理数可以细分为五类,即正整数、正分数、零、负整数和负分数.零既不是正数,也不是负数,但零是整数.补充概念 非负数:0和正数统称为非负数;非正数:0和负数统称为非正数.四、题型讲解题型一 判断具有相反意义的量相反意义的量必须满足以下两个条件:(1)是同类量;(2)成对出现,意义相反,数量不一定相等.注意: 具有相反意义的量必须是成对出现的,且一定不要漏掉单位和数量. 例1. 下列选项中,具有相反意义的量的是【 】(A )收入25元与支出30元 (B )上升7米和后退9米(C )卖出12千克与盈利50元 (D )向东走14米和向北走20米分析:(A )中,收入与支出是具有相反意义的量,符合题意;(B )中,上升的相反意义是下降,后退的相反意义是前进,不符合题意;(C )中,卖出的相反意义是买进,盈利的相反意义是亏损,不符合题意;(D )中,向东走的相反意义是向西走,向北走的相反意义是向南走,不符合题意.解: 由分析可知,选择【 A 】.例2. 仔细思考以下各组量:①胜二局与负三局;②气温上升3℃与气温下降3℃;③盈利5万元与支出6万元;④增加10%与减少20%.其中具有相反意义的量有【 】(A )1组 (B )2组 (C )3组 (D )4组 解: 选择【 C 】.题型二 正数和负数的识别(1)0即不是正数,也不是负数.(2)单符号的数据,正数的前面有“+”号或“+”号省略不写;负数的前面有“—”号.例 3. 在3,71,0,6.8%,20,1+-+-中,正数一共有_________个,负数一共有_________个.分析:0即不是正数,也不是负数.解:正数为+20% , 71 , +3 ,共有3个;负数为6.8,1--,共有2个. 例4. 下列各数中,哪些数是正数?哪些数是负数?100,75.0,21,5.0,5,3,41,0,2+--+-. 分析: 正数与负数的识别看数据前面的符号,正数的前面加正号,负数的前面加负号.正号可以省略不写,负号不可以省略.特别地,0既不是正数,也不是负数.也就是说,0不能归为正数和负数.解:正数有:100,75.0,5,3,41++;负数有:21,5.0,2---. 题型三 用正数和负数表示具有相反意义的量例5. 如果向东走8千米记作+8千米,向西走5千米记作5-千米,那么下列各数分别表示什么?(1)+4千米; (2)5.3-千米; (3)0千米.分析: 正数和负数可以用来表示具有相反意义的量,哪种意义的量为正可以任意选择,但习惯上把上升、提高、增加、盈利、收入等量为正.解:(1)+4千米表示向东走4千米;(2)5.3-千米表示向西走3.5千米;(3)0千米表示原地不动.例6. 如果芳芳同学向东走20米,记作+20米,那么30-米表示芳芳【 】(A )向东走30米 (B )向东走50米(C )向西走30米 (D )向西走30-米分析:向东走与向西走具有相反意义,若规定其中一个为正,则另一个为负.上题中,规定向东走的距离为正数,则向西走的距离为负数.即30-米表示芳芳向西走30米.注意,不能说成是向西走30-米.解: 选择【 C 】.例7. 若身高以163 cm 为基准,甲的身高为168 cm,记为+5 cm,则:(1)乙的身高为157 cm,记为_________;(2)丙的身高为_________cm,记为+9 cm;(3)丁的身高为163 cm,记为_________.解:(1)6-cm; (2)172 ; (3)0 cm.例8. 如果一个乒乓球的质量比标准质量重0. 02克,记作+0. 02克,那么03.0-克表示____________________.解: 03.0-克表示比标准质量轻0. 03克.题型四 有理数的概念及分类例8. 在4 , 132, 0. 16666… , 3.4-,411-中,分数有【 】 (A )1个 (B )2个 (C )3个 (D )4个 分析:本题考查分数的定义和分类.有限小数和无限循环小数都属于分数.分数按数的正负可分为正分数和负分数.解: 分数有:132, 0. 16666… , 3.4-,411-,共有4个,选择答案【 D 】. 例9. 下列说法正确的有【 】①一个有理数不是正数就是负数;②0是整数,但不是自然数;③0不是正数,也不是负数;④0表示没有.(A )1个 (B )2个 (C )3个 (D )4个 分析:本题主要考查对有理数0的认识,容易出错:(1)0即不是正数,也不是负数,但0是整数.(2)0和正整数统称为自然数,又叫非负整数.显然,①、②说法错误.在实际中,0不再仅仅表示“没有”,故④说法错误,只有③说法正确.解: 选择【 A 】.例10. 在数11-、5%、3.2-、61、3.1415926、0、43-、π-、2018中,负有理数有_________个,负分数有_________个,整数有_________个.分析:(1)有理数按正负可分为正有理数、0和负有理数.(2)有限小数和无限循环小数都属于分数.(3)分数按正负可分为正分数和负分数.(3)整数分为正整数、0和负整数.(4)要特别注意,ππ-,都不是有理数.解: 负有理数有:11-、3.2-、43-,共有3个; 负分数有:3.2-、43-,共有2个; 整数有:11-、0、2018,共有3个.五、习题1. 若规定收入5元记作+5元,则50-元表示【 】(A )收入50元 (B )支出50元(C )减去50元 (D )等于50元2. 设置一种记分的方法:85分如88分记为+3分.某个学生在记分表上的分数记为6-分,则这个学生的实际分数应该是【 】(A )91分 (B )91-分 (C )79分 (D )79-分3. 某校办印刷厂今年四月份盈利6万元,记作+6万元,五月份亏损了2. 5万元,应记作_________万元.4. 如果水库的水位高于正常水位5 m 时,记作+5 m,那么低于正常水位3 m 时,应记作【 】(A )+3 m (B )3-m (C )31+m (D )31-m 5. 如果把收入100元记作+100元,那么支出80元记作【 】(A )+20元 (B )+100元 (C )+80元 (D )80-元6. 给出下面各数:0,33.2,136,5,2,125,618.0,35,11,56.0,3,2--+----,其中负数的个数为【 】(A )4 (B )5 (C )6 (D )77. 下面关于0的叙述,正确的有【 】①0是正数和负数的分界;②0比任何负数都大;③0只表示没有;④0常用来表示某种量的分界.(A )1个 (B )2个 (C )3个 (D )4个8. 在有理数%25.1,227,0,15,7.6,1,65--+-中,属于分数的有【 】 (A )2个 (B )3个 (C )4个 (D )5个9. 下列说法中,正确的个数有【 】①14.3-既是负数,又是小数,也是有理数;②25-既是负数,又是整数,但不是自然数;③0既不是正数,也不是负数,但是整数;④0是非负数.(A )1个 (B )2个 (C )3个 (D )4个10. 在数100,3,0,7,21,25.0--中,非负数的个数是【 】 (A )1 (B )2 (C )3 (D )411. 在11,7.0,32,0,5.3,2--+-中,负分数有【 】 (A )1个 (B )2个 (C )3个 (D )4个12. 下面四个数中,是正整数的是【 】(A )1- (B )0 (C )21 (D )1 13. 在有理数108,0,45.0,715--中,整数是__________,非负数是__________. 14. 在智力竞赛中,如果加30分记作+30分,那么扣10分应记作_________分.15. 某种零件,标明要求是2.025±ϕ(ϕ表示直径,单位: mm ),经检查,一个零件的直径是24. 9 mm,则该零件_________(填“合格”或“不合格”).16. 给出下列各数:227,1000,1159.3,0,443.4-,其中有理数的个数是m ,非负数的个数是n ,则=+n m _________.17. 下列各数中,哪些是正数?哪些是负数? π----,14.3,0,8.1,213,3%,20,74,05.0,12.18. 把下列各数填入相应的大括号内.14.3,10,722,54,27,0,5.13--+-. (1)正数集:{ …};(2)负数集:{ …};(3)整数集:{ …};(4)分数集:{ …};(5)非负整数集:{ …}.19. 把下列各数填入相应的大括号里:2018,3%,95,0,7.8,31,5.0,55.3,1-----. 负整数集:{ …}; 非负整数集:{ …}; 正分数集:{ …}; 负分数集:{ …}.。
有理数的运算复习课(含答案)(一)、课前提问:1.四则(加减乘除)混合运算的顺序:先算_______,再算_______,如有括号,就先算__________.同级运算按照从_____往_____的顺序依次计算。
2.有理数的运算定律:______________________________________________. 加法交换律:a+b=b+a. 加法结合律:(a+b)+c=a+(b+c).乘法交换律:ab=ba. 乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac.3.请观察下面的算式里有哪几种运算?3+50÷22×(-10)-1.这个算式里,含有有理数的加、减、乘、除、乘方等多种运算,这种运算称为有理数的混合运算.(二)、基础知识总结一、有理数的加法1.有理数的加法法则(1)同号两数相加,取相同的符号,并把绝对值相加.(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两数相加得0.(3)一个数与0相加,仍得这个数.2.有理数的加法运算律(1)交换律两数相加,交换加数的位置,和不变.a+b=b+a(2)结合律三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.(a+b)+c=a+(b+c)【基础知识讲解】1.有理数的加法法则,是进行有理数加法运算的依据,运算步骤如下:(1)先确定和的符号;(2)再确定和的绝对值.2.运算规律是:同号的两个数(或多个数)相加,符号不变,只把它们的绝对值相加即可.如(+3)+(+4)=+(3+4)=+7.(-3)+(-4)+(-13)=-(3+4+13)=-20.异号两数相加,首先要确定和的符号.取两数中绝对值较大的加数的符号,作为和的符号,用较大的绝对值减去较小的绝对值的差,作为和的绝对值.如(+3)+(-4)=-(4-3)=-1.3.运用有理数加法的运算律,可以任意交换加数的位置.把交换律和结合律灵活运用,就可以把其中的几个数结合起来先运算,使整个计算过程简便而又不易出错.二、有理数的减法有理数的减法运算根据计算法则转化为加法运算,再按加法的计算法则进行计算.将减法转化为加法时要同时改变两个符号:一是运算符号由“-”变为“+”;另一个是减数的性质符号.三、有理数的加减混合运算方法一:从左往右依次进行计算方法二:a.整理符号,减法换成加法b.分组计算,运用运算律简化1.在代数里,一切加法与减法运算,都可以统一成加法运算。
有理数重点知识例题讲解一一、数轴的运用例题1:已知在数轴上A 、B 、C 三点对应的数分别是-2,2,x ,若相邻两点的距离相等,则x 的值为()。
解:该题可以借用数轴画图便可以知道x 的值:因为该题没有规定A 、B 、C 三点的顺序,那么C 点可以在A 点的左侧,也可以在A 、B 之间,也可以在B 点的右侧。
因为A 、B 的距离为:2-(-2)=4所以C 点在A 点的左侧和在在B 点右侧时, 保证AB =AC =4;4==BC AB 即可,那么通过数轴可以看出: C 点对应的点的数为-6或者6;当C 点在A 、B 之间时,保证2==BC AB 即可,那么通过数轴可以看出:C 点对应的点的数为0;所以,C 点对应的点的数x 的值为:-6或者6或者0. 例题2:下列说法中,正确的个数有()①两个三次多项式的和一定是三次多项式;②如果a+b+c=0,且c b a >>,那么ac<0;③若b 是大于-1的负数,则b b b >>23;④如果xyz>0,那么xyz xyz xz xz yz yz xy xy z z y y x x ++++++的值为7或-1。
解:①考查的知识点是多项式的概念:多项式——几个单项式的和;多项式的次数——多项式里,次数最高项的次数;那么,两个三次多项式相加,三次多项式可能会抵消掉,例如:3x+3与4-3x相加,那么结果为7,就不再是三次多项式。
②考查的是有理数的加减,以及绝对的知识:由a+b+c=0得到abc中必定有一个或者两个数小于等于0;由c>得到a>0,c<0;ba>所以ac<0③考查的是有理数的乘方:因为-1<b<0,所以-1<3b<0 ;0<2b<1 ;并且b<3b;所以:b<3b<2b④因为xyz>0,所以x、y、z中0个或者有2个数为负数。