二年级数学奥数讲义-有趣的一笔画通用版
- 格式:pdf
- 大小:169.22 KB
- 文档页数:2
第10讲学习一笔画【专题简析】一笔画,就是从图形某点出发,笔不离开纸,而且每条线段都只画一次不重复。
它是一种有趣的数学游戏。
那么,哪些图形不能一笔画成,哪些图形可以一笔画成呢?一个图形能否一笔画成,关键在于单数点的多少,有2个或0个单数点的图形就能够一笔画成,单数点在一笔画中只能作为起点和终点。
【例题1】一些平面图形是由点和线构成的,这里的“线”可以是线段,也可以是一段曲线,请自己画一些图研究每个点和线的连接情况。
思路导航:请小朋友仔细观察下列各图中的点,他们分别与几条线相连。
①②③④(1)与一条线段相连的点有:(2)与两条线段相连的点有:(3)与三条线段相连的点有:(4)与四条线段相连的点有:归纳:把和一条、三条、五条等单数条线连得点叫做单数点;把和两条、四条、六条、八条等双数条线连的点叫双数点,每个图中的点要么是单数点,要么是双数点。
1.任意找一个平面图形,数一数图中有几个单数点,几个双数点。
2.下面图形中有哪几个单数点?B3.数一数下面图形中有几个双数点,分别是哪些点?B【例题2】下面的图形能不能一笔画成?如果能,应该怎样画?(1) O(2)B D(3)【思路导航】图(1)中A 、B 、C 、D 、O 五个点都是双数点,所以这个图形可以一笔画成。
画时可以从任意一点出发。
图(2)中A 、C 、D 、F 四个点都是双数点,B 和E 两个点是单数点,所以这个图形也可以一笔画成。
画时要从单数点出发,最后回到另一个单数点。
图(3)中A 、D 是双数点,B 、C 、E 和F 四个点是单数点,单数点的个数超过了两个,这个图形不能一笔画成。
1.下面的图形能不能一笔画成,如果能,请说明画法,如果不能,请说明理由(1)(2)2.下列图形能一笔画成吗?为什么?3.观察下列图形,哪个图形可以一笔画成?怎么画?【例题3】下图是某地区所有街道的平面图,甲、乙两人同时分别从A、B出发,以相同的速度走遍所有的街道,最后到达C.那么两人谁先到达?C思路导航:题中要求两人必须走遍所有街道,最后到达C.仔细观察,可以发现图中有两个单数点:A 、C 。
第10講學習一筆劃【專題簡析】一筆劃,就是從圖形某點出發,筆不離開紙,而且每條線段都只畫一次不重複。
它是一種有趣的數學遊戲。
那麼,哪些圖形不能一筆劃成,哪些圖形可以一筆劃成呢?一個圖形能否一筆劃成,關鍵在於單數點的多少,有2個或0個單數點的圖形就能夠一筆劃成,單數點在一筆劃中只能作為起點和終點。
【例題1】一些平面圖形是由點和線構成的,這裏的“線”可以是線段,也可以是一段曲線,請自己畫一些圖研究每個點和線的連接情況。
思路導航:請小朋友仔細觀察下列各圖中的點,他們分別與幾條線相連。
①②③④(1)與一條線段相連的點有:(2)與兩條線段相連的點有:(3)與三條線段相連的點有:(4)與四條線段相連的點有:歸納:把和一條、三條、五條等單數條線連得點叫做單數點;把和兩條、四條、六條、八條等雙數條線連的點叫雙數點,每個圖中的點要麼是單數點,要麼是雙數點。
練習11.任意找一個平面圖形,數一數圖中有幾個單數點,幾個雙數點。
2.下麵圖形中有哪幾個單數點?B3.數一數下麵圖形中有幾個雙數點,分別是哪些點?B【例題2】下麵的圖形能不能一筆劃成?如果能,應該怎樣畫?A C AB C(1)OB DD E FA B CC(3)DE F【思路導航】圖(1)中A、B、C、D、O五個點都是雙數點,所以這個圖形可以一筆劃成。
畫時可以從任意一點出發。
圖(2)中A、C、D、F四個點都是雙數點,B和E 兩個點是單數點,所以這個圖形也可以一筆劃成。
畫時要從單數點出發,最後回到另一個單數點。
圖(3)中A、D是雙數點,B、C、E和F四個點是單數點,單數點的個數超過了兩個,這個圖形不能一筆劃成。
練習21.下麵的圖形能不能一筆劃成,如果能,請說明畫法,如果不能,請說明理由(1)(2)2.下列圖形能一筆劃成嗎?為什麼?3.觀察下列圖形,哪個圖形可以一筆劃成?怎麼畫?【例題3】下圖是某地區所有街道的平面圖,甲、乙兩人同時分別從A、B出發,以相同的速度走遍所有的街道,最後到達C.那麼兩人誰先到達?C B思路導航:題中要求兩人必須走遍所有街道,最後到達C.仔細觀察,可以發現圖中有兩個單數點:A、C。
二年级奥数:《有趣的一笔画》(预热)前铺知识一、认识单双数单数:1、3、5、7、9、11……双数:0、2、4、6、8、10……(注意:0是最小的双数)二、了解一笔画的初步概念对于一笔画的具体条件,我们上课的时候会加以说明,但是一笔画出的意义,可以让孩子提前有所认识:笔不离开纸,不来来回回重复画,一笔画成.比如:乙日十这三个字中,前两个是可以用一笔写出来的,而第三个则不可以.三、找规律品川这两个字显然都不能用一笔画画出,它们之间有什么共同点呢?尝试可以发现要想画完整笔都得离开纸,也就是说是断开的,没有连通,也叫不连通.所以一笔画的要求是首先得是连通图.本讲重点这一讲的知识实际上是比较特别的,是否能够一笔画用数学知识来概括的非常的复杂,但是同学们却能够通过找规律发现本堂课的知识并很好的掌握.同时可以培养孩子平时找规律的习惯,这也是数学题目中常见的一种方法,也是一种非常科学的思维习惯——归纳与演绎.三年级的时候我们会进一步教同学们多笔画的知识,对奇点偶点的判断也是学习这类型问题的基础.如何预习?为了保护孩子课前的好奇心和学习兴趣,以及保证课堂效果,家长在给孩子预习的时候,一定要把握好度.预习,切忌给孩子讲解书本上的例题和知识点,因为孩子容易先入为主,如果家长选取的方式方法不当,那么孩子很难转换思路了;另外,家长给孩子讲过例题后,孩子可能会觉得自己已经学会了,上课的时候就不愿意认真听了.我们预习的目的是回顾这一讲课前的铺垫知识,以及引起孩子的思考,因此家长可以把我们的这份预习资料打印出来,让孩子自己看一看,如果孩子有不明白的,您可以适当点拨.《有趣的一笔画》【知识点总结】一、什么是一笔画?特点:笔不离纸,不重复,一笔画成.前提:能一笔画的图形必须是连通图.【例】:下面的图形能不能一笔画成?都不能,因为都不是连通图.二、单数点和双数点1. 单数点:从该点出发一共有单数条线的点;2. 双数点:从该点出发一共有双数条线的点.判断小技巧:可以想象自己站在那个点有几条路可以走.(上,下,左,右)三、一笔画的判定1. 图形是连通图2. 有0个或2个单数点的能一笔画3. 超过2个单数点的不能一笔画【例】下面的图形哪些可以一笔画成?2个单数点4个单数点0个单数点可以一笔画不能一笔画可以一笔画四、如何一笔画1.有0个单数点的:同进同出.意思是从哪一个点开始画就哪一个点结束.2.有2个单数点的:单进单出.意思是从一个单数点开始画,另一个单数点结束.五、多笔画变一笔画方法:添(去)单数点之间的线【例】下面的图形都不能一笔画,想办法给每个图形添加一条线段让它变成可以一笔画的图形.(1)(2)(1)(2)本来的图形都有4个单数点不能一笔画,单数点多了,至少得变成2个单数点才能一笔画,那就想办法让其中两个单数点变成双数点,只要在任意两个单数点间添上一条线就可以了.六、一笔画的应用方法:画点线图画法:区域成点,通道成线.【例】下图是一幅简易地图,能不能一次性不重复地走完所有的路.乙村甲村丙村首先要明白题意,把人看成笔,就变成了一次性不重复地画完所有的路,其实就是一笔画!先画出点线图:甲村,乙村,丙村看成点,道路看成线.再判断:有两个单数点,可以一笔画.甲→乙→丙→甲→乙【学习建议】本讲讲的是一笔画,首先要了解什么是一笔画,再学会如何判断能不能一笔画,怎么画?问清楚自己这几个问题简单的一笔画就没问题了.然后再去拓展一笔画的应用,以及初步掌握多笔画如何变成一笔画,更多关于多笔画的内容我们在三年级还会遇到.最后,学习这讲的内容还需要同学们勤标记,多尝试,记规律.《有趣的一笔画》练习1. 判断下面的图形能不能一笔画?为什么?A B C D2. 下面的图形都是不能一笔画成的,你能不能去掉一条线,使他们变成一笔画?3. 下面是一座公园的道路设计图,问能不能一次不重复的把所有小路都走遍?要从哪里开始?HGA D FE CB4、小明要把四个三角形和一个正方形一次性从纸上剪下来,他能做到吗?5、平安小镇上有两个邮递员,甲邮递员喜欢从A 点出发开始送信,乙邮递员喜欢从B点出发开始送信,他们俩都选择最优路线,谁能更快的跑遍多有的街道呢?6. 幸福乡有四个村庄,幸福河从村庄间流过,村民们在河上一共建了5 座桥,问来到幸福乡的人能不能一次不重复地走遍所有的桥.答案解析1.①0个单数点,可以一笔画;②0个单数点,可以一笔画;③4个单数点,不可以一笔画;④2个单数点,可以一笔画2. 答案不唯一.3.图中有两个单数点A和H,从A或H开始就能一笔画.4.有两个单数点,可以一次性剪下所有的图形.5.图中有两个单数点A和E,从单数点出发可以不重复地跑遍所有街道,从B点出发必须要重复才能跑遍多有街道,所以从A点出发的甲邮递员更快.6. 画点线图如下,有两个单数点,所以可以一次不重复走遍所有的桥.。
知识点拨所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次, 不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢? 下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏. 我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 一笔画问题:(1) 能一笔画出的图形必须是连通的图形;( 2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; ( 3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; ( 4)奇点个数超过两个的图形,一定不能一笔画.多笔画问题: 我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于 任意的连通图来说,如果有 2n 个奇点 ( n 为自然数 ) ,那么这个图一定可以用 n 笔画成.例题精讲模块一、判断奇偶点例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些 点是偶点?9 个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜, 要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出 发,不走重复路线就 (填“能”或“不能 ”)完成任务 .考点】一笔画问题 【难度】 2 星 关键词】华杯赛,六年级,初赛,第 解析】 最少需要 3 种颜色的旗子。
因为中间的三点连成一个三角形,要使这三点所代表营地两粮相邻,要 使相邻营地没有相同颜色的旗子,必须各插一种与其它两点不同颜色的旗子。
不走重复路线不能完 成插旗的任务,因为本题共有 6 各奇点。
答案】 3 种颜色,不能4-1-5. 奇妙的一笔画考点】一笔画问题 解析】 奇 点: D 答案】奇点: D 【难度】 2星HJ 【题型】解答 偶点: A B 偶点: A B CE FGI CE FGI哪些点是奇点?例 2】 同学们野营时建了 【题型】填空10考点】一笔画问题 难度】 2 星 【题型】解答 例 3】 判断下列图 a 、图 b 、图 c 能否一笔画.解析】 第 1 个能, 2、3 不能 答案】第 1个能, 2、3 不能例 6 】 右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个 进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?考点】一笔画问题 【难度】 2 星 【题型】解答解析】 将图形中的 6个区域看成 6 个点,每个门看成连结他们的线段,显然 6个点都是偶点,所以有人能一次不重复的走过所有的门.答案】能巩固】右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走? 考点】 解答案】一笔画问题 【难度】 2 星图 a 能,因为有 2 个奇点, 图 a 能 b 不能,因为图形不是连通的, 图c 能,因为因为图中全是奇点 a 能,a 能, c 能例 4】 下面图形能不能一笔画成?若果能,应该怎样画?考点】一笔画问题 【难度】 2 星 解析】 图 1 能 因为图中全是偶点; 图2能 因为图中全是偶点;图 3 不能因为有 4 个奇点。
所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.模块一、判断奇偶点【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?J O I H G FED CBA【考点】一笔画问题 【难度】2星 【题型】解答 【解析】 奇点: D H J O 偶点:A B C E F G I 【答案】奇点: D H J O 偶点:A B C E F G I【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.【考点】一笔画问题 【难度】2星 【题型】填空 【关键词】华杯赛,六年级,初赛,第10题 【解析】 最少需要3种颜色的旗子。
因为中间的三点连成一个三角形,要使这三点所代表营地两粮相邻,要使相邻营地没有相同颜色的旗子,必须各插一种与其它两点不同颜色的旗子。
文档仅供参考文档仅供参考第10讲 学习一笔画【专题简析】一笔画,就是从图形某点出发,笔不离开纸,而且每条线段都只画一次不重复. 它是一种有趣的数学游戏. 那么,哪些图形不能一笔画成,哪些图形可以一笔画成呢?哪些图形可以一笔画成呢?一个图形能否一笔画成,关键在于单数点的多少,有2个或0个单数点的图形就能够一笔画成,单数点在一笔画中只能作为起点和终点. 【例题1】一些平面图形是由点和线构成的,这里的“线”可以是线段,也可以是一段曲线,请自己画一些图研究每个点和线的连接情况.思路导航:请小朋友仔细观察下列各图中的点,他们分别与几条线相连.① ② ③ ④(1) 与一条线段相连的点有:(2) 与两条线段相连的点有:(3) 与三条线段相连的点有:(4) 与四条线段相连的点有:归纳:把和一条、三条、五条等单数条线连得点叫做单数点;把和两条、四条、六条、八条等双数条线连的点叫双数点,每个图中的点要么是单数点,要么是双数点. 练习11.任意找一个平面图形,数一数图中有几个单数点,几个双数点.2.下面图形中有哪几个单数点?下面图形中有哪几个单数点?CBA D3.数一数下面图形中有几个双数点,分别是哪些点?分别是哪些点?F E D BA C HG【例题2】下面的图形能不能一笔画成?如果能,应该怎样画?应该怎样画?A C A BC (1) O (2)BD D EF A BCC (3)D EF 【思路导航】图(1)中A 、B 、C 、D 、O 五个点都是双数点,所以这个图形可以一笔画成.画时可以从任意一点出发. 图(2)中A 、C 、D 、F 四个点都是双数点,B 和E 两个点是单数点,所以这个图形也可以一笔画成. 画时要从单数点出发,最后回到另一个单数点. 图(3)中A 、D 是双数点,B 、C 、E 和F 四个点是单数点,单数点的个数超过了两个,这个图形不能一笔画成.练习21.下面的图形能不能一笔画成,如果能,请说明画法,如果不能,请说明理由请说明理由(1) (2)2.下列图形能一笔画成吗?为什么?为什么?3.观察下列图形,哪个图形可以一笔画成?怎么画?哪个图形可以一笔画成?怎么画?【例题3】下图是某地区所有街道的平面图,甲、乙两人同时分别从A、B出发,以相同的速度走遍所有的街道,最后到达C.那么两人谁先到达?那么两人谁先到达?BC A思路导航:题中要求两人必须走遍所有街道,最后到达C.仔细观察,可以发现图中有两个单数点:A、C. 这就是说:甲可以从A点出发,不重复地走遍所有街道,最后到达C.而B点是双数点,从B点出发的乙则不行. 因此,甲所走的路程正好等于所有街道的总和,而乙所走的路程一定比这个总和多,所以甲最先到达C.解:甲最先到达C.BA CBCA1.下图是某新村小区主干道平面图. 甲、乙两人同时分别从A 、B 出发,以相同的速度走遍所有的主干道,最后到达C.问谁能最先到达C?2. 甲、乙两辆车同时以相同的速度分别从A 、B 出发,哪辆车能最先行驶完所有的路程?哪辆车能最先行驶完所有的路程?A BC3.一只蚂蚁分别从A 点和B 点出发,爬遍所有的小路. 如果每次爬行的速度相同,那么从哪一点出发所用的时间少?出发所用的时间少?【例题4】下图(图1)能否一笔画成,若不能,你能用什么方法把它改成能够一笔画成的图形?你能用什么方法把它改成能够一笔画成的图形?(1) (2)思路导航:此图共有9个点,其中5个点是双数点,4个点是单数点,由于超过两个单数点,因此不能一笔画成. 要想改为一笔画成,关键在于减少单数点数目(把单数点的个数减少到0或2),所以只要在任意两个单数点间连上线,就可以一笔画,有时也可以将多余的两个单数点间的连线去掉,改成一笔画.解:图(1)有4个单数点,不能一笔画成. 要改成一笔画成,如图(2)1.将下图改成一笔画.1.2.3.在一个小区中有一些路,每个圆柱表示邮筒(如下图),邮递员叔叔每次送信时,总是没法走过每一条路而又不重复,你知道为什么吗?如果请你给小区加一条路来解决这个问题,你准备把这条路加在哪儿?请你动手画一画.【例题5】邮递员叔叔要给一个居民小区送信(如图),怎么走才能少走重复路,使每天走的路尽可能短?使每天走的路尽可能短?IAGECH D BF思路导航:图中一共有九个点,其中单数点有2个(点D 和点F ),因此能一次不重复走过所有的路,但必须从这两个单数点中的一个出发,再回到另一个单数点.解:邮递员叔叔只能从点D (或点F )出发,走过所有的路后,再回到点F(或点D) .1.下图是以个小区的中心花园的平面图,你能一次不重复地走完所有的路吗?入口和出口应该设在哪儿呢?设在哪儿呢?2.园林工人在花园里浇花,怎样才能不重复地走遍每条小路?怎样才能不重复地走遍每条小路?3. 下图是“儿童乐园”平面图,出、入口应分别设在哪里才能不重复地走遍每条路?可以怎么走?走?DC A B【拓展提高】【拓展提高】1、下面的图形能不能一笔画成?为什么?如果能,应该怎样画?应该怎样画?3、小明和玲玲玩“过木桥”的游戏(如下图),他们谁能不走重复的路?他们谁能不走重复的路? 小明小明玲玲玲玲4、在王大爷家的花园中有一些路(如下图),王大爷每次给花浇水时,总是没法走过每一条路而又不重复,你知道为什么吗?如果请你给花园加一条路来解决这个问题,你准备把这条路加在哪儿?请你动手画一画.间隔趣谈【专题简析】两根绳子结起来只要打一个结两根绳子结起来只要打一个结,,两根绳子结成一个圆需要打两个结两根绳子结成一个圆需要打两个结,,一根绳子剪4次被剪成了5段等等段等等,,这是日常生活中的比较特殊的问题这是日常生活中的比较特殊的问题. . 想要做好这类题想要做好这类题,,需要我们多动脑筋需要我们多动脑筋,,多动笔画画笔画画,,才能找到正确的答案才能找到正确的答案. . 这一讲是有关绳子打结和剪绳子的问题这一讲是有关绳子打结和剪绳子的问题. . 给绳子打结如果不练成一个圆不练成一个圆,,打结的次数比绳子的根数少1;如果结成1个圆个圆,,打结的次数与绳子的根数同样多样多. . 同样同样,,如果是剪绳子如果是剪绳子,,那么剪成的段数比剪得次数多1. 【例题1】小刚把4根绳子连起来成一条绳子,一共需要打几个结? 思路导航思路导航::解这种题解这种题,,可以画图解答可以画图解答. . 如图:如图:打结打结打结从上图中可以看出从上图中可以看出,4,4根绳子要结起来成一根绳子根绳子要结起来成一根绳子,,只要打3次结就可以了次结就可以了,,可见可见,,打结的次数比绳子的根数少1.解:解:4-1=34-1=34-1=3(个)(个)(个)答:小刚把4根绳子连起来成一条绳子根绳子连起来成一条绳子,,一共需要打3个结个结练习11.小明把5根绳子连起来成一根长绳根绳子连起来成一根长绳,,一共需要打几个结?一共需要打几个结?2.2.把把8根绳子连接起来成一根绳子根绳子连接起来成一根绳子,,一共需要打几个结?一共需要打几个结?【例题2】把几根绳子打7个结就能成一个圆?个结就能成一个圆?思路导航思路导航::根据题意根据题意,,如图所示:打了7个结个结,,就把一些绳子就把一些绳子 结成了一个圆结成了一个圆,,这些绳子应该有7根. 因此因此,,如果把绳子结成圆如果把绳子结成圆 时,绳子的根数与打结的次数相等绳子的根数与打结的次数相等. . 解:把7根绳子打7个结就能成一个圆个结就能成一个圆练习21.丽丽打了8个结就把一些绳子结成一个圆个结就把一些绳子结成一个圆,,你知道丽丽拿了几根绳子吗?你知道丽丽拿了几根绳子吗?2.小红拿10根绳子结成一个圆根绳子结成一个圆,,她打了几个结?她打了几个结?3.把20根绳子连接起来成一根绳子根绳子连接起来成一根绳子,,一共需要打几个结?如果要结成一个圆一共需要打几个结?如果要结成一个圆,,需要结几次?需要结几次?【例题3】一根10米长的绳子剪了4次,平均每段长多少米?平均每段长多少米?思路导航思路导航:10:10米长的绳子剪了4次,应该剪成了5段. 求平均每段长多少米求平均每段长多少米,,也就是要把10平均分成5份,求每份是多少求每份是多少. . 2510=¸(米)(米),,因此平均每段长2米解:解:4+1=54+1=54+1=5(段)(段)(段) 2510=¸(米)(米)答:平均每段长2米 练习31.一根8米长的绳子米长的绳子,,剪了3次,平均每段长多少米?平均每段长多少米?2.一根9分米长的绳子分米长的绳子,,剪了2次,平均每段长多少分米?平均每段长多少分米?3.一根绳子剪了5次后次后,,平均每段长3米,这根绳子原来长多少米?这根绳子原来长多少米?【例题4】一根10米长的绳子米长的绳子,,把它剪成2米长的一段米长的一段,,可以剪多少段?要剪几次?可以剪多少段?要剪几次? 思路导航思路导航::(1)10米长的绳子米长的绳子,,剪成每段2米长米长,,要求可剪多少段要求可剪多少段,,这里求10里面有几个2, 5210=¸(段)(段),,可以剪5段.(2)要求剪几次)要求剪几次,,可以用线段图分析:可以用线段图分析:2米10米从图中可以看出每一段剪一次从图中可以看出每一段剪一次,,剪最后一次还可以有2段,因此剪的次数比剪得段数少1. 即剪得次数即剪得次数==段数段数-1. -1.解:5210=¸(段)(段) 5-1=4 5-1=4(次)(次) 答:可以剪5段,要剪4次. 练习41.1.一根木材长一根木材长8米,把它锯成2米长的小段米长的小段,,可以锯成多少段?要锯几次?2.2.一根一根12米长的铁丝米长的铁丝,,把它剪成3米长的小段米长的小段,,可以剪成多少段?要剪多少次?可以剪成多少段?要剪多少次?3.3.一根一根25米长的电线米长的电线,,剪了4次,可以剪成多少段?平均每段长多少米?可以剪成多少段?平均每段长多少米?【例题5】小兰在桌上摆小棒】小兰在桌上摆小棒,,先摆了1根,然后每隔7厘米放1根,在距离第一根42厘米处厘米处,,共放了几根?共放了几根?思路导航思路导航::每隔7厘米放一根厘米放一根,42,42里有几个7就有几段就有几段,42,42,42÷÷7=6(段)(段),,小棒的根数比段数多1,6+16+1==7(根)(根). . 解 :42÷7+1=77+1=7(根)(根)(根)练习51.小灰灰把贝壳放在桌上.小灰灰把贝壳放在桌上,,先放一个先放一个,,然后每隔4厘米放一个厘米放一个,,从第1个到20厘米处厘米处,,一共可以放多少个?以放多少个?2.2.小红把几枝铅笔放在桌上小红把几枝铅笔放在桌上小红把几枝铅笔放在桌上,,每两枝之间相隔8厘米厘米,,从第一根到最后一根之间相隔64厘米厘米,,你知道放了几枝铅笔吗?你知道放了几枝铅笔吗?3.3.小美在桌上摆了小美在桌上摆了1颗珠子颗珠子,,然后每隔5厘米放1颗,在距第一颗35厘米处放的是第几颗?厘米处放的是第几颗?练习题答案练习题答案练习11.4个2.7个练习21.8根2.10个3.19个 20次 练习31.2米2.3分米分米3.18 3.18米 练习41.81.8÷÷2=4(段)(段)44-1=3(次)(次)2.122.12÷÷3=4(段)(段) 4 4-1=3(次)(次)3.4+13.4+1==5(段)(段) 25 25÷5=5(米)(米) 练习51.201.20÷÷4+14+1==6(个)(个)2.642.64÷÷8+18+1==9(枝)(枝)3.353.35÷÷5+15+1==8(颗)(颗)。
一笔画(奥数)一笔画【知识要点】1.概念:一笔画是指笔不离开纸,而且每条线都只画一次不准重复而画成的图形。
2.分类:图中的点可分两大类:(1)双数点:从这点出发的线的数目是双数的,叫双数点。
(2)单数点:从这点出发的线的数目是单数的,叫单数点。
3.规律:一个图形能否一笔画成,关键在于图中单数点的多少。
(1)凡是图形中没有单数点的一定可以一笔画成。
(2)凡是图形中只有两个单数点,一定可以一笔画成,画时必须从一个单数点为起点,最后以另一单数点为终点。
(3)凡是图形中单数点的个数多于两个时,此图肯定是不能一笔画成。
【题目】1 判断下面图形中哪些点是单数点哪些点是双数点。
2 下列图形中各有几个单数点?能一笔画成吗?3 判断下面图形能不能一笔画成?如果能,应该怎样画?4下面图形能不能一笔画成?这什么?ADEA B CC A B A B C DE F ADCBB C A5 如图是一个大型花池中小路的平面图,你能否不重复地一次走完所有的小路?进出口应设在什么地方?6 将下图加上最少的线改成一笔画的图形。
7.将下图去掉最少的线改成一笔画图形。
8.下图中的线段代表小路,请小朋友想一想,能够不重复地爬遍小路的甲蚂蚁还是乙蚂蚁?该怎么爬?9.为迎接2008年奥运会在北京召开,你能一笔画出奥运会的五环图案吗?10.下图是一个公园的平面图,应怎样走才能使游客走通每条路而不重复,设计一条最佳路线。
11 一个公园的平面图如下,请你设计好入口、出口,并给出一条浏览路线,要求走遍每一条路且不重复。
12不重复。
A BHCG FE D13.如图,是一个名画展厅的平面图,要使参观者不重复地走遍每一条画廊,问:出口、入口应设在哪里?14.黑色的鱼与白色的鱼所能游动的河道如下图所示。
黑色的鱼在A 点位置,白色的鱼在B 点位置。
哪条鱼能不重复地游遍所有的河道?15.能用一根铁丝弯成下面的图形吗?16.一个邮递员投递信件要走的街道如图,为节约时间,他想自己设计一条线路,可以不重复的走遍每一条街道,你能帮帮他吗?17.一只蚂蚁要想不重复的爬遍每一条线路,应从哪里出发,到哪里结束?18.你能用一笔画成4条线段把下图的9个点都连起来吗?19.下图能否一笔画成?如果能,应怎样画?20.如图,在一个六面体的顶点A 和B 处各有一只蜗牛,它们比赛看谁能不重复地爬遍每一棱线到达C点。
所謂圖的一筆劃,指的就是:從圖的一點出發,筆不離紙,遍曆每條邊恰好一次,即每條邊都只畫一次,不准重複.從圖中容易看出:能一筆劃出的圖首先必須是連通圖.但是否所有的連通圖都可以一筆劃出呢?下麵,我們就來探求解決這個問題的方法.什麼樣的圖形能一筆劃成呢?這就是一筆劃問題,它是一種有名的數學遊戲. 我們把一個圖形中與偶數條線相連接的點叫做偶點.相應的把與奇數條線相連接的點叫做奇點.一筆劃問題:(1)能一筆劃出的圖形必須是連通的圖形;(2)凡是只由偶點組成的連通圖形.一定可以一筆劃出.畫時可以由任一偶點作為起點.最後仍回到這點;(3)凡是只有兩個奇點的連通圖形一定可以一筆劃出.畫時必須以一個奇點作為起點,以另一個奇點為終點;(4)奇點個數超過兩個的圖形,一定不能一筆劃.多筆劃問題:我們把不能一筆劃成的圖,歸納為多筆劃.多筆劃圖形的筆劃數恰等於奇點個數的一半.事實上,對於任意的連通圖來說,如果有2n 個奇點(n 為自然數),那麼這個圖一定可以用n 筆劃成.模組一、判斷奇偶點【例 1】 我們把一個圖形上與偶數條線相連的點叫做偶點,與奇數條線相連的點叫做奇點.下圖中,哪些點是偶點?哪些點是奇點? J O I HGFE DC B A例題精講知識點撥4-1-5.奇妙的一筆劃【例 2】同學們野營時建了9個營地,連接營地之間的道路如圖所示,貝貝要給每個營地插上一面旗幟,要求相鄰營地的旗幟色彩不同,則貝貝最少需要種顏色的旗子,如果貝貝從某營地出發,不走重複路線就(填“能”或“不能”)完成任務.【例 3】判斷下列圖a、圖b、圖c能否一筆劃.E【例 4】下麵圖形能不能一筆劃成?若果能,應該怎樣畫?(1)(2)(3)【例 5】下麵的圖形,哪些能一筆劃出?哪些不能一筆劃出?【例 6】 右圖是某展覽廳的平面圖,它由五個展室組成,任兩展室之間都有門相通,整個展覽廳還有一個進口和一個出口,問遊人能否一次不重複地穿過所有的門,並且從入口進,從出口出?【鞏固】右圖是某展覽館的平面圖,一個參觀者能否不重複地穿過每一扇門?如果不能,請說明理由.如果能,應從哪開始走?ECD B A【例 7】 下圖中的線段表示小路,請你仔細觀察,認真思考,能夠不重複的爬遍小路的是甲螞蟻還是乙螞蟻?該怎樣爬?乙甲【例 8】 能否用剪刀從左下圖中一次連續剪下三個正方形和兩個三角形?【例 9】 下圖是兒童樂園的道路平面圖,要使遊客走遍每條路並且不重複,那麼出、入口應設在哪里? I H GFE DC B A【例 10】 郵遞員叔叔向11個地點送信一次信,不走重複路,怎樣走最合適?【例 11】 觀察下麵的圖,看各至少用幾筆劃成?(1)AE DH C F G B(2)(3)【例 12】 在3×3的方陣中每個小正方形的邊長都是100 米.小明沿線段從A 點到B點,不許走重複路,他最多能走多少米?【例 13】 有16個點排成的44 方陣。
一、基本概念
1.一笔画要求
⑴笔不离纸
⑵每条线只画一次,不重复有趣的一笔画
【例1】(★★)
你能试着用一笔把下列图形画出来吗?如果可以,说说你是怎样画的?
【拓展】(★★)
【例2】(★★) 【例3】(★★★)
下列图形能一笔画成吗?为什么?并试着画一画。
判断下列各图能否一笔画出?
【拓展】(★★★)
1
【例4】(★★★) 【例5】(★★★★)一笔画的实际应用下面的图形都不能一笔画成,你能否在图中添上一条线段,使它能一
笔画成。
1.我们的奥运五环能否一笔画呢?
2.著名的“七桥问题”
【拓展】(★★★★)
请你判断下图能否一笔画?若不能,你能用什么方法把它改成一笔画?
【例6】(★★★★) 【本讲总结】
下图是我们公园的平面图。
要使游客走遍每条路而不重复,出入口应设在哪里?可以怎样走?一、基本概念三、一笔画的实际应用
1.一笔画要求转化成:点线图
⑴笔不离纸四、多笔画转化为一笔画
⑵每条线只画一次,不重复宗旨:减少奇点的个数
2.奇点、偶点方法:添线、去线
二、一笔画判断(在两个奇点之间哦!)
1.必须是连通图
2.奇点=0
哪儿进,哪儿出
奇点=2
起点:一个奇点
终点:另一个奇点
2。