定解条件和定解问题
- 格式:doc
- 大小:194.00 KB
- 文档页数:7
§1.2 什么是定解问题1. 定解问题定解问题是根据已知物理规律求解特定物理过程的数学条件,它由泛定方程和定解条件两个部分组成,泛定方程也称为数学物理方程。
2. 泛定方程泛定方程是待解物理过程所遵循的物理规律的数学表达式,具体表现为某物理量关于时间和空间变量的偏微分方程,同一类物理过程遵循相同的物理规律,因此泛定方程反映一类物理过程的共性。
方程中物理量对时间变量的偏微分项反映物理过程的因果关联。
方程中物理量对空间变量的偏微分项反映物理过程的内部作用,或内在关联。
例1. 质点运动状态的演化问题在质点动力学问题中常求质点的运动轨迹,一旦求出运动轨迹,则一切与质点运动有关的物理量(如动能、动量、角动量等)都可求出。
质点的运动状态是由质点的位矢和动量完全确定,求质点运动轨迹的方法就是求解质点的运动状态随时间演变的过程,即由前一时刻的位矢和动量推算出下一时刻位矢和动量,从物理上看前后二时刻质点的运动状态的联系为dt t p m t r dt t r t r dt t r )(1)()()()(K K K K K +=+=+, dt t F t p dt t p t p dt t p )()()()()(K K K K K +=+=+ 因此,只要知道质点的受力情况就能由前一时刻的运动状态求出下一时刻的运动状态,这样的推演过程就是求解常微分方程F t r m K K =)(满足初始条件“0000)(,)(v t r r t r K K K K ==”的解。
§1.3 定解条件。
一、初始条件初始条件描述特定物理过程的起因,就t 这个自变数而言,如果泛定方程中物理量u 对t 最高阶偏导数是n 阶偏导数n n tu ∂∂,则要确定具体的定解问题,需要n 个初始条件。
例1:均匀细杆的导热问题满足的泛定方程为02=−xx t u a u ,则要确定具体的导热问题的解只需一个初始条件:)(0x u t ϕ==,即要已知初始温度分布。
第一章. 波动方程§1 方程的导出。
定解条件2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为 .0),(,0),0(==t l u t u(2)若l x =为自由端,则杆在l x =的张力x ux E t l T ∂∂=)(),(|lx =等于零,因此相应的边界条件为x u∂∂|lx ==0 同理,若0=x 为自由端,则相应的边界条件为xu∂∂∣00==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。
由虎克定律有x uE∂∂∣)](),([t v t l u k lx --== 其中k 为支承的刚度系数。
由此得边界条件)(u xuσ+∂∂∣)(t f l x == 其中E k =σ特别地,若支承固定于一定点上,则,0)(=t v 得边界条件)(u xuσ+∂∂∣0==l x 。
同理,若0=x 端固定在弹性支承上,则得边界条件x uE∂∂∣)](),0([0t v t u k x -== 即 )(u xuσ-∂∂∣).(0t f x -= 3. 试证:圆锥形枢轴的纵振动方程为 2222)1(])1[(t u h x x u h x x E ∂∂-=∂∂-∂∂ρ 其中h 为圆锥的高(如图1)证:如图,不妨设枢轴底面的半径为1,则x 点处截面的半径l 为:hx l -=1 所以截面积2)1()(hx x s -=π。
利用第1题,得])1([)1()(2222xuh x E x t u h x x ∂∂-∂∂=∂∂-ππρ 若E x E =)(为常量,则得2222)1(])1[(tuh x x u h x x E ∂∂-=∂∂-∂∂ρ §2 达朗贝尔公式、 波的传抪1. 证明方程()常数011122222 h t uh x a x u h x x ∂∂⎪⎭⎫ ⎝⎛-=⎥⎥⎦⎤⎢⎢⎣⎡∂∂⎪⎭⎫ ⎝⎛-∂∂ 的通解可以写成()()xh at x G at x F u -++-=其中F,G 为任意的单变量可微函数,并由此求解它的初值问题:()().,:0x tux u t ψ=∂∂==ϕ 解:令()v u x h =-则()()()⎪⎭⎫⎝⎛∂∂+-=∂∂-∂∂+=∂∂-x v u x h xu x h xv u xu x h 2,))(()()()()[(2222xv u x h x u x h x u x h x v u x u x h x ∂∂+-=∂∂-+∂∂-+∂∂+-=∂∂-∂∂又 ()2222tv t u x h ∂∂=∂∂-代入原方程,得()()222221tv x h a x v x h ∂∂-=∂∂-即 222221t v a x v ∂∂=∂∂ 由波动方程通解表达式得()()()at x G at x F t x v ++-=,所以 ()()()x h at x G at x F u -++-=为原方程的通解。
第二节定解条件与定解问题数学院朱郁森常见的定解条件有初始条件和边界条件。
初始条件:用来说明初始状态的条件边界条件:用来说明边界约束情况的条件湖南大学数学院朱郁森一、弦振动方程的定解条件2,tt xx u a u =0,0.x l t <<>1、初始条件0(),t u x ϕ==0(),t t u x ψ==2、边界条件第一类可控制端点即端点的位移按已知规律变化。
则1(),x ug t ==2().x lug t ==特别地固定端边界条件第二类在边界上给定力设弦两端所受的横向外力分别为1(),G t 2().G t 而弦两端所受张力的横向分量分别为(0,),(,).x x Tu t Tu l t −又因弦的两端在横向方向受力平衡,所以有1(0,)()0,x Tu t G t +=2(,)()0,x Tu l t G t −+=12(0,)(),(,)(),x x u t g t u l t g t ==则相应的边界条件为其中1212()()(),(),G t G t g t g t T T=−=湖南大学数学院朱郁森特别地(0,)0,(,)0,x x u t u l t ==自由端边界条件第三类在边界上作弹性联结张力的横向分量弹性恢复力0x =x l=(0,)x Tu t (,)x Tu l t −11[(0,)()]k u t t θ−−22[(,)()]k u l t t θ−−于是有11(0,)[(0,)()]0,x Tu t k u t t θ−−=22(,)[(,)()]0,x Tu l t k u l t t θ−−−=11(0,)(0,)(),x u t u t g t σ−=22(,)(,)(),x u l t u l t g t σ+=其中1212112212,,()()(),().k k T Tk t k t g t g t T Tσσθθ===−=则相应的边界条件为例1长为l 的弦两端固定,开始时把弦在距O点处拉起来,拉起的高度为h (适当地小),然后轻轻放开让它振动,试写出描述其振动的方程与定解条件。
拉普拉斯算符的运算法则1.基本法则:(1)加法性:对于两个标量函数f(x,y,z)和g(x,y,z),拉普拉斯算符满足∇²(f+g)=∇²f+∇²g。
(2)标量函数乘法法则:对于一个标量函数 f(x, y, z) 和一个常数 k,拉普拉斯算符满足∇²(kf) = k∇²f。
(3)链式法则:对于两个函数f(x,y,z)和g(t),其中f只依赖于变量t,而g只依赖于变量x、y和z,拉普拉斯算符满足∇²(f∘g)=(∇²f)⋅g+2(∇f)⋅(∇g)+f(∇²g)。
(4)乘积法则:对于两个函数 f(x, y, z) 和 g(x, y, z),拉普拉斯算符满足∇²(fg) = f∇²g + g∇²f + 2(∇f)⋅(∇g)。
2.定解问题法则:在求解偏微分方程时,拉普拉斯算符的运算法则还包括定解问题法则。
(1)边值定解问题法则:在求解偏微分方程的边值问题时,根据拉普拉斯算符的性质,我们可以通过给定边界值来确定解的行为。
比如,在求解二维泊松方程时,可以通过在边界上给定函数值来确定解的形状。
(2)初始条件定解问题法则:在求解时间相关的偏微分方程时,除了边值条件外,还需要给定初始条件。
在这种情况下,需要将初值问题转化为一个定解问题,通过迭代求解来确定解的行为。
(3)分离变量法:对于一些特殊的偏微分方程,我们可以使用分离变量法来求解,其中包括将解表示为两个或多个独立变量的乘积形式,然后逐个求解子问题。
总结起来,拉普拉斯算符的运算法则包括基本法则和定解问题法则。
基本法则是对于标量函数的运算法则,包括加法性、标量函数乘法法则、链式法则和乘积法则。
定解问题法则是在求解偏微分方程时的运算法则,包括边值定解问题法则、初始条件定解问题法则和分离变量法。
这些运算法则是求解偏微分方程和计算物理量的重要工具,对于理解和应用偏微分方程具有重要意义。
微分方程定解问题的基本概念微分方程是数学中的一个重要分支,它用来描述物理、经济、生物等学科中的现象和问题。
微分方程定解问题则是微分方程研究的重点,它对于解决实际问题具有非常重要的作用。
一、微分方程的基本概念微分方程是描述变量之间的变化关系的方程,其形式通常为:y′ = f(x, y)其中y′ 表示 y 对 x 的导数,f(x, y) 表示 x 和 y 的函数关系。
微分方程的解是一组函数,它满足微分方程和附加条件(称为初值条件或边界条件)。
二、定解问题的基本概念定解问题是指在微分方程中确定初始条件或边界条件,求得微分方程的解。
定解问题可以分为初值问题和边值问题。
初值问题是在一个点(通常为 x0)给出一个函数值(通常为y(x0))和其导数值(通常为y′(x0)),求解函数在另一点的取值。
初值问题通常用初值问题解法求解。
边值问题是在一段区间内给出一个函数值和其导数值,求解函数在该区间的取值。
边值问题通常用曲线拟合法或数值法求解。
三、常见的定解问题常见的定解问题包括:1.一阶常微分方程的初值问题。
例如:y′ = f(x, y), y(x0) = y02.一阶常微分方程的边值问题。
例如:y′ = f(x, y), y(a) = ya, y(b) = yb3.二阶常微分方程的初值问题。
例如:y′′ = f(x, y, y′), y(x0) = y0, y′(x0) = y0′4.二阶常微分方程的边值问题。
例如:y′′ = f(x, y, y′), y(a) = ya, y(b) = yb四、定解问题的应用定解问题在物理、工程、金融等领域中有广泛的应用。
例如:1.物理学中的定解问题:在自然界中的各种物理现象中,微分方程定解问题经常被用于对各种现象和性质的研究和分析。
2.工程学中的定解问题:设计和分析各种工程系统时,微分方程定解问题经常被用于模型的建立和计算。
3.金融领域中的定解问题:在金融领域中,微分方程定解问题被用来分析各种金融产品的产生和变化,预测市场走势等。
微分方程定解问题解析微分方程是数学中的一种重要工具,用于描述自然界中的很多现象和规律。
在微分方程中,定解问题是一个常见的研究对象,它要求在给定的边界条件下,找到满足微分方程的特解。
本文将对微分方程定解问题进行详细解析,并讨论求解定解问题的一些常见方法和技巧。
1.微分方程的类型微分方程可以分为常微分方程和偏微分方程两大类。
常微分方程中,未知函数只依赖于一个变量,而偏微分方程中,未知函数依赖于多个变量。
2.定解问题的定义定解问题是给定一个微分方程和一组边界条件,要求找到满足这些条件的特解。
边界条件可以是函数在某个点上的给定值,或者是函数的导数在某个点上的给定值。
3.常见的定解问题类型常见的定解问题类型包括:3.1. 初值问题:在微分方程中给定函数在某点上的值,求解满足该条件的特解。
3.2. 边值问题:在微分方程中给定函数在多个点上的值,求解满足这些条件的特解。
3.3. 自由边值问题:在微分方程中给定函数在某些点上的值,以及函数的导数在另外一些点上的值,求解满足这些条件的特解。
4.求解定解问题的方法求解定解问题的方法有很多种,下面介绍几种常用的方法。
4.1. 分离变量法:对包含未知函数及其导数的微分方程两边进行适当的变换,将未知函数和其导数分离到方程的两边,最后通过积分得到解。
4.2. 线性微分方程方法:对于一阶线性微分方程,可以通过乘以适当的积分因子,将其转化为可积的形式,并求解。
4.3. 变量替换法:通过对未知函数和自变量的合适替换,将原微分方程转化为更简单的形式,再进行求解。
4.4. 数值方法:对于复杂的微分方程,常常无法通过解析方法求解,此时可以利用数值计算方法,如欧拉法、龙格-库塔法等,来近似求解微分方程。
5.案例分析为了更好地理解微分方程定解问题的解析过程,考虑一个具体的例子。
假设有一个一阶常微分方程:dy/dx = x,边界条件为y(0) = 1。
首先,我们可以使用分离变量法,将方程变形为 dy = xdx。
力的分解中定解条件的讨论
在力的分解中,我们需要讨论定解条件。
定解条件是指在分解力的过程中,我们需要满足的条件,以确保分解后的力能够准确地描述原始力的性质和作用。
1. 作用线与力的方向:首先,我们需要确保分解后的力的作用线与原始力的方向一致。
也就是说,分解后的力所作用的线应该经过原始力的作用点,并且与原始力的方向相同。
这是因为力的分解是将一个力分解成两个或多个力的合力,而这些分解力的作用线应当与原始力的作用线相同,以保持力的性质不变。
2. 力的大小和方向关系:其次,我们需要确保分解后的力的大小和方向之间存在明确的关系。
具体而言,分解后的力的大小应当与原始力的大小成比例,而它们的方向应当相互垂直。
这是因为力的分解是将一个力分解成两个或多个力的合力,而这些分解力的大小和方向之间应当有一个确定的关系,以确保它们的合力等于原始力。
3. 力的平衡条件:最后,我们需要确保分解后的力能够满足力的平衡条件。
力的平衡条件是指合力为零的条件,也就是说,分解后的力在合成时应当能够产生一个力的合力为零的状态。
这是因为力的平衡是物体保持静止或作匀速直线运动的条件之一,而在力的分解过程中,我们需要确保分解后的力能够满足这一条件,以保持物体的平衡状态。
总结起来,力的分解中的定解条件包括作用线与力的方向一致、力的大小和方向之间存在明确的关系,以及力的平衡条件能够得到满足。
这些定解条件能够确保分解后的力能够准确地描述原始力的性质和作用,并帮助我们更好地理解和分析力的作用。
定解条件和定解问题
含有未知函数的偏导数的方程叫偏微分方程,常微分方程可以看成是特殊的偏微分方程。
方程的分数是1的称为方程式,个数多于1的叫做方程组。
方程(组)中出现的未知函数的最高阶偏导数的阶数称为方程(组)的阶数。
如果方程(组)中的项关于未知函数及其各阶偏导数的整体来讲是线性的,就称方程(组)为线性的,否则就称为非线性的。
非线性又分为半线性、拟线性和完全非线性。
一、定解条件
给定一个常微分方程,有通解和特解的概念。
通解只要求满足方程,即满足某种物理定律,而不能完全确定一个物理状态。
特解除了要求满足方程还要满足给定的外加(特殊)条件。
对偏微分方程也是如此,换句话说,只有偏微分方程还不足以确定一个物理量随空间和时间的变化规律,因为在特定情况下这个物理量还与它的初始状态和它在边界受到的约束有关。
描述初始时刻的物理状态和边界的约束情况,在数学上分别称为初始条件(或初值条件)和边界条件(或边值条件),他们统称为定解条件。
初始条件:能够用来说明某一具体物理现象初始状态的条件,即描述物理过程初始状态的数学条件。
边界条件:能够用来说明某一具体物理现象边界上的约束情况的条件,即描述物理过程边界状态的数学条件。
定解条件:初始条件和边界条件的统称。
非稳态问题:定解条件包括初始条件和边界条件。
稳态问题:定解条件为边界条件。
1、弦振动方程 ( 2
(,),0,0tt xx u a u f x t x l t -=<<>)
|
初始条件是指初始时刻(0t =)弦的位移和速度。
若以()x ϕ,
()x ψ分别表示弦上任意点x 的初始位移和初始速度,则初始条件
为:
边界条件是指弦在两端点的约束情况,一般有三种类型。
(1)第一类边界条件(狄利克雷(Dirichlet )边界条件):已知端点()x a a o a l ===或处弦的位移是()a g t ,则边界条件为:
(0,)(0,)u t g t = 或 (,)(,)u l t g l t =
当0()0()0l g t g t ≡≡或时,表示在该点处弦是固定的。
(2)第二类边界条件(诺伊曼(Neumann )边界条件):已知端点0x x l ==或处弦所受的垂直于弦线的外力0()g t 或()l g t ,则边界条件为:
0(0,)()x Tu t g t -= 或 (,)()x l Tu l x g t =
当00()0l g g t ≡≡或时,表示弦在端点0x x l ==或处自由滑动。
(
(3)第三类边界条件(混合边界条件或罗宾(Robin )边界
条件:已知端点处弦的位移和所受的垂直于弦线的外力的和:
000(0,)(0,)g (t),0,x Tu t k u t k -+=>
或
(,0)(),
0(,0)(),
t u x x x l u x x ϕψ=⎧<<⎨
=⎩
(,)(,)(),0x l l l Tu l t k u l t g t k +=>,
其中0l k k 和表示两端支承的弹性系数,当0()0()0l g t g t ≡≡或时,表示弦在该端点处被固定在一个弹性支承上。
2、热传导方程(
2
(x,t),x ,)n
t u a u f t o -=∈Ω⊂>
初始条件是指初始时刻物体内的温度分布情况。
式中φ( x , y , z )为已知函数,表示温度在初始时刻的分布。
]
边界条件是指边界上温度受周围介质的影响情况,可分为三种。
(1) 第一类边界条件:介质表面温度已知
式中,p 为边界面上的点。
(2)第二类边界条件:通过介质表面单位面积的热流量己
知。
(3)第三类边界条件:边界面与周围空间的热量交换规律
已知
由热量守恒定律可知,这个热量等于单位时间内流过单位面积上的热量。
(,,,0)(,,)
T x y z x y z ϕ=0
(,)S T
p t ϕ==, (,)n S
T T
q K const f p t n n ∂∂=-==∂∂0() ()
n q T T αα=-为热交换系数0(), (,)
S
T T K T T hT f p t n n α∂∂⎛⎫
-=-+= ⎪∂∂⎝⎭
>
3、位势方程(泊松方程或拉普拉斯方程)
对于稳态问题,变量不随时间发生变化。
定解条件不含初始条件,只有边界条件。
第一边值问题,狄利克莱问题(狄氏问题)
第二边值问题,牛曼问题
第三边值问题(混合问题)鲁宾问题
:
二、定解问题
()
S
f p
ϕ=
()
S
f p
n
ϕ
∂
=
∂
()
S
h f p
n
ϕ
ϕ
∂
+=
∂
,
一个方程匹配上定解条件就构成定解问题。
对于定解问题,通常由于定解条件的差异有下面的三种提法:
①偏微分方程(泛定方程)+初始条件+边界条件,称为初边值问题或混合问题;
②偏微分方程(泛定方程)+初始条件,称为初值问题或柯西问题;
③偏微分方程(泛定方程)边界条件,称为边值问题。
在一个偏微分方程的定解问题中,把不含未知函数及其偏导数的项,称为自由项。
如果方程中的自由项为零,则称方程为齐次方程,否则就称为非齐次方程。
如果边界条件中的自由项为零,则称边界条件为齐次边界条件,否则就称为非齐次边界条件。
例如,对于弦振动方程,当外力等于零时,方程就变为齐次方程,此时也称它为弦的自由振动方程;当弦的两端固定时,边界条件就是齐次边界条件。
三、例题
1、长为l的弦,两端固定于0和l。
在中点位置将弦沿着横向拉开距离h,如图所示,然后放手任其振动,试写出初始条件。
^
解:初始时刻就是放手的那一瞬间,按题意初始速度为零,即有
!
初始位移
2、长为l 的杆,上端固定在电梯的顶杆上,杆身竖直,下端自由 。
电梯在下降过程中,当速度为v0 时突然停止。
试写出杆振动的定解问题。
四、 总结
l
x
!
l/2 h 0
==(,)
t t u x t 0
2 0222=⎧∈⎪⎪=⎨
⎪-∈⎪⎩[,](,)
()[,]t h
l x x l u x t h l l x x l l
22
2
220,
(0,),0(,0)0,(,0),(0,)
(0,)(,)0,
0t x u u a x l t t x u x u x v x l u t u l t t ⎧∂∂=∈>⎪∂∂⎪
⎨==∈⎪
⎪==≥⎩。