XRF光谱仪基本原理及结构资料教学提纲
- 格式:ppt
- 大小:146.50 KB
- 文档页数:14
中国电子技术标准化研究所中国赛西实验室汪 牛 2011.0512中国赛西实验室第 部分 第一部分一.XRF基础知识介绍 二.EDXRF基本结构和工作原理 三.EDXRF主要的技术指标和验证 四. 运用于RoHS筛选检测的谱图分析 四.运用于RoHS筛选检测的谱图分析第二部分五.XRF分析技术的风险评估与高级应用 六.IEC62321标准解读——XRF部分(第6章) 七 EDXRF分析仪器的日常维护与保养 七.EDXRF分析仪器的日常维护与保养第三部分八.职业资格鉴定常识介绍3中国赛西实验室一. XRF基础知识介绍1 X射线的定义 1.X射线是由高能的粒子(射线)轰击原子所产生的一种波长较 短的电磁辐射 具有波粒 象性 其能量范围在 1~100KeV。
短的电磁辐射,具有波粒二象性,其能量范围在0.4中国赛西实验室2. 量子力学基础——波粒二象性X射线的波动性有:以光速直线传播、反射、折射、衍 射、偏振和相干散射; 其微粒性有:光电吸收、非相干散射及产生闪光等。
波 XRF 粒 能量色散型 能量 散 X荧光光谱仪( (EDXRF) ) 波长色散型X荧光光谱仪(WDXRF)5中国赛西实验室3. 基本公式量子理论将 量 论将X射线看成是一种量子或光子组成的粒子流, 射线看成 种量 或光 成的粒 流 每个光子具有的能量为: …… (1-1) (1 1) E=hν=h ϲ λ 式中,E为X射线光子的能量(KeV);h为普朗克常数; 式中 为普朗克常数 ν为振 动频率;c为光速;λ为波长(nm);代入(1-1)式可得: E= 1.24 λ1eV=1.6022 X10 J h=6.6262 X10 J·s-19 -34……(1-2)c=2.99792 X10 cm/s106中国赛西实验室受激元素辐射出的能量与该特定元素的轨道能级差直接相关, 与原子序数的二次幂成正比: 1 = ν=k(Z-σ)2 ……(1-3) λ 此即Moseley定律。
帕纳科xrf原理-概述说明以及解释1.引言1.1 概述帕纳科XRF原理(即帕纳科X射线荧光光谱仪原理)是一种非常重要的分析技术,它利用X射线荧光光谱仪进行物质的分析与检测。
X射线荧光光谱仪(XRF)是一种基于X射线的分析技术,能够快速、无损地分析样品的元素成分及其含量。
帕纳科XRF原理通过将样品暴露在高能量的X射线辐射下,激发样品中的原子发生内层电子跃迁,从而产生特定能量的特征X射线。
这些特征X射线与样品中元素的种类和含量密切相关。
X射线荧光分析原理基于这个原理,通过测量样品中发射出的特征X射线的能量和强度来确定样品的元素成分。
帕纳科XRF原理在许多领域都有广泛的应用。
在材料分析方面,它可以用于合金分析、陶瓷成分分析、矿石成分分析等。
在环境监测方面,它可以用于土壤中重金属含量的检测、水中有害物质的检测等。
在文物保护方面,它可以用于非破坏性地分析文物的元素成分,以了解其制作材料和年代等信息。
帕纳科XRF原理具有许多优点。
首先,它非常快速和高效,能够在几分钟内完成样品的分析。
其次,它是一种无损检测技术,不需要破坏样品,适用于各种形态的样品。
此外,它还具有高准确性和重复性,并且可以同时分析多个元素。
然而,帕纳科XRF原理也存在一些局限性。
首先,它对于低能量X射线不敏感,因此无法检测低原子序数元素。
其次,样品的尺寸和形态对分析结果可能产生影响。
最后,它对于元素的定量分析相对有限,通常只能得到元素的相对含量。
随着科学技术的不断发展,帕纳科XRF原理也在不断进步和完善。
未来,我们可以期待更加精确和灵敏的X射线荧光光谱仪的研发,以及更加全面和准确的元素分析方法的开发。
综上所述,帕纳科XRF原理是一种重要的分析技术,具有广泛的应用领域和许多优点。
随着技术的不断进步,帕纳科XRF原理将在各个领域发挥更大的作用。
文章结构部分的内容如下所示:1.2 文章结构本篇长文主要围绕帕纳科XRF原理展开,文章的主要部分分为引言、正文和结论三个部分。
XRF检测的原理和应用1. 引言X射线荧光光谱仪(X-Ray Fluorescence Spectrometer,简称XRF)是一种用于元素分析的仪器。
它能够通过射入样品的X射线,激发样品中的原子产生特定的荧光辐射,并通过测量荧光辐射来确定样品中各种元素的含量。
本文将介绍XRF 检测的原理和应用。
2. 原理XRF检测的原理基于元素的特征X射线发射和吸收。
当样品受到高能X射线束的照射时,样品中的原子会发生内层电子的跃迁,从而产生特定的X射线发射。
每种元素都有特定的能量和强度的特征X射线发射谱。
通过测量样品荧光辐射的能谱,可以确定样品中各种元素的存在及其含量。
XRF检测可以分为荧光光谱测量和荧光辐射谱峰分析两个步骤。
在荧光光谱测量中,X射线荧光光谱仪测量样品放射出的荧光光谱,获得荧光峰。
然后,在荧光辐射谱峰分析中,根据荧光峰的能量和强度,通过谱峰拟合算法计算出样品中各种元素的含量。
3. 应用3.1 金属材料分析XRF检测在金属材料分析中有广泛的应用。
它可以用于检测金属材料中的成分和杂质元素,以确定其质量和合格性。
通过XRF检测,可以快速准确地确定金属材料中各种元素的含量,并对材料进行分类和鉴定。
3.2 地质和矿石分析XRF检测在地质和矿石分析中也具有重要的应用价值。
地质样品中的元素含量是研究地壳构造和地质过程的重要依据。
XRF检测可以用于测量岩石、矿石、矿物和土壤中各种元素的含量,用于地质勘探、矿产资源评价和环境监测等领域。
3.3 环境监测XRF检测在环境监测中起着重要的作用。
它可以检测土壤、水和空气中的有毒元素和污染物,如重金属、有机污染物等。
通过对环境样品的XRF检测,可以快速获得样品中各种元素的含量,评估环境污染程度,并为环境保护提供科学依据。
3.4 文物保护XRF检测在文物保护中也有广泛应用。
文物材料中的元素含量可以提供文物起源、制作工艺和保存状态等信息。
通过对文物样品的XRF检测,可以非破坏地分析元素的含量,判定文物的真伪和年代,并为文物的保护修复提供科学指导。
X荧光光谱仪是根据X射线荧光光谱的分析方法配置的多通道X射线荧光光谱仪,它能够分析固体或粉状样品中各种元素的成分含量。
X射线荧光(XRF)能够测定周期表中多达83个元素所组成的各种形式和性质的导体或非导体固体材料,其中典型的样品有玻璃、塑料、金属、矿石、耐火材料、水泥和地质物料等。
凡是能和x射线发生激烈作用的样品都不能分析,而且要分析的样品必须是在真空(4~5pa)环境下才能测定。
X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。
X射线管通过产生入射X射线(一次X射线),来激发被测样品。
受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。
探测系统测量这些放射出来的二次X射线的能量及数量。
然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。
元素的原子受到高能辐射激发而引起内层电子的跃迁,同时发射出具有一定特殊性波长的X射线,因此,只要测出荧光X射线的波长或者能量,就可以知道元素的种类,这就是荧光X 射线定性分析的基础。
此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析。
近年来,X荧光光谱分析在各行业应用范围不断拓展,广泛应用于冶金、地质、有色、建材、商检、环保、卫生等各个领域,特别是在RoHS检测领域应用得zui多也zui广泛,是一种中型、经济、高性能的波长色散X射线光谱仪。
X荧光光谱仪具有以下优点:a)分析速度高。
测定用的时间与测定精密度有关,但一般都很短,2~5分钟就可以测完样品中的全部待测元素。
b)X射线荧光光谱跟样品的化学结合状态无关,而且跟固体、粉末、液体及晶质、非晶质等物质的状态也基本上没有关系。
大多数分析元素均可用其进行分析,可分析固体、粉末、熔珠、液体等样品,分析范围为Be到U。
(气体密封在容器内也可分析)但是在高分辨率的精密测定中却可看到有波长变化等现象。
特别是在超软X射线范围内,这种效应更为显著。
xrf原理XRF原理。
X射线荧光光谱分析(X-ray Fluorescence Spectrometry,XRF)是一种广泛应用于材料分析的无损分析技术。
它通过照射样品表面产生X射线,样品吸收X射线后再发射出特征的荧光X射线,通过测量荧光X射线的能量和强度来确定样品中元素的种类和含量。
XRF原理的核心是荧光X射线的产生和检测,下面将详细介绍XRF的原理及其应用。
XRF原理主要包括激发和检测两个过程。
在激发过程中,X射线管产生高能X射线,照射到样品表面,激发样品中的原子产生荧光X射线。
而在检测过程中,荧光X射线被检测器接收并转换成电信号,然后通过信号处理系统进行能量和强度的测量。
利用X射线的能量和强度,可以确定样品中元素的种类和含量。
XRF原理的应用非常广泛,主要包括金属材料分析、岩矿石分析、环境监测、文物保护等领域。
在金属材料分析中,XRF可以快速准确地测定合金中各种元素的含量,用于质量控制和产品认证。
在岩矿石分析中,XRF可以对矿石样品进行快速分析,确定矿石中各种金属元素的含量,为矿产资源的开发提供重要数据支持。
在环境监测中,XRF可以对土壤、水样等环境样品进行元素分析,用于环境监测和污染治理。
在文物保护中,XRF可以对文物样品进行非破坏性分析,确定文物材料的成分和工艺,为文物保护和修复提供科学依据。
总之,XRF原理作为一种快速、准确、无损的分析技术,已经成为材料分析领域的重要工具,为各种材料的分析和检测提供了有效的手段。
随着科学技术的不断发展,XRF原理在材料分析领域的应用将会更加广泛,为各行业的发展和进步提供强大的支持。
xrf荧光光谱仪原理
X射线荧光光谱仪(XRF)使用X射线激发样品,并测量所产生的荧光光谱,从而确定样品中的元素成分。
X射线荧光光谱仪的原理如下:
1. X射线产生:X射线管通过高电压供应产生高能量的X射线束。
2. X射线激发:X射线束照射到样品上,样品中的原子与X
射线相互作用,内层电子被激发到高能级。
3. 内层电子回落:激发的内层电子会迅速回落到低能级,释放出能量。
4. 荧光辐射:回落过程中,内层电子释放出的能量以X射线形式辐射出去,称为荧光X射线。
5. 荧光光谱测量:荧光X射线经过X射线光学系统聚焦和分离,然后进入X射线探测器。
探测器会测量荧光X射线的能量和强度,并将结果转换为荧光光谱图。
6. 元素分析:通过与已知元素的荧光光谱进行比较,可以确定样品中的元素成分和浓度。
X射线荧光光谱仪具有非破坏性、高精度、广泛适用于不同类型的样品等特点,常用于金属材料、土壤、岩矿、化学品等领域的元素分析和质量控制。
X射线荧光光谱仪结构和原理第一章X荧光光谱仪可分为同步辐射X射线荧光光谱、质子X射线荧光光谱、全反射X射线荧光光谱、波长色散X射线荧光光谱和能量色散X射线荧光光谱等。
波长色散X射线荧光光谱可分为顺序(扫描型)、多元素同时分析型(多道)谱仪和固定道与顺序型相结合的谱仪三大类。
顺序型适用于科研及多用途的工作,多道谱仪则适用于相对固定组成和批量试样分析,固定道与顺序式相结合则结合了两者的优点。
X射线荧光光谱在结构上基本由激发样品的光源、色散、探测、谱仪控制和数据处理等几部分组成。
§1.1 激发源激发样品的光源主要包括具有各种功率的X射线管、放射性核素源、质子和同步辐射光源。
波长色散X射线荧光光谱仪所用的激发源是不同功率的X射线管,功率可达4~4.5kW,类型有侧窗、端窗、透射靶和复合靶。
能量色散X射线荧光光谱仪用的激发源有小功率的X射线管,功率从4~1600W,靶型有侧窗和端窗。
靶材主要有Rh、Cr、W、Au、Mo、Cu、Ag等,并广泛使用二次靶。
现场和便携式谱仪则主要用放射性核素源。
激发元素产生特征X射线的机理是必须使原子内层电子轨道产生电子空位。
可使内层轨道电子形式空穴的激发方式主要有以下几种:带电粒子激发、电磁辐射激发、内转换现象和核衰变等。
商用的X射线荧光光谱仪中,目前最常用的激发源是电磁辐射激发。
电磁辐射激发源主要用X射线管产生的原级X射线谱、诱发性核素衰变时产生的γ射线、电子俘获和内转换所产生X射线和同步辐射光源。
§1.1.1 X射线管1、X射线管的基本结构目前在波长色散谱仪中,高功率X射线管一般用端窗靶,功率3~4KW,其结构示意图如下:X光管本质上是一个在高电压下工作的二极管,包括一个发射电子的阴极和一个收集电子的阳极(即靶材),并密封在高真空的玻璃或陶瓷外壳内。
发射电子的阴极,一般由螺旋状的灯丝组成,灯丝的材料是钨丝。
灯丝在一稳定的灯丝电流加热下发射电子,在灯丝周围形成一定密度的电子云,电子在阳极高压作用,被加速飞向阳极,与阳极材料中原子相互作用,发射X射线。