激光焊接讲解
- 格式:ppt
- 大小:1.93 MB
- 文档页数:25
激光焊接工艺参数激光焊接是一种高效、高质量、非接触的焊接方法,广泛应用于精密零件的制造、电子产品的组装、汽车工业、航空航天等领域。
激光焊接工艺参数对焊接质量和效率起着重要的影响。
下面将介绍一些常用的激光焊接工艺参数。
1.激光功率:激光焊接的功率决定了熔池的温度和熔化的能量。
功率过高会导致焊缝过深、过宽,功率过低则影响焊接质量。
根据不同材料和焊接要求,选择合适的激光功率,通常在几百瓦到几千瓦之间。
2.焦距:焦距是指激光束通过聚焦镜后在焊接部位形成的焦点与工件表面之间的距离。
焦距的选择与焊接材料的厚度、焊枪的设计、激光束的直径等因素相关。
焦距过大会导致焊接深度不够,焦距过小则容易引起溅射和熔洞。
3.光斑直径:光斑直径影响焊缝的宽度和深度。
通常情况下,焊接深度正比于光斑直径的平方。
选择合适的光斑直径可以控制焊缝的大小和形状。
4.扫描速度:扫描速度是指焊接头在工件上移动的速度。
扫描速度的选择要根据焊接材料的导热性和热膨胀系数来确定。
过高的扫描速度可能导致焊缝无法充分熔化,过低的扫描速度则容易引起过热和熔洞。
5.激光脉冲频率:激光脉冲频率决定了激光束的脉冲数。
较低的脉冲频率可以增加焊缝的深度,较高的脉冲频率则可以增加焊缝的宽度。
根据焊接要求选择合适的脉冲频率。
6.各向异性系数:各向异性系数是指焊接材料在激光束照射下沿不同方向扩散的能力。
不同金属材料的各向异性系数差异较大,选择合适的激光焊接参数可以减小焊缝形状的变化。
7.激光束模式:激光束的光斑形状可以通过调整激光器的谐振腔或使用适当的光学元件来改变。
常见的激光束模式包括高斯模式、倍高斯模式和束团模式等。
不同的光斑形状对焊接质量和效率有影响。
总结起来,激光焊接工艺参数包括激光功率、焦距、光斑直径、扫描速度、激光脉冲频率、各向异性系数和激光束模式等。
通过合理地选择这些参数,可以实现高质量、高效率的激光焊接。
激光焊接原理与主要工艺参数作者:opticsky 日期:2006-12-01字体大小: 小中大1.激光焊接原理激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。
功率密度小于104~105 W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107 W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。
其中热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。
用于齿轮焊接和冶金薄板焊接用的激光焊接机主要涉及激光深熔焊接。
下面重点介绍激光深熔焊接的原理。
激光深熔焊接一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。
在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。
这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达2500 0C左右,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。
小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。
孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。
光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。
就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。
上述过程的所有这一切发生得如此快,使焊接速度很容易达到每分钟数米。
2. 激光深熔焊接的主要工艺参数1激光功率。
激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。
图1 激光钎焊焊缝外观激光焊接因具有高能量密度、可聚焦、深穿透、高效率、高精度及适应性强等优点,受到各汽车厂家的高度重视。
长安福特马自达从建厂初期就引进了福特成熟的激光焊接技术,极大地提高了车身的焊接质量。
激光焊是利用高能量密度的激光作为热源的一种高效、精密的焊接方法。
随着航空航天、汽车、微电子等行业的迅猛发展,产品零件结构形状越来越复杂,人们对产品加工精度和表面完整性,以及生产效率、工作环境的要求越来越高,传统的焊接方法难以满足要求,以激光为代表的高能焊接方法得到广泛应用。
激光焊接因具有高能量密度、可聚焦、深穿透、高效率、高精度及适应性强等优点,受到各汽车厂家的高度重视。
福特工厂在20世纪80年代已广泛应用了该项技术,长安福特马自达从建厂初期就引进了福特成熟的激光焊接技术,极大地提高了车身的焊接质量。
激光焊的原理及特点激光焊接是将高强度的激光束辐射至金属表面,通过激光与金属的相互作用,金属吸收激光转化为热能使金属熔化后冷却结晶形成焊接。
按激光器输出能量方式的不同,激光焊可分为脉冲激光焊和连续激光焊(包括高频脉冲连续激光焊);按激光聚焦后光斑上功率密度的不同,激光焊可分为传热焊和深熔焊;在激光深熔焊中又分为对接焊(钎焊)和搭接焊,前者需要填钎料,外观美观。
激光焊的优势主要包括:激光焦点光斑小,功率密度高,能焊接一些高熔点、高强度的合金材料;激光焊是无接触加工,没有工具损耗和工具调换等问题;激光能量和移动速度可调,可实现多种焊接加工;自动化程度高,可以用计算机进行控制,焊接速度快、功效高,可方便地进行任何复杂形状的焊接;热影响区和材料变形小,无需后续工序处理;激光可通过玻璃,焊接处于真空容器内的工件及处于复杂结构内部位置的工件;易于导向、聚焦,实现各方向变换;激光焊接与电子束加工相比较,不需要严格的真空设备系统,操作方便;生产效率高,加工质量稳定可靠,经济和社会效益好。
图2 激光焊接质量控制激光焊接设备激光焊接设备主要由激光器(固体、气体、半导体)、导光系统、控制系统、工件装夹及运动系统等主要部件和光学元件的冷却系统、光学系统的保护装置、过程与质量的监控系统、工件上下料装置及安全装置等外围设备组成。
激光焊接基础李俐群哈尔滨工业大学现代焊接生产技术国家重点实验室你应该知道: 1. 激光可以进行哪些加工? 2. 常用的工业激光器有哪些?各有什么样的加工特点? 3. 激光深熔焊的主要物理特征是什么? 4. 激光焊接的主要问题是什么?激光加工技术在工业中的应用工业激光加工技术焊接切割成形快速成形熔覆修复表面硬化打标激光加工技术应用概述各种加工方法的适用范围为什么要采用激光为什么要采用激光自动化程度高为什么要采用激光高度的灵活性为什么要采用激光高精度为什么要采用激光生产率高为什么要采用激光革新传统加工方式为什么要采用激光革新传统加工方式世界激光加工技术的发展现状工业激光器的市场分布激光器制造商:美国:PRC PRAMA 德国:TRUMPF (HAAS) ROFIN-SINAR IPG 英国:LUMONICS 中国:大族、楚天世界激光加工技术的发展现状各种加工方法的应用比例打孔其它 9% 雕刻3% 12% 微处理 14% 打标 24% 切割 24% 焊接 14%激光在汽车加工中的应用激光束的基本物理特性光束的模式通常把光波场的空间分布分解为沿传播方向的分布和垂直于传播方向的横截面内的分布,分别称为纵模和横模。
光腔的横模代表了激光束光场的横向分布规律,对激光加工影响极大。
光腔的纵模主要影响激光的频率,与激光加工关系很小。
光束的模式气体激光束的模式 CO2激光通常用TEMmn 表示横模的光场分布,TEM 是横电磁波“Transverse Electromagnetic Wave”的缩写,m、n为正整数。
横模可以是轴对称的,也可以是对光轴旋转对称的。
气体激光的光能横向分布光束的模式光强气体激光束的模式不论是轴对称还是旋转对称,其 TEM00模是一致的,称为基模。
一束沿方向传播的基模光束的光强可表示为:光斑半径⎡ 2( x 2 + y 2 ⎤ 2P exp ⎢ − I ( x, y , z = 2 πω ( z ω 2 ( z ⎥⎣⎦ TEM00 光束的模式气体激光束的模式 TEM01 TEM00光束的模式气体激光束的模式光束的模式固体激光束的模式 YAG等固体激光器,其光能的空间分布则远为复杂,不能用简单的数学公式描述。
激光焊接操作方法有哪些激光焊接是一种高效、精确的焊接方法,广泛应用于电子、汽车、航空航天等领域。
激光焊接操作方法有多种,下面将详细介绍几种常见的激光焊接操作方法。
1. 手动激光焊接手动激光焊接是一种简单而常见的激光焊接方法。
操作人员通过手持激光焊接枪,沿着焊接路径进行焊接。
手动激光焊接适用于焊接复杂形状的工件,操作灵活方便。
在手动激光焊接过程中,操作人员需要根据工件的形状和材料特性,调整焊接速度、焦距等参数,确保焊接质量。
2. 半自动激光焊接半自动激光焊接是一种介于手动焊接和全自动焊接之间的焊接方法。
在半自动激光焊接中,操作人员通过控制焊接设备进行焊接。
操作人员需要对焊接参数进行调整,并控制焊接头的移动速度和焦距,以确保焊接质量。
相比手动焊接,半自动激光焊接可以提高焊接效率和一致性。
3. 全自动激光焊接全自动激光焊接是一种高度自动化的焊接方法,通常用于焊接大批量、重复性高的工件。
在全自动激光焊接中,焊接设备通过预先设定的程序进行焊接,操作人员只需监控焊接过程。
全自动激光焊接可以大大提高生产效率和一致性,减少人为操作对焊接质量的影响。
4. 激光深熔焊接激光深熔焊接是一种利用激光高能量密度对工件进行熔化焊接的方法。
在激光深熔焊接中,激光束聚焦到工件表面,产生高温区域,使工件材料瞬间熔化并形成焊缝。
激光深熔焊接通常用于焊接厚板、薄壁管等工件,可以实现高速、高效的焊接。
5. 激光钎焊激光钎焊是一种利用激光束对填充材料进行局部加热,实现焊接的方法。
激光钎焊适用于焊接金属与非金属材料,或者焊接材料相近但熔点不同的工件。
在激光钎焊过程中,需要控制激光能量和填充材料的加热温度,以确保焊接质量和填充材料与基材的良好结合。
以上是几种常见的激光焊接操作方法,每种方法都有其适用的场景和操作要点。
在进行激光焊接操作时,操作人员需要根据工件的要求和材料特性,选择合适的焊接方法,并合理调整焊接参数,以确保焊接质量和效率。
同时,操作人员还需要遵守激光焊接的安全操作规程,使用适当的防护装备,确保人员和设备的安全。
激光焊接技术的工艺与方法激光焊接技术是一种非常重要且广泛应用于工业生产领域的焊接方法。
它利用高能量密度的激光束来加热工件表面,使其达到熔化点,然后通过材料的自身熔化来进行焊接。
激光焊接技术具有高精度、高效率和不受材料性质限制等优点,因此在汽车制造、电子设备、航空航天等领域得到广泛应用。
本文将重点探讨激光焊接技术的一些常见工艺与方法,以及其在实际应用中的一些注意事项。
一、工艺常见方法1.传统激光焊接传统激光焊接是指使用高功率连续波激光进行焊接的方法。
其工作原理是将激光束聚焦到非常小的焦点上,通过光能的聚焦来使工件表面局部熔化,形成焊缝。
该方法适用于焊接厚度较大的工件,具有焊缝宽度窄、焊缝深度大的优点。
然而,由于激光能量密度较高,容易引起工件变形和热裂纹等问题,需要进行严格的控制和预热处理。
2.脉冲激光焊接脉冲激光焊接是指使用高能量脉冲激光进行焊接的方法。
相比传统激光焊接,脉冲激光焊接的能量密度更高,激光束作用时间更短,因此在焊接过程中对工件的热影响较小。
这种方法适用于对焊接过程热输入要求较低的材料,如薄板、精密仪器等。
脉冲激光焊接还可以实现连续拼接焊接和高速激光焊接等特殊要求。
3.深熔激光焊接深熔激光焊接是一种通过在焊接过程中使工件局部熔化并加热至汽化温度,利用金属蒸汽对激光束进行抑制,从而实现深熔焊接的方法。
该方法适用于要求焊缝深度较大的工件,如不锈钢、铝合金等。
在深熔激光焊接过程中,需要控制好激光束的功率和速度,以确保焊缝的质量和形状。
二、实际应用注意事项1.材料选择在激光焊接过程中,不同材料对激光的吸收率和热传导率不同,因此在选择焊接材料时需要考虑其适应激光焊接的特性。
同时还需要考虑材料的熔点、热膨胀系数等参数,以确保焊接质量。
2.焊接参数控制激光焊接的参数包括激光功率、激光束直径、焦距、焊接速度等多个方面。
这些参数的选择和控制直接影响焊缝的质量和性能。
因此,在实际应用中需要通过试验和实践确定最佳的焊接参数。
激光塑料焊接的过程监控和质量控制讲解过程监控主要包括对激光焊接过程的各种参数进行实时监测和控制,以确保焊接接头的质量。
首先,需要对激光功率进行监测和控制,以确保激光束的能量适中,不会过高或过低。
过高的激光功率可能导致焊接接头熔化过深,影响接头的强度,而过低的激光功率则可能导致接头未能完全熔化,造成焊接不牢固。
其次,需要对激光束直径进行监测和控制,以确保焊接接头的大小和形状符合要求。
过大或过小的激光束直径都会对焊接接头的质量产生不良影响。
最后,还需要对焊接速度进行实时监测和调整,以保证焊接接头的质量和一致性。
焊接速度过快可能导致焊接接头温度不够高,焊接不牢固,而焊接速度过慢则可能导致接头过热,产生气泡和焊接缺陷。
质量控制是指对焊接接头的质量进行检测和评估,以确保接头符合要求。
首先,需要对焊接接头的形状和尺寸进行检测和测量,以确保接头的几何形状和尺寸符合设计要求。
可以使用光学投影仪、三坐标测量仪等设备进行测量。
其次,需要对焊接接头的强度进行测试,以判断焊接接头的牢固性和稳定性。
可以使用剪切强度测试、拉伸强度测试等方法进行测试。
最后,还需要对接头的外观进行检查,以确保焊接接头的表面质量和光洁度符合要求。
可以使用显微镜、高清相机等设备进行检查。
在激光塑料焊接的过程监控和质量控制中,还需要注意以下几个关键点。
首先,需要选择适合的激光脉冲频率和激光速度,以控制焊接接头的大小和形状。
其次,需要使用合适的辅助材料,如增塑剂、吸湿剂等,以提高焊接接头的质量和强度。
最后,需要定期维护和校准激光焊接设备,以确保设备的稳定性和精确度。
总的来说,激光塑料焊接的过程监控和质量控制是确保焊接接头质量稳定的关键环节。
通过实时监测和控制焊接过程中的各种参数,以及对焊接接头的形状、尺寸、强度和外观进行检测和评估,可以保证焊接接头的质量和稳定性,提高焊接的一致性和可靠性。