算法分析与设计(最大流问题)
- 格式:doc
- 大小:269.50 KB
- 文档页数:21
最大流常见算法最大流问题是图论中的一个重要问题,其求解方法有多种,本文将介绍最常见的几种算法。
一、最大流问题简介最大流问题是在一个网络中寻找从源点到汇点的最大流量的问题。
网络是由一些节点和连接这些节点的边构成的,每条边都有一个容量,表示该边所能承载的最大流量。
源点是流量的起点,汇点是流量的终点。
在网络中,还可能存在其他节点和边。
二、Ford-Fulkerson算法Ford-Fulkerson算法是最早用于解决最大流问题的算法之一。
该算法基于增广路径来不断增加流量,直到无法再找到增广路径为止。
1. 算法步骤(1)初始化:将所有边上的流量设为0。
(2)寻找增广路径:从源点开始进行深度优先或广度优先搜索,在搜索过程中只选择剩余容量不为0且没有被标记过的边,并记录路径上容量最小值min。
(3)更新路径上各个边上的流量:将路径上各个边上的流量加上min。
(4)返回第二步,直到无法找到增广路径为止。
2. 算法分析Ford-Fulkerson算法可以保证在有限步内求解出最大流,但是其时间复杂度与增广路径的选择有关,最坏情况下可能需要指数级的时间复杂度。
三、Edmonds-Karp算法Edmonds-Karp算法是基于Ford-Fulkerson算法的一种改进算法。
该算法使用BFS来寻找增广路径,可以保证在多项式时间内求解出最大流。
1. 算法步骤(1)初始化:将所有边上的流量设为0。
(2)寻找增广路径:从源点开始进行BFS,在搜索过程中只选择剩余容量不为0且没有被标记过的边,并记录路径上容量最小值min。
(3)更新路径上各个边上的流量:将路径上各个边上的流量加上min。
(4)返回第二步,直到无法找到增广路径为止。
2. 算法分析Edmonds-Karp算法相对于Ford-Fulkerson算法来说,在同样的网络中,其时间复杂度更低,可以保证在O(VE^2)的时间内求解出最大流。
但是在某些特殊情况下仍然可能需要指数级时间复杂度。
算法分析与设计教案教案一:算法复杂度与算法分析一、教学目标:1.理解算法复杂度的概念2.掌握算法复杂度的计算方法3.能够通过算法复杂度分析算法的效率4.学会如何选择适合的算法二、教学内容:1.算法复杂度概述a.时间复杂度和空间复杂度的概念b.算法的执行时间和占用空间的计算方法c.算法的最好情况、平均情况和最坏情况的概念和关系2.算法复杂度分析a.常见的算法复杂度i.常数阶ii. 对数阶iii. 线性阶iv. 线性对数阶v.平方阶b.算法复杂度的表示方法和计算示例3.算法效率的比较与选择a.算法效率的评价标准b.如何选择适合的算法c.通过实际例子对比算法效率三、教学方法:1.讲授理论知识,介绍算法复杂度的概念和计算方法2.针对具体算法实例,进行算法复杂度的分析和计算3.进行实际例子的比较,分析不同算法的效率四、教学过程:教师活动学生活动教学方法时间引入介绍本节课的内容和目标倾听并记录讲授 5分钟讲解介绍算法复杂度概念和分类倾听并记录讲授 15分钟示例分析通过具体例子分析和计算算法复杂度思考并记录讲授和讨论20分钟案例分析分析不同算法的效率,并选择合适的算法思考并讨论讲授和讨论20分钟总结总结本节课的内容和要点倾听并记录讲授 5分钟五、教学资源:1.PPT课件2.计算器3.教材和参考书籍六、教学评估:通过学生的课堂参与情况、小组讨论和问题回答情况来评估学生对算法复杂度与算法分析的掌握情况。
七、教学延伸:1.可邀请相关行业的专业人士进行讲座,分享在实际工程中使用算法复杂度和算法分析的经验2.给学生布置一些算法的分析和设计任务,让学生通过实际动手操作来深入理解算法复杂度与算法分析的概念和方法。
教案二:动态规划的基本原理与应用一、教学目标:1.理解动态规划的基本原理和思想2.掌握动态规划的基本步骤和方法3.能够使用动态规划解决实际问题4.学会如何设计动态规划的算法二、教学内容:1.动态规划概述a.动态规划的定义和基本思想c.动态规划的基本步骤和方法2.动态规划的应用a.最优子结构的性质b.重叠子问题的性质c.通过子问题的解计算原问题的解d.动态规划的算法设计与实现3.动态规划的经典问题a.背包问题b.最长公共子序列问题c.最短路径问题d.斐波那契数列问题三、教学方法:1.讲授理论知识,介绍动态规划的基本原理和方法2.运用具体问题进行示例分析,演示动态规划的应用和算法设计3.进行实际问题的解决,让学生亲自动手设计动态规划算法四、教学过程:教师活动学生活动教学方法时间引入介绍本节课的内容和目标倾听并记录讲授 5分钟讲解介绍动态规划的概念和基本原理倾听并记录讲授 15分钟示例分析通过具体问题示例进行动态规划的分析和解决思考并记录讲授和演示 20分钟算法设计学生自主设计动态规划算法并进行实际问题的解决思考并动手实践讨论和指导25分钟总结总结本节课的内容和要点倾听并记录讲授 5分钟五、教学资源:1.PPT课件2.教材和参考书籍3.计算器六、教学评估:通过学生的课堂参与情况、小组讨论和问题回答情况来评估学生对动态规划的理解和应用掌握情况。
算法分析与设计在计算机科学领域,算法是解决问题的一种方法或步骤。
对于任何给定的问题,可能有许多不同的算法可用于解决。
算法的效率直接影响着计算机程序的性能,在实践中,我们通常需要进行算法分析和设计来确保程序的高效性和可靠性。
算法分析算法分析是用来评估算法性能的过程。
主要关注的是算法的效率和资源消耗。
常见的算法分析方法包括时间复杂度和空间复杂度。
时间复杂度时间复杂度描述了算法运行时间随输入规模增加而增加的趋势。
通常用大O符号表示,比如O(n)、O(log n)等。
时间复杂度越低,算法执行速度越快。
空间复杂度空间复杂度描述了算法在运行过程中所需的内存空间大小。
同样用大O符号表示。
空间复杂度越低,算法消耗的内存越少。
算法设计算法设计是指为了解决特定问题而创造新的算法的过程。
常见的算法设计方法包括贪心算法、分治法、动态规划等。
贪心算法贪心算法是一种在每一步选择当前状态下最优解的算法。
虽然贪心算法并不总是能得到全局最优解,但它的简单性和高效性使其在实际应用中很受欢迎。
分治法分治法将复杂问题分解为子问题来求解,然后将子问题的解合并起来得到原问题的解。
典型的应用有归并排序和快速排序等。
动态规划动态规划是一种将问题分解为重叠子问题、并存储子问题解的方法。
通过利用已解决的子问题来解决更大规模的问题,动态规划能够显著提高算法的效率。
结语算法分析和设计是计算机科学中至关重要的一部分,它帮助我们理解算法的效率和性能,并指导我们选择合适的算法来解决问题。
通过不断学习和实践,我们可以不断提升自己在算法领域的能力,为创造更高效、更可靠的计算机程序做出贡献。
MATLAB中的网络流与最大流最小割问题求解方法随着社会信息化的不断发展,网络已经成为了人们日常生活中不可或缺的一部分。
而网络的流量管理对于网络的高效运行至关重要。
在网络流领域中,最大流最小割问题是一种经典且重要的问题,它在图论和算法设计领域都具有广泛的应用。
在本文中,我们将介绍MATLAB中的网络流与最大流最小割问题求解方法。
一、网络流与最大流最小割问题简介网络流问题是指在网络中有一定容量限制的边上,如何使得网络中的流量达到最大的问题。
最大流最小割问题则是网络流问题的一个特殊情况,其中要求找到一个最小割,使得割后网络中的流量达到最大。
通常情况下,网络流问题常常以有向图的形式表示,每条边上都被赋予了一个容量,并存在一个源点和一个汇点。
二、MATLAB中的网络流包在MATLAB中,有许多优秀的网络流包可以用来求解网络流与最大流最小割问题。
其中,最为常用的是Network Flow Toolbox和Combinatorial Optimization Toolbox。
这两个包提供了一系列的函数和算法,可以帮助我们解决各种类型的网络流问题。
三、网络流与最大流最小割问题的建模与求解在使用MATLAB解决网络流与最大流最小割问题之前,首先我们需要进行问题的建模。
通常情况下,我们需要确定图的结构、边的容量和源点与汇点的位置。
在建模完成后,我们可以使用MATLAB中的网络流包提供的函数进行求解。
1. 使用Network Flow Toolbox求解网络流问题Network Flow Toolbox是MATLAB中一个常用的网络流包,它提供了一系列函数用于求解网络流与最大流最小割问题。
其中最常用的函数是maxflow函数,它可以用来计算网络中的最大流。
首先,我们需要使用网络流对象来表示图结构。
在建立网络流对象后,我们可以使用addnode函数向图中添加节点,使用addedge函数向图中添加边。
同时,我们可以使用setcaps函数来指定边的容量。
算法分析与设计教程习题解答第1章 算法引论1. 解:算法是一组有穷的规则,它规定了解决某一特定类型问题的一系列计算方法。
频率计数是指计算机执行程序中的某一条语句的执行次数。
多项式时间算法是指可用多项式函数对某算法进行计算时间限界的算法。
指数时间算法是指某算法的计算时间只能使用指数函数限界的算法。
2. 解:算法分析的目的是使算法设计者知道为完成一项任务所设计的算法的优劣,进而促使人们想方设法地设计出一些效率更高效的算法,以便达到少花钱、多办事、办好事的经济效果。
3. 解:事前分析是指求出某个算法的一个时间限界函数(它是一些有关参数的函数);事后测试指收集计算机对于某个算法的执行时间和占用空间的统计资料。
4. 解:评价一个算法应从事前分析和事后测试这两个阶段进行,事前分析主要应从时间复杂度和空间复杂度这两个维度进行分析;事后测试主要应对所评价的算法作时空性能分布图。
5. 解:①n=11; ②n=12; ③n=982; ④n=39。
第2章 递归算法与分治算法1. 解:递归算法是将归纳法的思想应用于算法设计之中,递归算法充分地利用了计算机系统内部机能,自动实现调用过程中对于相关且必要的信息的保存与恢复;分治算法是把一个问题划分为一个或多个子问题,每个子问题与原问题具有完全相同的解决思路,进而可以按照递归的思路进行求解。
2. 解:通过分治算法的一般设计步骤进行说明。
3. 解:int fibonacci(int n) {if(n<=1) return 1;return fibonacci(n-1)+fibonacci(n-2); }4. 解:void hanoi(int n,int a,int b,int c) {if(n>0) {hanoi(n-1,a,c,b); move(a,b);hanoi(n-1,c,b,a); } } 5. 解:①22*2)(−−=n n f n② )log *()(n n n f O =6. 解:算法略。
《算法分析与设计》作业参考答案作业一一、名词解释:1.递归算法:直接或间接地调用自身的算法称为递归算法。
2.程序:程序是算法用某种程序设计语言的具体实现。
二、简答题:1.算法需要满足哪些性质?简述之。
答:算法是若干指令的有穷序列,满足性质:(1)输入:有零个或多个外部量作为算法的输入。
(2)输出:算法产生至少一个量作为输出。
(3)确定性:组成算法的每条指令清晰、无歧义。
(4)有限性:算法中每条指令的执行次数有限,执行每条指令的时间也有限。
2.简要分析分治法能解决的问题具有的特征。
答:分析分治法能解决的问题主要具有如下特征:(1)该问题的规模缩小到一定的程度就可以容易地解决;(2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质; (3)利用该问题分解出的子问题的解可以合并为该问题的解;(4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。
3.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。
答:将递归算法转化为非递归算法的方法主要有:(1)采用一个用户定义的栈来模拟系统的递归调用工作栈。
该方法通用性强,但本质上还是递归,只不过人工做了本来由编译器做的事情,优化效果不明显。
(2)用递推来实现递归函数。
(3)通过Cooper 变换、反演变换能将一些递归转化为尾递归,从而迭代求出结果。
后两种方法在时空复杂度上均有较大改善,但其适用范围有限。
三、算法编写及算法应用分析题: 1.冒泡排序算法的基本运算如下: for i ←1 to n-1 dofor j ←1 to n-i do if a[j]<a[j+1] then交换a[j]、a[j+1];分析该算法的时间复杂性。
答:排序算法的基本运算步为元素比较,冒泡排序算法的时间复杂性就是求比较次数与n 的关系。
(1)设比较一次花时间1;(2)内循环次数为:n-i 次,(i=1,…n ),花时间为:∑-=-=in j i n 1)(1(3)外循环次数为:n-1,花时间为:2.设计一个分治算法计算一棵二叉树的高度。
三种⽹络流(最⼤流)的实现算法讲解与代码[洛⾕P3376题解]⽹络流(最⼤流)的实现算法讲解与代码定义对于给定的⼀个⽹络,有向图中每个的边权表⽰可以通过的最⼤流量。
假设出发点S⽔流⽆限⼤,求⽔流到终点T后的最⼤流量。
起点我们⼀般称为源点,终点⼀般称为汇点内容前置1.增⼴路在⼀个⽹络从源点S到汇点T的⼀条各边剩余流量都⼤于0(还能让⽔流通过,没有堵住)的⼀条路。
2.分层预处理出源点到每个点的距离(每次寻找增⼴路都要,因为以前原本能⾛的路可能因为⽔灌满了,导致不能⾛了).作⽤是保证只往更远的地⽅放⽔,避免兜圈⼦或者是没事就⾛回头路(正所谓⼈往⾼处⾛⽔往低处流).3.当前弧优化每次增⼴⼀条路后可以看做“榨⼲”了这条路,既然榨⼲了就没有再增⼴的可能了。
但如果每次都扫描这些“枯萎的”边是很浪费时间的。
那我们就记录⼀下“榨取”到那条边了,然后下⼀次直接从这条边开始增⼴,就可以节省⼤量的时间。
这就是当前弧优化具体怎么实现呢,先把链式前向星的head数组复制⼀份,存进cur数组,然后在cur数组中每次记录“榨取”到哪条边了。
[#3 引⽤⾃]()解决算法Ford-Fulkerson 算法(以下简称FF算法)FF算法的核⼼是找增⼴路,直到找不到为⽌。
(就是⼀个搜索,⽤尽可能多的⽔流填充每⼀个点,直到没有⽔⽤来填充,或者没有多余的节点让⽔流出去)。
但是这样的⽅法有点基于贪⼼的算法,找到反例是显⽽易见的,不⼀定可以得到正解。
为了解决这种问题,我们需要⼀个可以吃后悔药的⽅法——加反向边。
原本我们的DFS是⼀条路⾛到⿊的,现在我们每次进⼊⼀个节点,把⽔流送进去,同时建⽴⼀个权值与我们送⼊的⽔流量相等,但是⽅向相反的路(挖⼀条路让⽔流能够反向流回来,相当于给⽔流吃⼀颗后悔药)。
我们给了FF算法⼀颗后悔药之后就可以让他能够找到正确的最⼤流。
Ford-Fulkerson算法的复杂度为O(e×f) ,其中 e 为边数, f为最⼤流上代码。
算法分析与设计题目:最大流算法院系:软件工程班级:软件11-2班姓名:慕永利学号:23 号目录1算法提出背景............................................................................................................................- 3 - 2 问题实例及解决.......................................................................................................................- 3 - 3算法论述....................................................................................................................................- 4 -3.1、可行流..........................................................................................................................- 4 -3.2 最大流..........................................................................................................................- 5 -3.3最大流算法.....................................................................................................................- 6 -3.3.1 增广路径.......................................................................................................- 6 -3.3.2沿增广路径增广..................................................................................................- 7 -3.3.3样例:..................................................................................................................- 8 -3.3.4定理:............................................................................................................... - 13 -3.3.5算法的实现:................................................................................................... - 13 -3.3.6 优化.................................................................................................................. - 16 - 4算法应用................................................................................................................................. - 18 -1算法提出背景一个通信网络,在理想条件下,将网络平面化,并假设网络中各节点及其之间的任意通信链路均无流量限制,在这种情况下,就无需使用最大流最小割算法,只需要寻找一条最短路由即可。
但是在现实生活中,我们不可能拥有这样理想的网络条件,作为正常的通信网络,不管是用户,还是基站,或者是他们之间的不管是无线或者有线信道,其容量都不可能是无限的。
我们的任务是:在一定的限制条件下,对一个具有广泛意义的网络求解其最大流,并进行流量分配。
以及如何对网络弧进行修改以达到网络最优化最大化。
随着计算机网络业务的日益繁忙,通信流量激增而致使网络发生拥塞出现瓶颈部位,甚至造成网络停滞或瘫痪,所以对大型网络拓扑结构的优化设计是网络规划的首要任务。
网络的优化通常采用扩充网络最大容量和网络增强性连接来优化网络设计。
要解决网络拥塞的问题,首要找出网络流通中的阻塞部分即是网络流通图的最小割集,通过扩充最小割集中饱和弧的容量来改善整个网络的流通能力。
2 问题实例及解决有一自来水管道输送系统,起点是S,目标是T,途中经过的管道都有一个最大的容量。
3算法论述3.1、可行流每条弧( u, v )上给定一个实数f(u,v),满足:有0 <= f ( u, v ) <= c( u, v ),则f(u,v)称为弧( u, v )上的流量。
如果有一组流量满足条件:源点s :流出量= 整个网络的流量汇点t :流入量=整个网络的流量中间点:总流入量= 总流出量那么整个网络中的流量成为一个可行流。
区分:容量和流量3.2 最大流在所有的可行流中,流量最大的一个流的流量如:图2中可行流7也是最大流。
最大流可能不只一个。
3.3最大流算法Ford-Fulkerson (福特-福克森)算法:步骤:(1)如果存在增广路径,就找出一条增广路径(2)然后沿该条增广路径进行更新流量(增加流量)3.3.1增广路径从s 到t 的一条简单路径,若边( u, v ) 的方向与该路径的方向一致,称( u, v ) 为正向边,方向不一致时称为逆向边。
简单路:1à3 à 2à4à5中。
(1,3)(2,4)(4,5)是正向边。
(3,2)是逆向边。
增广路径:若路径上所有的边满足:①所有正向边有:f ( u, v ) < c ( u, v)②所有逆向边有:f ( u, v ) > 0则称该路径为一条增广路径(可增加流量)两条增广路径:1à3à51à3 à 2à4à5增加流量=?3.3.2沿增广路径增广1)先设d为为正无穷(可增加流,余流量)若( u, v ) 是正向边d = min ( d, c ( u, v ) – f (u, v ) )若( u, v ) 是逆向边d = min ( d, f ( u, v ) )2 )对与该增广路径上的边若( u, v ) 是正向边,f ( u, v ) = f ( u, v ) + d;若( u, v ) 是逆向边,f ( u, v ) = f ( u, v ) – d;增广后,总流量增加了d3.3.3样例:开始流量为:sum=0一条增广路径: 1à2à3à5,d=min{4,2,4} =2 ,增加流量: 2 Sum=2一条增广路径:1à2à4à5,d=min{4-2,3,5} =2 ,增加流量: 2 Sum=2+2=4一条增广路径: 1à3à 2 à 4 à5,d=min{6,2,3-2,5-2} =1 增加流量: 1,Sum=4+1=5一条增广路径: 1à3à5,d=min{6-1,4-2} =2 增加流量: 2Sum=5+2=73.3.4定理:可行流f 为最大流,当且仅当不存在关于f 的增广路径证:若f 是最大流,但图中存在关于f 的增广路径,则可以沿该增广路径增广,得到的是一个更大的流,与f 是最大流矛盾。
所以,最大流不存在增广路径。
Ford-Fulkerson方法(增广流)求最大流(福特-福克森):步骤:(1)如果存在增广路径,就找出一条增广路径DFS,BFS(2)然后沿该条增广路径进行更新流量增加流量)While 有增广路径do 更新该路径的流量迭代算法3.3.5算法的实现:c [ u, v ]:容量f [ u, v ]:流量B[i]:保存找到的增广路径,记录路径上结点i的前驱结点。
Sum:最大流量。
假定:1是源点S;n是汇点T。
1):DFS找增广路径function findflow(k:integer):boolean; {找结点k的后继结点i } var i:integer;beginif k=n then exit(true); {找到了一条增广路径}for i:=1 to n doif(b[i]=-1) and((c[k,i]-f[k,i]>0)or(f[i,k]>0)) thenbeginb[i]:=k;if findflow(i) then exit(true);end;exit(false);end;2)procedure addflow;//沿增广路径增广(增加流量)d:=maxint; {增量}i:=n; {沿增广路径的终点向起点反向求d}while b[i]<>0 dobeginif c[b[i],i]>0 then d:=min(d,c[b[i],i]-f[b[i],i]); {正向边} if c[i,b[i]]>0 then d:=min(d,f[i,b[i]]); {逆向边}i:=b[i];end;i:=n;while b[i]<>0 do {逆向更新每条边的流量}beginif c[b[i],i]>0 then inc(f[b[i],i],d); {正向边}if c[i,b[i]]>0 then dec(f[i,b[i]],d); {逆向边}i:=b[i];end;inc(sum,d); {总流量增加d}主程序:for i:=1 to n do b[i]:= -1; {初始化增广路径}b[1]:=0;while findflow(1) do {增广流}beginaddflow;for i:=1 to n do b[i]:=-1;b[1]:=0;end;writeln(sum); {输出最大流}for i:=1 to n do {输出每条边的流量}for j:=1 to n doif f[i,j]>0 then writeln(i,'-->',j,' ',f[i,j]);3.3.6 优化残留网络d 的设置:若存在( u, v ) 则d ( u, v ) = c ( u, v ) – f ( u, v )d ( v, u ) = f ( u, v )d ( u, v ) 是从u 到v 能增加的最大流量理解:(u,v) 的流量为f(u,v),作为正向边还可以增加的量是c ( u, v ) – f ( u, v ),作为逆向边,还可以增加的流量为:f ( u, v )。