快速傅里叶变更fft的Matlab实现 实验报告
- 格式:pdf
- 大小:377.52 KB
- 文档页数:10
实验二 用MATLAB 计算傅立叶变换(2课时)一、实验目的1、掌握用MA TLAB 计算DTFT 及系统频率响应的方法。
2、掌握用MA TLAB 计算DFT 和IDFT 的方法。
3、掌握用DFT 计算圆周卷积和线性卷积的方法。
二、实验设备计算机一台,装有MATLAB 软件。
三、实验原理和基本操作1.用MA TLAB 计算DTFT对于序列x (n ),其离散时间傅立叶变换(DTFT )定义为:∑∞-∞=-=n n j e n x j X ωω)()( (1)序列的傅立叶变换(DTFT )在频域是连续的,并且以ω=2π为周期。
因此只需要知道jw X(e )的一个周期,即ω=[0,2π],或[-π,π]。
就可以分析序列的频谱。
用MA TLAB 计算DTFT ,必须在-π≤ω≤π范围内,把ω用很密的、长度很长的向量来近似,该向量中各个值可用下式表示: w=k*dw=k*K π2 (2) 其中:d ω=Kπ2 称为频率分辨率。
它表示把数字频率的范围2π均分成K 份后,每一份的大小,k 是表示频率序数的整数向量,简称为频序向量,它的取值可以有几种方法:通常在DTFT 中,频率取-π≤ω<л的范围,当K 为偶数时,取 k 12,,1,0,1,,12,2--+--=K K K 如果K 为奇数,则取 k 5.02,,1,0,1,,5.02--+-=K K 可以为奇偶两种情况综合出一个共同的确定频序向量k 的公式; k=12K -⎢⎥-⎢⎥⎣⎦ :12K -⎢⎥⎢⎥⎣⎦(3) 上式中⎢⎥⎣⎦表示向下取整。
在MA TLAB 中的向下取整函数为floor ,floor (x )的作用是把x 向下(向-∞方向)取整,所以与(3)式等价的MATLAB 语句为 k ))5.02(:)5.02((-+-=K K floor (4) 给定了输入序列(包括序列x 及其位置向量n ),又设定了频率分辨率d ω及频序向量k ,则DTFT 的计算式(1)可以用一个向量与矩阵相乘的运算来实现。
快速傅立叶变换〔FFT〕算法试验一.试验目的1.加深对DFT 算法原理和根本性质的理解;2.生疏FFT 算法原理和FFT 子程序的应用;3.学习用FFT 对连续信号和时域信号进展谱分析的方法,了解可能消灭的分析误差及其缘由,以便在实际中正确应用FFT。
二.试验设备计算机,CCS 3.1 版软件,E300 试验箱,DSP 仿真器,导线三.根本原理1.离散傅立叶变换DFT 的定义:将时域的采样变换成频域的周期性离散函数,频域的采样也可以变换成时域的周期性离散函数,这样的变换称为离散傅立叶变换,简称DFT。
2.FFT 是DFT 的一种快速算法,将DFT 的N2 步运算削减为〔N/2〕logN 步,极大2的提高了运算的速度。
3.旋转因子的变化规律。
4.蝶形运算规律。
5.基2FFT 算法。
四.试验步骤1.E300 底板的开关SW4 的第1 位置ON,其余置OFF。
其余开关不用具体设置。
2.E300 板子上的SW7 开关的第1 位置OFF,其余位置ON3.阅读本试验所供给的样例子程序;4.运行CCS 软件,对样例程序进展跟踪,分析结果;记录必要的参数。
5.填写试验报告。
6.供给样例程序试验操作说明A.试验前预备用导线连接“Signal expansion Unit”中2 号孔接口“SIN”和“A/D 单元”的2 号孔接口“AD_IN0”。
〔试验承受的是外部的AD模块〕B.试验1.正确完成计算机、DSP 仿真器和试验箱的连接后,系统上电。
2.启动CCS3.1,Project/Open 翻开“algorithm\01_fft”子名目下“fft.pjt”工程文件;双击“fft.pjt”及“Source”可查看各源程序;加载“Debug\fft.out”;3.单击“Debug\Go main”进入到主程序,在主程序“flag=0;”处设置断点;4.单击“Debug \ Run”运行程序,或按F5 运行程序;程序将运行至断点处停顿;5.用View / Graph / Time/Frequency 翻开一个图形观看窗口;设置该观看图形窗口变量及参数;承受双踪观看在启始地址分别为px 和pz,长度为128,数值类型为16 位整型,p x:存放经A/D 转换后的输入信号;p z:对该信号进展FFT 变换的结果。
基于MATLAB的FFT算法实现摘要:本文研究了基于MATLAB的快速傅里叶变换(FFT)算法的实现。
傅里叶变换是一种重要的信号处理工具,广泛应用于图像处理、语音处理、通信系统等领域。
FFT是一种快速计算傅里叶变换的算法,可以大大提高傅里叶变换的计算效率。
本文详细介绍了FFT算法的原理和实现步骤,并通过MATLAB编程实现了FFT算法,并对不同信号和数据集进行了测试和分析。
实验结果表明,基于MATLAB的FFT算法可以有效地计算傅里叶变换,并且具有较高的精确性和稳定性。
关键词:MATLAB、FFT、傅里叶变换、计算效率、精确性、稳定性一、引言傅里叶变换是一种将时域信号转换到频域的重要工具,可以解析复杂的周期信号和非周期信号。
傅里叶变换在图像处理、语音处理、通信系统等领域有广泛的应用。
由于传统的傅里叶变换算法计算复杂度较高,耗时较长,因此需要一种快速计算傅里叶变换的算法。
快速傅里叶变换(FFT)算法是一种通过分治和递归的方法,将傅里叶变换计算的时间复杂度从O(N^2)降低到O(NlogN),大大提高了傅里叶变换的计算效率。
二、FFT算法原理FFT算法是一种递归的分治算法,它将长度为N的输入序列分为两个长度为N/2的子序列,然后通过对子序列进行FFT变换,再利用蝶形运算(butterfly operation)将结果合并,最终得到整个输入序列的傅里叶变换结果。
FFT算法的关键步骤包括序列分组、计算旋转因子、递归计算和合并。
通过这些步骤,可以将傅里叶变换的计算复杂度从O(N^2)降低到O(NlogN)。
三、基于MATLAB的FFT算法实现步骤1.读入输入序列,并将序列长度补齐为2的指数幂,方便进行分组计算。
2.进行FFT算法的递归计算。
首先将输入序列分为两个长度为N/2的子序列,然后对子序列进行递归计算,最终得到子序列的傅里叶变换结果。
3.计算旋转因子。
根据旋转因子的定义,计算出旋转因子的实部和虚部。
FFT频谱分析实验报告引言频谱分析是一种用于分析信号频率特征的方法,可应用于多个领域,如音频处理、图像处理、通信系统等。
本文将介绍FFT(快速傅里叶变换)频谱分析方法,并通过实验验证其有效性。
实验目的本实验旨在探索FFT频谱分析方法,了解其原理,并通过实验验证其在信号处理中的应用。
实验步骤1.准备实验材料–一台装有MATLAB软件的电脑–需要进行频谱分析的信号数据2.导入信号数据在MATLAB环境中,导入需要进行频谱分析的信号数据。
可以通过以下命令完成数据导入:data = importdata('signal.txt');这里假设信号数据保存在名为signal.txt的文件中。
3.对信号数据进行FFT变换利用MATLAB中的fft函数对信号数据进行FFT变换。
具体命令如下:fft_data = fft(data);这将得到信号数据的FFT变换结果。
4.计算频率谱通过对FFT变换结果的分析,可以计算信号的频率谱。
根据FFT变换的性质,频率谱可以通过计算FFT变换结果的模值得到:spectrum = abs(fft_data);这将得到信号的频率谱。
5.绘制频谱图利用MATLAB的plot函数,可以将频率谱绘制成图形。
命令如下:plot(spectrum);xlabel('频率');ylabel('幅值');title('频谱图');这将绘制出信号的频谱图。
6.分析频谱图通过观察频谱图,可以分析信号的频率特征,如频率成分的强度、主要频率等。
实验结果与讨论在完成以上步骤后,我们得到了信号的频谱图。
通过观察频谱图,我们可以分析信号的频率特征。
例如,我们可以确定信号中主要的频率成分,并通过频率成分的强度判断信号的特性。
在实验中,我们可以尝试使用不同的信号数据进行频谱分析,并观察结果的差异。
通过比较不同信号的频谱图,我们可以进一步了解信号的特性,并探索不同应用场景下的频谱分析方法。
FFT算法分析实验实验报告一、实验目的快速傅里叶变换(Fast Fourier Transform,FFT)是数字信号处理中一种非常重要的算法。
本次实验的目的在于深入理解 FFT 算法的基本原理、性能特点,并通过实际编程实现和实验数据分析,掌握 FFT 算法在频谱分析中的应用。
二、实验原理FFT 算法是离散傅里叶变换(Discrete Fourier Transform,DFT)的快速计算方法。
DFT 的定义为:对于长度为 N 的序列 x(n),其 DFT 为X(k) =∑n=0 到 N-1 x(n) e^(j 2π k n / N) ,其中 j 为虚数单位。
FFT 算法基于分治法的思想,将 N 点 DFT 分解为多个较小规模的DFT,从而大大减少了计算量。
常见的 FFT 算法有基 2 算法、基 4 算法等。
三、实验环境本次实验使用的编程语言为 Python,主要依赖 numpy 库来实现 FFT 计算和相关的数据处理。
四、实验步骤1、生成测试信号首先,生成一个包含不同频率成分的正弦波叠加信号,例如100Hz、200Hz 和 300Hz 的正弦波。
设定采样频率为 1000Hz,采样时间为 1 秒,以获取足够的采样点进行分析。
2、进行 FFT 计算使用 numpy 库中的 fft 函数对生成的测试信号进行 FFT 变换。
3、频谱分析计算 FFT 结果的幅度谱和相位谱。
通过幅度谱确定信号中各个频率成分的强度。
4、误差分析与理论上的频率成分进行对比,计算误差。
五、实验结果与分析1、幅度谱分析观察到在 100Hz、200Hz 和 300Hz 附近出现明显的峰值,对应于生成信号中的频率成分。
峰值的大小反映了相应频率成分的强度。
2、相位谱分析相位谱显示了各个频率成分的相位信息。
3、误差分析计算得到的频率与理论值相比,存在一定的误差,但在可接受范围内。
误差主要来源于采样过程中的量化误差以及 FFT 算法本身的近似处理。
一、实验目的1在理论学习的基础上,通过本实验加深对快速傅立叶变换的理解;2熟悉并掌握按时间抽取FFT算法的程序;3了解应用FFT进行信号频谱分析过程中可能出现的问题,例如混淆、泄漏、栅栏效应等,以便在实际中正确应用FFT。
二、实验内容1仔细分析教材第六章‘时间抽取法FFT’的算法结构,编制出相应的用FFT 进行信号分析的C语言(或MATLAB语言)程序;用MATLAB语言编写的FFT源程序如下:%%输入数据f、N、T及是否补零clc;clear;f=input('输入信号频率f:');N=input('输入采样点数N:');T=input('输入采样间隔T:');C=input('信号是否补零(补零输入1,不补零输入0):');%补零则输入1,不补则输入0if(C==0)t=0:T:(N-1)*T;x=sin(2*pi*f*t);b=0;e lseb=input('输入补零的个数:');while(log2(N+b)~=fix(log2(N+b)))b=input('输入错误,请重新输入补零的个数:');endt=0:T:(N+b-1)*T;x=sin(2*pi*f*t).*(t<=(N-1)*T);end%%fft算法的实现A=bitrevorder(x);%将序列按二进制倒序N=N+b;M=log2(N);%M为蝶形算法的层数W=exp(-j*2*pi/N);for L=1:1:M%第L层蝶形算法B=2^L/2;%B为每层蝶形算法进行加减运算的两个数的间隔K=N/(2^L);%K为每层蝶形算法中独立模块的个数for k=0:1:K-1for J=0:1:B-1p=J*2^(M-L);%p是W的指数q=A(k*2^L+J+1);%用q来代替运算前面那个数A(k*2^L+J+1)=q+W^p*A(k*2^L+J+B+1);A(k*2^L+J+B+1)=q-W^p*A(k*2^L+J+B+1);endendend%%画模特性的频谱图z=abs(A);%取模z=z./max(z);%归一化hold onsubplot(2,1,1);stem(0:1:N-1,x,'DisplayName','z');title('时域信号');subplot(2,1,2);stem(0:1:N-1,z,'DisplayName','z');title('频谱图');figure(gcf)%画图2用FFT 程序计算有限长度正弦信号()sin(2),0*y t f t t N Tπ=≤<分别在以下情况下所得的DFT 结果并进行分析和讨论:a )信号频率f =50Hz ,采样点数N=32,采样间隔T=0.000625sb )信号频率f =50Hz ,采样点数N=32,采样间隔T=0.005sT=0.0046875sc)信号频率f=50Hz,采样点数N=32,采样间隔051015202530350510152025303505101520253035 e)信号频率f=50Hz,采样点数N=64,采样间隔T=0.000625sg)将c)信号后补32个0,做64点FFT三、实验分析DFT是对有限序列做傅里叶变换后在频域上进行采样,而相对应的时域以频谱上的采样频率的倒数进行周期拓展。
实验14 快速傅里叶变换(FFT)(完美格式版,本人自己完成,所有语句正确,不排除极个别错误,特别适用于山大,勿用冰点等工具下载,否则下载之后的word 格式会让很多部分格式错误,谢谢)XXXX 学号姓名处XXXX一、实验目的1、加深对双线性变换法设计IIR 数字滤波器基本方法的了解。
2、掌握用双线性变换法设计数字低通、高通、带通、带阻滤波器的方法。
3、了解MA TLAB 有关双线性变换法的子函数。
二、实验内容1、双线性变换法的基本知识2、用双线性变换法设计IIR 数字低通滤波器3、用双线性变换法设计IIR 数字高通滤波器4、用双线性变换法设计IIR 数字带通滤波器三、实验环境MA TLAB7.0四、实验原理1、实验涉及的MATLAB 子函数(1)fft功能:一维快速傅里叶变换(FFT)。
调用格式:)(x fft y =;利用FFT 算法计算矢量x 的离散傅里叶变换,当x 为矩阵时,y 为矩阵x每一列的FFT 。
当x 的长度为2的幂次方时,则fft 函数采用基2的FFT 算法,否则采用稍慢的混合基算法。
),(n x fft y =;采用n 点FFT 。
当x 的长度小于n 时,fft 函数在x 的尾部补零,以构成n点数据;当x 的长度大于n 时,fft 函数会截断序列x 。
当x 为矩阵时,fft 函数按类似的方式处理列长度。
(2)ifft功能:一维快速傅里叶逆变换(IFFT)。
调用格式:)(x ifft y =;用于计算矢量x 的IFFT 。
当x 为矩阵时,计算所得的y 为矩阵x 中每一列的IFFT 。
),(n x ifft y =;采用n 点IFFT 。
当length(x)<n 时,在x 中补零;当length(x)>n 时,将x 截断,使length(x)=n 。
(3)fftshift功能:对fft 的输出进行重新排列,将零频分量移到频谱的中心。
调用格式:)(x fftshift y =;对fft 的输出进行重新排列,将零频分量移到频谱的中心。
一、实验目的1.利用MATLAB 编写FFT 快速傅里叶变换。
2.比较编写的myfft 程序运算结果与MATLAB 中的FFT 的有无误差。
二、实验条件PC 机,MATLAB7.0三、实验原理1. FFT (快速傅里叶变换)原理:将一个N 点的计算分解为两个N/2点的计算,每个N/2点的计算再进一步分解为N/4点的计算,以此类推。
根据DFT 的定义式,将信号x[n]根据采样号n 分解为偶采样点和奇采样点。
设偶采样序列为y[n]=x[2n],奇采样序列为z[n]=x[2n+1]。
上式中的k N W -为旋转因子N k j e /2π-。
下式则为y[n]与z[n]的表达式:2.蝶形变换的原理:下图给出了蝶形变换的运算流图,可由两个N/2点的FFT(Y[k]和Z[k]得出N点FFT X[k])。
同理,每个N/2点的FFT可以由两个N/4点的FFT求得。
按这种方法,该过程可延迟后推到2点的FFT。
下图为N=8的分解过程。
图中最右边的为8个时域采样点的8点FFTX[k],由偶编号采样点的4点FFT和奇编号采样点的4点得到。
这4点偶编号又由偶编号的偶采样点的2点FFT和奇编号的偶采样点的2点FFT产生。
相同的4点奇编号也是如此。
依次往左都可以用相同的方法算出,最后由偶编号的奇采样点和奇编号的偶采样点的2点FFT算出。
图中没2点FFT成为蝶形,第一级需要每组一个蝶形的4组,第二级有每组两个蝶形的两组,最后一级需要一组4个蝶形。
四、实验内容1.定义函数disbutterfly ,程序根据FFT 的定义:]2[][][N n x n x n y ++=、n N W N n x n x n z -+-=])2[][(][,将序列x 分解为偶采样点y 和奇采样点z 。
function [y,z]=disbutterfly(x)N=length(x);n=0:N/2-1;w=exp(-2*1i*pi/N).^n;x1=x(n+1);x2=x(n+1+N/2);y=x1+x2;z=(x1-x2).*w;2.定义函数rader ,纠正输出序列的输出顺序。
数字信号处理实验报告 实验二 FFT 算法的MATLAB 实现(一)实验目的:理解离散傅立叶变换时信号分析与处理的一种重要变换,特别是FFT 在数字信号处理中的高效率应用。
(二)实验原理:1、有限长序列x(n)的DFT 的概念和公式:⎪⎪⎩⎪⎪⎨⎧-≤≤=-≤≤=∑∑-=--=101010)(1)(10)()(N k kn N N n kn N N n W k x N n x N k W n x k x)/2(N j N eW π-=2、FFT 算法调用格式是 X= fft(x) 或 X=fft(x,N)对前者,若x 的长度是2的整数次幂,则按该长度实现x 的快速变换,否则,实现的是慢速的非2的整数次幂的变换;对后者,N 应为2的整数次幂,若x 的长度小于N ,则补零,若超过N ,则舍弃N 以后的数据。
Ifft 的调用格式与之相同。
(三)实验内容1、题一:若x(n)=cos(n*pi/6)是一个N=12的有限序列,利用MATLAB 计算它的DFT 并画出图形。
源程序: clc; N=12; n=0:N-1; k=0:N-1;xn=cos(n*pi/6); W=exp(-j*2*pi/N); kn=n'*kXk=xn*(W.^kn) stem(n,Xk); xlabel('k'); ylabel('Xk'); grid on ;也可用FFT 算法直接得出结果,程序如下: clc; N=12; n=0:N-1;xn=cos(n*pi/6);Xk=fft(xn,N); stem(n,Xk); xlabel('k'); ylabel('Xk'); grid on ;实验结果:24681012kX k分析实验结果:用DFT 和用FFT 对序列进行运算,最后得到的结果相同。
但用快速傅立叶变换的运算速度可以快很多。
2、题二:一被噪声污染的信号,很难看出它所包含的频率分量,如一个由50Hz 和120Hz 正弦信号构成的信号,受均值随机噪声的干扰,数据采样率为1000Hz ,通过FFT 来分析其信号频率成分,用MA TLAB 实现。
一、实验目的1在理论学习的基础上,通过本实验加深对快速傅立叶变换的理解;2熟悉并掌握按时间抽取FFT算法的程序;3了解应用FFT进行信号频谱分析过程中可能出现的问题,例如混淆、泄漏、栅栏效应等,以便在实际中正确应用FFT。
二、实验内容1仔细分析教材第六章‘时间抽取法FFT ’的算法结构,编制出相应的用FFT 进行信号分析的C语言(或MATLAB 语言)程序;用MATLAB语言编写的FFT源程序如下:%% 输入数据f、N、T及是否补零clc;clear;f=input('输入信号频率f:');N=input('输入采样点数N:');T=input('输入采样间隔T:');C=input('信号是否补零(补零输入1,不补零输入0):'); %补零则输入1,不补则输入0if(C==0)t=0:T:(N-1)*T;x=sin(2*pi*f*t);b=0;e lseb=input('输入补零的个数:');while(log2(N+b)~=fix(log2(N+b)))b=input('输入错误,请重新输入补零的个数:');endt=0:T:(N+b-1)*T;x=sin(2*pi*f*t).*(t<=(N-1)*T);end%% fft算法的实现A=bitrevorder(x); % 将序列按二进制倒序N=N+b;M=log2(N); % M为蝶形算法的层数W=exp(-j*2*pi/N);for L=1:1:M %第L层蝶形算法B=2^L/2; % B为每层蝶形算法进行加减运算的两个数的间隔K=N/(2^L); % K为每层蝶形算法中独立模块的个数for k=0:1:K-1for J=0:1:B-1p=J*2^(M-L); % p 是W 的指数 q=A(k*2^L+J+1); % 用q 来代替运算前面那个数 A (k*2^L+J+1)=q+W^p*A(k*2^L+J+B+1); A(k*2^L+J+B+1)=q-W^p*A(k*2^L+J+B+1); end end end%% 画模特性的频谱图z =abs(A); % 取模z=z./max(z); %归一化hold onsubplot(2,1,1);stem(0:1:N-1,x,'DisplayName','z');title('时域信号');subplot(2,1,2);stem(0:1:N-1,z,'DisplayName','z');title('频谱图');figure(gcf) %画图2用FFT 程序计算有限长度正弦信号()sin(2),0*y t f t t N Tπ=≤<分别在以下情况下所得的DFT 结果并进行分析和讨论:a )信号频率f =50Hz ,采样点数N=32,采样间隔T=0.000625sT=0.005sb)信号频率f=50Hz,采样点数N=32,采样间隔c)信号频率f=50Hz,采样点数N=32,采样间隔T=0.0046875sd)信号频率f=50Hz,采样点数N=32,采样间隔T=0.004se)信号频率f=50Hz,采样点数N=64,采样间隔T=0.000625sf)信号频率f=250Hz,采样点数N=32,采样间隔T=0.005sg)将c)信号后补32个0,做64点FFT三、实验分析DFT是对有限序列做傅里叶变换后在频域上进行采样,而相对应的时域以频谱上的采样频率的倒数进行周期拓展。
而在此题中,题中给出时域上的连续信号,对该连续信号进行加窗采样后得到有限序列,要求对该有限序列求DFT。
所以整个步骤为:对时域加窗,则相对应的频域与窗函数的傅里叶变换即sinc函数相卷积;再对时域采样,则对应的频域以时域采样频率的倒数进行周期性拓展;再将时域以窗长为周期进行周期性拓展,对应的频域以该周期的倒数进行采样,即得所求DFT。
a)信号频率f=50Hz,采样点数N=32,采样间隔T=0.000625s。
Sin函数信号对应的频谱图为在窗长,对应的sinc函数主瓣宽,其余波节与波节间距,两信号在频域上相卷,即将sinc函数平移;在时域以进行采样,即频域以进行周期性拓展。
在频域上采32个点,则对应每个点之间的间距为,(对应时域以0.02s进行周期性拓展,不予考虑)。
此时我们可以发现除了在f=50Hz(对应为第1个点)上采到的点幅值为sinc函数的最大值外,其他频率上采到的点刚好对应sinc函数的波节处,即此时采到的值为0。
又因为DFT满足共轭对称,所以可得图如上。
b)信号频率f=50Hz,采样点数N=32,采样间隔T=0.005s。
与a相比,采样间隔T不同,所以窗长,为a中窗长的8倍,所以窗长在频域上对应的sinc函数主瓣宽及波节与波节间距都为a中的即,两信号相卷,将sinc函数平移到;在时域以进行采样,即频域以进行周期性拓展。
在频域上采32个点,则对应每个点之间的间距为。
此时我们可以发现除了在f=50Hz上采到的点幅值为sinc函数的最大值外,其他频率上采到的点刚好对应sinc函数的波节处,即采到的值为0,而f=50Hz=8*6.25Hz,则第8个点为1;又因为DFT满足共轭对称,所以可得图如上。
c)信号频率f=50Hz,采样点数N=32,采样间隔T=0.0046875s。
Sin函数信号对应的频谱图为在窗长,对应的sinc函数主瓣宽,其余波节与波节间距,两信号在频域上相卷,即将sinc函数平移;在时域以进行采样,即频域以进行周期性拓展。
在频域上采32个点,则对应每个点之间的间距为,与波节间距相等。
但可以发现f=50Hz对应第7.5个点,而所求必须采到整数点上,所以采出来的点即没有最大值,也不存在0点。
又因为DFT满足共轭对称,所以可得图如上。
d)信号频率f=50Hz,采样点数N=32,采样间隔T=0.004s。
Sin函数信号对应频谱图为在窗长,对应的sinc函数主瓣宽,波节与波节间距,两信号在频域上相卷,即将sinc函数平移;在时域以进行采样,即频域以进行周期性拓展。
在频域上采32个点,则对应每个点之间的间距为,与波节间距相等。
但可以发现f=50Hz对应第6.4个点,而所求必须采到整数点上,所以采出来的点即没有最大值,也不存在0点。
又因为DFT满足共轭对称,所以可得图如上。
e)信号频率f=50Hz,采样点数N=64,采样间隔T=0.000625s。
Sin函数信号对应的频谱图为在窗长,对应的sinc函数主瓣宽,其余波节与波节间距,两信号在频域上相卷,即将sinc函数平移;在时域以进行采样,即频域以进行周期性拓展。
在频域上采64个点,则对应每个点之间的间距为。
此时我们可以发现除了在f=50Hz(对应为第2个点)上采到的点幅值为sinc函数的最大值外,其他频率上采到的点刚好对应sinc函数的波节处,即此时采到的值为0。
又因为DFT满足共轭对称,所以可得图如上。
f)信号频率f=250Hz,采样点数N=32,采样间隔T=0.005s。
与a相比,采样间隔T不同,所以窗长,为a中窗长的8倍,所以窗长在频域上对应的sinc函数主瓣宽及波节与波节间距都为a中的即,两信号相卷,将sinc函数平移到;在时域以进行采样,即频域以进行周期性拓展,又因为,所以相当于将sinc函数平移到。
在频域上采32个点,则对应每个点之间的间距为。
此时我们可以发现除了在f=50Hz上采到的点幅值为sinc函数的最大值外,其他频率上采到的点刚好对应sinc函数的波节处,即采到的值为0,而f=50Hz=8*6.25Hz,则第8个点为1;又因为DFT满足共轭对称,所以可得图如上。
与b比较易得两图所得结果相同。
g)将c信号后补32个0,做64点FFT。
Sin函数信号对应的频谱图为在窗长,对应的sinc函数主瓣宽,其余波节与波节间距,两信号在频域上相卷,即将sinc函数平移;在时域以进行采样,即频域以进行周期性拓展。
在频域上采64个点,则对应每个点之间的间距为。
可以发现f=50Hz对应第15个点,并且每个波节刚好被采到。
又因为DFT满足共轭对称,所以可得图如上。
与c信号相比较易发现刚好在c信号的每两点的中间多采一点。
小结:影响DFT结果的参数有信号频率f,采样点数N,采样间隔T,是否补零。
信号频率f:由b)和f)比较得,f影响到sinc函数做卷积后的位置,而这这两个信号中的频率差恰好等于时域采样频率,又在频域上以为周期做拓展,所以得到的DFT结果一样。
采样点数N:由a)和e)比较得,频谱上虽然采样更密,但同时频谱也被压缩,所以采样点数N并不产生影响。
采样间隔T:由a)、b)、c)、d)比较得,采样间隔T与N一起决定了窗的长度,与f一起决定了频谱上采样点的位置,是影响频谱图像的主要因素。
补零:由c)和g)比较得,补零对应在频谱上采样密度增加一倍,使频谱图更加清晰。
如果补零后的总点数是原采样点数的倍,则频谱上采样的密度为原来的倍。
四、实验总结这次实验让我对fft算法有了详细的掌握,能够熟练地用fft算法求解DFT。
除此之外,对DFT的物理意义有了更加深入的了解,掌握了求解DFT的详细过程,并对影响DFT的几种因素进行了分析,对栅栏效应、频谱分辨率、泄露效应及各种参数的选择有了进一步的了解。
总而言之,这次实验编程部分还算比较容易,而因为对DFT的原理不是很熟练,所以觉得对各种参数的分析比较难,但在老师和同学们的帮助下最后还是掌握了这部分知识,也是这种感觉让我很期待下一次的实验。