环己烷构象
- 格式:ppt
- 大小:359.50 KB
- 文档页数:9
环烷烃的构象链状化合物的构象是由基团绕C—Cσ键旋转产生的;而环状化合物的构象至少涉及到两个C—Cσ键和其键角的转动和变化,有时还涉及到键长和键角的变化,比较复杂,常称环的翻转。
一、环丙烷的构象环丙烷是三个碳的环,只能是平面构象,即它的构型。
尽管只有一种构象,但这个环极不稳定,主要因为:1、所有C-H键都是重叠构象,扭转张力大。
2、C原子是不等性杂化或弯曲键,有“角张力”存在。
二、环丁烷的构象环丁烷有两种极限构象:动画演示:平面式构象:象环丙烷一样,不稳定,存在扭转张力和“角张力”。
蝶式构象:能缓解扭转张力和角张力,呈蝶式构象。
通过平面式构象,由一种蝶式翻转成为另一种蝶式构象,处于动态平衡。
蝶式是优势构象。
也有扭转能力和角张力存在。
三、环戊烷的构象环戊烷的构象主要是信封式和半椅式构象。
两者处于平衡。
因为平面构象能量较大,一般认为环戊烷采取这种构象可能性很少。
E相对=19kJ/mol 信封式半椅式四、环己烷的构象环己烷的构象经过近百年的努力才建立起来。
Baeyer 1885年提出张力学说,认为环状化合物是平面构型Sachse 1889年质疑张力学说只适合小环,提出环已烷有船式、椅式两种构象。
Hassel 1930年利用偶极矩测定法和电子衍射法研究环已烷构象,∠CCC=109.5°,气相、液相中环已烷几乎全是椅式构象。
Barton 1950年发展了构象理论,以甾族化合物为对象提出构象分析,把构象分析明确地引入有机化学中。
Hassel 和Barton获1969年Nobel化学奖1、椅式和船式构象环已烷保持碳原子的109.5°键角,提出了椅式和船式构象.1)椅式构象:C1、C2、C4、C5在一个平面上,C6和C3分别在平面的下面和平面的上面,很象椅脚和椅背,故称“椅式”。
2)船式构象:C1、C2、C4、C5在一个平面上,C3和C6在平面上面。
形状象只船,C3和C6相当船头和船尾,故称“船式”。
环烷烃的构象链状化合物的构象是由基团绕C—Cσ键旋转产生的;而环状化合物的构象至少涉及到两个C—Cσ键和其键角的转动和变化,有时还涉及到键长和键角的变化,比较复杂,常称环的翻转。
一、环丙烷的构象环丙烷是三个碳的环,只能是平面构象,即它的构型。
尽管只有一种构象,但这个环极不稳定,主要因为:1、所有C-H键都是重叠构象,扭转张力大。
2、C原子是不等性杂化或弯曲键,有“角张力”存在。
二、环丁烷的构象环丁烷有两种极限构象:动画演示:平面式构象:象环丙烷一样,不稳定,存在扭转张力和“角张力”。
蝶式构象:能缓解扭转张力和角张力,呈蝶式构象。
通过平面式构象,由一种蝶式翻转成为另一种蝶式构象,处于动态平衡。
蝶式是优势构象。
也有扭转能力和角张力存在。
三、环戊烷的构象环戊烷的构象主要是信封式和半椅式构象。
两者处于平衡。
因为平面构象能量较大,一般认为环戊烷采取这种构象可能性很少。
E相对=19kJ/mol 信封式半椅式四、环己烷的构象环己烷的构象经过近百年的努力才建立起来。
Baeyer 1885年提出张力学说,认为环状化合物是平面构型Sachse 1889年质疑张力学说只适合小环,提出环已烷有船式、椅式两种构象。
Hassel 1930年利用偶极矩测定法和电子衍射法研究环已烷构象,∠CCC=109.5°,气相、液相中环已烷几乎全是椅式构象。
Barton 1950年发展了构象理论,以甾族化合物为对象提出构象分析,把构象分析明确地引入有机化学中。
Hassel 和Barton获1969年Nobel化学奖1、椅式和船式构象环已烷保持碳原子的109.5°键角,提出了椅式和船式构象.1)椅式构象:C1、C2、C4、C5在一个平面上,C6和C3分别在平面的下面和平面的上面,很象椅脚和椅背,故称“椅式”。
2)船式构象:C1、C2、C4、C5在一个平面上,C3和C6在平面上面。
形状象只船,C3和C6相当船头和船尾,故称“船式”。
环己烷构象本文由南通润丰石油化工整理椅型环己烷分子。
红色为直键氢原子,蓝色为平键氢原子。
历史背景很早就有人提出环己烷可能不是平面型结构。
1890年,德国人赫尔曼·萨克森(Hermann Sachse)提出通过折纸来构建环己烷“对称”和“非对称”结构(即现椅型和船型结构)的方法,从他的文章可以感受出,他已经知晓这些构象有两种不同的氢原子(即现直键氢和平键氢)以及两种椅型结构可能会相互转化,甚至还意识到两种椅型结构的分布可能受环上某些取代基的影响。
不过他的文章没有获得化学家的足够重视,一方面是文章的数学成分太多,难以理解,另一方面则是他的文章没有发表到主要的期刊上。
1893年仅31岁的萨克森去世,他的研究也就此结束。
直到1918年恩斯特·摩尔(Ernst Mohr)用新问世的X射线晶体学技术测定金刚石结构时,才发现所得结构中的基础结构单元正是萨克森预测过的椅型结构,才使环己烷构象研究重新进入焦点之中。
椅型构象sp3杂化的碳原子是四价的,键间角度为109.5°,所以环己烷不是平面的键角120°的正六边形结构,而是采取多种三维的构象。
椅型构象描述的是普通状态环己烷最稳定的构象,25度时99.99%的环己烷分子都是这种构象。
德里克·巴顿和奥德·哈塞尔因对环己烷和其他分子构象的研究而获得诺贝尔化学奖。
能量最低的椅型构象中,12个氢原子中有6个处于竖直方向(红色)——这些碳-氢键互相平行,呈轴向排列,分列环上下,称为直键。
另6个氢处于近似水平方向(蓝色)——这些碳-氢键大致平伏,分别稍向下和向上翘起,称为平键。
对于同一碳原子来说,若与它相连的直键氢是向上的,则平键氢稍向下,反之亦然。
观察可知,对于连有向上直键、稍向下平键的碳原子,与其相邻的两个碳原子必然连有向下直键和稍向上平键。
而且环中相对碳原子所连平键和直键的方向也必然是分别相反的(如H1和H4)。
H AH BH AH B123456123456234613456半椅式构象中,1,2,3,4四个C 原子在同一个平面上,另两个C 原子(5,6)分别位于该平面的上方和下方。
半椅式构象是用分子力学计算过渡态的几何形象时提出的,是环己烷分子势能最高、最不稳定的构象;与椅式构象之间的势能差约为46kJ/mol 。
2)半椅式构象(Half-chair conformation )H A H B H A H B 123456123563) 扭船式构象(Twist-boat or skew-boat conformation )AB123561245H AH B扭船式构象中,所有的二面角都是30℃,所有的对边都是交叉的。
由椅式构象转变为扭船式构象,需要经历一个半椅式构象。
H H HHH143256123456扭船式构象比椅式构象不稳定,能量差为23.5kJ/mol 。
A H 123456124A B4)船式构象(Boat conformation )1,3,4,6四个C 原子共平面;另两个C 原子(2,5)在这一平面的同一侧;123456123564123456H HHH HH H H H HH H1456321,6和3,4分别为全重叠;1,2、2,3、4,5、5,6分别为邻位交叉。
因此,船式构象不如椅式构象稳定,两者之间的势能差约为29kJ/mol 。
船式构象中,2、5上两个H 原子(称为“旗杆氢”原子)相距较近(183pm ),存在非键空间张力;无键角张力。
1,6和3,4为全重叠式,存在键扭转张力。
H HHH HH HHHH 1234566.2.3 环己烷的构象翻转扭船式构象中,两个“旗杆”H 原子间的距离相对较远,非键空间张力小,因此比船式构象稳定,两者之间的势能差为5.4kJ/mol 。
H H H H HHH1432566.2.3 环己烷的构象翻转H AH BH AB123456123561245A B6312356235641234561245A B63123456AB12356H AH B6.2.3 环己烷的构象翻转船式椅式椅式扭船式半椅式半椅式扭船式势能23.5kJ/mol 46 kJ/mol6.2.3 环己烷的构象翻转6.2.3 环己烷的构象翻转总结:环己烷的椅式构象可以通过C–C键的旋转变成另一个椅式构象,a键和e键随之转换;此过程称为“构象翻转”(Conformational inversion),相应的两个椅式构象互称为“构象转换体”。
环己烷的构象
环己烷是一种六元环有机化合物,化学式为C6H12,它由六个碳原子和十二个氢原子构成,其中每个碳原子都与两个相邻的碳原子和两
个氢原子共形成四个共价键。
环己烷的最稳定的构象为椅形结构,在该结构中,六个碳原子组
成一个六角形,并且在这个六角形的上方和下方各有三个碳原子,这
些碳原子呈现出交错排列的形式。
椅形结构的环己烷分子如同一个椅子,因此称之为“椅状构象”,这种构象下的环己烷稳定性最高,且
相对地容易被取代反应,因此被广泛应用于有机合成中。
另一种环己烷构象是船形结构,其中碳原子按照类似船底的形状
排列。
这种构象相对于椅形结构来说不太稳定,因为其中两个碳原子
太近,容易引起反式构型相互作用的影响。
此外,环己烷还可能形成
扭曲构象,在这种构象下,环己烷分子呈现出扭曲的形状。
环己烷的构象对于它的性质和应用具有重要影响。
例如,在某些
有机化学反应中,需要采用椅形构象才能有效进行反应。
此外,环己
烷还可以作为溶剂、润滑剂、燃料等应用于许多领域。
总之,环己烷所具有的不同构象对它的性质和应用有着重要影响,了解环己烷的构象,有助于研究其在有机合成和其他领域中的应用。
环己烷的构象翻转是指分子在空间中通过原子旋转的方式改变构象的过程。
具体来说,环己烷有两种主要的椅式构象:椅式Ⅰ和椅式Ⅱ。
在构象翻转过程中,碳原子会围绕分子轴线旋转,从而改变分子的构象。
这个过程涉及到一系列的中间状态,包括过渡态和过渡间隔态。
构象翻转的过程中,碳原子的旋转会引起分子内部键角的变化,从而影响分子的性质和反应活性。
影响环己烷构象翻转的因素包括环己烷分子的结构、温度、溶剂和外界影响等。
在室温下,环己烷分子更倾向于保持椅式构象,因为椅式结构比船式结构更为稳定。
然而,当温度升高时,环己烷分子的热运动会增加,从而促进构象翻转的发生。
溶剂的极性和溶解能力也会影响构象翻转的速率,极性溶剂可以与环己烷分子形成氢键或离子偶极相互作用,从而加速构象翻转的发生。
此外,外界的压力和扰动也会影响构象翻转的速率。
在化学合成和生物学研究中,环己烷的构象翻转具有广泛的应用。
例如,在有机合成中,可以通过控制构象翻转的发生来合成具有特定构象的化合物。
在生物学研究中,观察和控制构象翻转的发生可以帮助揭示分子的结构和功能之间的关系。
以上内容仅供参考,如需更全面准确的信息,可以查阅化学领域的专业书籍或咨询相关学者。
环烷烃的构象和拜尔张力学说环烷烃的构象1.环己烷的构象早在1890年,沙赫斯(Sachse,H.)通过研究以为,依照正四面体的模型,六个碳原子的环能够不在同一平面上,同时还维持着正四面体的正常角度,但由于表达得不清楚,图又画得不行,因此没有引发那时化学家们的注意。
莫尔(Mohr,E.,1918)从头研究了那个问题,正式提出了非平面无张力环的学说,并画出模型。
他以为碳原子能够维持正常的键角,环己烷的六个碳原子不在同一平面上,能够形成两种折叠着的环系,如图2-19所示。
图2-19(i)的两个叫作椅型,它是一个超级对称的分子,借助于模型能够看得很清楚。
第一,在那个模型中的碳原子是处在一上一下的位置。
第二,那个模型是僵硬的,只要一个键角改变,其它键角也同时改变。
第三,还能够看到,环中相邻两个碳原子的构象都是邻交叉型的,如用纽曼式表示,成为以下的形式:最后,还能够看出,椅型的环己烷的氢原子能够分为两组:一组是六个C——H键与分子的对称轴大致是垂直的,都伸出环外,这叫作平键(或称平伏键)或e键(e是equatorial的字首,赤道的意思),三个e键略往上伸,三个e键略向下伸;另六个氢的键都是与轴平行的,这叫作直键(或称直立键)或a键(a是axial的字首,轴的意思),三个伸在环的下面,三个伸在环的上面。
图2-19(i)中带点的白球都在环的上面,不带点的白球都在环的下面。
这种关系在斯陶特模型图2-20中能够表示得更清楚一些:在图2-20中,a键的氢原子都用带黑点的球表示,e键的氢原子用白球表示。
由于成环的碳链是封锁的,因此沿着碳碳键不管如何旋转,在环上面的不可能转到环的下面来,老是维持着原先各个氢原子的空间关系。
这种构象,既无角张力,也无扭转张力,代表一个最稳固的形式,是优势构象。
另一种维持正常键角的环己烷模型如图2-19(ii)的两个,叫作船型,可用纽曼式表示如下:第一可看到,2、3和5、6两对碳原子的构象是重叠型的,这种构象虽无角张力,但有扭转张力,相当于能量高的构象。