可靠性工程概论02
- 格式:ppt
- 大小:2.21 MB
- 文档页数:70
可靠性概论(一)一,可靠性工程与管理的重要意义与发展历史实践教育我们,可靠性,是产品质量的重要指标,必须给予高度重视。
它的定义是:产品在规定条件下和规定时间内,完成规定功能的能力。
也就是说,它是用时间尺度来描述的质量,是一个产品到了用户手里,随着时间的推移,能否稳定保持原有功能的问题。
可靠性高,意味着寿命长。
故障少、维修费用低;可靠性低,意味着寿命短、故障多、维修费用高;可靠性差,轻则影响工作,重则造成起火爆炸、机毁人亡等灾难性事故。
对于许多产品,我们不能只关心它的技术性能,而且要关心它的可靠性。
在某些情况下,用户宁可适当降低性能方面的指标,而要求有较高的可靠性。
可靠性概念的产生,可以追溯到1939年。
当时美国航空委员会提出飞机事故率的概念和要求,这是最早的可靠性指标。
1944年,纳粹德国试制V-2火箭袭击伦敦,有80枚火箭还没有起飞就在起飞台上爆炸。
经过研究,人们提出了火箭可靠度是所有元器件可靠度的乘积的结论,这是最早的系统可靠性概念。
第二次世界大战中,美国由于飞行事故损失飞机21000架,比被击落的还要多1. 5倍。
1949年美国海军电子设备有70%失效,每一个使用中的电子管,要有9个新电子管作为备件。
1955年美国国防预算30%用于维修和使用,以后又增加到70%,成为不堪忍受的负担。
正是在这种背景下,美国在可靠性工程与管理的理论与应用方面投入了大量的人力物力,1950年,成立了国防部电子设备可靠性工作组,以后改组为国防部电子设备可靠性顾问团(AGREE)。
这个组织进行了深入的调查研究,提出了著名的AGREE报告棗美国可靠性工作的指导纲领。
以后又相继成立了元器件可靠性管理委员会。
失效数据中心(FARADA)、政府与工业界数据交换网(GIDEP )等组织,研究元器件失效规律,定期发布可靠性数据,为研制与管理决策提供依据。
经过长期研究,制订了一系列通用军用标准,有力地指导了可靠性工程与管理实践。
可靠性工程概述内部资料注意保密课程时间:大概要1.5小时课程目的:1、了解可靠性工程的发展历程和国外可靠性的开展情况2、熟悉可靠性的基本概念3、对可靠性工程有一个整体认识4、了解公司可靠性设计流程及可靠性工作在公司的情况课程主要内容:1、国外的可靠性发展现状及可靠性工程所涉及到的一些基本概念。
2、可靠性工程系统简要介绍3、公司的可靠流程的基本介绍目录可靠性的发展历程接受、21790年年代需要解决的问题国外可靠性开展情况--国际可靠性专业协会国外可靠性开展情况--朗讯美国FCC自动报告管理信息系统(ARMIS)发布的联邦服务质量数据朗讯5ESS交换机,每年由于供应商原因造成的故障(中断)时间只有10秒,可靠性性能比竞争者高出三至四倍,比5ESS自己去年的记录高出50%以上,也是历史上唯一连续4年保持每个系统每年中断时间小于30秒的交换机,其可靠性达到6个9,即99.9999%。
系统年故障时间的行业标准是“五个9”,即正常工作时间达到99.999%,相当于每个系统每年故障时间5分钟。
国外可靠性开展情况--CISCO系统可用度:99.999%~99.9999%年中断时间:5min~0.5min严重故障的检测率:100%主备板的倒换成功率:90%~99%Always-On Availability for Multiservice Carrier Networks,,1999国外可靠性开展情况--BELL试验室相关可靠性标准国外可靠性开展情况--BELL对交换机可靠性的指标要求目录可靠性基本概念--质量与可靠性的关系可用性可靠性维修性可用性(Availability ):要用时就可用。
是在要求的外部资源得到保证的前提下,产品在规定的条件下和规定的时间区间内可执行规定功能状态的能力。
可用度A =MUT MUT +MDT其中:MUT --mean up time 平均可用时间 MDT --mean down time 平均中断时间年中断时间Downtime =(1-A )×8760×60(min/year )TSD -Total System Downtime ,全部系统停机时间PSD -Patial System Downtime ,局部系统停机时间ILD -Individual Line Downtime,每条用户线的停机时间ITD -Individual Trunk Downtime ,每条中继停机时间LFR -Line Failure Rate ,用户线故障率TFR -Trunk Failure Rate ,中继故障率可靠性基本概念--软件可靠性可靠性基本概念--维修性维修性(Maintainability ):指的是产品维修的难易程度,通常定义为产品在规定的时间和规定的人员技术水平下,用规定的程序与方法、在给定的维修级别下,进行维修时能保持或恢复规定状态的能力。
可靠性工程基本理论引言在现代工程领域中,可靠性是一个非常重要的概念。
可靠性的定义是指一个系统在一定时间内能够正常运行的概率。
为确保系统的可靠性,可靠性工程的理论和方法在许多领域内得到了广泛的应用。
本文将介绍可靠性工程的基本理论。
可靠性在讲解可靠性工程之前,我们需要先了解什么是可靠性。
可靠性是指一个系统在一定时间内能够正常运行的概率。
可靠性是通过一些统计方法和数学模型来计算的,其计算结果可以用可靠性曲线来表示。
可靠性曲线描述了系统在一定时间内能够正常运行的概率随时间的变化情况。
可靠性曲线通常可以分为三个阶段:启动期、寿命期和衰期。
启动期是指系统刚开始运行时,其可靠性较低。
寿命期是指系统运行过程中的稳定期,系统的可靠性比较高。
衰期是指系统即将达到设计寿命时,其可靠性开始逐渐降低。
为提高系统的可靠性,我们需要采取一些措施,如增加备用部件、使用高质量材料、提高制造工艺、增加维护保养等等。
通过这些措施,可以使系统的寿命期更长,同时减少衰期出现的概率。
可靠性分析可靠性分析是指通过对系统的结构和运行过程进行分析,确定系统的故障模式和影响因素,进而选择适当的维护保养策略,不断提高系统的可靠性。
可靠性分析一般包括以下几个方面:故障模式及其原因分析故障模式及其原因分析是可靠性分析的重要组成部分。
它是通过对系统的故障情况进行分析,找出故障模式及其原因,以确定系统的关键故障因素,从而采取相应的维护保养措施。
维护保养策略分析维护保养策略分析是指根据系统的故障模式及其原因分析结果,选择适当的维护保养方式和维护周期,从而延长系统的使用寿命,提高系统的可靠性。
维护保养策略的选择需要综合考虑系统的运行情况、故障严重程度、维修难度和成本等因素。
可靠度评估可靠度评估是指通过对系统的结构设计、材料工艺、运行管理等方面进行定量分析,来确定系统的可靠性,并根据评估结果制定相应的改进措施。
可靠度评估需要进行可靠性指标的计算,如可靠度、失效率、可维修性等指标。
HENAN INSTITUTE OF ENGINEERING题目学生姓名专业班级学号系(部)指导教师年月摘要可靠性工程是表征产品(系统·元件·器件等)无故障工作能力的指标,是产品的重要内在属性之一,是衡量产品质量的重要指标之一。
可靠性是一门与产品故障作斗争的新兴学科,它涉及的范围广泛,是一门综合了系统工程、管理工程、价值工程、人机工程、电子计算机技术、产品测试技术以及概率、统计、运筹、物理等多种学科成果的应用科学。
可靠性工程起源于军事领域,经过半个多世纪的迅速发展,现在已成为涉及面非常广的综合性学科。
虽然可靠性研究和很多学科一样起源于军工企业,但随着科技发展,用户对民用产品的要求也越来越高,不仅要求价格便宜,功能齐全,而且要求产品安全可靠,经久耐用。
因此产品借助可靠性预计技术来标明产品可靠性指标,将有利于增强自身竞争力,也能让用户放心购买。
所以可靠性研究对于现代企业来说有着弥足重要的作用,可以说可靠性已经扩展到我们生活和生产的方方面面。
本文试图就可靠性进行一个比较全面概括的描述,使人能够对可靠性有一个比较基本的认识。
关键词:可靠性FMEA 故障树概率论风险分析AbstractReliability Engineering is an indicator of the abili ty to work to characterize the product ( System • Components • devices, etc. ) without failure, is one of the important intrinsic properties of the product, is an important indicator of product quality. Reliability is a fault with the product to combat emerging discipline , it involves a wide range , is a comprehensive systems engineering , project management , value engineering , ergonomics , computer technology , product testing techniques and probability , statistics, multidisciplinary applied science achievement logistics, physics , etc. . Reliability Engineering originated in the military field , after half a century of rapid development , has now become involved in a very wide comprehensive discipline . Although the reliability of the study and , like many disciplines originated in military enterprises , but with technological development , user requirements for consumer products are increasingly high demand not only cheap, functional, and requires the product safe, reliable, durable. With technology so the product is expected to indicate the reliability of product reliability indicators will help enhance their competitiveness , but also allows users to rest assured purchase. Therefore, the reliability of research for modern enterprise has an important role Surrounded can say reliability has been extended to all aspects of our lives and production . This article will attempt to summarize the reliability of a more comprehensive description of the reliability of people can have a more fundamental understanding.Key:Reliability FMEA Fault Tree Analysis Risk Probability Theory目录前言 (3)第一节可靠性的历史 (3)第二节定义与基本概念 (4)第三节可靠性模型与分析 (5)第四节FMEA FCA FTA (7)第五节可靠性设计 (8)第六节可靠性试验 (9)第七节总结 (10)参考文献 (11)前言随着科学技术的进步和产品质量意识的提高,可靠性工程在质量控制中的地位逐渐被企业认同。
可靠性概论(二)一、可靠性及其尺度1.可靠度国家标准给产品可靠度下的定义是:产品在规定的条件下和规定的时间内完成规定功能的概率。
简言之,产品的可靠性是用概率来度量的。
例如,某金属膜电阻在温度为45℃和流过电流100毫安的条件下工作1000小时,其阻值变化不超过上3%的能力为99%,就是该电阻的可靠度。
显然,当环境温度不同,电流负荷不同,工作时间不同,参数漂移不同时,电阻的可靠度也就不会一样。
可靠度用概率来度量。
概率可用事件出现的频率来解释。
例如,某种型号的洗衣机在普通家庭连续工作5年的可靠度是90%,如果用频率来解释概率,则意味着这种洗衣机在售出100台於5年内大约有90台仍能使用,而大约有10台将发生故障。
火箭等一次性使用的产品也常用成功率这个术语来代替可靠度。
2.平均寿命产品从处于完好状态开始,直到进入失效状态,所经历的时间称为产品的寿命。
因此,作为可靠性的尺度,也可用时间来表示。
最常用的有MTTF(发生失效前的平均时间)和MTBF(平均无故障工作时间),两者都称为平均寿命。
前者用于不维修的产品,后者用于可维修的产品。
平均寿命,顾名思义,它是一批产品的寿命平均值,尽管单件产品的寿命可能完全不同。
除平均寿命外,对某些重要的产品常使用可靠寿命。
我们知道,产品的可靠度是随时间变化的,随着时间的延长可靠度会越来越低。
假定开始时产品的可靠度为1,以后在不同的时刻,产品的可靠度将具有不同的r值。
在可靠性工作中,经常需要知道,对于给定的r,产品的可靠度下降到 r时所经历的时间是多少,这个时间就是产品的可靠寿命.3.失效率某些产品的可靠性,特别是电子元器件的可靠性,常用失效比例来测定。
比较容易理解的是所谓平均失效率。
它可用公式表示如下:平均失效率:失效产品的百分比 / 工作时间例如,某种调谐器的平均失效率为1%/1000小时,它的意思是100只这种调谐器使用1000小时平均有1只失效。
然而,在可靠性工作中更常用的是所谓瞬时失效率,简称失效率。
第一章 可靠性工程概论1.1 可靠性的定义可靠性它是衡量产品质量的一个重要指标。
可靠性理论在其发展过程中形成了3个主要领域(或称3个独立学科): 1、 可靠性数学:研究与解决各种可靠性问题的数学方法和数学模型,属应用数学范畴,涉及概率论、数理统计、随机过程、运筹学及拓扑科学等,应用于可靠性的数据收集、分析、系统设计及寿命试验等方面。
2、 可靠性物理:又称失效物理,研究失效的物理原因与数学物理模型、检测方法、纠正措施的一门可靠性理论。
它使可靠性工程从数理统计方法发展到以理化分析方法为基础的失效分析方法,它是从本质上,机理上探究产品不可靠因素,从而为研究高可靠性的产品提供科学依据。
3、 可靠性工程:是对产品的失效及其发生概率进行统计分析,对产品进行R 设计、R 预计、R 试验、R 评估、R 检验、R 控制、R 维修、R 管理等的一门包含了许多工程技术的边缘性的工程学科。
本课程主要研究的是可靠性工程的相关问题。
可靠性:产品在规定的条件下和规定的时间内完成规定功能的能力。
产品:可以是系统、子系统、设备、元件、部件等规定的条件:使用条件,运输、储存、使用时的环境条件(温度、压力、湿度、载荷、振动、腐蚀、磨损等等),使用方法、维修水平等规定的时间:R 是t 的函数,t 可以是时间、起落次数、里程等 规定的功能:故障、不能工作、参数漂移,要有故障判据 可靠性分为:固有R :在生产工程中已经确立了的可靠性使用R :使用环境、操作水平、保养与维修等因素基本R :产品在规定条件下,无故障的持续时间或概率。
反映维修人力和后勤保障等要求任务R :产品在规定的任务剖面内完成规定功能的能力 1.2 可靠性特征量1、 可靠度与不可靠度可靠度: R=R (t )=P(E)=P(T ≥t ) t ≥0 E :“产品在规定条件下和规定时间内完成规定功能”这一事件 T :“产品正常工作时间”这一随机变量 t :指定某一时间不可靠度:)()(1)(t T P t R t F <=-= (不可靠度函数或失效概率函数) 由此式可知:)(t F 是随机变量T 的分布函数,其密度函数为 dtt dR dt t dF t f )()()(-==(此处也叫失效密度函数或故障密度函数) 由上式:)(t F =⎰tdt t f 0)( 由此可知,)(t F 为累积失效密度函数)(t R =-1)(t F =-1⎰tdt t f 0)(=⎰∞tdt t f )(用观测值表示R (t ),F (t )设有N 个同型号产品,开始工作t=0,到任意时间t 时,有n (t )个失效,则有N-n (t )个能正常工作)(t R =N t n N )(- )(t F =Nt n )(R (0)=1,R (∞)=0;F (0)=0,F (∞)=1 变化规律:2、 失效率λ(t )工作到某时刻t 时尚未失效或故障的产品,在t 时刻以后的下一个单位时间内发生失效或故障的概率。